Document Type

Article

Publication Date

2025

Keywords

Time Series Data, Multi-View Feature Construction

Disciplines

Artificial Intelligence and Robotics

Abstract

Time series data plays a significant role in many research fields since it can record and disclose the dynamic trends of a phenomenon with a sequence of ordered data points. Time series data is dynamic, of variable length, and often contains complex patterns, which makes its analysis challenging especially when the amount of data is limited. In this paper, we propose a multi-view feature construction approach that can generate multiple feature sets of different resolutions from a single dataset and produce a fixed-length representation of variable-length time series data. Furthermore, we propose a multi- encoder-decoder Transformer (MEDT) architecture to effectively analyze these multi-view representations. Through extensive experiments using multiple benchmarks and a real-world dataset, our method shows significant improvement over the state-of-the-art methods.

Comments

Free and open access to this Campus Access Thesis is made available to the UMass Boston community by ScholarWorks at UMass Boston. Those not on campus and those without a UMass Boston campus username and password may gain access to this thesis through Interlibrary Loan. If you have a UMass Boston campus username and password and would like to download this work from off-campus, click on the “Off-Campus Users” button.

Share

COinS