Date of Award

12-31-2015

Document Type

Campus Access Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Computer Science

First Advisor

Wei Ding

Second Advisor

Dan Simovici

Third Advisor

Marc Pomplun

Abstract

In the big data era, many existing machine learning algorithms are not applicable due to various performance constraints. In this thesis, approaches using online optimization and distance learning have been proposed under the large-scale setting for some typical machine learning topics, such as: 1) streaming data problem 2) rich data with limited label problem and 3) multimodal distribution and imbalanced data problem. These machine learning topics are inspired from real world applications. In addition, a unified framework has been proposed for a general large-scale classification problem. This framework involves four major components: 1) feature extraction 2) feature selection 3) distance measure and 4) classification. Finally, some real world Large-scale classification problems solved by this framework have been included in this thesis, such as: Mars Crater detection, Boston Crime prediction and activity recognition from accelerometer data.

Comments

Free and open access to this Campus Access Dissertation is made available to the UMass Boston community by ScholarWorks at UMass Boston. Those not on campus and those without a Healey Library (UMass Boston) barcode may gain access to this dissertation through resources like Proquest Dissertations & Theses Global. If you have a Healey Library barcode and would like to download this work from off-campus, click on the "Off-Campus UMass Boston Users" link above.

Share

COinS