Document Type

Research Report

Publication Date



The primary goal of this research is to begin to overcome biases in the Greenlandic Norse archaeological record. Assessing the establishment dates and organization of Norse sites in Greenland is difficult because substantial cultural deposits can be hidden under deep windblown sand deposits as well as later occupations. Shallow geophysical methods were used to help recover information on the nature, extent and depth of subsurface cultural deposits. Assessing these site characteristics is a first step in overcoming the bias towards the later, the larger, and the more visible sites in the archaeological record.

Norse Greenland presents a relatively visible medieval landscape with many ruins preserved on the surface. Survey archaeologists have taken advantage of these conditions to do comprehensive surveys of Norse settlements producing inventories of farm buildings and settlements (Guldager, et al. 2002; Keller 1990). Coring surveys and excavation at known sites have demonstrated that some sites are buried under significant aeolian deposits and that areas within many other sites can be deep and contain ruins that are not visible on the surface. In many cases Viking Age deposits cannot be accessed by archaeological excavation, as this would damage later occupational phases. In these cases, application of archeogeophysics may be the only way to assess this unique cultural history. The identification, characterization, and dating of these subsurface architectural remains are critical to systematic survey programs and to the production of regional settlement patterns and chronologies that can help explain the ecological and political dynamics of Norse colonization, land use, and the eventual demise of Norse Greenland.

Over the past 10 years the Skagafjörður Archaeological Settlement Survey (SASS) has developed an intensive subsurface survey protocol to systematically recover, date, and characterize Viking Age landscapes in Iceland. While we believe the SASS subsurface protocol can be effective in Greenland there are many questions that must be resolved before any wide-scale application of the methods can be developed. The project set out to address two basic questions: (1) what is the actual subsurface record at Norse sites, and (2) which methods work best and how are they most effectively employed? In this initial investigation, we tested and adapted this protocol to conditions in Greenland. We hope that the preliminary test of these methods will significantly expand the range of sites and periods accessible to researchers working in Greenland and allow for new questions regarding the long-term political and environmental histories of the region.

The successful integration of archaeogeophysics with archaeological survey and excavation will result in a more holistic approach to the preservation of Norse archaeological sites in Greenland. These sites suffer from increased modern impacts resulting from mineral exploitation, sheep farming, and tourism. Additionally, there is now total summer sub-surface thaw and conditions that were once ideal for preserving organic remains are now deteriorating, especially in well-drained areas. In the coming years the Greenland National Museum will begin a program of scheduling and protecting some of these sites. We believe that the application of archaeogeophysics could be a great asset in determining which sites are in danger and worthy of preservation.


Preliminary Report.

Cultural Resource Management Study No. 51.