Date of Award

12-31-2016

Document Type

Campus Access Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Biology/Molecular, Cellular, and Organismal Biology

First Advisor

Linda Huang

Second Advisor

Alexey Veraksa

Third Advisor

Jill Macoska

Abstract

My research examines how meiotic cytokinesis is regulated by examining sporulation in Sacchaomyces cerevisiae. During sporulation in Saccharomyces cerevisiae, a double lipid bilayer called the prospore membrane is formed de novo, growing around each meiotic nucleus and ultimately closing to create four new cells within the mother cell. I show that SPS1, which encodes a kinase belonging to the germinal center kinase III family, is involved in prospore membrane development and is required for prospore membrane closure. I find that SPS1 genetically interacts with SPO77 and loss of either gene disrupts prospore membrane closure in a similar fashion. The SPS1/SPO77 pathway is required for the proper phosphorylation and stability of Ssp1, a member of the leading edge protein complex that is removed and degraded when the prospore membrane closes. Further, I show a role for the Hippo-like kinase Cdc15 important for regulating mitotic exit in this process. We see that Cdc15 physically interacts with Sps1 and is required for Sps1’s phosphorylation. This discovery reveals that, Sps1, a STE20-family member GCKIII kinase, acts in the Cdc15 pathway during sporulation and couples meiotic exit and meiotic cytokinesis.

Comments

Free and open access to this Campus Access Dissertation is made available to the UMass Boston community by ScholarWorks at UMass Boston. Those not on campus and those without a Healey Library (UMass Boston) barcode may gain access to this dissertation through resources like Proquest Dissertations & Theses Global. If you have a Healey Library barcode and would like to download this work from off-campus, click on the "Off-Campus UMass Boston Users" link above.

Available for download on Monday, December 31, 2018

Share

COinS