
University of Massachusetts Boston University of Massachusetts Boston 

ScholarWorks at UMass Boston ScholarWorks at UMass Boston 

Graduate Doctoral Dissertations Doctoral Dissertations and Masters Theses 

8-2024 

Unraveling Collective Anomalies in Data-Driven Systems: Unraveling Collective Anomalies in Data-Driven Systems: 

Manifestation, Detection, and Enhancement Implications Manifestation, Detection, and Enhancement Implications 

Mohammad Bakhsh 

Follow this and additional works at: https://scholarworks.umb.edu/doctoral_dissertations 

 Part of the Library and Information Science Commons 

https://scholarworks.umb.edu/
https://scholarworks.umb.edu/doctoral_dissertations
https://scholarworks.umb.edu/diss_theses
https://scholarworks.umb.edu/doctoral_dissertations?utm_source=scholarworks.umb.edu%2Fdoctoral_dissertations%2F968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1018?utm_source=scholarworks.umb.edu%2Fdoctoral_dissertations%2F968&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

UNRAVELING COLLECTIVE ANOMALIES IN DATA-DRIVEN SYSTEMS: 

MANIFESTATION, DETECTION, AND ENHANCEMENT IMPLICATIONS 

 

A Dissertation Presented 

by 

MOHAMMAD K. BAKHSH 

 

 

Submitted to the Office of Graduate Studies, 

University of Massachusetts Boston, 

in partial fulfillment of the requirements for the degree of 

 

 

DOCTOR OF PHILOSOPHY 

 

August 2024 

 

Information Systems for Data Science and Management Program 

  



 
 

 

 

 

 

 

 

 

© 2024 by Mohammad K. Bakhsh 

All rights reserved 

 

  



 
 

UNRAVELING COLLECTIVE ANOMALIES IN DATA-DRIVEN SYSTEMS: 

MANIFESTATION, DETECTION, AND ENHANCEMENT IMPLICATIONS 

 

A Dissertation Presented 

by 

MOHAMMAD K. BAKHSH 

 

Approved as to style and content by: 

 
 
 

Josephine M. Namayanja, Assistance Professor 
Chairperson of Committee 
 
 

Shan Jiang, Associate Professor 
Member 
 
 

One-Ki Daniel Lee, Associate Professor 
Member 
 

Ehsan Elahi, Graduate Program Director 
Management Science & Info Sys Program 

 
 

Peng Xu, Chairperson 
Management Science & Info Sys Department 



iv 
 

ABSTRACT 

 

UNRAVELING COLLECTIVE ANOMALIES IN DATA-DRIVEN SYSTEMS: 

MANIFESTATION, DETECTION, AND ENHANCEMENT IMPLICATIONS 

 

August 2024 

 

Mohammad K. Bakhsh, B.Sc., Northumbria University 

MBA, San Francisco State University 

Ph.D., University of Massachusetts Boston 

 

Directed by Professor Josephine M. Namayanja 

This dissertation presents an in-depth investigation into collective anomalies—complex 

patterns of data that deviate from the norm when considered as a group, rather than 

individually. It encompasses three pivotal studies that explore the intricacies of identifying 

and analyzing these anomalies within online customer reviews and urban traffic patterns. The 

research initially focuses on the subtle shifts in consumer feedback patterns, highlighting the 

challenges of detecting early signs of collective anomalies. It then advances to the analysis of 

urban traffic, emphasizing the detection of anomalous trajectory patterns and their 

implications for urban planning. The final study introduces a spatio-temporal framework to 

uncover microtransit bottlenecks, aiming to enhance urban mobility. This body of work 

offers insights into the nuanced manifestation, detection and implications of collective 

anomalies, providing a significant contribution to the field of data-driven decision-making. 
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CHAPTER 1: INTRODUCTION 

The landscape of data-driven systems is increasingly intricate and multifaceted. While 

point anomalies are easily distinguishable due to their inherent deviation from the norm, 

collective anomalies present a more subtle and complex challenge. In the context of 

collective anomalies, it is not the individual data points that are of primary concern, but 

rather their combined occurrence within a group. This complexity highlights how individual 

data points, which might seem normal on their own, can reveal significant irregularities when 

analyzed together (Chandola et al., 2009). 

In data-driven contexts such as online review aggregation and urban traffic pattern 

analysis, the identification of collective anomalies plays a pivotal role. These anomalies can 

be a source of both concern and interest, depending on their nature and implications. For 

instance, in online customer reviews (OCR), an unusual divergence in review characteristics 

may signal a shift in consumer perception or indicate underlying biases, necessitating a 

deeper investigation into the factors influencing these changes. Similarly, an unusual high 

concentration of vehicle trajectory observations in particular spatial location could signal an 
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unexpected traffic pattern, necessitating interventions such as deploying additional transit 

services. 

This study embarks on a journey to explore the phenomenon of collective anomalies, 

focusing on the complexities inherent in their manifestation and detection. The research 

problem centers on the subtle and context-dependent nature of these anomalies as they first 

appear within datasets. This early manifestation phase demands thorough observation and 

analysis to identify emerging, yet often inconspicuous, patterns. For example, in OCR, the 

challenge lies in discerning nuanced differences in review patterns, especially when eliciting 

feedback from the typically silent majority. Such variations in opinion diversity between 

solicited and organic reviews, while subtle, can be indicative of reporting bias, underscoring 

the intricate nature of identifying these anomalies in their early stages. 

The detection phase, in contrast, involves a more complex and detailed analytical 

process. This is particularly evident in spatial contexts such as network or graph data, where 

the relationships between nodes and edges must be carefully examined. Identifying hotspot 

paths within trajectory networks exemplifies this challenge, as it entails evaluating multiple 

points and paths, often resulting in a multitude of combinations and significant computational 

demands. Furthermore, in spatio-temporal contexts, the complexity of collective anomaly 

detection escalates due to the need to understand the interrelationships between sequential 

data points, making the task even more challenging. This study aims to address these 

complexities, offering insights into the nuanced world of collective anomaly manifestation 

and detection. 
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In this dissertation, three distinct yet interconnected papers are presented, each delving 

into the complexities of collective anomalies in data-driven systems. The first paper explores 

the manifestation phase of collective anomalies in OCR, focusing on the subtle shifts in 

review patterns as a response to review solicitation. The second paper shifts the focus to the 

detection phase, analyzing anomalous patterns in trajectory networks and their implications 

for urban planning and traffic management. Building on this, the third paper delves further 

into the detection phase of collective anomalies by introducing a spatio-temporal collective 

anomaly discovery framework, aiming to enhance urban mobility through the identification 

of microtransit bottlenecks. Together, these studies provide a comprehensive exploration of 

collective anomalies, from their manifestation in consumer feedback to their detection in 

complex urban systems, highlighting their significance and applications in diverse data-

driven contexts. 

Chapter 2 lays the groundwork for understanding anomalies by diving into their 

definitions, types, and the specific nuances of collective anomalies. It particularly addresses 

the manifestation and detection of collective anomalies, highlighting the inherent challenges 

involved in each phase. The chapter also introduces the enhancement implications that arise 

from understanding collective anomalies. This exploration provides a critical foundation for 

the subsequent analytical approaches and applications discussed in the following chapters. 

Chapter 3, titled “The Manifestation of Reporting Bias in Online Customer Reviews,” 

delves into the nuanced world of online customer review (OCR) systems, a vital component 

of modern business strategy. This chapter addresses the manifestation phase of collective 

anomalies, particularly focusing on identifying and understanding the subtle differences in 
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review patterns that emerge when the typically silent majority is prompted to provide 

feedback through review solicitation. The chapter conducts a thorough examination of how 

customer feedback dynamics shift between solicited and organic reviews, identifying and 

interpreting early indications of anomalies. Employing the “Experience Sphere” as a 

comprehensive theoretical framework, the chapter integrates theories such as herding 

behavior, spiral of silence, and customer review helpfulness. This framework allows for a 

dissection of the typical review dynamics and the distinct changes prompted by the 

solicitation process. The chapter aims to shed light on the silent majority’s response to 

solicitation, investigating how their participation via solicitation influences OCR biases. This 

critical exploration into the nuanced shifts in review characteristics is key to understanding 

the manifestation of collective anomalies and the complexities involved in early-stage 

anomaly detection. This chapter offers vital insights into the intricate processes of review 

solicitation, significantly contributing to our understanding of collective anomaly 

manifestation within OCR systems. 

Chapter 4, titled “Discovering AHP–TDT: Anomalous Hotspot Paths in Trajectory 

Networks Based on Total Distance Traveled,” the emphasis shifts towards the detection 

phase of collective anomalies. This chapter focuses on identifying and analyzing anomalous 

hotspot paths within trajectory networks, an approach that extends beyond traditional point- 

and edge-focused methods. By emphasizing the total distance traveled (TDT), the study 

uncovers intricate patterns of movement that reveal collective anomalies, offering new 

insights into urban planning, traffic management, and other applications. In this part of the 

dissertation, the analysis of trajectory data is employed to discover spatial hotspots and 
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anomalous paths, which are essential for understanding complex travel patterns in urban 

environments. The chapter tackles the computational challenges involved in this analysis by 

employing advanced methods, including weighted connected components, to efficiently 

process and interpret large-scale trajectory data. Through this exploration, the study seeks to 

answer key questions about the comprehensive understanding of networks through the lens of 

collective anomalies and the impact of sophisticated analytical approaches on detecting these 

anomalies. This chapter contributes to the dissertation by offering a practical example of 

collective anomaly detection, demonstrating its enhancement implications in real-world 

scenarios. 

Chapter 5, titled “Tackling Microtransit Bottlenecks: A Spatio-Temporal Collective 

Anomaly Discovery Framework,” delves further into the detection phase of collective 

anomalies. This chapter introduces a spatio-temporal collective anomaly discovery (STCAD) 

framework, which is designed to enhance urban mobility by identifying microtransit 

bottlenecks through the integration of spatial insights from anomalous hotspot paths and 

temporal nuances. Employing advanced techniques such as the matrix profile, this chapter 

offers a nuanced approach to anomaly detection, going beyond traditional methods to reveal 

complex urban mobility patterns. The STCAD framework’s combination of spatial and 

temporal data analysis provides a detailed understanding of microtransit bottlenecks, leading 

to enhanced anomaly detection and practical solutions for urban transit challenges, 

particularly in identifying and addressing systemic issues in microtransit systems. This 

approach not only enriches theoretical knowledge but also has significant practical 

implications, marking a substantial contribution to urban mobility studies. Crucially, it 
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underscores the importance of understanding collective anomalies in data-driven 

environments, demonstrating how a comprehensive analysis of these anomalies can lead to 

more effective and informed solutions in urban transit and beyond. 

Chapter 6 synthesizes the insights from the preceding studies, providing a cohesive 

conclusion that encapsulates the multi-dimensional understanding of collective anomalies, 

their impact, and practical applications across the various data-driven environments. 

References 

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A Survey. Computers, 
Materials and Continua, 14(1), 1-22. https://doi.org/10.1145/1541880.1541882  

 

https://doi.org/10.1145/1541880.1541882
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CHAPTER 2: BACKGROUND 

2.1 Definition and Types of Anomalies 

Anomalies are also referred to as outliers, abnormalities, discordants, deviants, events, 

novelties, change points, faults, intrusions, misuses, surprises, and peculiarities in the data 

mining literature and different application domains (Aggarwal, 2017; Chandola et al., 2009; 

Gupta et al., 2014). Anomalies represent patterns or observations within data that do not 

conform to an expected behavior. In data-driven systems, understanding and identifying 

anomalies is crucial, as they can signal critical, often actionable insights across diverse 

domains such as finance, healthcare, cybersecurity, online platforms, and urban mobility 

(Aggarwal, 2017). Therefore, the task of anomaly detection is to identify these unusual 

patterns that do not align with the expected norm. 

Unlike a point anomaly, where an individual data point deviates significantly from the 

norm, a collective anomaly occurs when an individual data point might not be anomalous by 

itself, but its occurrence together with other points as a group is anomalous (Ahmed et al., 

2016; Chandola et al., 2009). This group could be a collection of points, a sequence in a time 

series, or a path in a network or a graph, as illustrated in Figure 2.1. While anomalies denote 
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patterns that deviate from the norm, they are distinct from simple noise in data. Noise, an 

unwanted phenomenon, can obstruct data analysis. The process of noise removal aims to 

eliminate these disturbances before any analytical procedure, whereas noise accommodation 

focuses on adjusting statistical models to be resilient against such disturbances (Chandola et 

al., 2009). In some contexts, the terms weak outliers and strong outliers are employed to 

differentiate between noise and genuine anomalies (Aggarwal, 2017). The different types of 

anomalies are summarized in the table 2.1. 

   

A path in a network1 A sequence in a time series2 A collection of points3 

Figure 2.1: Collective Anomaly Examples 

Table 2.1: Summary of Anomaly Types 

Type of Anomaly Description Example 

Point Anomalies Individual data points that are abnormal 

compared to the rest of the data (Ahmed et al., 

2016; Chandola et al., 2009). 

A transaction where an 

extremely high amount of 

money is withdrawn. 

Contextual 

Anomalies 

Data points that are not outliers in themselves but 

are considered anomalous within a specific 

Buying heavy winter 

clothing during the summer 

 
1 https://zhuanlan.zhihu.com/p/546002046 
2 https://www.researchgate.net/figure/Collective-anomaly-corresponding-to-an-Atrial-Premature-Contraction-
in-an-human_fig4_220565847 
3 https://www.researchgate.net/figure/Presence-of-rare-and-collective-anomalies-together-in-a-
dataset_fig2_322689930 

https://zhuanlan.zhihu.com/p/546002046
https://www.researchgate.net/figure/Collective-anomaly-corresponding-to-an-Atrial-Premature-Contraction-
https://www.researchgate.net/figure/Presence-of-rare-and-collective-anomalies-together-in-a-
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(Conditional 

Anomalies) 

context (Chandola et al., 2009). season. 

Collective 

Anomalies 

A collection of related data instances that, when 

considered together, are anomalous in 

comparison to the entire dataset. These instances 

might not be anomalies individually, but their 

occurrence as a collection or sequence is 

anomalous (Chandola et al., 2009). 

A sequence of financial 

transactions that might seem 

normal individually but are 

suspicious together. 

Anomaly detection complexities arise from factors such as input data characteristics, 

label availability, and the specific output forms required from the detection process. First, 

anomaly detection strategies pivot significantly based on the data type. Diverse data forms, 

encompassing sequential time-series, spatial configurations, or networked graph data, 

demand tailored detection methodologies. For instance, sequence data prevalent in reviews or 

trajectory analyses necessitates a nuanced approach, especially when identifying collective 

anomalies where data instances are interrelated (Chandola et al., 2009). The analytical 

technique also differs for univariate (independent) and multivariate (correlated) datasets, 

underscoring the need for an adaptable detection mechanism. Second, the presence or 

absence of labeled instances (‘normal’ or ‘anomalous’) shapes the anomaly detection 

approach—supervised, semi-supervised, or unsupervised. Obtaining reliable labels is often a 

hurdle due to anomalies’ rare nature, especially in voluminous datasets, leading to a 

preference for methods proficient in unsupervised or semi-supervised learning with minimal 

reliance on labeled examples (Chandola et al., 2009). Third, anomaly detection systems 

produce outputs as scores or categorical labels. Anomaly scores quantify the extent of 
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deviation, providing a nuanced view, while labels offer a binary classification, segregating 

data into normal or anomalous categories. The application’s demand, whether pinpointing the 

anomaly degree or broader classification, influences this operational choice (Chandola et al., 

2009). 

2.2 Manifestation and Detection of Collective Anomalies 

Manifestation of Collective Anomalies 

Anomaly detection, as a more widely recognized and discussed aspect in the field of 

anomaly research, often overshadows the equally important phase of anomaly manifestation. 

This initial, underlying stage is crucial as it precedes the detection process. Manifestation of 

an anomaly is about its occurrence or existence within a dataset, while detection pertains to 

the discovery and recognition of this anomaly. In essence, an anomaly must first manifest 

within the dataset before it can be detected (Bergmann et al., 2021; Foorthuis, 2021; 

Manousis et al., 2021). 

The manifestation of collective anomalies is the phase where these anomalies first 

occur and begin to form within a dataset. Unlike detection, which is an active process of 

searching and identifying, manifestation is more about the natural occurrence and expression 

of the anomaly. This stage is typically subtle, deeply rooted in the context of the data, and not 

immediately apparent. Anomalies at this point exist due to underlying conditions or 

behaviors in the data that may not be overtly noticeable (Bergmann et al., 2021). During the 

manifestation phase, unusual patterns, relationships, or behaviors start to develop within a 

group of data points. These can range from a sudden, unexplained rise in stock prices across 
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multiple sectors to an unusual behavioral pattern among a social group. The focus during 

manifestation is on the observable characteristics and impacts of the anomaly, rather than on 

the anomaly itself. It deals with the effects that are visible or measurable within the system, 

which are often observed visually or qualitatively (Bergmann et al., 2021). 

In this phase, the anomaly expresses itself and becomes evident within the group or 

system. For instance, a collective anomaly in social media might initially manifest as a subtle 

yet consistent deviation from normal spread of misinformation patterns before being 

identified through detailed analysis. The manifestation of an anomaly can, therefore, be seen 

as a trigger for its detection, such as hate speech or bot activity leading to more focused 

investigations (Foorthuis, 2021; Stewart et al., 2010). Another example is novelty detection, 

which focuses on identifying new, previously unseen patterns in data, such as emerging 

topics in a discussion group. Once these novel patterns are detected, they are often integrated 

into the standard model, distinguishing them from anomalies that remain outliers (Chandola 

et al., 2009). Understanding this manifestation phase is essential as it lays the groundwork for 

effective detection strategies. By recognizing that anomalies first have to manifest in order to 

be detected, analysts and researchers can develop more nuanced approaches to monitoring 

and analyzing data, focusing not just on finding anomalies but also on understanding their 

emergence and development within the dataset. 

Building on this understanding of the manifestation phase, methodologies in collective 

anomaly manifestation are geared toward identifying these early signs and subtle indications 

of anomalies within a dataset, prior to their formal detection and analysis. These 

methodologies diverge from detection methods that rely on specific thresholds or rankings, 
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and instead, prioritize the initial observation and recognition of atypical patterns and 

behaviors. This often involves a more qualitative approach, hinging on contextual 

understanding and pattern recognition (Bergmann et al., 2021; Manousis et al., 2021). 

Analysts might monitor for unusual correlations, shifts in data trends, or deviations from 

historical patterns that, while not immediately alarming, could signify the beginning of an 

anomalous pattern. This approach necessitates a deep understanding of the normal 

operational range of the dataset and a keen awareness of how minor variations might herald 

emerging anomalies. Although manifestation methods might utilize basic statistical measures 

to flag potential anomalies, these are generally seen as preliminary indicators rather than 

conclusive evidence. The focus here is on discerning the nuances and subtleties in the data, 

including changes in frequency, duration, intensity, or other characteristics that collectively 

signal a departure from the norm. The ultimate goal is to identify these early signs, enabling a 

proactive approach before the anomaly becomes more conspicuous and detectable through 

more structured detection methodologies (Bergmann et al., 2021). 

Detection of Collective Anomalies 

Following the manifestation phase, the critical stage of anomaly detection begins. This 

stage marks a transition from the passive observation of anomaly manifestation to the active 

process of discovering and recognizing these manifested anomalies. Compared to 

manifestation, detection is a more intricate and complex process, involving detailed and 

sophisticated analysis to uncover patterns and relationships within the data that are not 

apparent at the individual data point level. It typically employs advanced analytical 

techniques that evaluate data in an aggregate manner, utilizing a range of methods from 
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statistical analysis to complex machine learning algorithms and data mining techniques 

(Bergmann et al., 2021; Chandola et al., 2009; Muruti et al., 2018). 

The detection and flagging of collective anomalies can be achieved through three 

distinct methodologies: the threshold-based approach, the top-k approach, and an integrated 

approach that combines elements of the first two (Aggarwal, 2017; Yeh et al., 2017). In the 

threshold-based approach, a specific threshold is established, often derived from statistical 

measures such as the data’s mean and standard deviation. Groups of points are flagged as 

anomalous when their combined values, whether in total or on average, surpass this set 

threshold. For instance, setting the threshold at one or more standard deviations above the 

mean ensures that only significantly deviant points are marked as anomalies. Conversely, the 

top-k approach avoids a fixed threshold. Instead, it ranks points or groups of points based on 

a chosen metric, such as Total Distance Traveled (TDT), and flags the highest-scoring ones 

as anomalies. This method is particularly useful when it is difficult to set a meaningful 

threshold or when the focus is on identifying the most extreme cases. Lastly, the integrated or 

multifaceted approach offers a more comprehensive solution by combining the threshold and 

top-k methods. Here, a group of points is deemed anomalous only if it satisfies both criteria: 

exceeding the predetermined threshold and ranking among the top-k groups. This dual-

criteria approach fosters a more robust and comprehensive anomaly detection, requiring 

significant deviation by multiple standards (Aggarwal, 2017; Yeh et al., 2017). 

Validating the results of collective anomalies manifestation and detection is a 

multifaceted process that encompasses both expert judgment and quantitative analysis 

(Aggarwal, 2017; Bergmann et al., 2021). Initially, subject matter experts play a crucial role 
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by reviewing the detected anomalies for practical significance and relevance. This expert 

validation involves assessing if the identified anomalies align with domain knowledge and 

real-world expectations. Additionally, correlating these anomalies with external events or 

known changes in the system can further support their validity. If the anomalies correspond 

with real-world occurrences, this adds a layer of credibility to the detection process. Beyond 

expert assessment, statistical validation is essential in evaluating the effectiveness of anomaly 

manifestation and detection methods. Implementing statistical tests, such as 

Multidimensional Scaling (MDS), the Wilcoxon–Mann–Whitney (WMW) U Test, t-test, or 

the Chi-square test, helps in assessing the significance of the detected anomalies compared to 

expected norms (Abdi, 2007; Castelli et al., 2017). These tests can determine if the observed 

anomalies are statistically significant and not just random occurrences. Furthermore, 

sensitivity analysis by adjusting the parameters of the detection methodology, like the 

threshold or top-k value, and observing the impact on the results, can provide insights into 

the robustness of the detection process against changes in parameters. This comprehensive 

approach to validation, combining expert judgment, correlation with external events, 

statistical analysis, and sensitivity analysis, ensures a thorough and reliable assessment of the 

effectiveness of collective anomalies manifestation and detection methodologies. 

Table 2.2: Overview of Anomaly Manifestation vs. Detection 

Aspect Manifestation Detection 

Definition Occurrence or existence of 

anomalies 

Discovery and recognition of manifested 

anomalies 

Focus The initial, visible or measurable Uncovering patterns and relationships not 
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characteristics and impacts, often 

seen visually or qualitatively 

evident at the individual data point level 

Approach Passive, focusing on slight 

variations in the data and early 

indications of anomalies 

Active and systematic search for and 

identification of anomalies 

Examples Rapid spread of misinformation, 

hate speech or bot activity in social 

media 

Detecting and removing harmful content 

Methodologies - A qualitative approach, 

emphasizing contextual 

understanding and pattern 

recognition 

- Recognition of unusual 

correlations, shifts in data trends, or 

discrepancies in data distributions 

- Statistical methods (MDS, WMW 

U Test, t-test) 

(Abdi, 2007; Bergmann et al., 2021; 

Castelli et al., 2017) 

- Advanced analytical techniques, including 

statistical methods, machine learning 

algorithms, and data mining 

- Employs a threshold-based approach, a 

top-k approach, or an integrated approach 

combining both 

(Aggarwal, 2017; Muruti et al., 2018) 

Validation - Expert validation 

- Correlation with external events 

- Statistical validation (WMW U 

Test, t-test, Chi-square) 

- Expert validation 

- Correlation with external events 

- Sensitivity analysis (fine tuning) 

 



16 
 

2.3 Complexities in Collective Anomaly Identification 

Collective anomalies, depending on their nature and context, can be a source of both 

concern and interest. For example, biases in OCR are concerning due to their impact on 

online sales (Öǧüt & Onur Taş, 2012), new product sales (Cui et al., 2012), conversion rates 

(Ludwig et al., 2013), and consumer decision-making (Guo et al., 2020). The effective 

identification of these anomalies is beneficial as it enhances the accuracy and trustworthiness 

of reviews, offering deeper insights into consumer behavior and perceptions regarding bias 

(Eslami et al., 2017; Han & Anderson, 2020). Such insights are invaluable for businesses as 

they inform the development of more refined detection techniques and corrective strategies 

(Dellarocas & Wood, 2008), thus fostering a more transparent and trustworthy e-commerce 

environment. Similarly, in broader contexts, collective anomalies can signal critical issues 

such as fraudulent activities in financial markets or emerging public health crises in 

healthcare sectors. In these scenarios, the anomalies represent potential threats or problems 

that require immediate attention and action to prevent adverse outcomes. 

Collective anomalies, while often a source of concern, can also spark considerable 

interest due to their potential to unveil new trends, behaviors, or previously unrecognized 

phenomena. The discovery of such anomalies, particularly hotspots, yields significant 

benefits across various domains. For instance, in public safety, climate and environmental 

assessments, epidemiology, and social media analytics, identifying these spatial hotspots is 

essential for informed decision-making and strategic planning (Hamdi et al., 2022). Their 

identification can be particularly transformative in fields such as transit systems, where 

recognizing spatial hotspots provides critical insights for transit management, urban 
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planning, and infrastructure development. This leads to optimized road networks, reduced 

congestion, and improved transportation systems, thereby enhancing travel efficiency and 

user experience (Castro et al., 2013). Moreover, in social media analysis and environmental 

monitoring, collective anomalies can reveal new viral trends or shifts in public opinion, as 

well as unusual environmental patterns that might signify important changes or new factors 

in play (Foorthuis, 2021; Stewart et al., 2010). These discoveries are invaluable for 

researchers, marketers, and environmental scientists, offering fresh insights and guiding 

future strategies. Overall, the potential of collective anomalies to reveal such crucial 

information underscores their dual nature as both a source of concern in some contexts and a 

rich source of interest and opportunity in others. 

The challenges in collective anomaly manifestation stem from the subtle, context-

dependent nature of early-stage anomalies in datasets. This phase requires meticulous 

observation and analysis to identify emerging patterns, where anomalies are often subtly 

embedded within the context of the data. These anomalies arise from underlying conditions 

or behaviors that may not be immediately obvious and are more focused on their observable 

characteristics and impacts (Bergmann et al., 2021; Manousis et al., 2021). For instance, in 

the OCR context, the manifestation challenge involves discerning the nuanced differences in 

review patterns that surface when the typically silent majority is prompted to provide 

feedback. This manifests as variations in characteristics such as opinion diversity between 

solicited and organic reviews. The difficulty lies in identifying these differences as actual 

manifestations of reporting bias, due to their understated and intricate nature, highlighting the 

complexity involved in recognizing collective anomalies at their initial stage. 
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Compounding this challenge is the difficulty in defining what constitutes normal 

behavior within a dataset, where the boundaries between typical and atypical patterns are 

often blurred (Chandola et al., 2009). This ambiguity can lead to misinterpretations, resulting 

in either overlooking genuine anomalies or misidentifying normal instances as anomalies. 

Moreover, the concept of what is considered an anomaly varies significantly across different 

fields (Chandola et al., 2009). For example, a pattern of reviews that seems anomalous in one 

product category might be typical in another, underscoring the need for a tailored approach to 

understand and identify manifestations of reporting bias in different contexts. This diversity 

in anomaly interpretation adds another layer of complexity to the manifestation phase, 

requiring a nuanced and context-aware approach to effectively identify and understand these 

early signs of anomalies. 

Unlike manifestation, the detection of collective anomalies is more intricate, involving 

detailed analysis to uncover patterns not apparent at the individual data point level. It 

employs advanced analytical techniques, ranging from statistical analysis to sophisticated 

machine learning algorithms and data mining, to uncover non-apparent patterns and 

relationships within data (Chandola et al., 2009; Muruti et al., 2018). In the spatial 

dimension, particularly within network or graph data, where nodes and edges represent data 

values and their relationships respectively, specialized models are needed to handle the 

structural dependencies. Anomaly detection in such networks often focuses on irregularities 

at either the node level, such as unusual local structures, or at the edge level, where atypical 

connections between different communities may be present. These could be indicators of 

node outliers, due to their structural deviation, or relationship outliers, stemming from 
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unconventional linkages between communities (Akoglu et al., 2015; Noble & Cook, 2003). 

In the example of identifying hotspot paths within trajectory networks, the process involves 

evaluating multiple points and paths. This requires evaluating all possible path combinations, 

a process that can result in numerous combinations and lead to substantial computational 

complexity, potentially reaching O(N³), where N represents the number of path combinations 

(Rubin, 1978). Moreover, methodologies and tools effective for unweighted networks may 

not be suitable for weighted networks, necessitating modified approaches for successful 

detection of collective anomalies in such contexts. This highlights the need for tailored 

solutions depending on the specific nature and structure of the network under analysis. 

In the temporal dimension, the intricacies of anomaly detection further intensify due to 

the reliance on the interrelationships between sequential data points. This complexity 

becomes more pronounced in scenarios requiring continuous monitoring and comparison of 

new data against existing sequences to spot abnormal patterns (Aggarwal, 2017; Gupta et al., 

2014). Temporal data, particularly in detecting subsequence outliers, presents unique 

challenges that add to the complexity. One major aspect is the length of the subsequences, 

which consist of multiple data points. Detection methods often vary, with some tailored for 

fixed-length subsequences using a sliding window approach, while others handle variable-

length subsequences without a fixed length parameter. The chosen length of a subsequence 

inversely impacts the number of subsequences analyzed, with shorter lengths leading to a 

higher number of subsequences (Blázquez-García et al., 2021). Another critical factor is the 

representation of data. Due to the comparative complexity in analyzing subsequences, many 

methods opt for data transformation instead of directly analyzing raw values. A common 
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technique in this aspect is discretization, frequently accomplished through equal-frequency 

binning. Lastly, the periodic nature of some subsequence outliers, which recur at intervals, is 

also a significant consideration. This differs from point anomalies, where periodicity is 

generally not a concern (Blázquez-García et al., 2021). 

The complexity of collective anomaly detection escalates further when integrating 

multiple types of dependencies, particularly in temporal graphs that combine both spatial and 

temporal dimensions. In these scenarios, outliers may indicate significant changes in network 

communities or relational distances. This requires sophisticated models that merge network 

analysis with change detection techniques, often observed in large-scale networks like social, 

communication, or web-based platforms. Here, structural changes can be traced in 

community dynamics or local properties (Akoglu et al., 2015). Temporal graphs, in 

particular, amplify these challenges due to the vast array of potential outlier definitions. 

Analysts are tasked with inferring normalcy across various criteria such as node degree, 

connectivity structure, community dynamics, or relational metrics before they can identify 

deviations. In these networks, an outlier might be reflected through marked changes in node 

characteristics, shifts in community affiliations, or variations in inter-node distances (Noble 

& Cook, 2003). Thus, the delineation of outliers in temporal networks becomes a 

sophisticated and nuanced process, requiring a comprehensive understanding of both the 

spatial and temporal aspects of the network. 
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CHAPTER 3: THE MANIFESTATION OF REPORTING BIAS IN ONLINE CUSTOMER 

REVIEWS 

3.1 Introduction 

Online Customer Reviews (OCR) have become integral to modern business practices, 

heavily influencing consumer purchasing decisions. Customers place significant trust in peer 

opinions, often more than marketer-initiated sources (Susan & Schuff, 2010). OCR systems 

provide assessments of products and services, covering aspects such as performance, price, 

and reliability. However, the utility of these systems is compromised when they present a 

biased or distorted view, failing to accurately reflect the broader user experience. Such biased 

reviews have substantial effects on online sales, product adoption, conversion rates, and 

consumer decision-making (Cui et al., 2012; Guo et al., 2020; Ludwig et al., 2013; Öǧüt & 

Onur Taş, 2012). 

Empirical studies have consistently shown systematic biases in online consumer 

product ratings, including the phenomenon of self-reporting bias (Bhole & Hanna, 2017; Han 

& Anderson, 2020). This bias results from a tendency of certain customers, especially those 

with extreme experiences, to disproportionately contribute to OCR, skewing the overall data. 
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A notable gap exists between the vocal minority who actively share their experiences and the 

silent majority who typically refrain from engagement (Mai et al., 2018). While the vocal 

minority’s views are often seen as representative of the entire customer base, they constitute 

only a fraction, as evidenced by the observation that top-rated products on platforms such as 

Google Play rarely exceed 10% of total users (refer to Table 3.1). Despite extensive research 

into OCR bias, the prevailing focus has been on this vocal minority, overlooking the silent 

majority whose participation factors are less explored. 

Table 3.1: Ratio of Reviews to Total Users4 

Google Play Rating Count Installs 

Amazon Fire TV 235,395 10,000,000+ 

Subway 266,304 10,000,000+ 

Twitch 4,747,040 100,000,000+ 

Canva 6,935,138 100,000,000+ 

To enhance OCR visibility and volume, review solicitation has emerged as a prominent 

strategy. It aims to draw in a wider range of consumer voices, particularly from the silent 

majority, to provide a more balanced view of consumer sentiments (Litvin & Sobel, 2019). 

The advantages of this practice are multifold. For consumers, it expands the available 

information, aiding in more informed decision-making. For businesses, it leads to increased 

trust, greater product visibility, and potentially higher sales (Litvin & Sobel, 2019). However, 

while previous research presents mixed results on the impact of review solicitation on star 

 
4 https://play.google.com/store/apps 

https://play.google.com/store/apps
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ratings (Burtch et al., 2018; Fradkin et al., 2015), the specific influence of review solicitation 

on OCR bias remains an area of uncertainty. 

The study addresses this gap by embarking on an in-depth exploration of the nuanced 

differences in OCR that emerge from the solicitation process. Our research focuses on 

identifying and understanding the subtle differences in review patterns that emerge when the 

typically silent majority is prompted to provide feedback through review solicitation. We aim 

to discern how this solicitation leads to divergences in review characteristics, such as opinion 

diversity, polarization, negative content, and review depth, between solicited and organic 

reviews. This involves a careful examination of these variances to effectively identify and 

understand these early signs of anomalies. This study integrates the "Experience Sphere" as a 

comprehensive theoretical framework to guide our exploration of OCR biases. This 

framework synergizes the herding behavior (HB) theory, spiral of silence (SOS) theory, and 

customer review helpfulness (CRH) model, providing a multidimensional lens to examine the 

nuances of review solicitation. This integrative approach allows us to effectively differentiate 

between the typical variations in user opinions and the specific changes that are influenced 

by the solicitation process. By delving into these nuanced shifts in review characteristics, our 

research aims to illuminate the silent majority’s response to solicitation and its subsequent 

impact on OCR biases. This analysis is pivotal in understanding the dynamics of review 

solicitation, offering comprehensive insights into how it shapes the landscape of OCR and 

influences consumer perceptions and behavior. The following sections will discuss related 

work, present our methodology including our research model and hypotheses, and finally 

discuss our study and both research and practical implications. 
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3.2 Related Work 

Biases in OCR 

To understand the impact of OCR on businesses, researchers have investigated this 

relationship through a number of theories such as information economics and social 

comparison theories (Susan & Schuff, 2010), human communication and communication 

accommodation theories (Ludwig et al., 2013), and new product diffusion theory (Cui et al., 

2012). OCR research also investigates the review system’s reliability and bias. This includes 

studying bias detection methods, its effects, and corrective strategies (Dellarocas & Wood, 

2008). Moreover, it delves into consumer review behavior and their perceptions of bias 

(Eslami et al., 2017; Han & Anderson, 2020). To further comprehend the nature of bias, 

researchers have utilized signaling theory (Guo et al., 2020) and benefit-cost theory (Han & 

Anderson, 2020). The voluntary nature of OCR often leads to a prominent reporting bias 

(Han & Anderson, 2020). A comprehensive summary of other types of biases, including their 

occurrence, detection and mitigation strategies from previous studies, and the role of 

solicitation in addressing these biases, is provided in Table 3.2. 

Table 3.2: Types of Biases Summary 

Bias Type Occurs Detection/Mitigating Methods Solicitation 

Reporting When only certain customers 

voluntarily decide to post their 

reviews. Also known as 

underreporting, response, 

Simplify and remove any barriers in 

the posting process (Han & 

Anderson, 2020). 

Implement a method that calculates 

Addressed 

as Retailer-

Prompted 
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nonresponse, or self-selection 

(Han & Anderson, 2020). 

how likely users are to report 

different outcomes, leading to fair 

estimates of the distribution 

(Dellarocas & Wood, 2008). 

Apply advanced model to adjust not 

only overall product ratings but also 

sub-ratings (Lim & Tucker, 2017). 

Negativity When consumers give more 

weight to negative information 

when making evaluations and 

purchase decisions (Yin et al., 

2014). 

Not directly addressed Not directly 

addressed 

Positivity When reviews are 

overwhelmingly positive and the 

distribution of reviews is 

positively skewed that result in a 

positive emotion that positively 

influence customers’ purchase 

decisions (Guo et al., 2020). 

Not directly addressed Not directly 

addressed 

Algorithm When a review program changes 

a person’s entered rating to a 

different one that is the lowest 

limit in the system (Eslami et al., 

2017). 

Some users questioned the 

algorithm and asked for changes to 

it (Eslami et al., 2017). 

Not directly 

addressed 
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Self-reporting bias has become increasingly evident in the contemporary feedback 

ecosystem, as highlighted by the undue emphasis on achieving high ratings, illustrated in 

Figure 3.1. A noticeable skew arises when dissatisfied consumers opt for silence over 

negative feedback, leading to an overrepresentation of contented customers. This distortion is 

further exacerbated when businesses encourage private issue resolution, sidelining public 

criticism. Such skewness of reviews is not uncommon as customers with extreme 

experiences, either positive or negative, are more likely to review than those with moderate 

experience (Bhole & Hanna, 2017). 

 

Figure 3.1: Example Cause of Self-Reporting Bias5 

In order to mitigate bias in OCR, platforms employ various measures such as allowing 

users to vote on the helpfulness of reviews, verifying the authenticity of users, and enforcing 

posting guidelines to promote trust. Platforms are also advised to reduce the perceived 

burden of posting as that increases motivation to post reviews (Han & Anderson, 2020). 

However, these measures are considered preventive in nature. To address bias in reviews 

after they have been posted, platforms look for suspicious or outlier reviews and either 

 
5 https://www.pinterest.com/pin/512636370075964709/ 

https://www.pinterest.com/pin/512636370075964709/


29 
 

eliminate them or reduce their impact. TripAdvisor for instance calculates an overall rating 

for a hotel and repairs bias using advanced algorithms that consider the quantity, quality, and 

recency of reviews. Others propose a model to mitigate product rating biases by classifying 

reviewers into optimistic, pessimistic, realistic, or unreliable based on their rating histories 

and product sales rankings (Lim & Tucker, 2017). This study contributes to the development 

of such algorithms by examining other factors that affect bias in OCR. 

Review solicitation, also known as consumer-generated media (CGM) or retailer-

prompted user-generated content, not only increases the quantity of reviews but also adds 

value in several ways. A higher volume of reviews can improve search and ranking 

algorithms, attract more customers, boost sales, and enhance consumer perceptions of 

product quality (Litvin & Sobel, 2019). While some studies have investigated the effects of 

review solicitation on bias, star ratings, and voting, the results have been inconclusive. Some 

studies have found a positive correlation between incentivized reviews and higher star ratings 

(Burtch et al., 2018), while others have reported a negative correlation (Fradkin et al., 2015). 

Still, some have found no correlation at all at certain cases (Burtch et al., 2018). Moreover, 

others examined the relationship between review solicitation and users’ familiarity with 

review platforms in addition to the associated costs and the likelihood of posting reviews 

(Han & Anderson, 2020). Despite these efforts, there is still a need to fully understand the 

impact of review solicitation on bias and the overall reliability of online review systems. 
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Bias Aggregation and OCR Ecology 

In the lens of OCR ecology, this section summarizes common bias aggregation 

dynamics and processes in the literature, such as the evolution of opinion dispersion, the 

intensification of opinion polarization, the amplification of negative contents, and the 

enrichment of review depth (Fradkin et al., 2015; Sunder et al., 2019; Susan & Schuff, 2010). 

Furthermore, it explores the role review solicitation plays in modulating these processes. 

Opinion dispersion, or diverging opinions, refers to the degree of variability or 

disagreement among the opinions expressed by individuals (Li, 2018). A low opinion 

dispersion suggest the presence of herding behavior, as consumers could be swayed by 

prevailing ratings and reviews, conforming to the majority viewpoint (Sunder et al., 2019). 

Interestingly, low dispersion can unfavorably affect sales, particularly on e-commerce 

platforms and for products or services that are tangible, utilitarian, newly introduced, or 

associated with high financial risk (Moore et al., 2019). Contrarily, high opinion dispersion 

could signify a broad spectrum of viewpoints and experiences concerning a product or 

service. However, given the individuality and varied tastes among consumers, certain 

products, including niche or polarizing products and categories where consumers’ tastes are 

expected to diverge (such as experiential goods like music), tend to consistently display 

higher opinion dispersion than others (Moore et al., 2019). When there is a large dispersion 

in ratings, consumers tend to decrease their reliance on average ratings, opting instead for 

other quality signals such as reading individual reviews, and often perceive reviews with 

extreme ratings as more helpful (Sunder et al., 2019). 
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Opinion polarization, where group attitudes diverge toward more extreme positions 

over time, can be driven by biased information, groupthink, or echo chambers (Duncan et al., 

2020). This tendency for reviews to lean toward extreme positivity or negativity can distort 

the overall product or service perception and affect purchasing decisions, further escalating 

reporting bias, especially between supporting and opposing groups. To further explore this 

issue, researchers suggest segmenting reviews based on reported experiences (Fradkin et al., 

2015). Moreover, they delved into various contributing factors from product characteristics 

to consumer experiences, to utilizing social influences theories such as the SOS (Xing et al., 

2022), which states that individuals are less likely to voice their opinions on public issues if 

they believe they are in the minority, for fear of social isolation or reprisal.  

Negative emotions expressed in reviews have been found to be linked to the reporting 

bias, given that negative reviews have a higher likelihood of being shared, viewed, and 

persuading other consumers (Yin et al., 2014). This propensity to report negative experiences 

more than positive ones can skew reviews toward an overrepresentation of negative 

experiences and can amplify reporting bias. In addition, the anonymity of reviewers could 

increase the expression of negative emotions within reviews. Research indicates that 

reviewers who remain anonymous are more likely to express negative emotions than those 

required to provide their real names (Fradkin et al., 2015). Moreover, the way businesses 

solicit reviews can also affect the expression of negative emotions in reviews. Both financial 

and non-financial incentives were found to enhance the positivity of review content and the 

enjoyment derived from writing reviews (Woolley & Sharif, 2021). This finding implies that 
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businesses may have a tendency to solicit positive reviews, thereby affecting the emotional 

tone of the reviews they receive. 

Review depth, another construct in the CRH model, is defined as the amount of detail 

and information contained in a review (Susan & Schuff, 2010). Review depth is found to be 

positively associated with the perceived helpfulness of a review as it provides comprehensive 

information to support consumers’ decision-making processes. Moreover, other studies have 

demonstrated that deeper reviews are more likely to be perceived as trustworthy and credible, 

thereby influencing consumer behavior (Guo et al., 2020). 

While numerous bias aggregation phenomena have been discussed in the literature, 

insufficient attention has been devoted to comprehending the impact of review solicitation on 

these processes. By investigating the role of review solicitation in these phenomena, we can 

significantly augment our understanding of OCR ecology. For example, by analyzing the 

relationship between review solicitation and review depth, we can explore whether 

solicitation strategies foster the creation of more informative and detailed reviews or 

inadvertently promote superficial evaluations that may perpetuate reporting bias. Moreover, 

by examining the association between review solicitation and negative emotional expression 

in reviews, we can determine if solicited reviews lead to more emotionally charged feedback, 

potentially introducing or amplifying bias in the overall perception of products or services. 

3.3 Research Model and Hypotheses Development 

In this section, we present our research model and hypotheses about the role of review 

solicitation in OCR. The model is centered around a customer’s experience sphere, 



33 
 

encompassing an ideal OCR scenario, its biased counterparts, and potential corrective 

responses. The model is guided by the HB theory (Ali et al., 2021), the SOS theory (Askay, 

2015), and the CRH model (Susan & Schuff, 2010). By examining the role solicitation plays 

within these interlinked theories, we aim to unravel the underlying dynamics fostering biases 

in OCR. 

To provide a more nuanced understanding of the complex dynamics inherent in OCR, 

we introduce the “Experience Sphere” as a conceptual model. This sphere accommodates 

diverse consumer experiences, spanning the range from extreme satisfaction to extreme 

dissatisfaction. Though simplified, this model is rooted on the multi-layered framework for 

customer experience outlined in (Gretzel & Jamal, 2009) and (De Keyser et al., 2015). 

Within this sphere, we distinguish between two key groups: the vocal minority, who actively 

express their experiences and thus form the visible layer of the sphere, and the silent 

majority, who, although less vocal, constitute the sphere’s unobservable yet critical mass. 

This categorization is informed by the SOS theory, which posits that the silent majority often 

refrains from voicing opinions, leaving the vocal minority’s viewpoints more prominent 

(Askay, 2015). 

In a balanced or ideal scenario, the experience sphere features a diversified distribution 

of consumer opinions, spanning from highly negative to highly positive experiences (as 

depicted in Figure 3.2: Ideal Case). Although certain reviewers might be considered extreme 

or outliers near one edge, the positions of other reviewers at opposite edges and the overall 

distribution contribute to a less biased aggregated opinion. In this case, the silent majority opt 

to remain so because the visible reviews, predominantly from the vocal minority, present an 
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aggregated opinion that aligns with their own sentiments (Duncan et al., 2020; Gearhart & 

Zhang, 2015). 

Ideal Case Biased Case 

Figure 3.2: Aggregated Opinion in Ideal and Biased Cases 

However, there is also a more prevalent, biased scenario, where the vocal minority’s 

opinions dominate and skew the observable layer of the experience sphere (depicted in 

Figure 3.2: Biased Case). This skewed representation is often driven by individuals with 

extreme experiences, either positive or negative, as they are more likely to leave reviews than 

those with moderate experiences (Bhole & Hanna, 2017). This phenomenon manifests in 

skewed rating distributions and has been substantiated by research on both negativity (Yin et 

al., 2014) and positivity bias (Guo et al., 2020). This imbalance may be exacerbated by 

herding behavior, as outlined in HB theory, which posits that individuals tend to follow 

dominant opinions when faced with uncertainty, thereby magnifying the vocal minority’s 

influence while suppressing the silent majority (Ali et al., 2021; Sunder et al., 2019). 

In response to the biased OCR scenario, our primary objective is on uncovering the 

underlying dynamics at play, with a special attention to the role of review solicitation. While 
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the experience sphere embodies a broad spectrum of consumer opinions, it is crucial to 

investigate how external interventions, like review solicitation, can reshape its structure. 

Given the mixed findings in previous research regarding the impact of review solicitation on 

star ratings, with negative, positive, and no correlation (Burtch et al., 2018; Fradkin et al., 

2015), we investigate how review solicitation may influence the herding behavior and 

whether it fosters or hinders the silent majority in sharing their opinions, thereby affecting 

the degree of opinion dispersion within the sphere. 

In addition, we investigate the interplay between review solicitation and the spiral 

effect. While solicitation may not eradicate biases, it can push the observable layer of the 

experience sphere toward a balanced state by eliciting varied views from the silent majority. 

Thus, we aim to determine whether such initiatives mitigate or amplify opinion polarization 

and negative content. Moreover, as the CRH model emphasizes the significance of review 

depth in shaping consumer decisions (Susan & Schuff, 2010), we explore the potential of 

review solicitation in influencing this crucial variable, and whether such an intervention 

results in tangible shifts in consumer perspectives. 

To this end, we explore how exactly the aforementioned mitigation effect occurs in 

OCR. Specifically, our objective is to uncover insights into how review solicitation 

influences the behavior of the silent majority in situations where a vocal minority dominates 

the review landscape, ultimately providing a more comprehensive understanding of the 

impact of review solicitation on reporting bias in OCR. To provide a deeper examination into 

such influence, we compare organic and solicited reviews across four dimensions: opinion 

dispersion, opinion polarization, negative content, and review depth. 
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Opinion Dispersion 

According (Domingos, 2000), low opinion dispersion is often associated with high 

bias, while high dispersion suggests lower bias. Therefore, analyzing the dispersion of 

opinions in reviews can provide valuable insights into the impact of review solicitation on 

reporting bias. Review solicitation aims to actively encourage feedback from a diverse range 

of customers with varying experiences and perspectives. This diversity, in theory, culminates 

in a broader dispersion of opinions due to individual differences in preferences, expectations, 

and subjective perspectives. However, the aforementioned diversity is based on the premise 

that review solicitation is sampled randomly from the entire population. In reality, many 

factors are likely to reduce the randomness of review solicitation targets. 

First, it is important to consider the potential effects of reporting bias (Han & 

Anderson, 2020) when soliciting reviews. There is a possibility that only a specific subset of 

customers will respond, such as those with extremely positive or extremely negative 

experiences. Particularly, the way solicitation is conducted and the incentives provided may 

be more likely to attract reviewers with positive opinions. For example, reviewers with 

negative experiences might withhold their genuine opinion when given incentives to reduce 

cognitive dissonance (Xi et al., 2022). Second, the timing of review solicitation can 

significantly influence response patterns (Brandes et al., 2022). Consumers are more likely to 

respond to a solicitation immediately after a positive experience, leading to an 

overrepresentation of positive reviews. Conversely, those with negative experiences might 

delay their response, contributing to non-response or delayed reporting bias. Third, 

solicitation might not appeal to all customers equally. Certain customers may feel 
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uncomfortable sharing their opinions, especially negative ones, due to fears of potential 

retaliation from either the company or other customers (Askay, 2015). As a result, 

solicitation might be less enticing to those with neutral or negative experiences, causing an 

overrepresentation of specific opinions in the review pool. 

In light of the above factors, the random selection assumption in review solicitation 

becomes problematic, leading potentially to overrepresentation of specific viewpoints. Such 

distortion in the solicited reviews could narrow the spectrum of expressed opinions, resulting 

in reduced opinion dispersion, especially if those prompted to leave reviews have 

predominantly positive experiences. Even worse, this bias in representations can induce new 

reviewers to echo the prevailing opinion, succumbing to a herd mentality (Sunder et al., 

2019) and becoming more susceptible to the spiral of silence effect (Duncan et al., 2020). 

Due to these effects, we argue that solicited reviews would exhibit less opinion dispersion 

compared to organic reviews. Therefore, we propose our first hypothesis: 

H1: Opinion dispersion is higher in organic reviews than in solicited reviews 

Opinion Polarization 

Although opinion dispersion provides a broad understanding of the diversity of 

opinions in all reviews, research has proposed a more nuanced approach of exploring this 

diversity by segmenting reviews based on users’ experiences (Fradkin et al., 2015). This 

deeper analysis is embodied by opinion polarization, which not only classifies reviews into 

favorable and against categories, but also investigates the extent of diversity within these 

segmented groups (Duncan et al., 2020). Based on synthesized data, Figure 3.4 illustrates 
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how high or low levels of opinion dispersion correspond to varying levels of opinion 

polarization. 
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Figure 3.3: Opinion Dispersion and Polarization Matrix 

Adopting the method proposed by (Han & Anderson, 2020), we categorize reviews as 

favorable or unfavorable by comparing a user’s rating with the aggregate platform rating. 
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This is further nuanced by our modification: if a user’s rating exceeds or falls short of the 

platform’s aggregate score, it signifies alignment or contradiction with the prevailing 

platform rating, respectively. This adjustment enables us to interpret polarization as a 

favorable (upvote) or unfavorable (downvote) response to the current rating. This deeper 

insight is crucial because a two-star rating generally suggests a near terrible experience, but 

when posted on a one-star average platform indicates a better-than-expected experience, 

suggesting an “upvote” for the existing rating and hence, polarization in its favor. Similarly, 

a four-star rating generally suggests a good experience, but when posted on a five-star 

average platform implies a less-than-expected experience, suggesting a “downvote” and 

hence, polarization against the existing rating. 

Review solicitation, while serving as a valuable tool in gathering customer feedback, 

can inadvertently heighten opinion polarization in solicited reviews as compared to organic 

ones, for several reasons. First, the phrasing of the solicitation request itself can unknowingly 

guide the reviewer toward polarized opinions. The language used to request a review might 

evoke extreme emotions or positions, encouraging users to respond in a similar vein (Ludwig 

et al., 2013). For instance, requests framed in a way that accentuates positive experiences 

might draw out more positive reviews, pushing the distribution of ratings toward the 

extremes. Second, the moment at which solicitation is implemented can also influence 

polarization. Businesses often solicit reviews soon after purchase or interaction, a time when 

emotional reactions are most intense (Brandes et al., 2022). This could result in more 

extreme ratings, as customers who have recently had an exceptionally good or bad 

experience are likely to express more polarized opinions compared to those who review 
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organically, often at a later time when emotions have moderated. Third, the type of 

customers targeted for review solicitation could also play a significant role in polarization. 

Companies might intentionally or unintentionally target more vocal, opinionated customers 

or those they believe have had positive experiences (Han & Anderson, 2020), leading to 

more polarized feedback. On the other hand, organic reviews are typically written 

spontaneously by a variety of customers who might provide a wider, less polarized range of 

opinions. Due to these factors, we argue that solicited reviews would exhibit less opinion 

polarization compared to organic reviews. Therefore, we propose our second hypothesis: 

H2: Opinion polarization is lower in organic reviews than in solicited reviews 

Negative Content 

Negative content can be present in both positive and negative reviews. When 

individuals receive incentives, they may feel compelled to adjust their reviews to be more 

positive to alleviate feelings of guilt, even if they encountered negative experiences. This 

tendency aligns with previous research by (Litvin & Sobel, 2019), which suggests that 

reviews solicited through incentives typically lean towards positivity and exhibit fewer 

negative sentiments compared to unsolicited ones. Furthermore, (Woolley & Sharif, 2021) 

found that offering both financial and non-financial incentives can heighten review positivity 

and enrich the reviewer’s writing experience. However, these studies mainly focus on the 

general tone of reviews, rather than the presence of negative content. The presence of 

negative content in reviews, irrespective of the overall sentiment, is crucial, yet overlooked 

area of research. Negative reviews wield a significant influence on businesses due to their 
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higher likelihood of being shared, viewed, and their stronger persuasive power on other 

consumers (Yin et al., 2014). This impact can be extrapolated to negative content within 

positive reviews. Hence, we extend our analysis beyond simply categorizing reviews as 

positive or negative. We focus on identifying reviews that incorporate any negative elements 

and further analyze the intensity of these negative aspects within reviews (Askay, 2015). 

While solicitation efforts primarily aim to encourage reviewers to share their positive 

experiences, they may inadvertently increase the appearance of negative content within both 

positive and negative reviews. Incentives offered during review solicitation may cause 

reviewers to adopt an “expert critic” mentality, feeling obliged to give a balanced perspective 

(Han & Anderson, 2020). This perceived obligation can make them underscore negative 

aspects, even in largely positive experiences, in pursuit of providing a comprehensive 

critique. This behavior is partly because critical thinking is often equated with negative 

criticism (Askay, 2015), pushing incentivized reviewers to incorporate negative content. In 

contrast, organic reviewers, who voluntarily share experiences without incentives, might lack 

this critical stance pressure, resulting in fewer criticisms and less negative content. In 

addition, solicited reviews typically arise from a direct business request, which could 

inadvertently instill a sense of obligation to provide thorough feedback (Woolley & Sharif, 

2021). This sense of responsibility might magnify any negative elements of the experience, 

elements that might have been disregarded by organic reviewers, leading to a higher 

frequency of negative content within these reviews. Moreover, the process of solicitation can 

make customers more critical in their evaluations. Solicitation implicitly suggests that 

businesses are seeking feedback to improve their services (Han & Anderson, 2020). This can 
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cue customers to adopt a more evaluative mindset, focusing on areas of dissatisfaction that 

they might not have considered in an unsolicited review. Considering these aspects, we argue 

that solicited reviews may exhibit more negative content compared to organic reviews. 

Therefore, we propose our third hypothesis: 

H3: The presence of negative content is lower in organic reviews than in solicited 

reviews 

Review Depth 

Lastly, our research delves into the role of review depth in motivating the silent 

majority to articulate their opinions, comparing solicited reviews against organic ones. 

Earlier studies have noted that solicited reviews tend to be shorter and exhibit more positivity 

than their unsolicited counterparts (Litvin & Sobel, 2019). Furthermore, studies have 

underscored that review length has a tangible impact on perceived review helpfulness (Susan 

& Schuff, 2010). However, review depth extends beyond length, encompassing other 

parameters such as vocabulary richness and lexical diversity, while considering the impact of 

variable text lengths (Crossley et al., 2009; Ghasemaghaei et al., 2018). This consideration is 

especially significant given the diverse range of lengths across our review texts. 

Review solicitation efforts, despite their primary aim of encouraging in-depth sharing 

of customer experiences, could inadvertently lead to reviews of lesser depth for several 

reasons. First, solicited reviews often stem from an immediate business request, prompting a 

quicker response (Brandes et al., 2022). Thus, reviewers might provide a condensed version 

of their experience, compromising the richness of their feedback. Moreover, the incentives 



43 
 

and rewards often associated with review solicitation might appeal to reviewers who are 

more driven by the lure of incentives than by the desire to share detailed experiences. This 

motivation could result in shorter, less comprehensive reviews. The allure of a reward may 

compel reviewers to write quickly or minimally, only enough to secure the incentive, thereby 

detracting from the depth and richness of their review. Furthermore, it is plausible that the 

influence of incentives could extend beyond only attracting less detailed reviews. The 

incentive could inadvertently foster a more transactional mindset, with reviewers focusing on 

the “reward” aspect of the process rather than the opportunity to share meaningful feedback. 

This could lead to an oversimplification of their experiences, reducing the depth and value of 

the insights they provide. 

Second, the sentiment of the experience would generate variations in review depth. As 

prior studies noted that solicited reviews tends to be shorter and more positivity (Litvin & 

Sobel, 2019), This dynamic could affect review depth. Individuals with positive experiences 

may not feel the need to provide extensive details as they are satisfied with their overall 

experience, resulting in brief, superficial solicited reviews. On the other hand, individuals 

with negative experiences may be more inclined to offer a comprehensive account of the 

issues they encountered. Additionally, individuals with negative experiences may use online 

reviews as an outlet to vent their frustrations (Ghasemaghaei et al., 2018), providing 

comprehensive and detailed accounts, which results in deeper reviews. In light of these 

considerations, we argue that solicited reviews would exhibit less depth compared to organic 

reviews. Therefore, we propose our fourth hypothesis: 

H4: Review depth is greater in organic reviews than in solicited reviews 
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3.4 Research Methods 

We selected TripAdvisor and Trustpilot as our primary data sources due to their ability 

to indicate whether a review was solicited. To collect the necessary data, we developed a 

custom program that scraped relevant data from these two websites. From TripAdvisor, we 

were able to obtain approximately 2.7 million online reviews from 4,000 hotels situated in 

the US. The data spanned a significant period, ranging from September 9, 2002 to January 

29, 2022. Similarly, we acquired roughly 0.24 million online reviews from 55 companies 

from Trustpilot, starting from Mar 4, 2011. Nonetheless, we carefully examined the quality 

of the data and restricted our analysis to a 5-year period, specifically between January 1, 

2015 and December 31, 2019. We classified reviews based on their data sources, separating 

them into solicited and organic groups based on whether they were originally solicited. 

In the operationalization of our study's constructs, we have drawn heavily from existing 

literature. Specifically, our constructs - opinion dispersion, negative content, and review 

depth - have been informed by the studies conducted by (Askay, 2015; Crossley et al., 2009; 

Sunder et al., 2019), while opinion polarization has been adapted from studies by (Askay, 

2015; Duncan et al., 2020). A summary of our research constructs and their corresponding 

measurements can be found in Table 3.3. Each construct was examined using two measures 

as described in the table. 
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Table 3.3: Measurement Items and Sources 

Construct Measurement Description Sources 

Opinion 

Dispersion (OD) 

The variance of ratings (OD1) and the variance of 

ratings excluding extreme ratings (OD2) 
(Sunder et al., 2019) 

Opinion 

Polarization (OP) 

The rating variance of reviews aligning with the 

majority (OP1) and opposing the majority (OP2) 

(Askay, 2015; Duncan et 

al., 2020) 

Negative Content 

(NC) 

The frequency (NC1) and intensity (NC2) of 

negative emotions in reviews 
(Askay, 2015) 

Review Depth 

(RD) 

Vocabulary lexical diversity (RD1) and richness 

(RD2) 
(Crossley et al., 2009) 

To elaborate, we employed two distinct measurements for each construct. First, OD1 

encompassed the entire spectrum of opinion variance, including extremes, to offer a thorough 

perspective on customer opinion diversity. Conversely, OD2 excluded extreme 5-star ratings, 

focusing on more nuanced opinion trends while keeping 1-star ratings, recognizing that 

consumers typically reserve 5-star reviews for exceptional experiences and use the lower 

scale for varying dissatisfaction levels. Second, OP1 gauged variance among ratings in line 

with the predominant platform rating, shedding light on the degree of consensus or diversity 

among those aligning with the majority. OP2, in contrast, focused on variance in ratings 

deviating from the main platform rating. Third, NC1 calculated the proportion of reviews 

containing at least one instance of negative content, defined as any explicit criticism or 

mention of unsatisfactory elements irrespective of the review’s overall sentiment 

(frequency). NC2 measured the average count of such instances of negative content per 

review, gauging the intensity of critical or unsatisfactory mentions within the review. Lastly, 
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RD1 calculated the average measure of textual lexical diversity (MTLD), while RD2 

calculated the average lexical richness using Guiraud’s R (Crossley et al., 2009). These 

comprehensive measures enabled a nuanced and thorough evaluation of the studied 

constructs. 

Results and Analyses 

Descriptive Analysis 

Figure 3.4 (A) in the Appendices presents a comparative analysis of opinion dispersion 

(OD) in solicited and organic reviews, utilizing OD1 and OD2 measures across Trustpilot 

and TripAdvisor data sets. We observed a clear dominance of organic reviews in exhibiting 

higher opinion dispersion in the Trustpilot data set, particularly evident in both OD1 and 

OD2 measures. This indicated a more varied range of opinions in organic reviews. 

Conversely, in the TripAdvisor data set, the trend was less pronounced. Although the OD1 

measure demonstrated organic reviews having slightly higher dispersion than solicited ones, 

this difference was not as marked as in the Trustpilot data set. However, this pattern did not 

replicate in the OD2 measure. Intriguingly, for OD2, both solicited and organic reviews in 

TripAdvisor displayed similar distributions, suggesting that opinion variability might be less 

pronounced in this specific industry category. 

For opinion polarization (OP), figure 3.4 (B) demonstrates the contrasting distributions 

between solicited and organic reviews using OP1 and OP2 measures. We noted a significant 

increase in opinion dispersion among organic reviews, signaling a lower degree of opinion 

polarization compared to solicited reviews. This difference was especially pronounced in the 
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OP2 measure, which captured the variability of ratings from users contradicting the 

prevailing consensus. This trend was consistent in both Trustpilot and TripAdvisor data sets, 

highlighting a reduced opinion polarization in organic reviews. Interestingly, the OP1 

measure, which assessed the variability of ratings from users aligning with the prevailing 

consensus, did not uniformly reflect this pattern. In the Trustpilot data set, the difference in 

opinion polarization between organic and solicited reviews was clear, echoing the pattern 

observed in the OP2 measure. However, in the TripAdvisor data set, the OP1 values for 

solicited and organic reviews were more closely aligned, indicating a less pronounced 

difference in opinion polarization in this context. 

Figure 3.4 (C) illustrates the distribution of negative content (NC) between solicited 

and organic reviews. The data revealed a clear trend: solicited reviews typically had higher 

levels of negative content compared to organic ones. This trend was particularly evident in 

the NC2 measure, which calculated the average count of negative content per review, 

indicating a greater intensity of negativity in solicited reviews. This pattern of increased 

negative content in solicited reviews was consistent in both Trustpilot and TripAdvisor data 

sets. However, the NC1 measure, which estimated the proportion of reviews containing at 

least one negative aspect to reflect the frequency of negativity, presented a slightly different 

scenario. In the TripAdvisor data set, solicited reviews again demonstrated a higher 

frequency of negative content, aligning with the general trend. Yet, this correlation did not 

hold in the Trustpilot data set, indicating a divergence in the pattern of negative content 

frequency. 
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Finally, figure 3.4 (D) provides an illustrative comparison of review depth (RD) 

between solicited and organic reviews. The graphical representation distinctly illustrates that 

organic reviews carry a higher degree of depth in comparison to their solicited counterparts. 

This depth is discernible across the entire chart, suggesting a consistent trend toward more 

comprehensive and detailed narratives within organic reviews. 

Spatial Analysis 

Utilizing Multidimensional Scaling (MDS) for spatial analysis provides a nuanced 

perspective in comparing the organic and solicited groups. This technique excels in 

exploratory analysis, uncovering hidden data patterns and structures, complementing 

descriptive analysis. MDS effectively condenses complex relationships into more 

manageable dimensions, facilitating easier visualization. It achieves this by spatially 

arranging items, placing similar ones in proximity and disparate ones apart, thus offering a 

clear, intuitive understanding of group similarities and differences (Abdi, 2007; Weathers et 

al., 2015). Figure 3.5 in the Appendices extends the spatial analysis discussion with practical 

illustrations using MDS on Trustpilot and TripAdvisor data sets, encompassing both first and 

second measures. This analysis visually manifests the parallels and divergences between 

organic and solicited reviews. Notably, the overlay observed in the four figures suggests 

shared characteristics between the groups. Simultaneously, the distinct spread and point 

density, especially among outlier clusters, hint at fundamental disparities. These outlier 

groups potentially reveal deeper, nuanced differences between the review types, underscoring 

the need for additional exploration. 
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Wilcoxon–Mann–Whitney (WMW) U Test 

To compare two sample means that come from the same population, we followed the 

methodology of (Borghi & Mariani, 2021; Castelli et al., 2017) by applying the WMW U 

test. This nonparametric statistical method is widely used in studies examining OCR. We 

chose the WMW U test for its effectiveness with data that does not meet the normality 

assumption or is ordinal. One key advantage of the WMW U test is its resilience to outliers 

and non-normal data distributions, making it a preferable choice over parametric tests like the 

t-test. Additionally, it does not require equal variances between two groups, which is 

beneficial when analyzing online reviews that often exhibit highly skewed distributions. The 

null hypothesis H0 of the WMW U test posits that the medians or means of the two 

populations from which the samples are drawn are equal. The alternative hypothesis suggests 

that these populations have different medians or means. In our study, we applied the WMW 

U test to compare organic and solicited reviews in both data sets. The test results indicated 

whether the distribution underlying the first group (organic reviews) was stochastically less 

than or greater than the distribution underlying the second group (solicited reviews). 

To account for errors that might generate when comparing groups across multiple data 

sets, we followed (Abdi, 2007) and other researchers that apply the Bonferroni correction. 

This correction aims to reduce the likelihood of false-positive results (type I errors) in 

multiple pairwise tests. It adjusts p-values to control the family-wise error rate (FWER) by 

dividing the critical p-value (α) by the number of comparisons made. We then calculated the 

statistical power of our study based on these modified p-values. This adjustment ensures 

greater accuracy in our results, especially when conducting multiple comparisons. 
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Table 3.4 presents the statistical outcomes of the WMW U test for the four dimensions 

examined in our research model. It details the U-Stat results and the adjusted P-value, 

calculated after applying the Bonferroni correction to both Trustpilot and TripAdvisor data 

sets. These results provide statistically significant support for our fourth hypothesis (H4) on 

review depth, while offering partial statistical support for hypotheses concerning opinion 

dispersion, opinion polarization, and negative content (H1, H2, and H3, respectively). 

Specifically, H4, asserting that organic reviews display greater depth than solicited reviews, 

received strong statistical support. However, H1, H2, and H3, which hypothesize greater 

opinion dispersion, lesser opinion polarization, and reduced negative content in organic 

reviews compared to solicited ones, only received partial statistical support. 

Table 3.4: Wilcoxon–Mann–Whitney U Test Results 

Measure Hypothesis 
Trustpilot TripAdvisor 

Result 
U-Stat P-value U-Stat P-value 

OD1 
Opinion dispersion is higher in organic 

reviews than in solicited reviews 
29847 

6.51E-

13*** 
1899353 

0.248076

14 

Partially 

Supported 

OP1 
Opinion polarization is lower in organic 

reviews than in solicited reviews 
31439.5 

6.21E-

18*** 

1729086.

5 
1 

Partially 

Supported 

NC1 

The presence of negative content is 

lower in organic reviews than in 

solicited reviews 

29732.5 1 
1464799.

5 

1.31E-

25*** 

Partially 

Supported 

RD1 
Review depth is greater in organic 

reviews than in solicited reviews 
30653 

3.97E-

15*** 
3417108 0 Supported 

Note: P-values are the adjusted values after applying the FWER. *** p < 0.001, ** p < 0.01, * p < 0.05 
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Robustness Test 

After the initial analysis using our primary measure, we conducted a second 

investigation with the second measure for a more thorough robustness assessment. This 

approach enabled us to delve deeper into the data set and affirm the reliability of our 

findings. Table 3.5 presents the statistical results from the WMW U test for the four 

dimensions in our research model. It includes the U-Stat results and the adjusted P-value, 

determined after applying the Bonferroni correction, for both Trustpilot and TripAdvisor data 

sets. The results obtained from the second measure offer significant statistical support for our 

hypotheses on opinion polarization, negative content, and review depth (H2, H3, and H4, 

respectively). However, the hypothesis regarding opinion dispersion (H1) achieved only 

moderate statistical support. Specifically, H2, H3, and H4, suggesting that organic reviews 

have lesser opinion polarization, less negative content, and greater depth compared to 

solicited reviews, respectively, received full statistical support. In contrast, H1, which posits 

a higher degree of opinion dispersion in organic reviews than in solicited ones, gained only 

partial statistical support. 

Table 3.5: Wilcoxon–Mann–Whitney U Test Robustness Results 

Measure Hypothesis 
Trustpilot TripAdvisor 

Result 
U-Stat P-value U-Stat P-value 

OD2 
Opinion dispersion is higher in organic 

reviews than in solicited reviews 
25894.5 

0.000116

14*** 

1849847.

5 
1 

Partially 

Supported 

OP2 
Opinion polarization is lower in organic 

reviews than in solicited reviews 
27988 

1.70E-

08*** 

2051480.

5 

1.99E-

09*** 
Supported 
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NC2 

The presence of negative content is 

lower in organic reviews than in 

solicited reviews 

11679 
1.03E-

12*** 

1270746.

5 

6.07E-

58*** 
Supported 

RD2 
Review depth is greater in organic 

reviews than in solicited reviews 
30730.5 

2.37E-

15*** 

3655565.

5 
0 Supported 

Note: P-values are the adjusted values after applying the FWER. *** p < 0.001, ** p < 0.01, * p < 0.05 

3.5 Discussion 

The silent majority often refrains from expressing their opinions, leading to a 

dominance of perspectives from the more outspoken minority. However, when prompted by 

review solicitations, a portion of the silent majority may be encouraged to contribute their 

viewpoints. However, do these solicited reviews mirror the organic ones? To address this, we 

utilized two five-year data samples, delving into how solicitation impacts reporting bias in 

OCR. Grounded in a theory-based model that includes the concept of the experience sphere, 

this study explores various aspects such as opinion dispersion and polarization, the 

prevalence of negative content, and the depth of reviews. By examining these elements, we 

gained insights into the complex interplay between solicitation and the behavior of the silent 

majority within the experience sphere. 

Our empirical findings confirm the first hypothesis: organic reviews exhibit higher 

opinion dispersion than solicited reviews. Although review solicitation aims to gather diverse 

feedback, it appears to fall short in capturing the full spectrum of user experiences. This 

aligns with research suggesting that solicited reviews often attract a specific segment of 

customers, rather than representing the entire range of experiences (Sunder et al., 2019). 
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Therefore, contrary to expectations, solicitation might lead to reduced opinion dispersion, 

introducing more bias into the OCR landscape. Factors like the timing of solicitations 

(Brandes et al., 2022) and fear of retaliation (Askay, 2015) could exacerbate this bias, 

narrowing the range of expressed opinions. Notably, our results reveal that the decreased 

dispersion in solicited reviews might contribute to a herding effect, as outlined in our 

model’s experience sphere framework. Solicited reviewers could feel influenced by the 

dominant opinions, subconsciously aligning their feedback accordingly. This tendency 

suppresses nuanced opinions and individual perspectives, which are essential for countering 

the majority view and fostering a wider opinion dispersion. Consequently, a higher consensus 

emerges in solicited reviews, potentially initiating a cycle where future reviewers conform to 

the prevailing opinion. This perpetuates the spiral of silence effect (Duncan et al., 2020), 

further diminishing opinion dispersion in solicited reviews. 

The partial statistical support for our hypothesis indicates varying significance of 

opinion dispersion across industries, as confirmed by our robustness check with a second 

measure. This aligns with our descriptive results, where a pattern of higher dispersion in 

organic reviews was notably stronger in Trustpilot than in TripAdvisor. In Trustpilot, 

consumer preferences are generally less diverse, focusing on common expectations like 

reliability and efficiency (Moore et al., 2019). Reviews from our Trustpilot sample (Table 3.6 

Reviews 1 and 2) demonstrate that solicited reviews in this sector often cluster around these 

expectations, leading to lower opinion dispersion. This reflects the experience sphere model, 

where the vocal minority’s similar opinions in solicited contexts overshadow broader 

customer experiences, resulting in less diversified opinions. Conversely, TripAdvisor’s sector 
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is characterized by diverse consumer tastes and personal experiences (Moore et al., 2019), as 

evident in our TripAdvisor sample (Table 3.6 Reviews 3 and 4). Consequently, even when 

feedback is solicited in this sector, the resultant reviews are likely to encapsulate a vast 

spectrum of personal experiences and opinions, thus minimizing the significance of opinion 

dispersion. 

Table 3.6: Sample Reviews 

Review ID Review Text 

Review 1 Car was available on arrival with no delays. Car was presented clean. Car gave no 

problems during hire period. 

Review 2 Very easy to book. Getting the car was straightforward and the lady very helpful. Good 

value for money. 

Review 3 Very quaint and charming resort offering outstanding customer service and excellent 

food. This was my first time and I will be back. This resort reminded me of vacations as 

a child. The cabins are adorable, comfortable and private yet just feet away from all 

the amenities. 

Review 4 We had a fantastic time! We stayed in a 2-bedroom oceanfront cottage and absolutely 

loved it! We didn't want to leave. Clean, comfortable, great view. Loved the screened in 

porch. We'll be back for sure! 

Review 5 We are not folks who generally return to a vacation spot - there are so many wonderful 

places in the world to visit. However, we will definitely return to Tween Waters. Sure, 

as others note, there are ways this place can be improved with updates and fine tuning 

- some amenities/facilities feel tired and need attention. What sets Tween Waters apart, 

however, is the friendly & helpful staff (we particularly enjoyed seeing Jasmine 's 
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warm smile each morning at breakfast), the location (sandwiched between the beach & 

the bay/Roosevelt Channel), the setup of the resort, and the overall no-frills, no-

pretense environment. 

Review 6 I like their website very much, easy to use and clear in explanations, about rules of 

contract, deductible in case of accidents, etc. I also never had any issues with the 

service provided by the actual rental companies after booking via AirportRentals. So 

far, great. For the first time last month however I had a phone call from them, that 

reminded me of some details of the reservation (good), but mostly wanted to push me to 

buy the additional insurance offered (not so good). I think some people might indeed 

need to be made aware of what the contract entails (I see many bad reviews that 

revolve essentially around misunderstandings), so that part is appreciated. Spending 

10 minutes on the phone trying to convince me that I really need that extra insurance 

however was not warranted. For this reason, I give 4 * instead of 5. 

For our second hypothesis, our findings statistically support it, confirming that opinion 

polarization is lower in organic reviews than in solicited reviews. This insight adds depth to 

our previous discussion that review solicitation affects opinion diversity, demonstrating that 

it not only decreases overall diversity but also intensifies polarization among both supporting 

and opposing reviewer groups. The robustness tests and descriptive results particularly 

highlight a stronger polarization effect among opposing viewpoints. These findings align 

with prior research that attributes polarization in user-generated content to specific 

solicitation tactics. While (Ludwig et al., 2013) emphasized how the review solicitation 

language could subtly nudge users toward more extreme viewpoints, our findings support 

these observations, indicating that the nature and timing of solicitation can contribute to 
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amplified polarization. Furthermore, our results resonate with (Brandes et al., 2022) work 

that reviews solicited immediately after a transaction tend to capture intense emotional 

reactions, thus increasing polarization. Our work underscores that organic reviews, often 

penned after emotions have moderated, exhibit reduced polarization. In contrast, (Han & 

Anderson, 2020) proposition indicated that companies soliciting reviews might intentionally 

or unintentionally target more opinionated or satisfied customers, creating a bias toward 

polarized feedback. However, our study refines this argument, indicating that such strategies 

exacerbate polarization, particularly among those holding opposing views. This observation 

underscores the model’s concept, where solicitation influences the vocal minority, thus 

skewing the observable layer of the experience sphere and leaving the silent majority’s more 

balanced perspectives unrepresented. 

Our findings indicate that the amplification effect of incentivized solicitations exceeds 

the self-reporting bias from emotional extremity. In the Experience Sphere model, the vocal 

minority, often motivated by intense experiences, dominates the sphere’s visible layer (Bhole 

& Hanna, 2017). However, our analysis demonstrates that solicited reviews, especially when 

incentivized, lead to even greater opinion polarization. Incentives act as a catalyst, prompting 

customers to express their opinions more strongly. This dynamic distorts the ideal balanced 

range of opinions in the sphere, as incentives disproportionately affect the vocal minority, 

leading to an overrepresentation of extreme views. Table 3.6 Review 5 exemplifies this, 

where incentivized customers provide more intensified reviews, thus enhancing polarization 

and pushing the sphere toward more extreme perspectives. 
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Our findings support our third hypothesis that the presence of negative content is lower 

in organic reviews than in solicited reviews. Prior research, such as (Litvin & Sobel, 2019; 

Woolley & Sharif, 2021), found that solicited reviews generally contain more positive 

sentiments and fewer negative emotions compared to unsolicited ones. However, prior 

research has focused on the overall sentiment of reviews, while we have taken a more 

nuanced approach by examining the presence of negative content within reviews that may 

also contain positive feedback. For instance, one of the solicited reviews in our study stated 

(see Table 3.6 Review 6). Such reviews despite having positive overall sentiment, add to 

attention negative content that may not have been shared otherwise. Our findings suggest that 

solicitation efforts may inadvertently lead to increased such negative content. This can 

happen due to the obligation induced by explicit feedback requests enhancing negative aspect 

reporting (Woolley & Sharif, 2021), incentives prompting a more critical mindset, and the 

solicitation itself fostering a more evaluative customer approach (Han & Anderson, 2020). In 

other words, while solicited reviews may appear positive on the surface of the experience 

sphere, they often reveal underlying negative aspects. 

Our finding regarding negative content in terms of negative intensity, the average count 

of negative content per review, was evident in all cases, as demonstrated too by our 

robustness tests and descriptive results. However, our findings regarding negative content in 

terms of negative occurrences, the proportion of reviews that incorporate at least one 

negative aspect, demonstrating more occurrences in TripAdvisor reviews compared to 

Trustpilot reviews. TripAdvisor, typically invoke a broad range of emotions, as they are 

closely tied to personal experiences and feelings. Consequently, customers might be more 
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inclined to share both positive and negative aspects of their experiences, leading to a more 

diverse array of expressed sentiments. When solicited for a review, a customer may feel 

compelled to offer a comprehensive assessment, amplifying their willingness to express 

negative aspects that they might have otherwise overlooked or dismissed in the absence of 

solicitation. In other words, the solicitation might inadvertently prompt a more meticulous 

evaluation of the experience, which may result in the revelation of negative sentiments that 

are otherwise less prevalent in organic reviews. In contrast, Trustpilot reviews are typically 

associated with more objective, functionality-oriented evaluations, resulting in less 

emotionally-charged reviews. The main concern here is whether the service performed its 

intended purpose effectively and efficiently. As such, unless there were significant issues 

affecting the service’s functionality, customers might be less inclined to express negative 

emotions, even when solicited for a review. 

Lastly, our findings provide substantial support for our fourth hypothesis stating that 

review depth is more profound in organic reviews compared to solicited reviews. Unlike 

previous studies that equated review depth with length (Litvin & Sobel, 2019; Susan & 

Schuff, 2010), our study enriches this understanding by considering vocabulary richness and 

lexical diversity. This broader approach reveals how solicitation affects the intricacy and 

comprehensiveness of customer feedback. Our findings suggest that solicited reviews tend to 

have less depth, indicating that businesses relying predominantly on solicitation may miss 

out on the richer, more insightful feedback typically found in organic reviews. Thus, our 

results highlight a potential trade-off in review solicitation strategies: while they may 
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increase the quantity of feedback, they might not capture the depth and richness inherent in 

unsolicited customer experiences. 

The greater depth in organic reviews is likely as organic reviews are typically 

voluntary and not influenced by time constraints or incentives, enabling reviewers to provide 

richer and more comprehensive feedback. Moreover, individuals sharing organic reviews 

may be more emotionally invested in their experiences, leading to detailed accounts, 

especially when they’ve had negative encounters. This contrasts with solicited reviews, 

which often result from immediate business requests or incentives, and hence might lack in-

depth analysis of the experience. Implications of this finding highlight the importance of 

organic reviews in providing detailed, valuable insights about customer experiences, which 

could be more useful for businesses seeking to understand and improve their products or 

services. 

Contribution 

The first key contribution of this study lies in its approach to understanding reporting 

bias in OCR. Previous research primarily concentrated on analyzing the perspectives of the 

vocal minority. In contrast, our study introduces a method for extracting and analyzing 

information from the typically underrepresented silent majority. By incorporating this group's 

perspectives, we offer a more comprehensive understanding of reporting bias in OCR, 

enriching the existing literature with insights from a broader range of consumer experiences 

and opinions. 
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The second main contribution of this study is the distinction and in-depth analysis of 

solicited versus organic reviews. Through a comprehensive examination of various 

dimensions, including opinion diversity, polarization, negativity content, and review depth, 

our research sheds light on the obscured inclinations of the silent majority. This analysis 

reveals the extent to which review solicitation can modulate reporting bias. By dissecting the 

nuanced differences between these two types of reviews, the study provides valuable insights 

into how the solicitation of feedback influences the representation and character of consumer 

opinions in the OCR landscape. 

The third major contribution of this study is the introduction of our comprehensive 

theoretical framework, the "Experience Sphere." This framework uniquely integrates the key 

concepts from the HB theory, the SOS theory, and the CRH model, among other elements. 

By synthesizing these diverse theoretical perspectives, the Experience Sphere provides a 

more holistic and nuanced understanding of the dynamics in OCR. This integration allows 

for a deeper exploration of how individual behavior, social influence, and perceived 

helpfulness of reviews interact within the OCR context, offering a robust platform for 

analyzing the complex phenomena observed in customer review systems. 

The fourth key contribution of this study is the empirical testing of our theoretical 

concepts using real-world review data. This practical application bridges the gap between 

theory and actual consumer behavior, allowing for a rigorous examination of the study's 

hypotheses. By analyzing actual review data from a diverse range of sources, we were able to 

validate and discuss the results of our theoretical framework in a real-world context. This 

approach not only confirms the applicability of our theoretical contributions but also provides 
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tangible, evidence-based insights into the dynamics of OCR. The empirical testing 

underscores the validity of our findings, making a significant contribution to both academic 

research and practical applications in the field of consumer behavior and online review 

systems. 

Research implications: 

This study significantly advances our knowledge of how the silent majority behaves in 

the realm of OCR. By integrating the perspectives of this typically less vocal group, the 

research highlights distinct patterns in review characteristics. It shows that solicited reviews, 

often coming from the silent majority, tend to display less diversity in opinion, higher levels 

of polarization, increased negativity, and less depth compared to organic reviews. These 

findings imply that the inclusion of the silent majority’s views can lead to a different overall 

portrayal of consumer opinions and attitudes, which is crucial for a more accurate 

understanding of consumer sentiment in OCR. 

The application and validation of the "Experience Sphere" theoretical framework using 

real-world review data represent a significant research implication. By empirically testing the 

intertwined concepts of HB theory, SOS theory, and the CRH model, this study provides a 

robust platform for analyzing complex phenomena in customer review systems. This 

empirical approach not only supports the theoretical model but also enhances its credibility 

and applicability, offering a comprehensive tool for future research to explore the dynamics 

of OCR and consumer behavior. 
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Practical implications 

This study provides vital practical insights for businesses reliant on customer reviews. 

The insights gained from understanding the behavior of the silent majority can guide 

businesses in refining their review solicitation strategies. By recognizing the differences in 

content and tone between solicited and organic reviews, companies can tailor their 

approaches to encourage more genuine and representative feedback. This could involve 

varying the timing, wording, and medium of solicitation to capture a broader and more 

authentic range of consumer opinions. 

In addition, the study’s findings highlight the need for businesses to be aware of 

potential biases in solicited reviews. By understanding the tendencies of solicited reviews to 

display less opinion diversity and depth compared to organic ones, businesses and review 

platforms can develop more sophisticated tools and algorithms to detect and account for 

these biases. This is crucial for ensuring the reliability and credibility of the review content 

presented to consumers. Moreover, the research provides a framework for businesses to 

actively mitigate bias in their review systems. By acknowledging the different characteristics 

of solicited and organic reviews, companies can adjust their overall review aggregation and 

presentation strategies to avoid overrepresentation of certain types of feedback. This could 

involve weighting reviews differently based on their solicited or organic nature or developing 

more nuanced review analysis methods that take into account the findings of this study. 

Furthermore, this research underscores for businesses that solicited reviews, especially 

in service industries like hospitality, may contain more negative content. This is likely 
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because solicitation prompts a thorough evaluation, uncovering negative sentiments. This 

finding is crucial for businesses aiming to fully understand and address customer 

dissatisfaction. Additionally, the study confirms that organic reviews typically offer greater 

depth, possibly due to the organic reviewer’s emotional engagement and desire to share a 

complete experience overview. This depth is valuable for businesses, as it provides richer, 

more actionable feedback. Consequently, businesses should consider refining their review 

solicitation strategies to elicit more diverse and detailed feedback, while also being aware of 

the inherent biases in solicited reviews. This awareness is vital for accurately interpreting 

customer feedback and making informed decisions. 

Limitations and Future Directions 

While this study provides valuable insights into the role of review solicitation in 

reporting bias in OCR, it has several limitations that offer opportunities for future research. 

First, our study focused on data from a 5-year period from January 1, 2015, to December 31, 

2019. While this provides a comprehensive view of the phenomena during this period, it does 

not account for changes in the online review landscape or consumer behavior that may have 

occurred since 2020. The study also uses a cross-sectional rather than a longitudinal design. 

Future research could leverage our additional data up to January 29, 2022, to perform 

longitudinal analysis and explore how these patterns have evolved over time.  

Second, our study largely relies on quantitative data and statistical methods to examine 

the differences between solicited and organic reviews. Future research could benefit from 

employing qualitative methods, such as content analysis or interviews, to further uncover the 
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underlying motivations and processes that drive these observed differences. Third, while we 

applied our analysis on two general domains, Trustpilot and TripAdvisor, to illustrate the 

different dynamics in different categories, the generalizability of our findings to other 

industries remains unknown. Future studies could expand this research by exploring more 

product categories to enhance the understanding of the nuanced dynamics in each category. 

Finally, we assumed that the solicited reviews were solely influenced by the 

solicitation itself, overlooking other potential influences such as the specific wording or 

presentation of the solicitation or the incentives offered. Future research could examine how 

these factors might further influence the content and tone of solicited reviews. Future studies 

should also consider investigating the impact of reviewers’ demographic variables (such as 

age, gender, or cultural background) on the effects of review solicitation. This can further our 

understanding of the individual differences in review writing behaviors. 

Overall, our study provides a starting point for a more nuanced understanding of the 

role of review solicitation in OCR. We hope our findings will stimulate further research in 

this area, leading to more comprehensive and detailed insights. 

Conclusion 

This research, delving into the role of review solicitation in OCR, makes significant 

contributions to the theoretical understanding of consumer behavior and offers practical 

insights for businesses relying on customer feedback. By employing the conceptual 

framework of the Experience Sphere, we have explored how solicitation reshapes the 

landscape of OCR, affecting opinion dispersion, polarization, negative content, and review 
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depth. Our findings reveal that solicited reviews often lack the depth and breadth of organic 

reviews. They exhibit lower opinion dispersion and more polarization, indicating a tendency 

toward consensus and echoing the vocal minority’s viewpoints. This study highlights the 

potential risk of herd behavior and the spiral of silence effect in solicited reviews, where 

reviewers may feel pressured to align with prevailing opinions. In contrast, organic reviews, 

free from solicitation biases, offer a richer and more varied representation of customer 

experiences, providing businesses with deeper, more actionable insights. Moreover, the study 

underscores the inclination of solicited reviews to contain more negative content, especially 

in service industries like hospitality. This is a critical insight for businesses aiming to 

understand and address customer dissatisfaction comprehensively. In terms of review depth, 

the study confirms that organic reviews, driven by more emotionally engaged customers, 

tend to be more detailed and informative. Therefore, this research urges businesses to 

reconsider their review solicitation strategies, aiming for a more authentic and diverse 

representation of customer opinions. 
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3.7 Appendices 

Figure 3.4: Descriptive Analysis Results 
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Figure 3.5: Spatial Analysis Using Multidimensional Scaling (MDS) 
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CHAPTER 4: DISCOVERING AHP–TDT: ANOMALOUS HOTSPOT PATHS IN 

TRAJECTORY NETWORKS BASED ON TOTAL DISTANCE TRAVELED 

4.1 Introduction 

The problem of discovering anomalous hotspot paths based on total distance traveled 

(AHP–TDT) aims to systematically identify and analyze pathways within a trajectory 

network that exhibit irregular or unexpected patterns based on the cumulative distance 

traveled. By focusing on the total distance traveled (TDT), this methodology seeks to shed 

light on collective anomalies, revealing potential areas of interest or concern. This approach 

extends beyond simple frequency-based metrics and delves deeper into the intricacies of 

movement dynamics, enabling a comprehensive understanding of spatial and temporal traffic 

behaviors. The ultimate objective is to extract meaningful insights from the data, which could 

be crucial for various applications such as urban planning, traffic management, and security 

surveillance, among others. Concurrently, this study is dedicated to optimizing various 

aspects of the travel experience. 

Spatial hotspots are areas characterized by a heightened concentration of incidents or 

events. These concentrations manifest in diverse scenarios such as traffic bottlenecks, crime 
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hotbeds, disease flare-ups, and natural disasters (Qin et al., 2017). Recognizing these 

hotspots is invaluable across various applications, including public safety, climatic and 

environmental assessments, epidemiology, social media analytics, and the internet of things 

(Hamdi et al., 2022). In the context of transit systems, comprehending these spatial hotspots 

is pivotal for refining transit management, urban design, maintenance, and forward-thinking 

development (Castro et al., 2013). However, the traditional focus on detecting spatial 

hotspots has generally been confined to either spatial points or edges defined between pairs 

of points. This limitation leaves a critical knowledge gap, as complex travel patterns that 

consist of sequential edges—paths—present an unresolved challenge. This study bridges this 

gap by extending beyond the conventional methods of pinpointing spatial hotspots at 

individual points or edges. Instead, it ventures into uncharted territory, unearthing, first, a 

sequence of spatial hotspot edges, referred to as hotspot paths, that are woven into a network 

of trip trajectories, and, second, isolating those spatial hotspot paths that present anomalous 

travel patterns. The unveiling of these intricate paths has the potential to revolutionize our 

approach to spatial analysis, opening doors to richer insights and more targeted interventions. 

Unlike spatial data, which usually represents a single point in a geographic coordinate 

system, trajectories capture the movement of objects over time. They are represented as a 

sequence of spatial points, arranged by timestamps. Additionally, trajectories may contain 

supplementary data that pertains to speed and direction (Wang et al., 2020). A combination 

of these features can be useful in providing valuable insights into collective human 

movements and can improve our understanding of social interactions defined by individuals’ 

behavior as well as socio-dynamics characterized by group-level behavior. To determine 
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whether a path in the trajectory network is an anomalous hotspot, we model a city’s road 

network as a graph G = (V, E), where V represents the set of nodes (or vertices) that 

correspond to street crossings, and E represents the set of edges that connect these nodes and 

correspond to road segments. A path in this network is defined as an edge or a sequence of 

connected edges that does not repeat any nodes. 

However, the detection of AHP–TDT from trajectory data presents significant 

challenges due to the multiple points and paths involved. The process requires an evaluation 

of all combinations of paths within the trajectory network, which can potentially result in 

millions of combinations. As a result, the complexity of this approach can be substantial, 

with a computational cost of O(N3), where N is the number of path combinations in the 

trajectory network (Rubin, 1978). Furthermore, considering that the trajectory network is 

weighted by the traffic events that occur on each edge, a solution based on extracting 

subgraphs using the simple connected components method is not suitable. Thus, a weighted 

connected component approach must be used to effectively search the trajectory network for 

the desired anomalous hotspots. 

To address the challenge of pinpointing anomalous hotspots in trajectory data, several 

methods have emerged, spanning from exact to heuristic approximation techniques. These 

methods, as outlined by (Nogueira et al., 2018), harness computational algorithms, statistics, 

and machine learning to capture and classify these intricate spatial hotspots. A hybrid 

strategy converting a spatial hotspot problem into a tailored optimization issue has 

demonstrated marked efficiency, solution quality, and robustness. Notably, this strategy was 

adeptly used for a maximum weight independent set problem (Nogueira et al., 2018) and for 
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a ridesharing matching problem (Tu et al., 2019). In this research, we adopt this 

transformative approach, leveraging weighted connected components to unearth anomalous 

hotspots within the trajectory network. 

In this study, we aim to advance the discovery of anomalous hotspots from trajectory 

data by extending the focus from single points or edges to paths based on TDT. This 

approach uncovers new insights into various applications, such as on-demand delivery 

services, shared mobility, and urban planning. The identification of anomalous hotspots 

based on TDT has the potential to optimize network utilization for autonomous vehicle 

delivery services, reduce redundancy in the delivery network, and alleviate traffic congestion. 

Moreover, it could play a crucial role in improving the quality of dynamic shared mobility 

services. Thus, this study aims to answer three fundamental questions related to AHP–TDT 

in trip trajectories: 

R1. How does analyzing collective anomalies in paths via AHP–TDT offer a more 

comprehensive understanding of a network compared to traditional point- and edge-

focused methods? 

R2. How does defining network bounds in AHP–TDT enhance hotspot detection precision 

and relevance in trajectory data? 

R3. What is the impact of a weighted connected component approach on identifying 

anomalous hotspots in trajectory networks? 
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The paper is organized as follows: Section 2 discusses related work, and Section 3 

presents the methodology, including the question setting and recommended solution. Section 

4 presents the experimental results and the discussion of findings, and Section 5 provides the 

conclusions and suggestions for future work. 

4.2 Related Work 

Spatial Analysis for Anomalous Hotspots 

Spatial hotspots are a phenomenon that can be characterized by a high concentration of 

observations in a particular spatial location. While hotspots may exhibit some similarities 

with spatial anomalies, it is important to note that these terms are typically reserved for 

describing rare occurrences or patterns. Conversely, hotspots are often associated with a 

substantial number, significant number, or majority of observations (Xie et al., 2023). In 

some fields, certain constraints are applied to determine whether a cluster should be 

considered a hotspot. For example, a maximum population threshold may be used to exclude 

clusters that cover more than 50% of the underlying population in control data. Clusters that 

do not meet this criterion are generally not considered to be hotspots but, rather, represent a 

general phenomenon (Xie et al., 2023). 

The detection of spatial hotspots in trajectory data requires careful consideration of 

what constitutes a hotspot and how detection will be conducted. While trajectory data 

contains multiple points, researchers often simplify the task by focusing solely on the starting 

and/or ending points of a trip. For example, (Chen et al., 2014) identified dense passenger 

pickup and drop-off points as candidates for future bus stops using this method, while (Li et 
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al., 2011) predicted pickup points with the highest passenger volume using the autoregressive 

integrated moving average. Other researchers have extended the search to all trajectory 

points and searched for the most frequently visited locations, such as (Yuan et al., 2010), 

who identified the most frequently traversed points by taxi drivers as landmarks for 

facilitating future trip planning. This approach, known as clustering, is the primary focus of 

most hotspot detection research and uses unsupervised machine learning methods. 

In other hotspot discovery tasks, the focus shifts from trip points toward the areas 

between the points, such as road segments, roads, or even multiple roads. For example, 

(Kriegel et al., 2008) predicted areas of congestion and traffic density in a network, while 

(Shen et al., 2018) investigated first and last miles to and from public transportation with the 

objective of integrating shared autonomous vehicles. Overall, the process of hotspot 

detection in trajectory data requires careful consideration of the research question, available 

data, and appropriate methodology. 

Table 4.1: Summary of Scopes in Hotspot Detection 

Scope Examples Example Studies 

Points 

 

(Chen et al., 2014) cluster dense passenger 

pickup and drop-off points as candidates for bus 

stops 

(Li et al., 2011) use the autoregressive integrated 

moving average to predict pickup points with the 

highest level of passengers 
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Edges 

 

(Kriegel et al., 2008) predict traffic density in a 

network 

Paths 

(pre-

defined)  

(Shen et al., 2018) use a supply-side integration 

of a shared autonomous vehicle as the first and 

last miles to and from public transportation 

The initial step in the hotspot discovery process involves selecting a representation 

method that can effectively model the movement of trajectory data. While GPS-based 

representation is commonly used, it poses significant challenges with trajectory handling, 

such as indexing, retrieval, and error handling. To overcome these issues, alternative 

representation methods have been proposed—including dimensionality reduction, binary-

encoding, hashing, deep representation, and other codifications—that are suitable for large-

scale data sets (Sousa et al., 2020). In this regard, several measures have been suggested for 

calculating the similarity of trajectories in GPS-based representation, including the longest 

common subsequence (LCSS), Fréchet distance, dynamic time warping (DTW), and edit 

distance (Toohey & Duckham, 2015). While researchers have addressed various 

advancements, integrations, and alternatives to these measures, the road-network-constrained 

trajectory approach, when correctly constructed, is more concise and precise than the GPS-

based trajectory (Sousa et al., 2020). 

Graph Mining for Anomalous Hotspots 

The road-network-constrained trajectory is a popular representation method used for 

modeling the movement of trajectory data. This approach is constructed based on the GPS-
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based trajectory and uses graph theory for formalization, which is a common and rigorous 

approach that is accessible across disciplines and is particularly suitable for routing problems 

and optimization (Marshall et al., 2018). The mathematical representation of a street network 

is defined by nodes connected by edges loaded with weights or labels, which can be directed 

or undirected. To measure similarities among road-network-constrained trajectories, various 

methods have been proposed, such as dissimilarity with length, set theory operations, 

similarity coefficients, dimensionality reduction, and the definition of a window parameter 

equal to half the size of the shortest trajectory. Another approach involves using collections 

of points of interest or times of interest to compute similarities, such as trajectories that pass 

through specific places or during peak traffic hours (Sousa et al., 2020). Each approach has 

its own metricity, computational complexity, and robustness to noise and local time shifts. In 

contrast to optimization, trajectory clustering methods require a candidate trajectory to 

calculate similarities and make recommendations, which can increase computational 

complexity. Moreover, another challenge in trajectory clustering is selecting appropriate 

clustering parameters, such as the number of clusters and cluster centers. In this regard, 

(Zhao et al., 2017) proposed an approach based on decision graphs and data fields to address 

this issue. 

An alternative method for detecting spatial hotspots is to leverage connected 

components in the trajectory network. Connected components are sets of nodes in a graph 

that are linked to each other by paths. However, previous studies have focused mainly on 

simple connected components, while our trajectory networks are weighted. Additionally, the 

primary objectives of major prior studies, although related to transportation, do not directly 
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address the detection of hotspots based on total distance in the network. For example, (Kun 

& Vámossy, 2009) used connected components in combination with decision trees and other 

methods for traffic monitoring, while (Abbas et al., 2019) used connected components for 

image processing of traffic congestion. Therefore, this study presents an alternative approach 

that uses weighted connected components instead of simple connected components for 

identifying unique anomalous hotspots. 

Another approach to identifying spatial hotspots in trajectory networks is frequent 

pattern mining, which consists of storing trajectories as sequences of identities and searching 

for the most frequent patterns in the graph. However, this method presents challenges as the 

data volume and spatial and temporal variations increase, leading to heavily overlapping 

patterns (Yang & Gidófalvi, 2018). Moreover, frequent pattern mining is suitable for 

detecting individual frequent points or edges, but it is not appropriate for identifying 

connected points or edges, such as paths. Therefore, using frequent pattern mining to detect 

hotspot paths in a trajectory network may not be efficient since not all frequent solutions will 

be connected. In contrast, the connected component approach allows for identifying clusters 

of connected points or edges, which is more suitable for finding hotspot paths. 

Efficiently locating anomalous hotspots in a trajectory network can be a challenging 

task due to the large number of possible path combinations. The computational complexity of 

enumerating all paths within a graph can be O(N3), where N represents the number of path 

combinations in the trajectory network (Rubin, 1978). The problem of planning pickup and 

drop-off points, routes, and frequencies in transportation networks, also known as the transit 

route network design problem, has been demonstrated to be a nondeterministic polynomial 
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time (NP-hard) (Schöbel & Scholl, 2006). Furthermore, the addition of on-demand mobility 

services, such as those used in demand-response route systems, can transform the problem 

into a dial-a-ride problem, an integrated dial-a-ride problem, a vehicle routing problem with 

pickup and delivery, or other variations. Additionally, these can be generalized cases of the 

traveling salesman problem and are computationally intractable or NP-hard (Yoon et al., 

2021). Locating anomalous hotspots in a trajectory network presents a similar variation of the 

problem and, as such, requires an innovative solution to overcome the computational 

challenges involved. 

Table 4.2 provides a summary of themes and the associated, but not mutually 

exclusive, methods used in hotspot detection in trajectory data. 

Table 4.2: Summary of Themes in Hotspot Detection 

Theme Methods Example Studies 

Spatial analysis - Clustering starting/ending points of trips 

- Clustering all trajectory points 

- Road-network-constrained trajectory approach 

(Chen et al., 2014; Li et al., 

2011; Yuan et al., 2010) 

Representation 

methods 

- GPS-based representation 

- Alternative methods (e.g., hashing, deep 

representation 

- Similarity measures (e.g., longest common 

subsequence, dynamic time warping) 

(Sousa et al., 2020; Toohey & 

Duckham, 2015) 

Graph mining - Graph theory formalization 

- Dissimilarity with length 

(Marshall et al., 2018; Sousa 

et al., 2020) 
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- Set theory operations, similarity coefficients 

Connected 

components 

- Simple connected components 

- Weighted connected components 

(Abbas et al., 2019; Kun & 

Vámossy, 2009) 

Frequent pattern 

mining 

- Storing trajectories as sequences of IDs 

- Searching for frequent patterns in the graph 

(Yang & Gidófalvi, 2018) 

Computational 

complexity 

- Transit route network design problem 

- Vehicle routing problem with pickup and 

delivery 

(Rubin, 1978; Schöbel & 

Scholl, 2006; Yoon et al., 

2021) 

4.3 Methodology 

This section outlines our framework for discovering AHP–TDT, illustrated in Figure 

4.1. Our approach begins with the standard initial steps common in spatial data analysis: 

defining a road network (Step A1) and extracting a trajectory network (Step A2). Following 

(Kriegel et al., 2008; Sousa et al., 2020), the defined road network provides the structural 

baseline for our data, while the extracted trajectory network captures the movement patterns 

within this structure. Moving beyond traditional spatial hotspot detection of nodes or edges, 

our methodology explores the identification of hotspot paths. This begins with a definition of 

the bounds of the network (Step B1), which sharpens the focus of our analysis to specific 

areas within the network. Then, we proceed to extract subgraphs (Step B2) using connected 

components. This step enriches our understanding of the data by identifying all 

interconnected nodes and edges, extending beyond the immediately apparent hotspots. 

The subsequent step involves extracting distinct paths (Step B3), a crucial phase for 

ensuring accurate trajectory representation. This process helps isolate unique paths, even 
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when they share common nodes or edges, thereby reducing potential biases toward 

frequently traversed routes. The framework culminates with the setting of anomalous 

thresholds (Step B4), pinpointing not only relevant hotspots but also those exhibiting 

anomalous behavior (Step C). This final step is instrumental in highlighting areas of interest 

or concern within the data set. Therefore, our AHP–TDT framework stands out from 

previous methodologies because of its comprehensive and precise approach, marked by the 

incorporation of a definition of network bounds, the extraction of subgraphs, the 

identification of distinct paths, and the establishment of thresholds for anomaly detection. 

Figure 4.1: Anomalous Hotspot Paths–Total Distance Traveled Framework 
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Road and Trajectory Networks 

The process for defining a road network (Step A1) involves creating a comprehensive 

representation of a geographical area, such as a city, and capturing all of its critical features, 

including the names of streets, intersections, and crossroads; speed restrictions; and the 

number of lanes, as discussed by (Marshall et al., 2018). We depict this road network as a 

graph RG = (V, E), where V represents a set of nodes (vertices), each corresponding to a 

street intersection, and E denotes a collection of edges, each of which represents a road 

segment linking adjacent intersections. Therefore, every pair of proximal nodes in the set V 

is connected by an edge from the set E. The overall graphical representation of the road 

network could be either directed or undirected, depending on the nature of the traffic flow in 

the real-world scenario it mirrors. This graph-based model aids in accurately capturing the 

complexity of urban mobility patterns. 

The trajectory network (Step A2), which can be represented as TG, is a derivative of the 

road network, reflecting only a portion of the nodes and edges used in a specific sample of 

on-demand trip trajectories. To put it another way, while the underlying structure of the road 

network remains unchanged regardless of the data sample used, the trajectory network may 

vary. Each trajectory represents a unique journey from a starting point to a destination, and, 

therefore, the trajectory network is primarily viewed as a directed network. However, where 

appropriate, it can be adapted into an undirected format. Each journey in the trajectory 

network follows a path P, comprising a sequence of edges denoted as P = (e1, e2, …, en), 

where n symbolizes the total number of edges in that specific path. Each edge in this 

sequence shares a common node with its adjacent edge, illustrating the connectivity in the 
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network. In other words, ei = (vl, vk) → ei+1 = (vk, vm), where vl, vk, and vm belong to the set 

nodes. 

In our analysis of the trajectory network, we concentrate on “simple paths” defined by 

a clear structure: a starting node, an ending node, at least two connecting edges, and, 

possibly, intermediate nodes. This focus on simple paths facilitates a straightforward 

interpretation of trajectory data, as per (Idé & Kato, 2009), untangling the complex dynamics 

of travel behavior. Moreover, central to our modeling approach is the adoption of the 

“shortest path assumption” (Idé & Kato, 2009). This assumption posits that objects within a 

network typically follow the most direct route from start to end, thereby streamlining our 

model. By applying this assumption, we effectively reduce the model’s complexity, 

sidestepping the need to intricately account for variables such as spatial context, temporal 

factors, speed, and other trip-specific data. Although these elements are vital for both a 

comprehensive understanding of trajectory movements and the identification of outliers, they 

add significant complexity to the model. In our evaluation, we considered two metrics for 

determining the shortest path: distance and travel time. Our empirical tests revealed 

negligible differences in the travel routes within our trajectory network, regardless of the 

metric used. 

Before detecting spatial hotspots, the next stage in the process is defining what 

constitutes a hotspot. In the case of hotspot points, the weight is generally defined by the 

frequency of trips passing through each node, a metric we can represent as node frequency 

(NF). The process for identifying hotspot points, therefore, involves analyzing all of the 

nodes within the trajectory network to pinpoint those exhibiting the highest NF values or 
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those surpassing a predetermined NF threshold. The process can be further refined by 

concentrating exclusively on the starting and ending nodes of a trip, thereby facilitating the 

detection of significant passenger pickup and drop-off points, as exemplified in the methods 

employed by (Chen et al., 2014; Li et al., 2011). 

Similarly, when identifying hotspot edges, the weight is typically determined by the 

frequency of trips traversing each edge, a metric represented as edge frequency (EF). Thus, 

the process for discovering hotspot edges involves inspecting all edges within the trajectory 

network to identify those that display the highest EF values or those that exceed a pre-

established EF threshold. This method has been implemented in many applications, including 

detecting congestion and traffic density in a network (Kriegel et al., 2008) and identifying 

ideal candidate areas for integrating shared autonomous vehicles in public transportation 

(Shen et al., 2018). 

However, in addition to EF, we can consider the distance traveled along an edge (DT) 

as an alternative weighting method. Given that each edge possesses a specific length (EL), 

the product of edge frequency and edge length yields the cumulative distance traveled for 

that particular edge, as denoted by DT = EF x EL. Thus, by transitioning the weightage 

criterion from edge frequency to distance traveled, we can unveil distinct behavioral nuances 

within the trajectory network. For instance, an edge, despite its high frequency but small 

length, may weigh less than edges with longer lengths. This is because the distance traveled 

parameter takes into account both the frequency of use and the physical extent of the edge, 

offering a holistic view of overall network use. This nuanced approach forms the basis of our 
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methodology for discovering AHP–TDT in this study and clarifies what differentiates it from 

prior work. 

Anomalous Hotspot Paths–Based on Total Distance Traveled Framework 

Discovering hotspot paths requires enumerating all potential paths within the trajectory 

network. Defining key parameters such as the path length (PL) and the TDT is key in this 

process. PL can be computed by aggregating the lengths of all constituent edges in the path. 

Formally, given n edges in a path, the path length can be calculated as PL = ∑ EL୬
୧ୀଵ . 

Similarly, we can determine TDT within the path by accumulating the distances traveled on 

each edge in the path. Thus, given n edges in a path, the TDT is computed as TDT =

෌ TD =  ∑  ୬
୧ ୀ ଵ (EF x EL)୬

୧ ୀ ଵ . 

However, the task of enumerating all potential paths within the trajectory network 

requires considering all possible combinations of edges and establishing a set of all 

prospective paths that span all potential starting and ending points. Furthermore, the task 

shifts from solely evaluating edge frequencies to assessing the TDT, which is the product of 

edge frequencies and their lengths. For example, when seeking the path characterized by the 

maximum TDT value, the task can be formulated as an optimization problem, articulated as: 

Max TDT = Max∑ (EF × EL)୬
୧ ୀ ଵ . This formulation is constrained by PL, TF ≥ 0, and ∀ i =

1, … , n where n is the number of path combinations in a trajectory network. As discussed, the 

complexity of this enumeration challenge is O(N3), where N denotes the number of path 

combinations in the trajectory network (Rubin, 1978). 
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To address the challenge of processing numerous and often insignificant paths in our 

data set, we incorporate into our model a step that establishes network bounds (Step B1) by 

defining two key parameters: minimum path length (MinPL) and minimum path frequency 

(MPF). This approach, which is aligned with (Sousa et al., 2020), emphasizes relevant data 

representation and helps filter out less meaningful paths, thereby enhancing the accuracy of 

hotspot detection. Similarly, it echoes the strategy in graph mining for efficient anomaly 

detection introduced by (Marshall et al., 2018). For instance, defining lower MPF and/or 

MinPL values will yield a broader set of potential solutions, but this could affect the 

efficiency of the path search process. Conversely, setting high MPF and/or MinPL 

parameters can potentially boost search performance by focusing on more promising paths. 

However, this approach runs the risk of omitting suitable solutions and, possibly, returning 

no paths. Consequently, it is crucial to strike the appropriate balance between these 

parameters. This allows for strategic navigation between the comprehensive examination of 

potential solutions and the operational efficiency of the search process, ensuring that we 

identify meaningful spatial hotspot paths without burdening the system with an excessive 

number of paths of insignificant value. 

However, a simple filtration of edges based on these lower bound parameters may not 

suffice. Given the intricately interconnected nature of a network, paths and edges often share 

significant relationships. Thus, a simplistic filtering approach could inadvertently eliminate 

essential information from neighboring edges, disrupting the overall understanding of the 

network. To address this challenge, our model integrates an additional step that is focused 

specifically on the extraction of all subgraphs using connected components within the 
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subnetwork (Step B2). This process acknowledges the interconnected relationships between 

the network elements, ensuring that crucial inter-edge information is preserved and used 

effectively. Consequently, this allows for a robust and insightful exploration of the network, 

significantly augmenting our capacity to identify meaningful hotspot paths. 

Though this step, extracting all subgraphs, acknowledges the complex interplay within 

network elements, it primarily manifests subgraphs rather than simple paths. To optimize the 

use of these subgraphs, we need to transform these derived subgraphs into all possible simple 

paths. Our model’s main benefit becomes evident at this stage. Instead of indiscriminately 

searching the entire network, the incorporation of lower network-bound parameters and 

subgraphs along with the regeneration of simple paths focuses the search effort on the most 

significant areas in the network and their surrounding clusters. As a result, this approach 

streamlines the search process and significantly enhances the efficiency and effectiveness of 

hotspot detection. This focus on the areas of utmost importance not only mitigates the 

computational strain but also sharpens our insights into the trajectory network’s pivotal 

aspects. 

The integration of an upper network bound parameter—specifically, the maximum path 

length (MaxPL)—into our model is another step toward enhancing its effectiveness. 

However, the timing of this incorporation is key. The introduction of this parameter prior to 

the extraction of the subgraphs may unintentionally lead to the removal of vital subgraphs 

from our consideration, thus potentially compromising the quality of our detection. Instead, 

we strategically incorporate this upper bound parameter after the extraction of connected 

components and the transformation of subgraphs into simplified paths. At this stage, applying 
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the MaxPL provides a focused lens to sift through the multitude of paths, selectively 

retaining those that fall within the defined length constraint. This approach further 

streamlines our search process, effectively reducing computational demands while 

simultaneously ensuring a robust and comprehensive examination.  

The next step in our approach is the extraction of distinct paths within the candidate 

solutions (Step B3) by examining how paths overlap among each other. An overlap instance 

within a network occurs when two paths share common nodes or edges. If unaddressed, these 

overlaps could distort our understanding and interpretation of the network, leading to 

potential issues. An overlooked overlap could cause certain paths or edges that are part of 

numerous paths to be disproportionately represented. This overrepresentation could 

misleadingly elevate their perceived importance or frequency, thereby skewing the outcome 

of the discovery. Conversely, the discovery could fail to highlight unique, albeit less 

frequent, paths that possess equivalent significance if excessive attention is accorded to 

overlapping sections. Moreover, computational efficiency could be compromised by 

overlaps. Repetitive processing of common nodes or edges across different paths could lead 

to unnecessary computational expenditure. 

To tackle these challenges, we employ the acceptable similarity (AS) parameter. This 

parameter uses Jaccard similarity to gauge the degree of similarity between two paths. It 

achieves this by comparing the size of the intersection of the two paths to the size of their 

union, as per (Sousa et al., 2020). By strategically fine-tuning this parameter, we can tailor 

the experimental direction to suit our intended objectives. Lower AS values will yield a 

larger pool of potential solutions but may sustain fewer distinct paths, resulting in fewer 



90 
 

unique paths. Conversely, higher AS values will generate a greater number of distinct paths 

but may inadvertently exclude key paths. Therefore, the systematic extraction of distinct 

paths ensures that our model is both robust and insightful, capable of reflecting the network’s 

intricacies without losing sight of the underlying objectives. 

The final critical step (B4) in our AHP–TDT methodology involves the establishment 

of anomalous thresholds. This step is pivotal in identifying paths that exhibit significant 

deviations from normal traffic patterns and highlighting areas that warrant special attention. 

To define these thresholds, we employ two primary methods: specifying top-k anomalies and 

applying a specific threshold value (Aggarwal, 2017; Yeh et al., 2017). In the top-k 

anomalies method, paths with the highest TDT values are flagged as anomalous. These 

heavily traversed paths could reveal notable patterns or points of interest, necessitating 

further examination. Alternatively, the threshold method identifies paths where the TDT 

equals or exceeds the network-wide average TDT. This technique effectively highlights paths 

that stand out from typical traffic flow, thus identifying possible hotspots. For enhanced 

statistical accuracy, our approach deems paths as anomalous if their TDT is significantly 

higher than the mean, specifically, one or more standard deviations above. This ensures that 

the anomalies we identify are truly remarkable, not simply marginally above the average. 

While the threshold method provides a binary, clear-cut classification of anomalies, it may 

lead to inaccuracies if it is not carefully calibrated. Conversely, the top-k method, offering a 

ranked analysis of anomalies, yields a more detailed perspective, which is particularly 

beneficial in scenarios in which a fixed threshold is not feasible. However, it is important to 

note that in a predominantly regular time series, the most anomalous paths identified by the 
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top-k method might not be exceptionally anomalous in an absolute sense. To address these 

considerations, our framework integrates these methods, considering a path as anomalous if it 

is flagged by more than one of these approaches (Aggarwal, 2017; Yeh et al., 2017). This 

multifaceted strategy ensures a thorough and robust identification of potential hotspots, thus 

significantly enhancing our capacity to accurately map and interpret the complexities within 

trajectory networks. 

Table 4.3: Notations of all Variables 

Notation Comment 

NF Node frequency 

EF Edge frequency 

EL  Edge length 

PL Path length 

DT Distance traveled 

TDT Total distance traveled 

MPF Minimum path frequency 

MinPL Minimum path length 

MaxPL Maximum path length 

4.4 Research Methods 

To validate our model, we used real-world trajectory data collected from an on-demand 

transportation agency operating in Porto, Portugal.6 This data set includes an array of 

approximately 1.7 million individual trips, chronicled over a full annual cycle from July 1, 

 
6 https://www.kaggle.com/crailtap/taxi-trajectory 

https://www.kaggle.com/crailtap/taxi-trajectory
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2013, to June 30, 2014. Every trip is meticulously represented by consecutive GPS 

coordinates that are recorded at regular 15-second intervals. Such recordings create polylines 

that allow for a detailed analysis of movement and traffic patterns within the city. An 

example of this raw data can be found in Table 4.4. The selected data set not only aligns with 

the overarching goals of this research but also has been leveraged in similar studies, 

underscoring its relevance and validity for our investigation. While our approach would have 

been enriched by examining an array of similar trajectory data sets, recent regulatory shifts 

and increasing privacy concerns, including those articulated in geolocation privacy 

legislation in countries such as the United States, have placed significant constraints on the 

accessibility of other similar data sets. 

Table 4.4: A Sample of the Raw Data 

TRIP_ID 

CAL

L_TY

PE 

ORIGI

N_CAL

L 

ORIGI

N_STA

ND 

TAX

I_ID 

TIMESTA

MP 

DAY

_TYP

E 

MISSIN

G_DAT

A 

POLYLINE 

1379415

6366200

00000 

A 2002  
2000

0653 

9/17/2013 

07:00 
A FALSE 

[[-8.625798,41.157342], 

[-8.625789,41.15736], [-

8.625744,41.157369], …] 

1379415

6146200

00000 

B  6 
2000

0657 

9/17/2013 

07:00 
A FALSE 

[[-8.582598,41.180202], 

[-8.582346,41.180211], [-

8.582265,41.180769], …] 

1379415

7416200

00000 

B  32 
2000

0011 

9/17/2013 

07:02 
A FALSE 

[[-8.627589,41.157684], 

[-8.627607,41.157702], [-

8.627913,41.157909], …] 
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To define the road network, we used two powerful Python libraries. First, we employed 

NetworkX to model and manage the intricacies of the road network as mirrored in the 

trajectory data.7 NetworkX is renowned for its ability to effectively construct, manipulate, 

and study the structure and dynamics of complex networks. Subsequently, we used OSMnx 

for accessing and harnessing spatial data such as street networks, which are fundamental to 

our discovery task.8 This tool is particularly useful due to its ability to extract, model, 

analyze, and visualize a wide range of spatial objects using data from OpenStreetMap 

(Boeing, 2017 and visualizing complex street networks). Our experiment focused on the city 

of Porto, Portugal, with specific geographical coordinates (41.155, -8.63) serving as our 

central point of interest. To ensure a manageable and relevant area of study, we limited our 

scope to a radius of 2,500 meters around this focal point. Following this, we engaged in data 

pre-processing, which included dismissing trips of less than one-minute duration as well as 

extracting key data points such as pickup and drop-off locations, which played a crucial role 

in subsequent stages of our experiment. The result of these procedures was a meticulously 

defined road network, which accurately reflected the urban layout of Porto, comprising a 

total of 6,159 edges and 2,993 nodes. This road network formed the base upon which our 

further discovery was conducted; it is graphically represented in Part A1 of Figure 4.2. This 

approach employed in defining the road network ensures that it is an accurate, 

comprehensive, and analytically valuable representation of the real-world urban 

environment. 

 
7 https://networkx.org/ 
8 https://github.com/gboeing/osmnx 
 

https://networkx.org/
https://github.com/gboeing/osmnx
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Figure 4.2: Results of Applying the Anomalous Hotspot Paths Framework 

To distill the trajectory network from the overarching road network, we strategically 

aligned nodes and edges drawn from trip trajectories to their corresponding elements within 

the road network. This alignment was driven primarily by the specific pickup and drop-off 

locations, which are linked to the nearest nodes and edges within the road network. This 

procedure not only facilitated a seamless synchronization of the road and trajectory network 
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structures but also effectively eliminated any nodes and edges from the road network that 

remained unused within the scope of our trajectory data. While the structural integrity of the 

road network remained consistent across different data samples, the trajectory network 

displayed a certain degree of variability. In other words, if we were to choose a different 

subset of trajectory data, the road network would retain its form, whereas the trajectory 

network would adapt accordingly. 

In tackling the challenge of analyzing trajectory data sets, such as ours that 

encompassed approximately 1.7 million trips, our objective was to extract hotspot points, 

edges, and paths using various thresholds and parameters, such as MPF, MinPL, and AS. 

Drawing inspiration from the methodologies of (Djenouri et al., 2019; Zhang et al., 2021), 

we employed a time-window sampling strategy. This approach effectively segmented the 

vast data set into smaller, more manageable units, enhancing our analytical precision and 

efficiency. Moreover, it prepared our model for future extensions, wherein multiple samples 

from varying time windows could be used to highlight spatio-temporal anomalies, thereby 

providing insights into the influence of time on travel patterns. For our analysis, we selected 

a representative sample that encapsulated a critical aspect of urban mobility: the morning 

rush hour. Specifically, we focused on data from 7 a.m. to noon on Tuesday, September 17. 

This period is characterized by heightened network activity, providing a fertile ground for 

studying congestion and travel dynamics. By concentrating on this time window, we aimed 

to derive insights into traffic patterns during peak use, offering a window into the most 

intense operational challenges faced by the network. After a meticulous process of data 

cleaning and preprocessing, we refined our sample to 1,085 trips. Guided by the principle of 
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the shortest distance for the shortest path analysis, this subset yielded a trajectory network 

comprising 1,936 nodes and 2,833 edges. This network, visualized in Step A2 of Figure 4.2, 

served as the foundational framework for our hotspot discovery process. Our approach, 

grounded in specific data handling and strategic sampling, positioned us to extract detailed 

and meaningful insights into the patterns of trajectory movement, highlighting our 

contribution to the understanding of urban mobility dynamics. 

Results and Analyses 

Hotspot Points and Edges 

To enhance our understanding and interpretation of the entire AHP–TDT framework, 

we first explored conventional methodologies that are typically employed to extract spatial 

hotspots in the form of both points and edges. This allowed us to create a broader context to 

examine and compare various methodologies and their resultant findings. When detecting 

hotspot points, we focused primarily on nodes in our trajectory network that exhibited high 

NF values. These nodes represented points that are frequently visited or traversed during 

trips, thereby contributing to a higher NF score. On a similar note, hotspot edges were 

identified based on their EF values, and edges with higher EF values were considered to be 

spatial hotspots due to their frequent use in trips. Moreover, in our quest for a more 

comprehensive view, we extended our scope beyond the standard EF measure for edge 

hotspots, and we considered the distance traveled along an edge as an alternate weighting 

metric. This subtle change in perspective offered a rich understanding by taking into account 



97 
 

both the frequency and the length of the edge, thereby unveiling additional dimensions of our 

trajectory network. This nuanced lens of interpretation is illustrated in Figure 4.3. 

 

Figure 4.3: Changing Weight from Frequency to Total Distance Traveled 

To gain a clearer and more tangible insight into these hotspots, we collated our findings 

in Tables 4.5 and 4.6. These tables present the nodes and edges, respectively, identified as 

hotspots within our network. Our findings in these tables indicated that the hotspot points 

were also detected as participating nodes in the hotspot edges. To provide a more spatial 

perspective, Figure 4.4 serves as a graphical representation of detected hotspot points and 

edges, providing a vivid confirmation of their respective positions within our network. 

Table 4.5: The Top Hotspot Points 

Node ID Frequency 

n324 110 

n346 102 

n11 100 
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Table 4.6: The Top Hotspot Edges 

From Node ID To Node ID Frequency 

n1758 n346 95 

n324 n12 93 

n11 n10 77 

 

 

Figure 4.4: Spatial Hotspot Nodes and Edges 

Anomalous Hotspot Paths Based on Total Distance Traveled 

As introduced, our AHP–TDT approach can be differentiated from previous work 

because it introduces a more granular and comprehensive process, incorporating network 

bounds setting, extracting subgraphs, extracting distinct paths, and specifically targeting 

AHP, ensuring precision and depth in our discovery. 

To define the network bounds in our AHP–TDT approach, we conducted experiments 

to calibrate the MinPL and MPF parameters. In the first experiment, we set the MPF values 

at [20, 30, 40, 50, 60] and the MinPL at [1,000, 1,500, 2,000] meters. For the second 

experiment, we broadened the MPF range to [20, 25, 30, 35, 40, 45, 50, 55, 60], while 
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keeping the MinPL unchanged. These parameters were vital in filtering out insignificant 

paths, aiming to capture only the most distinct patterns. This approach was designed to act as 

a sentinel, guarding against overlooking hidden anomalies and enriching our understanding 

of the data landscape. This pivotal stage in our framework is visually encapsulated in Step B1 

of Figure 4.2. 

The subsequent step in our AHP–TDT approach centered on extracting all subgraphs 

using connected components within our trajectory network. This phase transitioned from 

basic filtration to a nuanced mapping of intricate network relationships. Recognizing the 

complex interplay within the network elements, this step transcended the limitations of 

simple filtration and edge isolation, extending beyond the simple identification of individual 

paths and unfolding the intricate relationships shared across different paths and edges. Step 

B2 of Figure 4.2 vividly captures this pivotal procedure, offering a snapshot of a typical 

subgraph within our trajectory landscape. 

As we advanced, we set MaxPL to 3,500 meters. Implemented after the extraction of 

subgraphs, this upper network bound parameter served as a discerning filter, refining our 

search to consider only paths within this length constraint. This streamlined incorporation of 

MaxPL ensured optimal performance while preserving the richness of our analytical depth. 

Following that, our approach delved into transforming subgraphs into simple paths, ensuring 

a clearer representation. Subsequently, the AS parameter was calibrated at 0.3. This 

calibration allowed us to systematically extract distinct paths, striking a balance between 

capturing unique paths and averting the pitfalls of overrepresentation. This step further 
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optimized computational efficiency and honed the model’s precision. Step B3 of Figure 4.2 

graphically delineates this crucial juncture in our methodology. 

Based on the above specifics, our first experiment resulted in 14 different models that 

yielded 13 distinctive hotspot paths, illustrated in Table 4.7 in the Appendices. Of particular 

note, the path labeled “HP0” showcased a remarkable TDT of 166.144 km, traversing a path 

length of 3.487 km, and resonating at a base frequency of 20. In another example, the path 

labeled “HP7” charted a TDT of 23.319 km, measuring 1.014 km, echoing at a frequency of 

23. For our second experiment that broadened the MPF intervals, the results were 24 models 

that yielded 19 unique hotspot paths, illustrated in Table 4.8 in the Appendices. Interestingly, 

the anchors of paths with the minimum and maximum TDTs mirrored those from our initial 

experiment. 

In the culminating phase of our methodology (Step B4), we focused on establishing 

anomalous thresholds to effectively pinpoint AHP. Our strategy was to identify paths 

exhibiting significant deviations from standard traffic patterns. To ensure statistical 

robustness, we adopted a multi-method approach, labeling a path as anomalous only if it was 

identified as such by more than one analytical method. This included examining paths with 

the highest TDT values, those exceeding the average TDT, and paths significantly above the 

mean TDT, measured by one or more standard deviations. The results of this approach are 

depicted in Step C of Figure 4.2. This visualization provides a clear representation of an 

exemplary AHP identified in our trajectory network. Comprehensive outcomes from our dual 

experiments can be found in Tables 4.7 and 4.8 in the Appendices, offering a deep dive into 
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both overt and intricate findings, leading us to identify potentially significant hotspots that 

beckon further scrutiny. 

4.5 Discussion 

This section presents our key findings regarding the discovery of AHP in trajectory 

data. Initially, our experimentation focused on identifying spatial hotspot nodes and edges, 

highlighted by a high concentration of events such as traffic density, as shown in Figures 4.1 

and 4.2. These spatial hotspots, however, are confined to discrete points or edges and are 

insufficient for identifying continuous hotspot paths. To overcome this challenge, we 

introduce the AHP-TDT framework. This approach effectively identifies larger hotspots that 

extend beyond individual nodes and edges, capturing more expansive paths. Our findings, 

illustrated in Figure 4.3, showcase the AHP-TDT framework’s ability in pinpointing spatial 

hotspots and offering in-depth analysis of movement patterns in trajectory networks. 

Specifically, while spatial hotspot nodes and edges are useful for identifying ideal 

pickup and drop-off points for passengers and for locating traffic congestion areas, AHP–

TDT provides a sophisticated approach for trajectory collective movement analysis that can 

be useful for detailed trajectory planning and optimization. By considering the TDT and trip 

frequency, AHP–TDT enables detailed trajectory planning and can be particularly useful for 

applications that require a high level of control over the travel experience. For example, the 

use of AHP–TDT can enhance data-driven mobility by providing granular information about 

the frequency of trips and the TDT by passengers. This approach can help in optimizing 
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mobility routes to reduce travel time, improve passenger experience, and lessen the 

environmental impact. 

Our experiments also reveal that the anomalous hotspot with the highest TDT does not 

necessarily coincide with the spatial hotspot nodes or edges. For instance, the third 

anomalous hotspot in the first AHP–TDT scenario has a higher weight in terms of trip 

frequency than the first and second anomalous hotspots, but it ranks third in terms of TDT 

when factoring in hotspot path length. Furthermore, we find that discovering AHP–TDT at 

higher lengths requires lowering the required trip frequency, as not all trips pass through the 

same path and some deviate at various locations. These observations suggest that the 

presence of both measures is critical for applications that require precise control over hotspot 

path distance length and trip frequency, without which the results may be ineffective or 

inefficient. 

From a methodological perspective, discovering all types of spatial hotspots requires 

defining a representation that can model the movement of trajectory data such as the road-

network-constrained approach. Our findings indicate that the methods of discovering spatial 

hotspot nodes and edges involve graph searching, which commonly falls within clustering 

and unsupervised machine learning. However, discovering AHP–TDT cannot use the same 

methods since searching for all of these added measures in a network is computationally 

complex. To overcome this issue, we transform the search into an optimization problem and 

leverage weighted connected components to discover AHP–TDT with significant control 

over other aspects, such as hotspot path distance length and trip frequency, as Figure 4.3 

illustrates. 
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Contributions 

This study makes several key contributions. First, it pioneers the definition and 

exploration of the AHP–TDT problem. This novel approach emphasizes the importance of 

analyzing cumulative distances in trajectory networks to identify irregular movement 

patterns, offering a fresh perspective in the field of spatial data analysis. Second, it advances 

a comprehensive methodology for discovering anomalous hotspot paths. This framework is 

distinct in its thorough approach, integrating steps such as defining network bounds, 

extracting subgraphs, identifying distinct paths, and establishing thresholds for anomaly 

detection. This framework marks a significant leap from traditional spatial hotspot detection 

methods, focusing on the intricacies of movement dynamics in a trajectory network. Third, 

this study tests its framework using a real-world data set from an on-demand transportation 

agency in Porto, Portugal. This empirical validation, involving about 1.7 million individual 

trips, not only demonstrates the practical applicability of the AHP–TDT framework but also 

underscores its relevance and effectiveness in analyzing complex traffic and movement 

patterns in urban settings. 

Implications 

Theoretical Implications 

This research enhances our comprehension of spatial data analysis by transitioning the 

focus from conventional hotspots at points and edges within urban mobility networks to 

encompass entire paths. This shift offers a more holistic perspective of urban dynamics, 

thereby broadening the scope and depth of spatial analysis. The study’s methodology extends 
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beyond conventional analysis by emphasizing the collective nature of spatial data, 

particularly in trajectory paths within urban environments. This perspective facilitates a 

deeper and more nuanced understanding of spatial phenomena, recognizing the importance of 

broader patterns and the complex interplay of sequential and collective spatial events in 

interpreting the significance of data. Consequently, it contributes to refining the frameworks 

of spatial data analysis, network analysis, and graph theory. The introduction of a weighted 

connected component approach provides a nuanced understanding of complex urban 

trajectory networks, thereby augmenting traditional theoretical models in these fields. 

Furthermore, the focus on trajectory paths as sequences of spatial events represents a 

significant theoretical advancement in trajectory data analysis. This approach is pivotal in 

revealing the intricacies of movement patterns and their anomalies, contributing to a holistic 

understanding of spatial dynamics. The methodology employed in the AHP-TDT framework 

augments the fields of data mining and machine learning, with a particular emphasis on 

enhancing anomaly detection algorithms. This nuanced form of analysis necessitates 

rethinking existing models and algorithms. Lastly, the concept of collective anomalies in 

trajectory data has cross-disciplinary theoretical implications. It extends its relevance to 

fields such as urban planning, environmental studies, and social network analysis, 

demonstrating the broad utility of this research in a data-centric global context. 

Practical Implications 

From a practical standpoint, the findings of this study have substantial implications for 

urban planning and traffic management. By identifying and analyzing AHP, urban planners 
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and traffic managers are equipped with insights that can lead to efficient road network 

optimization, congestion reduction, and overall transportation system enhancement. In the 

realm of public safety and emergency response, the ability to detect and analyze hotspot 

paths is invaluable. This research aids in developing preemptive strategies to manage areas 

susceptible to high traffic incidents or other anomalies, thereby enhancing public safety. The 

implications of this research extend to smart city initiatives, offering a data-driven 

framework that supports intelligent urban infrastructure management. This is particularly 

relevant in the context of integrating advanced technologies such as the internet of things, 

which are pivotal in the evolution of smart cities. Additionally, the insights garnered from 

this study are instrumental for optimizing on-demand mobility services. They provide a 

foundation for improving route planning in ridesharing services and streamlining delivery 

logistics, thereby enhancing the efficiency and effectiveness of these services. 

Conclusions and Future Work 

As cities grow larger and more crowded, traffic congestion increases infrastructure 

costs, accidents, and pollution, reducing the overall quality of life and economic productivity 

(Litman, 2015). In the United States, transportation consumes approximately 17% of the 

average household income, and in some areas, this figure exceeds 50% (Ridewithvia, 2021). 

Consequently, improving mobility and travel experiences is critical, and discovering AHP–

TDT is one way to achieve this. In this research, we sought to answer critical questions that 

could pave the way for better urban mobility solutions. First, we examined how analyzing 

collective anomalies in paths via AHP–TDT could offer a more comprehensive 

understanding of network dynamics compared to traditional point- and edge-focused 
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methods. Second, we explored the role of defining network bounds in enhancing the 

precision and relevance of hotspot detection in trajectory data. Third, we investigated the 

impact of employing a weighted connected component approach in identifying anomalous 

hotspots within trajectory networks. 

By identifying AHP–TDT in areas with high individual on-demand trips, we can more 

effectively optimize travel services in areas with high demand for individual on-demand 

trips. This could involve tailoring transportation services for efficient connectivity between 

an airport and a specific neighborhood at peak arrival times, or between a stadium and 

another area post a major sporting event. Similarly, understanding the flow from residential 

areas to business districts during rush hours, or from shopping malls to other regions during 

holiday seasons, can significantly enhance service planning and resource allocation. Prior 

research on route optimization, such as matching and dispatching, has been limited to 

managing the demand side only, while AHP–TDT can generate additional supply. Thus, by 

learning from previous trips, AHP–TDT can identify when and where abnormal demand 

occurs and offer improved mobility services in these temporal and spatial areas. 

Future research can investigate the use of other network bounds and constraints in an 

AHP–TDT model to further optimize the detection of anomalous hotspots. The AHP–TDT 

approach can be extended to detect spatial hotspots in other types of trajectory data, such as 

public transit or animal tracking. Additionally, the approach can be used to study the 

spatiotemporal dynamics of hotspots and their changes over time. The impact of the use of 

AHP–TDT on other transportation modes, such as cycling and walking, can also be explored. 
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Lastly, the AHP–TDT approach can be incorporated into an intelligent transportation system 

to improve the management of traffic and enhance the travel experience. 
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4.7 Appendices 

Table 4.7: Results of Experiment 1 

Model 
MinPL 

(m) 
MPF 

Path 

ID 
TDT (m) 

Length 

(m) 

Min 

Freq 
Nodes Edges 

1 1000 20 HP0* 166144* 3487 20 

['n15', 'n1638', 

'n1636', 'n1996', 

…] 

[('n15', 'n1638'), 

('n1638', 'n1636'), 

…] 

1 1000 20 HP1 152561 3376 20 
['n488', 'n167', 

'n683', 'n571', …] 

[('n488', 'n167'), 

('n167', 'n683'), …] 

1 1000 20 HP2 129811 3207 20 
['n671', 'n675', 

'n678', 'n673', …] 

[('n671', 'n675'), 

('n675', 'n678'), …] 

1 1000 20 HP3 77053 2075 29 
['n2785', 'n205', 

'n211', 'n512', …] 

[('n2785', 'n211'), 

('n2785', 'n2786'), …] 

1 1000 20 HP4 33583 1320 21 
['n380', 'n856', 

'n1653', 'n224', …] 

[('n380', 'n853'), 

('n380', 'n379'), …] 

1 1000 20 HP5 26990 1155 21 
['n1199', 'n1213', 

'n1198', 'n1979', …] 

[('n1199', 'n1198'), 

('n1199', 'n1213'), …] 

1 1000 20 HP6 25822 1097 20 
['n1588', 'n115', 

'n784', 'n2350', …] 

[('n1588', 'n1544'), 

('n1588', 'n1974'), …] 

1 1000 20 HP7 23319 1014 23 
['n68', 'n1685', 

'n2318'] 

[('n68', 'n1685'), 

('n1685', 'n2318')] 

2 1000 30 HP8* 165889* 3196 31 
['n287', 'n2828', 

'n291', 'n1112', …] 

[('n287', 'n2828'), 

('n2828', 'n291'), …] 

2 1000 30 HP9 143039 2622 31 
['n278', 'n1649', 

'n1648', 'n680', …] 

[('n278', 'n1649'), 

('n1649', 'n1648'), …] 
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2 1000 30 HP10 76334 2050 31 
['n2785', 'n205', 

'n211', 'n512', …] 

[('n2785', 'n211'), 

('n2785', 'n2786'), …] 

3 1000 40 
HP11

* 
124061* 2201 43 

['n247', 'n346', 

'n2180', 'n1622', 

…] 

[('n247', 'n249'), 

('n247', 'n2038'), …] 

3 1000 40 HP12 109540 1702 52 
['n10', 'n2172', 

'n324', 'n11', …] 

[('n10', 'n11'), ('n10', 

'n1637'), …] 

3 1000 40 HP13 81864 1407 48 
['n279', 'n280', 

'n1173', 'n44', …] 

[('n279', 'n280'), 

('n280', 'n2001'), …] 

4 1000 50 
HP12

* 
109540* 1702 52 

['n10', 'n2172', 

'n324', 'n11', …] 

[('n10', 'n11'), 

('n10', 'n1637'), …] 

5 1000 60 NA NA NA NA NA NA 

6 1500 20 HP0* 166144* 3487 20 

['n15', 'n1638', 

'n1636', 'n1996', 

…] 

[('n15', 'n1638'), 

('n1638', 'n1636'), 

…] 

6 1500 20 HP1 152561 3376 20 
['n488', 'n167', 

'n683', 'n571', …] 

[('n488', 'n167'), 

('n167', 'n683'), …] 

6 1500 20 HP2 129811 3207 20 
['n671', 'n675', 

'n678', 'n673', …] 

[('n671', 'n675'), 

('n675', 'n678'), …] 

6 1500 20 HP3 77053 2075 29 
['n2785', 'n205', 

'n211', 'n512', …] 

[('n2785', 'n211'), 

('n2785', 'n2786'), …] 

7 1500 30 HP8* 165889* 3196 31 
['n287', 'n2828', 

'n291', 'n1112', …] 

[('n287', 'n2828'), 

('n2828', 'n291'), …] 

7 1500 30 HP9 143039 2622 31 
['n278', 'n1649', 

'n1648', 'n680', …] 

[('n278', 'n1649'), 

('n1649', 'n1648'), …] 

7 1500 30 HP10 76334 2050 31 ['n2785', 'n205', [('n2785', 'n211'), 
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'n211', 'n512', …] ('n2785', 'n2786'), …] 

8 1500 40 
HP11

* 
124061* 2201 43 

['n247', 'n346', 

'n2180', 'n1622', 

…] 

[('n247', 'n249'), 

('n247', 'n2038'), …] 

8 1500 40 HP12 109540 1702 52 
['n10', 'n2172', 

'n324', 'n11', …] 

[('n10', 'n11'), ('n10', 

'n1637'), …] 

9 1500 50 
HP12

* 
109540* 1702 52 

['n10', 'n2172', 

'n324', 'n11', …] 

[('n10', 'n11'), 

('n10', 'n1637'), …] 

10 1500 60 NA NA NA NA NA NA 

11 2000 20 HP0* 166144* 3487 20 

['n15', 'n1638', 

'n1636', 'n1996', 

…] 

[('n15', 'n1638'), 

('n1638', 'n1636'), 

…] 

11 2000 20 HP1 152561 3376 20 
['n488', 'n167', 

'n683', 'n571', …] 

[('n488', 'n167'), 

('n167', 'n683'), …] 

11 2000 20 HP2 129811 3207 20 
['n671', 'n675', 

'n678', 'n673', …] 

[('n671', 'n675'), 

('n675', 'n678'), …] 

11 2000 20 HP3 77053 2075 29 
['n2785', 'n205', 

'n211', 'n512', …] 

[('n2785', 'n211'), 

('n2785', 'n2786'), …] 

12 2000 30 HP8* 165889* 3196 31 
['n287', 'n2828', 

'n291', 'n1112', …] 

[('n287', 'n2828'), 

('n2828', 'n291'), …] 

12 2000 30 HP9 143039 2622 31 
['n278', 'n1649', 

'n1648', 'n680', …] 

[('n278', 'n1649'), 

('n1649', 'n1648'), …] 

12 2000 30 HP10 76334 2050 31 
['n2785', 'n205', 

'n211', 'n512', …] 

[('n2785', 'n211'), 

('n2785', 'n2786'), …] 

13 2000 40 
HP11

* 
124061* 2201 43 

['n247', 'n346', 

'n2180', 'n1622', 

[('n247', 'n249'), 

('n247', 'n2038'), …] 
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…] 

14 2000 50 NA NA NA NA NA NA 

Bold: TDT ≥ average, Italics: TDT ≥ standard deviation, *: MaxTDT 
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Table 4.8: Results of Experiment 2 

Model 
MinPL 

(m) 
MPF 

Path 

ID 
TDT (m) 

Length 

(m) 

Min 

Freq 
Nodes Edges 

1 1000 20 HP0* 166144* 3487 20 

['n15', 'n1638', 

'n1636', 'n1996', 

…] 

[('n15', 'n1638'), 

('n1638', 'n1636'), 

…] 

1 1000 20 HP1 152561 3376 20 
['n488', 'n167', 

'n683', 'n571', …] 

[('n488', 'n167'), 

('n167', 'n683'), …] 

1 1000 20 HP2 129811 3207 20 
['n671', 'n675', 

'n678', 'n673', …] 

[('n671', 'n675'), 

('n675', 'n678'), …] 

1 1000 20 HP3 77053 2075 29 
['n2785', 'n205', 

'n211', 'n512', …] 

[('n2785', 'n211'), 

('n2785', 'n2786'), …] 

1 1000 20 HP4 33583 1320 21 
['n380', 'n856', 

'n1653', 'n224', …] 

[('n380', 'n853'), 

('n380', 'n379'), …] 

1 1000 20 HP5 26990 1155 21 
['n1199','n1213', 

'n1198', 'n1979', …] 

[('n1199','n1198'), 

('n1199', 'n1213'), …] 

1 1000 20 HP6 25822 1097 20 
['n1588', 'n115', 

'n784', 'n2350', …] 

[('n1588','n1544'), 

('n1588', 'n1974'), …] 

1 1000 20 HP7 23319 1014 23 
['n68', 'n1685', 

'n2318', …] 

[('n68', 'n1685'), 

('n1685', 'n2318'), …] 

2 1000 25 HP8* 165889* 3196 31 
['n287', 'n2828', 

'n291', 'n1112', …] 

[('n287','n2828'), 

('n2828', 'n291'), …] 

2 1000 25 HP9 158549 3197 25 
['n287', 'n2828', 

'n291', 'n1112', …] 

[('n287','n2828'), 

('n2828', 'n291'), …] 

2 1000 25 HP3 77053 2075 29 
['n2785', 'n205', 

'n211', 'n512', …] 

[('n2785','n211'), 

('n2785', 'n2786'), …] 
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2 1000 25 HP10 29987 1149 25 
['n380', 'n856', 

'n1653', 'n224', …] 

[('n380', 'n853'), 

('n380', 'n379'), …] 

3 1000 30 HP8* 165889* 3196 31 
['n287', 'n2828', 

'n291', 'n1112', …] 

[('n287','n2828'), 

('n2828','n291'), …] 

3 1000 30 HP11 143039 2622 31 
['n278', 'n1649', 

'n1648', 'n680', …] 

[('n278','n1649'), 

('n1649','n1648'), …] 

3 1000 30 HP12 76334 2050 31 
['n2785', 'n205', 

'n211', 'n512', …] 

[('n2785','n211'), 

('n2785', 'n2786'), …] 

4 1000 35 
HP13

* 
195778* 3473 35 

['n680', 'n279', 

'n280', 'n2001', …] 

[('n680', 'n279'), 

('n279', 'n280'), …] 

4 1000 35 HP14 152488 2607 36 
['n10', 'n1654', 'n11', 

'n1637', …] 

[('n10','n11'), ('n10', 

'n1637'), …] 

5 1000 40 
HP15

* 
124061* 2201 43 

['n247', 'n346', 

'n2180', 'n1622', 

…] 

[('n247', 'n249'), 

('n247', 'n2038'), …] 

5 1000 40 HP16 109540 1702 52 
['n10', 'n2172', 

'n324', 'n11', …] 

[('n10', 'n11'), ('n10', 

'n1637'), …] 

5 1000 40 HP17 81864 1407 48 
['n279', 'n280', 

'n1173', 'n44', …] 

[('n279', 'n280'), 

('n280', 'n2001'), …] 

6 1000 45 
HP16

* 
109540* 1702 52 

['n10', 'n2172', 

'n324', 'n11', …] 

[('n10', 'n11'), 

('n10', 'n1637'), …] 

6 1000 45 HP17 81864 1407 48 
['n279', 'n280', 

'n1173', 'n44', …] 

[('n279', 'n280'), 

('n280', 'n2001'), …] 

6 1000 45 HP18 62722 1047 49 
['n1658', 'n27', 

'n763', 'n295', …] 

[('n1658', 'n294'), 

('n1658', 'n295'), …] 

7 1000 50 HP16 109540* 1702 52 ['n10', 'n2172', [('n10', 'n11'), 
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* 'n324', 'n11', …] ('n10', 'n1637'), …] 

8 1000 55 
HP19

* 
95498* 1435 56 

['n10', 'n324', 

'n11', 'n1637', …] 

[('n10', 'n11'), 

('n10', 'n1637'), …] 

9 1000 60 NA NA NA NA NA NA 

10 1500 20 HP0* 166144* 3487 20 

['n15', 'n1638', 

'n1636', 'n1996', 

…] 

[('n15', 'n1638'), 

('n1638', 'n1636'), 

…] 

10 1500 20 HP1 152561 3376 20 
['n488', 'n167', 

'n683', 'n571', …] 

[('n488', 'n167'), 

('n167', 'n683'), …] 

10 1500 20 HP2 129811 3207 20 
['n671', 'n675', 

'n678', 'n673', …] 

[('n671', 'n675'), 

('n675', 'n678'), …] 

10 1500 20 HP3 77053 2075 29 
['n2785', 'n205', 

'n211', 'n512', …] 

[('n2785', 'n211'), 

('n2785', 'n2786'), …] 

11 1500 25 HP8* 165889* 3196 31 
['n287', 'n2828', 

'n291', 'n1112', …] 

[('n287', 'n2828'), 

('n2828', 'n291'), …] 

11 1500 25 HP9 158549 3197 25 
['n287', 'n2828', 

'n291', 'n1112', …] 

[('n287', 'n2828'), 

('n2828', 'n291'), …] 

11 1500 25 HP3 77053 2075 29 
['n2785', 'n205', 

'n211', 'n512', …] 

[('n2785', 'n211'), 

('n2785', 'n2786'), …] 

12 1500 30 HP8* 165889* 3196 31 
['n287', 'n2828', 

'n291', 'n1112', …] 

[('n287', 'n2828'), 

('n2828', 'n291'), …] 

12 1500 30 HP11 143039 2622 31 
['n278', 'n1649', 

'n1648', 'n680', …] 

[('n278', 'n1649'), 

('n1649', 'n1648'), …] 

12 1500 30 HP12 76334 2050 31 
['n2785', 'n205', 

'n211', 'n512', …] 

[('n2785', 'n211'), 

('n2785', 'n2786'), …] 

13 1500 35 HP13 195778* 3473 35 ['n680', 'n279', [('n680', 'n279'), 
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* 'n280', 'n2001', …] ('n279', 'n280'), …] 

13 1500 35 HP14 152488 2607 36 
['n10', 'n1654', 'n11', 

'n1637', …] 

[('n10', 'n11'), ('n10', 

'n1637'), …] 

14 1500 40 
HP15

* 
124061* 2201 43 

['n247', 'n346', 

'n2180', 'n1622', 

…] 

[('n247', 'n249'), 

('n247', 'n2038'), …] 

14 1500 40 HP16 109540 1702 52 
['n10', 'n2172', 

'n324', 'n11', …] 

[('n10', 'n11'), ('n10', 

'n1637'), …] 

15 1500 45 
HP16

* 
109540* 1702 52 

['n10', 'n2172', 

'n324', 'n11', …] 

[('n10', 'n11'), 

('n10', 'n1637'), …] 

16 1500 50 
HP16

* 
109540* 1702 52 

['n10', 'n2172', 

'n324', 'n11', …] 

[('n10', 'n11'), 

('n10', 'n1637'), …] 

17 NA 55 NA NA NA NA NA NA 

18 NA 60 NA NA NA NA NA NA 

19 2000 20 HP0* 166144* 3487 20 

['n15', 'n1638', 

'n1636', 'n1996', 

…] 

[('n15', 'n1638'), 

('n1638', 'n1636'), 

…] 

19 2000 20 HP1 152561 3376 20 
['n488', 'n167', 

'n683', 'n571', …] 

[('n488', 'n167'), 

('n167', 'n683'), …] 

19 2000 20 HP2 129811 3207 20 
['n671', 'n675', 

'n678', 'n673', …] 

[('n671', 'n675'), 

('n675', 'n678'), …] 

19 2000 20 HP3 77053 2075 29 
['n2785', 'n205', 

'n211', 'n512', …] 

[('n2785', 'n211'), 

('n2785', 'n2786'), …] 

20 2000 25 HP8* 165889* 3196 31 
['n287', 'n2828', 

'n291', 'n1112', …] 

[('n287', 'n2828'), 

('n2828', 'n291'), …] 

20 2000 25 HP9 158549 3197 25 ['n287', 'n2828', [('n287', 'n2828'), 
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'n291', 'n1112', …] ('n2828', 'n291'), …] 

20 2000 25 HP3 77053 2075 29 
['n2785', 'n205', 

'n211', 'n512', …] 

[('n2785', 'n211'), 

('n2785', 'n2786'), …] 

21 2000 30 HP8* 165889* 3196 31 
['n287', 'n2828', 

'n291', 'n1112', …] 

[('n287', 'n2828'), 

('n2828', 'n291'), …] 

21 2000 30 HP11 143039 2622 31 
['n278', 'n1649', 

'n1648', 'n680', …] 

[('n278', 'n1649'), 

('n1649', 'n1648'), …] 

21 2000 30 HP12 76334 2050 31 
['n2785', 'n205', 

'n211', 'n512', …] 

[('n2785', 'n211'), 

('n2785', 'n2786'), …] 

22 2000 35 
HP13

* 
195778* 3473 35 

['n680', 'n279', 

'n280', 'n2001', …] 

[('n680', 'n279'), 

('n279', 'n280'), …] 

22 2000 35 HP14 152488 2607 36 
['n10', 'n1654', 'n11', 

'n1637', …] 

[('n10', 'n11'), ('n10', 

'n1637'), …] 

23 2000 40 
HP15

* 
124061* 2201 43 

['n247', 'n346', 

'n2180', 'n1622', 

…] 

[('n247', 'n249'), 

('n247', 'n2038'), …] 

24 2000 45 NA NA NA NA NA NA 

Bold: TDT ≥ average, Italics: TDT ≥ standard deviation, *: MaxTDT 
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CHAPTER 5: TACKLING MICROTRANSIT BOTTLENECKS: A SPATIO-TEMPORAL 

COLLECTIVE ANOMALY DISCOVERY FRAMEWORK 

5.1 Introduction 

The anomalous hotspot paths based on total distance traveled (AHP–TDT) framework 

offers a valuable approach for analyzing and pinpointing anomalous hotspot paths within 

trajectory networks. It stands out by shifting the focus from traditional point- and edge-

centric techniques to the total distance traveled (TDT). This shift enables the AHP–TDT 

framework to reveal complex movement patterns, thus uncovering collective anomalies. 

Such insights hold significant potential for enhancing urban mobility by providing a deeper 

understanding of traffic flows and behaviors. However, the AHP–TDT model, in its current 

form, has limitations due to its lack of integration with the temporal dimension. Only 

focusing on spatial aspects — the paths and distances — restricts the model’s ability to 

provide a comprehensive analysis of movement patterns. This is particularly crucial in urban 

mobility contexts where time plays a pivotal role. By incorporating a spatio-temporal 

approach, the AHP–TDT framework can gain a more nuanced understanding of movement 

dynamics. 
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Integrating the temporal dimension would enable the model to account for variations in 

traffic flow and mobility patterns at different times. For instance, the same route may exhibit 

varying characteristics during peak hours versus off-peak hours, weekdays versus weekends, 

or during special events versus normal days. This temporal analysis is vital for understanding 

the full spectrum of urban mobility patterns. Ultimately, a spatio-temporal approach in the 

AHP–TDT framework not only enriches the analysis of urban mobility but also enables the 

development of more targeted and efficient transportation solutions, adapting to the dynamic 

nature of city life. 

However, implementing a spatio-temporal approach to extract anomalous hotspot paths 

in trajectory networks presents significant challenges, primarily due to the complexity of 

identifying collective anomalies across both temporal and spatial dimensions. Conventional 

urban mobility studies have primarily focused on point and edge anomalies (Chen et al., 

2014; Kriegel et al., 2008; Li et al., 2011), often overlooking the intricate collective 

anomalies in trajectory networks. This shift to analyzing collective anomalies requires 

sophisticated methodologies ranging from heuristic approaches to advanced graph theory 

algorithms (Nogueira et al., 2018; Tu et al., 2019; Zhou et al., 2020). Each of these 

methodologies contributes to a more refined understanding of traffic dynamics and 

congestion management, yet they also introduce new complexities in data analysis and 

interpretation. 

Furthermore, applying a spatio-temporal approach to the extraction of anomalous 

hotspot paths within the rapidly evolving domain of urban mobility services adds another 

layer of complexity. The urban mobility landscape, which extends beyond traditional 
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vehicular transit, is increasingly shifting towards flexible, demand-responsive models like 

microtransit (Litman, 2015; Yoon et al., 2021). This evolution is largely driven by digital 

platforms of transport network companies (TNCs), revolutionizing access to services such as 

ride-hailing and delivery (Hou et al., 2020). The dynamic nature of these services, combined 

with the complexity of analyzing traffic flow and congestion within a spatio-temporal frame 

(Asadi & Regan, 2019), makes extracting meaningful patterns a formidable challenge. The 

rapidly changing nature of urban mobility, fueled by technological advancements and 

evolving consumer behaviors, requires a sophisticated, adaptable approach that can 

effectively integrate and analyze both spatial and temporal data to provide actionable insights 

for urban planning and traffic management. 

This study introduces the spatio-temporal collective anomaly discovery (STCAD) 

framework. This approach targets microtransit bottlenecks, enhancing urban mobility by 

integrating spatial insights from anomalous hotspot paths based on total distance traveled 

(AHP–TDT) and the temporal nuances from the matrix profile (MP), thereby extending the 

AHP–TDT spatial framework into a comprehensive spatio-temporal discovery. Therefore, 

this paper is structured around two pivotal research questions: 

R1. How does the integration of spatial and temporal data in the STCAD framework 

enhance the discovery and characterization of AHP? 

R2. How does STCAD improve insights into urban mobility over conventional methods? 
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The rest of the paper is organized as follows: Section 2 discusses related work, and 

Section 3 presents the methodology. Section 4 presents the research method and results, and 

Section 5 discusses the findings. Lastly, Section 6 presents the conclusions and future work. 

5.2 Related Work 

Mobility and Microtransit 

Mobility, a term sometimes used interchangeably with transportation, encompasses a 

wider range of movement than only vehicular transit (Litman, 2015). The evolution of 

transport systems is moving toward more flexible models, manifesting in services such as 

ride-hailing and on-demand microtransit (Yoon et al., 2021). These are often grouped under 

the term TNC, which leverage digital platforms to connect riders with various services, 

including delivery services (Hou et al., 2020). Specifically, microtransit denotes small-group 

transit. Yet, to truly harness its potential, a comprehensive grasp of its spatio-temporal 

dimensions is paramount. 

The AHP–TDT methodology presents a forward leap in refining travel experiences and 

streamlining fleet operations. Its relevance in microtransit is reinforced by (Hou et al., 2020), 

which highlight the criticality of specific spatial factors such as pickup and drop-off points. 

Echoing this sentiment, (Stiglic et al., 2015) stress on integrating “meeting points” in ride-

sharing systems to bolster efficiency and reduce expenses, drawing parallels with the AHP in 

our context. Moreover, strategies like the short-turn method proposed by (Chen et al., 2018) 

advocate for targeted service regions in microtransit to drive down costs. However, despite 

AHP–TDT’s spatial innovations, it has yet to incorporate the temporal facet. 
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Research such as (Liu et al., 2020) tackles route optimization and pooling challenges 

by pairing riders with appropriate vehicles and optimizing dispatch based on spatial and 

temporal factors, aiming for cost reduction and enhanced efficiency. However, these methods 

are often constrained to operational or tactical planning and necessitate pre-existing demand 

or orders for activation. 

Collective anomaly detection identifies groups or patterns of anomalies that, when 

aggregated, suggest irregular behaviors, rather than isolating individual anomalies (Chandola 

et al., 2009). In microtransit systems, while single anomalies may appear insignificant, their 

collective presence can indicate major bottlenecks or systemic challenges. The basic brute 

force approach means comparing each subsequence in a time series with others, leading to 

intensive quadratic pairwise comparisons. 

A paradigm shift in this arena was brought about by the MP. Proposed by (Yeh et al., 

2017), the MP offers a transformative perspective on time series analysis. By providing a z-

normalized Euclidean distance metric, it encapsulates the similarity between different 

subsequences in a time series. Such a representation streamlines the identification of motifs 

(repeated patterns) and discords (anomalies). Given our goal of pinpointing collective 

anomalies in spatio-temporal data for microtransit bottlenecks, integrating the MP’s 

capabilities becomes indispensable. Its ability to swiftly capture temporal nuances can 

significantly aid in enhancing urban mobility strategies. 

In time series analysis, the decomposition of data into distinct components—trend, 

seasonality, and residuals—serves as a pivotal methodology for nuanced understanding and 
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anomaly detection. Each component embodies specific characteristics of the data, and 

discerning this can significantly influence the interpretation of anomalies and the strategic 

responses they mandate (Zhang et al., 2022). The trend reflects a systematic, linear or 

nonlinear trajectory that the series follows over a period, indicating a general upward or 

downward movement. Anomalies aligned with this component often signify more than 

simple incidental fluctuations; they hint at systematic or sustained shifts, potentially 

categorizable as trend anomalies. These irregularities suggest widespread disturbances, like a 

long-term industrial slowdown or a persistent shift in resource usage, which are intrinsic to 

the entire data set or system rather than isolated events. Seasonality accounts for periodic 

fluctuations that recur over regular intervals, be it daily, weekly, monthly, or annually. These 

oscillations are predictable and can be extrapolated into the future. While anomalies in this 

domain are less frequent, their occurrence could indicate disruptions in the usual cyclical 

patterns, termed seasonal anomalies, such as an unexpected dip in sales during the peak 

season or an uncharacteristic spike in energy usage during off-peak hours. Residuals 

encompass the irregularities and noise within the data, essentially capturing the randomness 

or unforeseen events not explained by the trend or seasonal components. Anomalies within 

this component, often abrupt and ephemeral, typify point anomalies. These could stem from 

spontaneous, unforeseeable events, like sudden equipment malfunctions or flash crowd 

incidents, punctuating the data with brief spikes or dips (Zhang et al., 2022). 

In their study, (Zhang et al., 2022) delineate the inadequacy of non-sequential anomaly 

definitions in sequential data sets and propose a nuanced classification. They categorize 

sequential anomalies into point anomalies, encompassing global and context point anomalies, 
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and pattern anomalies, which include shapelet, seasonal, and trend anomalies. This taxonomy 

aligns with the understanding that anomalies in the trend and seasonality components 

represent broader, more systemic issues (pattern anomalies), while those in the residuals are 

more transient and situational (point anomalies) (Zhang et al., 2022). Recognizing these 

distinctions is paramount in crafting informed, effective responses or interventions. It 

necessitates a comprehensive understanding of the underlying data’s behavior and the 

contextual implications of these anomalies, ensuring that measures taken are responsive to 

the specific type of anomaly, be it a momentary aberration or an indication of a more deep-

seated, systemic issue. 

Spatio-Temporal Anomaly Discovery in Trajectory Network 

Analyzing and extracting meaningful patterns from traffic flow and congestion remains 

an intricate task, especially within a spatio-temporal frame, given the dynamic behavior of 

transportation networks. This dynamism, coupled with diverse dependencies and recurrent 

events, accentuates the complexity (Asadi & Regan, 2019). Specifically, challenges such as 

the dial-a-ride problem and the ride-sharing conundrum are earmarked as nondeterministic 

polynomial time (NP-hard) issues (Tu et al., 2019). 

To address these NP-hard challenges, researchers typically lean on exact algorithms 

such as dynamic programming and Lagrangian relaxation. However, their limited scalability 

has led to the adoption of heuristic approaches, including genetic algorithms and tabu 

searches. A notable mention in this domain is the hybrid approach ILS-VND, lauded for its 

efficiency and robustness, as highlighted by (Nogueira et al., 2018; Tu et al., 2019). 
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The modern wave of research employs graph theory algorithms for dissecting these 

challenges, with studies focusing on collective taxi movements to make predictions about 

travel-time (Idé & Kato, 2009), understand traffic density (Kriegel et al., 2008), and detect 

anomalies for enhanced passenger experiences (Atluri et al., 2018). An expansive perspective 

on congestion detection and management is articulated by (Aashtiani & Magnanti, 1981; 

Grundy & Radenkovic, 2010). Similarly, (Wang et al., 2019) delve deep into aggregation 

effects using large-scale car trajectory data. 

In our quest to refine microtransit bottlenecks, we recognize the potential of travel time 

as a metric over simple trip frequency. By juxtaposing expected versus actual travel times, 

potential congestion zones can be identified. Nevertheless, it is crucial to adjust for variables 

such as unforeseen stops or meteorological changes to glean accurate insights. While 

(Salamanis et al., 2017) have ventured into abnormality detection in traffic, their perspective 

diverges slightly from ours, emphasizing the diverse events like accidents or weather shifts. 

Given our microtransit lens, our approach remains more focused. 

Lastly, with the rise of intricate systems and methodologies, deep learning emerges as a 

frontrunner for spatio-temporal anomaly discovery. Graph neural networks (GNN), and 

especially the spatial-temporal GNN (ST-GNN), epitomize this transition, balancing both 

spatial and temporal aspects. This paradigm shift, along with a more detailed overview of 

ST-GNN applications, is elaborated upon in studies by (Bui et al., 2022; Zhou et al., 2020). 

The latter offers rich insights on traffic forecasting via ST-GNN frameworks, aligning 

seamlessly with our objective to tackle microtransit bottlenecks. 
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Table 5.1: Spatial and Temporal Thematic Methods Overview 

Theme Methods Example Studies 

Spatial AHP–TDT Framework 

Short-turn method for targeted service regions 

(Chen et al., 2018) 

Temporal MP 

Time series decomposition 

Classification of anomalies into point, shapelet, 

seasonal, and trend anomalies 

(Yeh et al., 2017) 

(Zhang et al., 2022) 

Spatio-

Temporal 

Dynamic programming 

Heuristic approaches 

Hybrid approach (such as ILS-VND) 

Graph theory 

Deep learning (including GNN and ST-GNN) 

(Nogueira et al., 2018) 

(Tu et al., 2019) 

(Idé & Kato, 2009) 

(Zhou et al., 2020) 

(Bui et al., 2022) 

5.3 Methodology 

This section details the STCAD framework. The framework represents a fusion of the 

AHP–TDT approach and the MP method for temporal anomaly detection. Illustrated in 

Figure 5.1, the STCAD methodology unfolds through a series of structured steps, 

meticulously blending spatial and temporal data analyses to yield insightful results. It 

initiates in the spatial dimension, beginning with the delineation of a road network. This 

crucial first step, define road network (A1), lays the groundwork by establishing the spatial 

framework within which the trajectory data will be analyzed. Following this, the extract 

trajectory network (A2) step is undertaken, where trajectory data is meticulously extracted, 
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mapping movement patterns onto the pre-established road network and setting the stage for 

deeper analysis. 

Transitioning to the temporal dimension, the framework advances to extract temporal 

TDT (B1), a step crucial for understanding the extent of movement within the network over 

time. This is closely followed by adjust appropriate window size (B2), a critical process that 

calibrates the temporal analysis for optimal anomaly detection. The subsequent step, validate 

with time series decomposition (B3), ensures the robustness of the temporal findings. Finally, 

collective temporal anomalies (B4) are identified, highlighting significant temporal patterns 

that might indicate systemic issues or recurrent trends in trajectory network. 

In its final phase, the STCAD framework shifts to a spatio-temporal dimension. This 

begins with define network bounds (C1), which delineates the extent of the analysis within 

the spatial-temporal matrix. Extract subgraphs (C2) is the next step, where specific segments 

of the network are isolated for detailed examination. The extract distinct paths (C3) phase 

involves identifying unique pathways within these subgraphs, which are crucial for 

understanding movement trends. The process culminates in set anomalous thresholds (C4), 

where criteria are established to flag significant anomalies within these paths. The objective 

of this comprehensive methodology is succinctly captured in the final step, spatio-temporal 

anomalous hotspot paths (ST–AHP) (D). Here, the framework consolidates its spatial and 

temporal analyses to pinpoint and characterize hotspot paths that are anomalous, providing 

vital insights into the dynamics of trajectory network and urban mobility. 
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Figure 5.1: Spatio-Temporal Collective Anomaly Discovery Framework 

As the STCAD framework transitions into its temporal dimension, its primary aim 

shifts from pinpointing specific points to unveiling collective temporal anomalies within the 

trajectory network. This critical objective, encapsulated in step B4 of the framework, is 

initiated with the extraction of temporal TDT in step B1. This initial phase is pivotal for 

grasping the movement’s scope within the network over time, setting the stage for a refined 

temporal analysis. Key to this temporal analysis is the deployment of the MP, a tool 

instrumental in uncovering and distinguishing time-specific irregularities, patterns, and 

nuances that may be concealed in a purely spatial or point-based analysis. The MP’s 

implementation within the STCAD framework transcends conventional temporal analysis, 

delving deeper to highlight not only the immediate anomalies but also those patterns that 
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unfold over time, revealing time-sensitive constraints and recurrent themes in trajectory 

patterns (Yeh et al., 2017). 

Following the extraction of TDT, the STCAD framework navigates to step B2 adjust 

appropriate window size. This step is essential in tailoring the temporal analysis for optimal 

detection of anomalies. The selection of the appropriate window size within the MP 

framework is a nuanced process, significantly affecting the analysis’s resolution, sensitivity 

to anomalies, computational demands, and the accuracy of the data interpretation. Larger 

window sizes, while offering a broader view of the trends, increase computational 

requirements, whereas smaller windows, though computationally efficient, may miss 

overarching patterns due to their narrow focus (Djenouri et al., 2019). Thus, the decision-

making process requires a careful balance between detailed insight extraction and 

maintaining a comprehensive perspective on the trends. 

Deciding on an optimal window size is not a standardized process but one necessitating 

specific data and contextual considerations, especially in urban mobility frameworks. This 

decision significantly affects the system’s precision in recognizing and reporting relevant 

incidents. Established literature seldom prescribes fixed window sizes for traffic-related 

anomalies, given their inherent reliance on the unique aspects of each data set. In this realm, 

expertise in urban dynamics and traffic flow becomes invaluable, guiding the selection 

process toward window sizes that reflect common durations of urban transit events (Djenouri 

et al., 2019). Alternatively, the optimal window size is often arrived at through empirical 

fine-tuning. This iterative process involves experimenting with multiple window sizes until 

the most effective one is found, often measured by anomaly detection accuracy (Zhang et al., 
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2021). Some researchers adopt a data-driven methodology, adjusting the window size in 

response to data traits such as event frequency or typical durations of interest-specific 

occurrences or anomalies. For instance, a window might mirror the average length of traffic 

jams if congestion is a focal concern (Zhang et al., 2021). This study embraces a data-

oriented strategy, corroborated by evidence suggesting a prevalent window size range 

between 4 and 10 in comparable research scenarios (Djenouri et al., 2019; Zhang et al., 

2021). 

Following the strategic determination of the optimal window size, our framework 

proceeds to validate the anomaly discovery efficacy of the MP through a meticulous time 

series decomposition of the TDT, as illustrated in step B3. Moreover, this step helps 

validating the MP findings as it involves deconstructing the TDT into its constitutive 

elements: trend, seasonality, and residuals (Zhang et al., 2021). By isolating these 

components, we could cross-verify the anomalies pinpointed by the MP. Specifically, we 

scrutinized the residuals for abrupt, unaccounted fluctuations that characterize point 

anomalies, contrasting these against the systemic pattern anomalies evident within trend and 

seasonal deviations. This comparative inspection emphasizes the precision of the MP in 

identifying significant anomaly candidates and enhances our confidence in its role as a robust 

tool for anomaly discovery within the intricate dynamics of our network. 

As the framework transitions from its detailed temporal analysis, it advances into the 

spatio-temporal dimension. This integration begins with Step C1, define network bounds, 

which establishes the structural parameters of the network, ensuring a clearly delineated 

space for further analysis. This definition of boundaries is vital for contextualizing the 
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subsequent steps within a well-defined spatial framework. Following this, in Step C2, extract 

subgraphs, the framework uses the connected components method to isolate specific 

segments of the network. This extraction is instrumental in segmenting the network into 

manageable subgraphs for focused analysis. In Step C3, extract distinct paths, the framework 

meticulously identifies and delineates distinct movement paths within these subgraphs. This 

step is essential in clarifying and understanding the various trajectories and patterns of 

movement that occur within the network, providing a clear and unambiguous representation 

of urban mobility flows. The culmination of this spatio-temporal integration is achieved in 

Step C4, set anomalous thresholds, where the framework establishes criteria to identify 

significant spatio-temporal anomalies. This step is critical in pinpointing AHP, which are the 

focus of the final objective, ST–AHP in Step D. This culmination phase is where the STCAD 

framework identifies and characterizes those paths that exhibit unusual spatio-temporal 

characteristics, thereby revealing insights into the complex dynamics of trajectory data and 

urban movement. 

5.4 Research Methods 

To validate our model, we used real-world trajectory data collected from an on-demand 

transportation agency operating in Porto, Portugal.9 This data set includes an impressive 

array of approximately 1.7 million individual trips, chronicled over a full annual cycle from 

July 1, 2013 to June 30, 2014. Every trip is meticulously represented by consecutive GPS 

coordinates that are recorded at regular 15-second intervals. Such recordings create polylines 

that allow for a detailed analysis of movement and traffic patterns within the city. An 
 

9 https://www.kaggle.com/crailtap/taxi-trajectory 

https://www.kaggle.com/crailtap/taxi-trajectory
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example of this raw data can be found in Table 5.2. The selected data set not only aligns with 

the overarching goals of this research but also has been leveraged in similar studies, 

underscoring its relevance and validity for our investigation. While our approach would have 

been enriched by examining an array of similar trajectory data sets, recent regulatory shifts 

and increasing privacy concerns, including those articulated in geolocation privacy 

legislation in countries such as the United States, have placed significant constraints on the 

accessibility of other similar data sets. 

Table 5.2: A Sample of the Raw Data 

TRIP_ID 

CAL

L_TY

PE 

ORIGI

N_CAL

L 

ORIGI

N_STA

ND 

TAX

I_ID 

TIMESTA

MP 

DAY

_TYP

E 

MISSIN

G_DAT

A 

POLYLINE 

1379415

6366200

00000 

A 2002  
2000

0653 

9/17/2013 

07:00 
A FALSE 

[[-8.625798,41.157342], 

[-8.625789,41.15736], [-

8.625744,41.157369], …] 

1379415

6146200

00000 

B  6 
2000

0657 

9/17/2013 

07:00 
A FALSE 

[[-8.582598,41.180202], 

[-8.582346,41.180211], [-

8.582265,41.180769], …] 

1379415

7416200

00000 

B  32 
2000

0011 

9/17/2013 

07:02 
A FALSE 

[[-8.627589,41.157684], 

[-8.627607,41.157702], [-

8.627913,41.157909], …] 

To define the road network (Step A1), we used two powerful Python libraries. First, we 

employed NetworkX to model and manage the intricacies of the road network as mirrored in 
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the trajectory data.10 NetworkX is renowned for its ability to effectively construct, 

manipulate, and study the structure and dynamics of complex networks, thereby serving as an 

apt tool for our task. Subsequently, we used OSMnx for accessing and harnessing spatial data 

such as street networks, which were fundamental to our discovery task.11 This tool was 

particularly useful due to its ability to extract, model, analyze, and visualize a wide range of 

spatial objects using data from OpenStreetMap (Boeing, 2017 and visualizing complex street 

networks). Our experiment focused on the city of Porto, Portugal, with specific geographical 

coordinates (41.155, -8.63) serving as our central point of interest. To ensure a manageable 

and relevant area of study, we limited our scope to a radius of 2,500 meters around this focal 

point. Following this, we engaged in data pre-processing, which included dismissing trips of 

less than one-minute duration as well as extracting key data points such as pickup and drop-

off locations, which played a crucial role in subsequent stages of our experiment. The result 

of these procedures was a meticulously defined road network, which accurately reflected the 

urban layout of Porto, comprising a total of 6,159 edges and 2,993 nodes. This road network 

formed the base upon which our further discovery will be conducted. This approach 

employed in defining the road network ensures that it is an accurate, comprehensive, and 

analytically valuable representation of the real-world urban environment. 

To derive the trajectory network (Step A2) from the established road network, we 

methodically matched nodes and edges from trip trajectories to their analogous components 

in the road network. Central to this alignment were the specific pick-up and drop-off points, 

 
10 https://networkx.org/ 
11 https://github.com/gboeing/osmnx 
 

https://networkx.org/
https://github.com/gboeing/osmnx


135 
 

which we associated with the closest nodes and edges in the road network. This method not 

only ensured a cohesive integration of both road and trajectory networks but also removed 

any unused nodes and edges from the road network based on our trajectory data. Although 

the road network’s structure remained unaltered across data subsets, the trajectory network 

exhibited variability. Meaning, for a different trajectory data subset, the road network 

remained unchanged, but the trajectory network evolved. To compute the daily total traveled 

distance (Step B1), we generated a distinct trajectory network for each time segment and its 

associated spatial intricacies. This approach, though time-intensive, provided a nuanced 

understanding and precise representation, as it considered the actual distances of trips rather 

than only their count. 

Figure 5.2 showcases the raw TDT data, offering a glimpse into the inherent patterns 

which, though perceptible, required transformation for meaningful interpretation. The MP 

emerged as an instrumental transformation tool. Primarily, it was efficient in reducing spatial 

complexity to O(n) by retaining only the smallest non-trivial distances from each distance 

profile. These distances, maintained in Euclidean space, signified sub-sequence similarities 

or disparities within the time series. Specifically, a distance nearing 0 indicated high 

similarity to another sub-sequence, whereas a distance considerably diverging from 0, such 

as 100, denoted distinctiveness. Therefore, extracting the largest distances identified the 

discords (anomalies) (Yeh et al., 2017). 
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Figure 5.2: Raw and Temporal Decomposition of Total Distance Traveled 

In the following phase (Step B2), we embarked on a rigorous experimental to refine the 

parameters influencing MP performance, specifically focusing on the critical aspect of 

window size selection. Following comparable research scenarios (Djenouri et al., 2019; 

Zhang et al., 2021), our exploration covered a range from 4 to 10, a process meticulously 

detailed in Figure 5.3. This phase was instrumental in shedding light on the dynamics of 

identified top anomalies, revealing their sensitivity to alterations in window size. A pivotal 

discovery was the emergence of two major collective anomalies, whose presence and breadth 

notably expanded as the window size increased. In pursuit of analytical precision and 

operational efficiency for the subsequent phases of our study, we converged on a window 
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size of 4. This selection unveiled a substantial collective anomaly, unfolding over the period 

from June 21, 2014, to June 24, 2014. 

  

  

  

 

 

Cluster 1: window sizes of 4, 6, 7 and 8 Cluster 2: window sizes 5, 9 and 10 

Figure 5.3: Matrix Profile Results 
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To ascertain the validity of the anomalies pinpointed by MP, we subsequently engaged 

in time series decomposition of TDT (Step B3), as thoroughly illustrated in Figure 5.2. This 

analytical approach enhanced the robustness of our findings, corroborating the MP’s 

competence in discerning significant disturbances within the data landscape. Furthermore, 

the exercise bolstered our conviction in the appropriateness of the chosen window size, as the 

anomalies detected concurred with pronounced inflections in the trend component, thereby 

attesting to their substantive nature. This congruence between the MP’s insights and the trend 

disruptions revealed through time series decomposition underscores the reliability of the 

selected window size and the discovered anomalies. 

Following our temporal mining, the experiment shifted to a spatio-temporal dimension 

in the STCAD framework. Post meticulous data cleansing and preprocessing efforts, our 

finalized data set encompassed 20,959 trips. Adopting the shortest distance approach (Idé & 

Kato, 2009) for measuring the shortest path in in a trip, these trips evolved into a trajectory 

network, structured with 2,993 nodes and 6,159 edges. This intricate network, illustrated in 

Figure 5.4, served as the foundational layer for our ensuing experiment. 

 

Figure 5.4: Trajectory Network 
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To establish the lower bounds within our STCAD framework (Step C1), experiments 

were initiated to fine-tune the minimum path length (MinPL) and minimum path frequency 

(MPF) parameters. Given that our data set surpasses the scale of the AHP–TDT study, our 

first experiment engaged with an expanded MPF value range of [400, 800, 1,200, 1,600] 

paired with MinPL values spread across [1,000, 1,500, 2,000] meters. This was subsequently 

augmented by broadening the MPF range to [400, 600, 800, 1,000, 1,200, 1,600], while 

keeping the MinPL consistent. This parameterization was essential for excluding 

inconsequential paths, thereby spotlighting the traffic patterns of utmost relevance. Such 

network bounds setting served as a mechanism to ensure no anomalous activity, however 

subtle, evaded detection, consequently providing a richer, more nuanced comprehension of 

the urban mobility landscape. In the ensuing phase of our collective anomaly discovery, the 

experimentation incorporated comprehensive steps within our STCAD framework, 

commencing with the extraction of subgraphs from the trajectory network using connected 

components (Step C2). Subsequently, we established a maximum path length (MaxPL) 

threshold at 3,500 meters, facilitating the transformation of all subgraphs into unambiguous, 

simple paths. The subsequent stage (Step C3) introduced an acceptable similarity parameter 

set at 0.3, a critical determinant allowing for the extraction of distinct paths by identifying 

unique paths and preventing excessive overlap. 

Within this structured environment, our preliminary experiment generated 12 models, 

unraveling 9 prominent hotspot paths, illustrated in Table 5.3 in the Appendices. 

Significantly, the path denoted as “HP0” registered an exceptional TDT of 3,056.116 km, 

covering an area of 3.198 km, with 413 trip instances. At another example, “HP1” revealed 
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TDT of 2,967.668 km, covering a path of 3.484 km, with 408 trip instances. The subsequent 

experiment, characterized by an expanded MPF range, produced 18 models, subsequently 

identifying 13 distinct hotspot paths, illustrated in Table 5.4 in the Appendices. Notably, the 

topographical characteristics of the primary and secondary hotspot paths were reflective of 

those discerned in the former experiment, underscoring the consistency and reliability of our 

analytical methodology. 

In the culmination of the STCAD framework (Step C4), the focus was on establishing 

precise thresholds to effectively identify anomalous spatial hotspot paths. This critical 

process incorporated two principal methodologies as per (Aggarwal, 2017; Yeh et al., 2017): 

the top-k anomalies method and a threshold-based approach. The top-k anomalies method 

prioritized paths with the highest TDT values, marking them as anomalous. This selection 

was based on the premise that the most traversed paths were likely to exhibit unusual patterns 

or highlight areas of concern, warranting closer scrutiny. Conversely, the threshold method 

flagged paths whose TDT met or surpassed the average TDT of all paths, singling out routes 

that significantly deviated from the normative traffic flow of the network. For added 

statistical rigor, paths were deemed anomalous if their TDT was notably higher than the 

mean, specifically one or more standard deviations above it. This ensured that the anomalies 

identified were not only above average but also distinctly significant. Furthermore, to bolster 

the robustness of our findings, the framework adopted a multi-method approach. A path was 

classified as anomalous only if it was recognized as such by multiple analytical methods 

(Aggarwal, 2017; Yeh et al., 2017). This included paths with the highest TDT, those 

exceeding the average TDT, and those substantially above the mean TDT. The integration of 
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these methods ensures a comprehensive and reliable identification of potential spatial 

hotspots. 

The result of this multifaceted approach to anomaly detection is illustrated in the final 

objective of the framework, Step D, where ST–AHP are identified. Figure 5.5 provides a 

lucid representation of the most pronounced ST–AHP identified, specifically "HP0" and 

"HP1", offering insights into typical anomalous patterns within our trajectory network. A 

comprehensive breakdown of outcomes from both experiments can be found in Tables 5.3 

and 5.4 in the Appendices, capturing both overt and subtle observations. Through these 

results, our research underscores the importance of recognizing key spatio-temporal hotspots 

that merit further discovery, aiming to alleviate microtransit bottlenecks and enhance urban 

mobility. 

  

Figure 5.5: Anomalous Hotspot Paths Within our Trajectory Network 

5.5 Discussion 

In exploring the capabilities of the STCAD framework, our study has delved into the 

intricacies of identifying collective temporal anomalies within trajectory networks, offering a 
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nuanced perspective that significantly advances our understanding in the field of urban 

mobility. This exploration is particularly critical when considering the distinct nature and 

implications of collective temporal anomalies as opposed to point temporal anomalies, each 

presenting unique challenges and requiring different detection methodologies. Collective 

temporal anomalies, unlike their point-in-time counterparts, represent extended irregular 

patterns occurring across multiple data points or trajectories. Their detection is essential for 

understanding broader trends and systemic issues within trajectory data, such as recurring 

traffic congestions or consistent deviations in travel patterns. These anomalies provide 

insights crucial for long-term planning and strategic decision-making, offering a 

comprehensive view that point anomalies, typically isolated incidents, cannot. 

However, the detection of collective anomalies presents its own set of challenges, 

primarily due to the complexity of the data and the need to analyze patterns over extended 

periods. Traditional methods that focus on point anomalies may lack the depth and scope 

required to capture these broader patterns. The STCAD framework addresses these 

challenges through its integration of specific spatial and temporal data analysis devices. By 

employing the MP method, STCAD effectively mines detailed temporal information from 

trajectory networks, uncovering patterns and irregularities that might be overlooked in a 

solely spatial study. For example, a critical aspect of STCAD’s methodology is the 

determination of an appropriate time window size within the MP framework. This decision 

directly influences the resolution of detected patterns and the framework’s sensitivity to 

anomalies, demonstrating a nuanced departure from conventional trajectory hotspots 
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methodologies. This data-driven approach ensures that the temporal analysis is attuned to the 

specific nuances of the trajectory network context. 

Our pivotal experiment within the framework revealed a significant collective anomaly 

from June 21 to June 24, 2014. During this period, traffic patterns showed notable deviations 

from the norm, indicating an extended phase of unusual urban mobility. This finding 

highlights the framework’s ability to capture not just AHP but also ST–AHP, offering deeper 

insights into urban mobility dynamics. Upon validating the data, we confirmed that the São 

João festival, one of Porto’s largest events, occurred on June 23. This festival, renowned for 

its lively street parties, music, dancing, and traditional activities, attracts both locals and 

tourists. It culminates in fireworks display over the Douro River at night, with the riverfront 

being the main viewing area (Penedo, 2024), precisely where our path starts, as illustrated in 

Figure 5.6. 

  

Figure 5.6: Alignment of ST Path Initiation with São João Festival on June 23rd 12 

When comparing STCAD to existing methodologies, including AHP–TDT, and 

spatial-only analyses, it becomes clear that STCAD provides a more comprehensive analysis 
 

12 https://portuguesediner.com/tiamaria/dia-de-sao-joao-traditions/ 

https://portuguesediner.com/tiamaria/dia-de-sao-joao-traditions/
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of urban mobility. The spatio-temporal path extends to the riverfront where the fireworks 

occurred, whereas paths from spatial-only analyses were further into the city. These findings 

validate our results, demonstrating that the framework offers a holistic view of urban 

mobility. While previous studies have focused on immediate, isolated incidents, STCAD’s 

approach allows for understanding larger, more complex patterns, which are crucial for 

effective urban planning and management. This comprehensive perspective not only 

contributes significantly to academic research but also has practical implications for 

developing efficient and responsive urban transit systems. 

The identification of ST paths “HP0” and “HP1”, which are characterized by their 

significant TDT rather than frequency, unveils patterns that extend beyond fleeting or 

isolated incidents. These ST–AHP represent consistent, recurring deviations from typical 

trajectory patterns, highlighting deeper systemic trends in movement and pinpointing critical 

routes essential to improving a city’s overall flow and dynamics. Therefore, the STCAD 

framework’s approach to identifying ST–AHP offers a nuanced and in-depth understanding 

of trajectory movement and urban mobility, and reveals significant pathways that are central 

to a city’s transportation dynamics, providing insights into long-term trends and systemic 

issues that are crucial for effective urban planning and the development of sustainable 

transportation strategies. 

Contributions 

This study makes several key contributions. First, it introduces the STCAD framework, 

a pioneering approach that enhances urban mobility analysis. This framework integrates 
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spatial insights from AHP–TDT with temporal nuances from the MP, thereby transforming 

the AHP–TDT spatial framework into a comprehensive tool for spatio-temporal anomaly 

discovery. Second, this study goes beyond theoretical propositions by empirically testing the 

STCAD framework using real-world trajectory data. This practical application demonstrates 

the framework’s effectiveness in identifying and analyzing collective anomalies in urban 

mobility. The empirical testing not only validates the framework but also showcases its 

potential in real-life urban mobility scenarios, enhancing its credibility and applicability. 

Third, this study provides a thorough discussion on the actionable insights that can be 

derived from implementing the STCAD framework in urban mobility contexts. It delves into 

how this framework can practically contribute to identifying and alleviating microtransit 

bottlenecks. This aspect of the study bridges the gap between theoretical research and 

practical application, offering valuable strategies for improving urban transit operations and 

overall mobility in urban settings. 

Implications 

Theoretical Implications 

The STCAD framework represents a significant advancement in the theoretical 

landscape of trajectory networks and spatial data analysis by integrating both spatial and 

temporal dimensions. This integration marks a substantial shift from traditional spatial-only 

analyses to a more holistic perspective in trajectory network analysis. By focusing on 

collective anomalies that manifest across both spatial and temporal dimensions, STCAD 

enriches the domain of spatial analysis. It offers profound insights into broader, systemic 
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trends and patterns in trajectory networks. This approach aligns with the evolving focus in 

spatial data analysis on understanding the complex interplay of sequential and collective 

events, thereby contributing to a deeper and more nuanced understanding of trajectory 

networks. 

The STCAD framework contributes significantly to the improvement of urban mobility 

services research. By identifying significant pathways based on TDT in a spatio-temporal 

context, it goes beyond conventional analysis of points and edges, uncovering intricate 

movement patterns and their anomalies within urban mobility networks. This theoretical 

advancement aids in developing new methodologies for data mining and machine learning, 

particularly in anomaly detection algorithms. Furthermore, the framework’s ability to 

recognize recurring or consistent deviations from typical traffic patterns has critical 

implications for urban planning, environmental studies, and social network analysis. This 

interdisciplinary approach highlights the importance of a holistic perspective in spatial data 

analysis and paves the way for further theoretical developments across various domains, 

emphasizing the framework’s pivotal role in enhancing the efficacy and sustainability of 

urban mobility services. 

Practical Implications 

The STCAD framework enables the discovery of systemic and seasonal trends in urban 

mobility, which are crucial for reaching the highest operational opportunities. By analyzing 

anomalous paths in conjunction with time, this framework aids in optimizing travel services 

in areas with high demand for individual on-demand trips. For example, it can facilitate the 
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tailoring of transportation services for efficient connectivity between airports and specific 

neighborhoods during peak times, or between stadiums and other areas post-major events. 

This understanding also extends to managing traffic flow from residential areas to business 

districts during rush hours, or from shopping malls to other regions during holiday seasons, 

significantly enhancing service planning and resource allocation. 

The STCAD framework advances the management of various urban mobility resources 

by providing insights into traffic patterns and anomalies. This tool is invaluable for urban 

planners and traffic managers, as it enables the development of strategies to reduce 

congestion, optimize road networks, and enhance the overall transportation system. In public 

safety and emergency response, detecting and analyzing hotspot paths can lead to preemptive 

measures for managing high-incident areas, thus improving public safety. The framework 

also supports smart city initiatives by providing a data-driven approach to managing urban 

infrastructure. This is particularly relevant with the integration of technologies like IoT in 

smart cities. Additionally, the insights from STCAD can optimize on-demand mobility 

services, improving route planning for ridesharing and streamlining delivery logistics, 

thereby enhancing the efficiency and effectiveness of these services. 

Conclusions and Future Work 

In addressing the complexities of urban mobility and microtransit bottlenecks, our 

study has harnessed the STCAD framework, yielding pivotal insights and advancing the field 

of urban mobility analysis. Reflecting on our research, we revisited two fundamental 

questions that guided our exploration: 1) How does the integration of spatial and temporal 
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data in the STCAD framework enhance the discovery and characterization of AHP? This 

investigation demonstrated the enhanced capacity of STCAD in uncovering intricate patterns 

within urban mobility networks. By marrying spatial and temporal dimensions, the 

framework offered a nuanced and holistic perspective, enabling a deeper understanding of 

both the location and timing of microtransit bottlenecks. 2) How does STCAD improve 

insights into urban mobility over conventional methods? Compared to traditional approaches, 

STCAD's integration of spatio-temporal data provided a comprehensive view of urban 

mobility trends. This methodological advancement allowed for the identification of 

significant spatio-temporal anomalies, providing crucial insights for urban planning and 

microtransit optimization. 

This research underscores the critical importance of adopting a spatio-temporal lens in 

urban mobility studies. The STCAD framework, with its ability to detect significant 

collective anomalies in trajectory networks, paves the way for informed and strategic urban 

planning. Future work should focus on refining this framework further, potentially 

integrating advanced machine learning techniques and expanding its applicability to other 

urban contexts. The journey toward smarter, more efficient urban mobility systems 

continues, with STCAD marking a significant step forward in this endeavor. 
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5.7 Appendices 

Table 5.3: Results of Experiment 1 

Model 
MinPL 

(m) 
MPF 

Path 

ID 
TDT (m) 

Length 

(m) 

Min 

Freq 
Nodes Edges 

1 1000 400 HP0* 3056116* 3198 413 
['n278', 'n1649', 

'n1648', 'n680', …] 

[('n278', 'n1649'), 

('n1649', 'n1648'), 

...] 

1 1000 400 HP1 2967668 3484 408 

['n184', 'n252', 

'n2442', 'n2026', 

…] 

[('n184', 'n252'), 

('n252', 'n2442'), …] 

1 1000 400 HP2 1318089 2471 435 
['n272', 'n68', 

'n1685', 'n2318', ...] 

[('n272', 'n271'), 

('n68', 'n1685'), ...] 

1 1000 400 HP3 728218 1292 410 
['n1098', 'n1101', 

'n305', 'n60', ...] 

[('n1098', 'n1101'), 

('n1101', 'n305'), …] 

1 1000 400 HP4 640751 1141 416 
['n134', 'n133', 

'n441', 'n2760', ...] 

[('n134', 'n133'), 

('n133', 'n441'), ...] 

1 1000 400 HP5 640745 1519 404 
['n138', 'n839', 'n92', 

'n93', ...] 

[('n138', 'n349'), 

('n138', 'n93'), ...] 

2 1000 800 HP6* 3192158* 2607 824 
['n10', 'n1654', 

'n11', 'n1637', ...] 

[('n10', 'n11'), 

('n10', 'n1637'), …] 

2 1000 800 HP7 1888958 2050 860 
['n2785', 'n205', 

'n211', 'n512', ...] 

[('n2785', 'n211'), 

('n2785', 'n2786'), …] 

2 1000 800 HP8 1357666 1151 881 
['n671', 'n675', 

'n678', 'n673', ...] 

[('n671', 'n675'), 

('n675', 'n678'), …] 

3 1000 1200 HP9* 1979531* 1435 1203 ['n10', 'n324', [('n10', 'n11'), 
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'n11', 'n1637', ...] ('n10', 'n1637'), …] 

4 1000 1600 NA NA NA NA NA NA 

5 1500 400 HP0* 3056116* 3198 413 
['n278', 'n1649', 

'n1648', 'n680', ...] 

[('n278', 'n1649'), 

('n1649', 'n1648'), 

…] 

5 1500 400 HP1 2967668 3484 408 

['n184', 'n252', 

'n2442', 'n2026', 

…] 

[('n184', 'n252'), 

('n252', 'n2442'), …] 

5 1500 400 HP2 1318089 2471 435 
['n272', 'n68', 

'n1685', 'n2318', ...] 

[('n272', 'n271'), 

('n68', 'n1685'), ...] 

5 1500 400 HP5 640745 1519 404 
['n138', 'n839', 'n92', 

'n93', ...] 

[('n138', 'n349'), 

('n138', 'n93'), ...] 

6 1500 800 HP6* 3192158* 2607 824 
['n10', 'n1654', 

'n11', 'n1637', ...] 

[('n10', 'n11'), 

('n10', 'n1637'), …] 

6 1500 800 HP7 1888958 2050 860 
['n2785', 'n205', 

'n211', 'n512', ...] 

[('n2785', 'n211'), 

('n2785', 'n2786'), …] 

7 1500 1200 NA NA NA NA NA NA 

8 1500 1600 NA NA NA NA NA NA 

9 2000 400 HP0* 3056116* 3198 413 
['n278', 'n1649', 

'n1648', 'n680', ...] 

[('n278', 'n1649'), 

('n1649', 'n1648'), 

…] 

9 2000 400 HP1 2967668 3484 408 
['n184', 'n252', 

'n2442', 'n2026', ...] 

[('n184', 'n252'), 

('n252', 'n2442'), …] 

9 2000 400 HP2 1318089 2471 435 
['n272', 'n68', 

'n1685', 'n2318', ...] 

[('n272', 'n271'), 

('n68', 'n1685'), ...] 

10 2000 800 HP6* 3192158* 2607 824 ['n10', 'n1654', [('n10', 'n11'), 
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'n11', 'n1637', ...] ('n10', 'n1637'), …] 

10 2000 800 HP7 1888958 2050 860 
['n2785', 'n205', 

'n211', 'n512', ...] 

[('n2785', 'n211'), 

('n2785', 'n2786'), …] 

11 2000 1200 NA NA NA NA NA NA 

12 2000 1600 NA NA NA NA NA NA 

Bold: TDT ≥ average, Italics: TDT ≥ standard deviation, *: MaxTDT 
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Table 5.4: Results of Experiment 2 

Model 
MinPL 

(m) 
MPF 

Path 

ID 
TDT (m) 

Length 

(m) 

Min 

Freq 
Nodes Edges 

1 1000 400 HP0* 3056116* 3198 413 
['n278', 'n1649', 

'n1648', 'n680', ...] 

[('n278', 'n1649'), 

('n1649', 'n1648'), 

...] 

1 1000 400 HP1 2967668 3484 408 
['n184', 'n252', 

'n2442', 'n2026', ...] 

[('n184', 'n252'), 

('n252', 'n2442'), ...] 

1 1000 400 HP2 1318089 2471 435 
['n272', 'n68', 

'n1685', 'n2318', ...] 

[('n272', 'n271'), 

('n68', 'n1685'), ...] 

1 1000 400 HP3 728218 1292 410 
['n1098', 'n1101', 

'n305', 'n60', ...] 

[('n1098', 'n1101'), 

('n1101', 'n305'), ...] 

1 1000 400 HP4 640751 1141 416 
['n134', 'n133', 

'n441', 'n2760', ...] 

[('n134', 'n133'), 

('n133', 'n441'), ...] 

1 1000 400 HP5 640745 1519 404 
['n138', 'n839', 'n92', 

'n93', ...] 

[('n138', 'n349'), 

('n138', 'n93'), ...] 

2 1000 600 HP6* 3425352* 3161 606 
['n287', 'n2828', 

'n291', 'n1112', ...] 

[('n287', 'n2828'), 

('n2828', 'n291'), ...] 

2 1000 600 HP7 786386 1149 634 
['n380', 'n856', 

'n1653', 'n224', ...] 

[('n380', 'n853'), 

('n380', 'n379'), ...] 

2 1000 600 HP8 615060 1014 604 
['n68', 'n1685', 

'n2318', ...] 

[('n68', 'n1685'), 

('n1685', 'n2318'), ...] 

3 1000 800 HP9* 3192158* 2607 824 
['n10', 'n1654', 

'n11', 'n1637', ...] 

[('n10', 'n11'), 

('n10', 'n1637'), ...] 

3 1000 800 HP10 1888958 2050 860 
['n2785', 'n205', 

'n211', 'n512', ...] 

[('n2785', 'n211'), 

('n2785', 'n2786'), ...] 
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3 1000 800 HP11 1357666 1151 881 
['n671', 'n675', 

'n678', 'n673', ...] 

[('n671', 'n675'), 

('n675', 'n678'), ...] 

4 1000 1000 
HP12

* 
2185669* 1640 1005 

['n10', 'n324', 

'n11', 'n1637', ...] 

[('n10', 'n11'), 

('n10', 'n1637'), ...] 

5 1000 1200 
HP13

* 
1979531* 1435 1203 

['n10', 'n324', 

'n11', 'n1637', ...] 

[('n10', 'n11'), 

('n10', 'n1637'), ...] 

6 1000 1400 NA NA NA NA NA NA 

7 1500 400 HP0* 3056116* 3198 413 
['n278', 'n1649', 

'n1648', 'n680', ...] 

[('n278', 'n1649'), 

('n1649', 'n1648'), 

...] 

7 1500 400 HP1 2967668 3484 408 
['n184', 'n252', 

'n2442', 'n2026', ...] 

[('n184', 'n252'), 

('n252', 'n2442'), ...] 

7 1500 400 HP2 1318089 2471 435 
['n272', 'n68', 

'n1685', 'n2318', ...] 

[('n272', 'n271'), 

('n68', 'n1685'), ...] 

7 1500 400 HP5 640745 1519 404 
['n138', 'n839', 'n92', 

'n93', ...] 

[('n138', 'n349'), 

('n138', 'n93'), ...] 

8 1500 600 HP6* 3425352* 3161 606 
['n287', 'n2828', 

'n291', 'n1112', ...] 

[('n287', 'n2828'), 

('n2828', 'n291'), ...] 

9 1500 800 HP9* 3192158* 2607 824 
['n10', 'n1654', 

'n11', 'n1637', ...] 

[('n10', 'n11'), 

('n10', 'n1637'), ...] 

9 1500 800 
HP10

* 
1888958* 2050 860 

['n2785', 'n205', 

'n211', 'n512', ...] 

[('n2785', 'n211'), 

('n2785', 'n2786'), ...] 

10 1500 1000 HP12 2185669 1640 1005 
['n10', 'n324', 

'n11', 'n1637', ...] 

[('n10', 'n11'), 

('n10', 'n1637'), ...] 

11 1500 1200 NA NA NA NA NA NA 

12 1500 1400 NA NA NA NA NA NA 
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13 2000 400 HP0* 3056116* 3198 413 
['n278', 'n1649', 

'n1648', 'n680', ...] 

[('n278', 'n1649'), 

('n1649', 'n1648'), 

...] 

13 2000 400 HP1 2967668 3484 408 
['n184', 'n252', 

'n2442', 'n2026', ...] 

[('n184', 'n252'), 

('n252', 'n2442'), ...] 

13 2000 400 HP2 1318089 2471 435 
['n272', 'n68', 

'n1685', 'n2318', ...] 

[('n272', 'n271'), 

('n68', 'n1685'), ...] 

14 2000 600 HP6* 3425352* 3161 606 
['n287', 'n2828', 

'n291', 'n1112', ...] 

[('n287', 'n2828'), 

('n2828', 'n291'), ...] 

15 2000 800 HP9* 3192158* 2607 824 
['n10', 'n1654', 

'n11', 'n1637', ...] 

[('n10', 'n11'), 

('n10', 'n1637'), ...] 

15 2000 800 HP10 1888958 2050 860 
['n2785', 'n205', 

'n211', 'n512', ...] 

[('n2785', 'n211'), 

('n2785', 'n2786'), ...] 

16 2000 1000 NA NA NA NA NA NA 

17 2000 1200 NA NA NA NA NA NA 

18 2000 1400 NA NA NA NA NA NA 

Bold: TDT ≥ average, Italics: TDT ≥ standard deviation, *: MaxTDT 
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CHAPTER 6: CONCLUSION 

This dissertation embarks on an explorative journey into the phenomenon of collective 

anomalies, particularly focusing on their manifestation and detection within data-driven 

systems. It addresses the subtle, context-dependent nature of these anomalies as they emerge 

and are identified within datasets. The dissertation is structured into three interconnected 

papers, each delving into different aspects of collective anomalies. The first paper examines 

the manifestation phase in Online Customer Reviews (OCR), analyzing shifts in review 

patterns due to review solicitation. The second paper shifts focus to detecting anomalies in 

trajectory networks, contributing to urban planning and traffic management. The third paper 

further explores detection through a spatio-temporal collective anomaly discovery 

framework, enhancing urban mobility by identifying microtransit bottlenecks. Each chapter 

builds upon the previous, cumulatively providing a comprehensive understanding of 

collective anomalies, from their subtle emergence in consumer feedback systems to their 

more evident presence in urban mobility networks. 

The findings from the three studies within this dissertation collectively offer a holistic 

view of collective anomaly manifestation and detection phases. The first study makes 
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significant strides in understanding reporting bias in Online OCR. It shifts the focus from the 

traditionally studied vocal minority to the often-neglected silent majority, revealing a broader 

spectrum of OCR biases. The study uncovers that solicited reviews, primarily coming from 

the silent majority, generally show less diversity in opinion, more polarization, increased 

negativity, and shallower content compared to organic reviews. This finding indicates that 

solicited reviews can significantly alter the overall portrayal of consumer opinions. The study 

introduces and empirically validates the “Experience Sphere” framework, which integrates 

various theories like herding behavior and spiral of silence, offering a comprehensive 

perspective on OCR dynamics. This approach not only strengthens the theoretical 

understanding of OCR but also provides practical insights. It highlights the need for 

businesses to refine their review solicitation strategies to elicit more genuine feedback and to 

be mindful of potential biases in solicited reviews. The study also reveals the tendency of 

solicited reviews in service industries to contain more negative content, a crucial insight for 

businesses aiming to address customer dissatisfaction effectively. Additionally, the richer, 

more actionable feedback from organic reviews is underscored, emphasizing its value for 

comprehensive customer insights. Overall, the research suggests that businesses should adapt 

their review aggregation and analysis strategies to accurately interpret customer feedback, 

thereby making informed decisions. The study’s nuanced exploration of the silent majority’s 

feedback patterns and the impact of review solicitation offers a critical perspective on early 

anomaly indicators, underscoring the importance of recognizing these signs for effective 

anomaly detection. 
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The second study shifts the focus towards the detection phase of collective anomalies. 

This chapter introduces a pioneering approach to analyzing trajectory networks, focusing on 

the AHP–TDT problem. This approach emphasizes the significance of cumulative distances 

in identifying irregular movement patterns, offering a fresh perspective in spatial data 

analysis. The study presents a comprehensive methodology for discovering anomalous 

hotspot paths, significantly advancing beyond traditional hotspot detection methods. This 

methodology, integrating various analytical steps, marks a major leap in understanding the 

intricacies of movement dynamics within trajectory networks. The empirical application of 

this framework, using data from an on-demand transportation agency in Porto, Portugal, 

demonstrates its practical applicability and underscores its effectiveness in revealing complex 

urban movement patterns. The research enriches spatial data analysis by shifting focus from 

points and edges to entire paths in urban mobility networks, providing a more holistic view 

of urban dynamics. This broader perspective refines frameworks in spatial analysis, network 

analysis, and graph theory, introducing advanced approaches like the weighted connected 

component for a sophisticated interpretation of urban trajectory networks. Practically, this 

research has profound implications for urban planning and traffic management, providing 

crucial insights for road network optimization and congestion reduction. It supports public 

safety and emergency response by enabling the identification of high-incident areas. 

Additionally, the findings contribute to smart city initiatives and the optimization of on-

demand mobility services. The research’s interdisciplinary implications extend its relevance 

to urban planning, environmental studies, and social network analysis, highlighting its broad 

applicability and importance in shaping data-driven urban environments. 
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The third study takes a deeper dive into the detection phase of collective anomalies, 

introducing the spatio-temporal collective anomaly discovery (STCAD) framework. This 

approach significantly enhances urban mobility analysis by integrating spatial insights from 

AHP–TDT with temporal nuances, offering a comprehensive tool for spatio-temporal 

anomaly discovery. The STCAD framework’s practical application, through empirical testing 

with real-world trajectory data, demonstrates its effectiveness in identifying and analyzing 

collective anomalies in urban mobility. The STCAD framework represents a theoretical 

milestone in spatial data analysis, uniquely integrating spatial and temporal dimensions to 

examine collective anomalies. This holistic approach unlocks deeper insights into systemic 

patterns in trajectory networks, influencing new data mining and machine learning 

techniques, particularly in anomaly detection. Practically, STCAD provides essential 

strategies for enhancing urban mobility and transit operations, aiding traffic management and 

optimizing urban infrastructures. Crucial for urban planners and smart city developments, 

this framework drives intelligent urban management and boosts the efficacy of on-demand 

mobility services, highlighting its pivotal role in advancing data-driven urban landscapes. 

The study demonstrates how temporal nuances, coupled with spatial insights from the second 

study, can enhance our ability to detect and understand collective anomalies in urban 

mobility, offering a more complete picture of these complex phenomena. 

Together, the studies collectively reveal the complex and dynamic nature of collective 

anomalies, highlighting their varied implications across different contexts. The initial study 

delves into the subtle manifestation of reporting biases in OCR, shedding light on the dual 

aspects of these biases as sources of concern for business decision-making and as 
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opportunities for gaining richer insights into consumer behavior. The latter studies shift focus 

to the detection of anomalies in urban mobility networks, uncovering critical issues such as 

traffic bottlenecks, while also unveiling opportunities for advanced urban planning and smart 

city initiatives. These investigations into spatial and spatio-temporal trajectories demonstrate 

the potential of collective anomalies to inform and enhance urban mobility solutions. 

Collectively, these investigations offer a holistic perspective on collective anomalies, 

emphasizing their role in fostering innovative enhancement applications across diverse data-

driven domains. 
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