Date of Award


Document Type

Campus Access Dissertation

Degree Name

Doctor of Philosophy (PhD)


Computer Science

First Advisor

Xiaohui Liang

Second Advisor

Dan Simovici

Third Advisor

Bo Sheng


In the past years, the number of Internet of Things (IoT) devices has dramatically grown. These IoT devices are equipped with one or more sensors, and connected to the Internet to make them significantly beneficial and attractive to the user. In addition, service providers use these IoT devices to collect users' personal data to provide them with satisfied services and personalized experience. However, using IoT devices to share personal data with the service providers could introduce many privacy risks to users. In this dissertation, we study privacy issues related to the IoT, and we introduce new schemes to enhance the users' privacy when the users use IoT devices. First, we propose a privacy-preserving data query scheme in the home IoT voice system, which enables users to use voice commands for uploading voice data and later retrieving them securely. Second, we propose an efficient privacy-preserving IoT contact tracing scheme for infection detection scheme (EPIC), which enables users to check if they have ever got in contact with an infected user in the past. EPIC employees short-range wireless IoT devices to perform the contact tracing task in a privacy manner. Third, we propose a scheme that supports posting and searching protocols for sharing IoT location-based comments. This scheme allows users to share location-based comments without a need to disclose a user's location to service providers, the user's location represents a physical location for an IoT device. Finally, we evaluate the performances of our proposed schemes by conducting intensive real-world experiments, and we show that our proposed schemes can achieve the privacy, accuracy, and efficiency objectives.


Free and open access to this Campus Access Dissertation is made available to the UMass Boston community by ScholarWorks at UMass Boston. Those not on campus and those without a UMass Boston campus username and password may gain access to this dissertation through resources like Proquest Dissertations & Theses Global or through Interlibrary Loan. If you have a UMass Boston campus username and password and would like to download this work from off-campus, click on the "Off-Campus UMass Boston Users" link above.