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ABSTRACT

BETTER LIGHT THAN NEVER:

A NEW RADIATIVE MECHANISM FOR OBSERVING BINARY BLACK HOLES

May 2024

Paul Rioles,
B.A., Clark University

M.S., University of Massachusetts Boston

Directed by Associate Professor Chandra Yelleswarapu

Black holes are notoriously elusive, they are impossible to observe directly, and cur-

rent methods of extracting information from behind their cosmic camouflage are both

limited in number and experimentally difficult. The scope of this investigation is to ex-

plore a proposed novel radiative mechanism for active similar mass binary black holes,

affording new observational methods to investigate frequency inspirals of BH mergers.

The explored mechanism is a result of each BH’s accretion of the surrounding plasma,

creating voids that orbit throughout the plasma. The significant results described in this

thesis include expressions for the frequency, power radiated per unit solid angle, and

average power radiated for the quadrupolar radiation of our system.
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CHAPTER 1

INTRODUCTION

1.1 Black Hole Observation

Black Holes have stood brazenly at the pinnacle of scientific curiosity dating back to

their inception when Karl Schwarzschild first presented his solution to Einstein’s field

equations of general relativity in 1916 [1]. These aforementioned cosmic beasts test the

limits of even our most proven theories, and deciphering the underlying physics that

governs them is justifiably the pièce de résistance to which many researchers aspire.

Unfortunately for us, black holes are intrinsically uncooperative. Their extreme curva-

ture of space-time requires that anything that crosses the black hole’s event horizon is

henceforth inaccessible to the rest of the universe. The short of it: Light and matter

being irrecoverable after a direct encounter with a black hole does not bode well for the

measurability of its characteristics and behaviors.

Nevertheless, efforts trudged onwards. One of the first major observations in the

field was born from the investigation of a galactic X-ray source dubbed Cygnus X-1. The

teams of astronomers involved established that the X-ray source was not associated with

any of the bright objects in the region, but rather some unusual object whose brightness

fell below the resolvable range of their equipment [2]. In the following years, after

significant squabble, the astronomical community came to the consensus that the 1971

observations had in fact discovered the first black hole [3]. A necessary distinction must

be drawn here: The black hole was not directly emitting the X-rays, but rather the black

hole was pulling on the gas from a nearby star, accelerating and therefore heating it
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tremendously at which point the transiting gas was emitting X-rays. The significance

being, observation was limited to indirect evidence based on the above statement that

nothing can escape the event horizon of a black hole.

That was until Stephen Hawking, in hero-esque fashion, further revolutionized the

field with his theoretical formulation of Hawking Radiation in 1974 [4]. He showed that

black holes, being ideal black bodies, should thermally radiate and as a result, eventually

evaporate. The first example of emission directly from a black hole! Unfortunately,

Hawking radiation fails to directly add to the observationalist’s toolbox as the incredibly

low temperatures of reasonably sized black holes imply an irrecoverably small power

radiated [5].

With direct emission not panning out in an observational sense, researchers are

forced into creativity in their quest to shed light on our universes darkest objects. Take

the Event Horizon Telescope project for example. A global array of telescopes unified

seamlessly via very long baseline interferometry in order to create a virtual reflector

the size of planet Earth [6]. A necessary undertaking, as the wavelengths associated

with radio astronomy demand larger reflectors for fractions of the resolutions achiev-

able through other forms of observational astronomy. EHT’s ingenuity paid off when

their array finally generated the first image of a black hole, utilizing the radio emissions

of the accelerated gas in the accretion disk which surrounds the black hole. Fig. 1 [7].

The nature of this EHT observation categorically demonstrates the nature of thinking

intended to be conveyed throughout this thesis. Black holes themselves are shrouded in

a defensive boundary of darkness, meaning our best observational tools are those sys-

tems directly, but externally, correlated to the characteristics of black holes. I intend to

explore and share a novel radiative mechanism apparent in active binary black holes,

offering a new tool in astronomers limited arsenal to study the behaviors of these astro-

nomical oddities.
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Figure 1: Radio image of the supermassive black hole at the center of the Messier 87

galaxy captured by the EHT team, showcasing the utility of observing closely coupled

systems external to the black hole rather than the hidden black hole itself.

1.2 Intended Contribution

The mechanism of interest, as I will derive, is a result of the time-dependent electric

quadrupole moment associated with the plasma dynamics of the accretion disk surround-

ing binary black holes. While computationally such a problem sounds rather unpleasant,

I assert that the components of interest emerge with little effort. The complexities man-

ifest themselves in the formulation of radiative power, an important measure, but one

whose exact determination is of lesser significance in this investigation.
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CHAPTER 2

SYSTEM IN CONSIDERATION

In order to produce the previously mentioned quadrupole radiation, the system must

necessarily be a binary pair of ”active” similar mass black holes. Where active refers to

the BH’s active accretion of (absorbing and as a result gaining mass from) the surround-

ing matter in an accretion disk. Justifying these necessary conditions calls for a more

detailed depiction of the system, so allow me to supplement our imagination with some

simplified diagrams.

2.1 Binary Black Hole System

Firstly, we are looking initially to describe our novel radiation through a simple model

which can later be more thoughtfully expanded upon. In the interest of simplicity, we

enforce the above condition that our binary system be composed of two equal mass

black holes, MBH1 = MBH2 = M, which allows us to model the orbit of each black hole

as ideal circular motion with a uniform orbital radius denoted a. Additionally, it will be

beneficial for our coming discussion to introduce the idea of the innermost stable circular

orbit. ISCO’s are the last stable circular orbits, nearest to the black hole, past which any

circularly orbiting matter will succumb to the extreme gravitational potentials associated

with the black hole and plunge to their eternal imprisonment [8]. The described binary

system depicting two BH’s circularly orbiting each other with some frequency, and an

external ISCO can be seen in Fig. 2
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aBH1 BH2

ω

ISCO1 ISCO2

Orbiting Binary Black Holes

Figure 2: Illustration of same mass binary black hole orbits. Here a is the orbital radius,

ISCO corresponds to the innermost stable circular orbit of each black hole, and ω rep-

resents the orbital frequency

2.2 Binary System in an Accretion Disk

With the image of a binary black hole system (as we have simply described it) freshly in

our minds, let us now further expand our system by placing the BH’s in a dense plasma.

This environment is not new to our BH’s. Being the densest and most massive celestial

bodies in the universe, these objects have a habit of collecting other matter. Particularly,

black holes are often surrounded by large collections of gas. As the infalling matter con-

centrates towards the massive body, it typically has an associated angular momentum

which leads to the formation of an infalling disk of matter [9]. As the matter is acceler-

ated toward the black hole, the interactions between fast-moving particles increases the

matter’s thermal energy. Eventually, overcoming the electron binding energy, resulting

in the formation of a plasma. That being said, let us now envision our binary black holes

surrounded by the plasma of an accretion disk. Such a system is presented in the illus-
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tration in Fig. 3. Figure 3 offers a zoomed in frame of the binary black holes surrounded

ρ (r,𝜙,z,t) 

aBH BH

ω

ISCO1 ISCO2

Orbiting Binary Black Holes In a Dense 
Plasma 

Figure 3: Illustration of our binary system surrounded by the plasma of an accompa-

nying accretion disk. The charge density of such a plasma will generally have a radial,

angular, height, and time dependence throughout the disk.

by the plasma inside an accretion disk. In reality the disk typically extends well beyond

the characteristic scale of our binary system. Often accretion disks are measured in

light-days [10] a unit which dwarfs typical orbital radii of the BH’s, especially towards

the binary inspiral and merger.

2.3 Plasma Holes

It is important to take note here, the innermost stable circular orbit of the black holes

act as absorbing spheres in this plasma. The surrounding matter is accreted, removing

it from the accretion disk. As the binary BH’s co-rotate through the accretion disk, they

attempt to carve out the volume of a swept torus where the voids they create are quickly

filled in by the surrounding plasma rushing to disperse its charge through this newly
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formed void [11]. In this investigation, we are interested not in the black holes them-

selves, but rather we will leverage these so-called plasma voids that rotate around each

other, mirroring the motion of the two black holes. A simple illustration of the rotating

plasma holes (the true heroes of our story) is shown in Fig. 4 In order to derive the

ρHoles (r,𝜙,z,t) 

a

ω

ISCO1 ISCO2

Orbiting Plasma Holes In a Dense 
Plasma 

Figure 4: Depiction of the co-rotating plasma voids left by the binary black holes’ ac-

cretion of matter throughout their orbital cycles.

significance of this plasma distribution, we will utilize the principle of linear superpo-

sition for electric charges. This is perhaps the highest friction point within this entire

model. At incredibly high electric field strengths (whose exact value is determined by

the Schwinger Limit) nonlinear electromagnetic effects become prominent [12]. In this

case, adding or decomposing nonlinear quantities becomes much more complex [13].

Seeing as though this is the initial exploration of a new astrophysical mechanism whose

characteristic electric field magnitudes are not yet known, allow me to first derive our

model considering classical, linear electrodynamics: From which, depending on the re-

solved orders of magnitude within our results, we can determine whether more careful

evaluation is necessary. Additionally, there is a massive range in disk size and den-
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sity of matter in accretion disks throughout the universe. Considering that the disk’s

matter density would significantly effect the accretion rate of any encompassed black

holes, there must certainly be some sizable range of lower plasma density accretion

disks where the suggested linear superposition of charge indeed holds.

That being said, assuming linearity for now, we can approach the hole in our charge

density shown in Fig. 4 as a decomposition of the charge distribution in the accretion

disk without any holes minus our two absorbed spheres of charge. This is easier under-

stood pictorially, so turn your attention to Fig. 5 where we demonstrate the application

of superposition in this scenario.

a

ω

ISCO1 ISCO2

a

ω

ISCO1 ISCO2

= -

Linear Superposition of Rotating Plasma Hole Charge Distribution 

ρFilled (r,𝜙,z,t) ρHoles (r,𝜙,z,t) ρAbsorbed (r,𝜙,z,t) 

Figure 5: Decomposition of the orbiting plasma hole charge distribution into its two

components: the complete charge distribution of the accretion disk and the spheres of

charge being removed by each black hole every cycle.

Now, we are armed with the necessary weaponry to explore the potential radiative

mechanism hiding within our original charge distribution. As shown in an example by

Professor Steve Arnason [14], charges that are equally spaced out and rotating around

the circumference of a circle have time dependent multipole moments (a much more in

depth discussion and derivation of the multipole expansion is coming in the next chap-

ter) which radiate. However, as you continue adding charges, the magnitude of radiated

power falls dramatically, and in the limit of infinite charges around your circle, you
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find that time-dependence falls out of the resulting charged ring, and therefore there

is no longer any radiation emitted from that system. Point being, on small scales the

plasma inside the accretion disk can have chaotic behavior, but on large scales the disk

is relatively uniform [15]. This implies, even if there is a time dependent non-vanishing

electric multipole term, the radiated power should be significantly reduced compared to

lower order terms. This reduction is due to a high uniformity over time, a mechanism

similar to what was derived in the previously mentioned circle of rotating charges ex-

ample provided by Prof. Arnason. This implies that the first terms in our superposition

decomposition need not be considered in regards to electric multipole radiation. How-

ever, we should take more care when considering the second term in the superposition.

We have two spheres of like charge, whose signs are opposite that of the physical charge

absorbed by each black hole. These spheres of charge co-rotate around one another

with the orbital radius and frequency of the binary black holes. It can (and will in the

next chapter) be shown that this charge distribution will in fact have an associated time

dependent multipole moment, and therefore produce multipole radiation.

2.4 Point Charge Model

Continuing the construction of our simple model, we can approximate these co-rotating

spheres of charge with points of charge rotating around a circle, where each point charge

is equal to the enclosed charge within our spheres. We will express the characteristics

of this mathematical model and work through the process of calculating radiation from

such a model in chapter 3.
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CHAPTER 3

ELECTRIC MULTIPOLE RADIATION

The electric multipole expansion is a series expansion of the electric potential into terms

with increasingly complex angular structure and inverse powers of radial distance to the

origin. In totality, the multipole expansion is an exact representation of the original

electric potential, however the lowest order surviving term dominates the expansion,

proving to approximate the original system well.

For our described system of interest, the symmetries of the rotating charges induce

an electric potential which are dominated by the electric quadrupole moment.

The following calculations and their application were inspired by a similar exer-

cise presented by Professor Steve Arnason in our Classical Electricity and Magnetism

course. Various equations and strategies were derived from his class notes and problem

set solutions, the former of which I have included in my references here [14]. Carrying

on.

3.1 Deriving the Charge Density of the Rotating Point Charge System

Modeling the previously discussed rotating plasma spheres as rotating point charges, we

will employ the help of Dirac delta functions to formulate our charge distribution.

ρ (⃗r, t) =
2

∑
n=1

qnδ (⃗r− r⃗n
′) (3.1)
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Where r⃗ j
′ is constructed as

r⃗n
′ =

2

∑
n=1

(⃗xn + y⃗n) (3.2)

x⃗′n = acos(πn−ωt)x̂ (3.3)

y⃗′n = asin(πn−ωt)ŷ (3.4)

Where a refers to the orbital radius of the plasma spheres. All together, this expression

of our charges’ positions yeild the charge density

ρ (⃗r, t) =
2

∑
j=1

q jδ (⃗r−acos [πn−ωt]x̂+asin [πn−ωt]ŷ) . (3.5)

3.2 Vanishing Electric Dipole Moment

To demonstrate the system’s vanishing dipole moment, we turn to the expression for a

dipole moment considering a system of point charges.

p⃗ =
2

∑
n=2

qn⃗rn (3.6)

Which for our distribution yeilds,

p⃗ = q1r⃗1 +q2r⃗2. (3.7)

At this point, we must recall the previously mentioned condition that we are dealing

with black holes of the same mass, and therefore the plasma surrounding the black holes

is distributed symmetrically via a symmetric gravitational potential from both objects.

This condition allows us to claim that each black hole lies within a mirrored plasma

distribution, and therefore should be absorbing equal amounts of charge. So, setting

q1 = q2 = q,

p⃗ = qr⃗1 +qr⃗2 (3.8)

p⃗ = q [r⃗1 + r⃗2] (3.9)
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Seeing as though the radius for each charge has the same magnitude and opposite direc-

tion, we see

p⃗ = q [aâ−aâ] = 0 (3.10)

We witness the vanishing dipole moment of our system. Implying the electric quadrupole

moment will dominate this system’s potential.

3.3 Deriving the Electric Quadrupole Moment Tensor

Evaluating the electric quadruple moment requires a more rigorous mathematical ad-

venture which begins, as any great story, with tears. The Quadrupole moment tensor

is a 3x3 symmetric traceless matrix described by the equation below, whose enties are

related to the five spherical harmonics associated with ℓ= 2 [14].

Qi j =
∫

d3⃗r (3r′ir
′
j − r′2δi j)ρ (⃗r) (3.11)

The tensor must be evaluated entry by entry, lets start with Qzz.

Qzz =
∫

d3⃗r (3z′n
2 − r′n

2)ρ (⃗r, t) (3.12)

Here, seeing as though the motion in our model is confined to two dimensions in the

XY-plane, z′ = 0 and our integral is reduced to two dimensions. Additionally,

r′2 = x′2 + y′2.

Qzz =
∫

d2⃗r (−(x′n
2 + y′2n ))ρ (⃗r, t) (3.13)

Substituting in our expressions we get

Qzz =−
∫

d2⃗r
2

∑
n=1

(a2 cos2 (πn−ωt)+a2 sin2 (πn−ωt))qnδ (⃗r− r⃗n
′). (3.14)

Using the Pythagorean identity sin2
θ + cos2 θ = 1, we can reduce the expression to

Qzz =−a2
2

∑
n=1

qn

∫
d2⃗r δ (⃗r− r⃗n

′). (3.15)
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Where we know the integral over the Dirac delta function in our charge density is equal

to one, and evaluating the sum over our charges yields

Qzz =−a2(q1 +q2) =−2qa2. (3.16)

Once again evoking the fact that our two black holes are of the same mass, and therefore

we assume the plasma distribution among the binary pair is mirrored for each BH giving

our superimposed plasma spheres the same absorbed charge.

Moving onto our next matrix element, lets solve for Qyy

Qyy =
∫

d2⃗r (3y′n
2 − r′n

2)ρ (⃗r, t) (3.17)

Substituting in our expression for y’ along with reusing the fact that r′2 evaluates to a2

(from Eq. 3.14) we find

Qyy =
∫

d2⃗r
2

∑
n=1

(3a2 sin2 (πn−ωt)−a2)qnδ (⃗r− r⃗n
′). (3.18)

Pulling everything that is not a function of our variables of integration out in front

Qyy = a2
2

∑
n=1

qn [3sin2 (πn−ωt)−1]
∫

d3⃗r δ (⃗r− r⃗n
′) (3.19)

Integrating over our delta function once again evaluates to one.

Qyy = a2
2

∑
n=1

qn [3sin2 (πn−ωt)−1] (3.20)

Now with a barrage of double-angle trig identities, the expression becomes

Qyy = a2
2

∑
n=1

qn

[
3
(

2
2
[cos2 (πn−ωt)− cos(2πn−2ωt)]

)
−1

]
. (3.21)

Qyy = a2
2

∑
n=1

qn

[(
3
2
[cos(2πn−2ωt)+1−2cos(2πn−2ωt)

)
−1

]
(3.22)

Qyy = a2
2

∑
n=1

qn

[(
3
2
[1− cos(2πn−2ωt)

)
−1

]
(3.23)
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Qyy = a2
2

∑
n=1

qn

[
1
2
− 3

2
cos(2πn−2ωt)

]
(3.24)

Expanding using the difference formula for cosine (Ptolemy’s identity), we find

Qyy = a2
2

∑
n=1

qn

[
1
2
− 3

2
[cos(2πn)cos(2ωt)+ sin(2πn)sin(2ωt)]

]
. (3.25)

Carrying out the summation we get an amalgamation of two of these expanded trig

products, in the interest of clarity I will write them separately.

n = 1 : cos(2π)cos(2ωt)+ sin(2π)sin(2ωt) (3.26)

n = 2 : cos(4π)cos(2ωt)+ sin(4π)sin(2ωt) (3.27)

Noting that both cos(2π)= cos(4π)= 1, and sin(2π)= sin(4π)= 0, our amalgamation

simplifies greatly.

Qyy = qa2
[

1
2
− 3

2
cos(2ωt)+

1
2
− 3

2
cos(2ωt)

]
(3.28)

Qyy = qa2 [1−3cos(2ωt)] (3.29)

Giving us our first time-dependent and therefore radiative term.

Moving on to our last diagonal entry Qxx, we can use the nifty property that the

trace of our matrix equals zero to determine the last term rather than calculating it out

manually. Although, it can be done in much similarity to Qyy.

Qxx +Qyy +Qzz = 0 (3.30)

Qxx =−Qyy −Qzz (3.31)

Qxx =−qa2 [1−3cos(2ωt)]− (−2qa2) (3.32)

Qxx = qa2 [1+3cos(2ωt)] (3.33)

Voila! Now, we must turn to the off-diagonal terms. Luckily, many of them simplify!

As we saw in the above derivation of Qzz (3.12), our system’s confinement to the x and y

14



dimensions imply that if either of the r′ir
′
j or r′2δi j terms from equation 3.11 depend on z’

they will be sent to zero. Keeping spirits high, this consequently sends any off-diagonal

term with z’ dependence to zero.

Qzx = Qzy = Qxz = Qyz = 0 (3.34)

This leaves us with Qxy and Qyx. Once again we find ourselves in quite a fortunate

position. Due to the symmetry of the quadrupole moment matrix, Qxy = Qyx, so if we

determine one we know the other. Starting off, the delta function is not satisfied for

off-diagonal entries, so we are only left with the r′ir
′
j term.

Qxy =
∫

d2⃗r (3x′ny′n)ρ (⃗r, t) (3.35)

Qxy =
∫

d2⃗r
2

∑
n=1

3acos(πn−ωt)asin(πn−ωt)qnδ (⃗r− r⃗n
′) (3.36)

Integrating over our delta function and using a trigonometric product identity for sine

and cosine, the expression simplifies to

Qxy =
2

∑
n=1

3
2

qna2[sin(πn−ωt +πn−ωt)+ sin(πn−ωt −πn+ωt)] (3.37)

Qxy =
2

∑
n=1

3
2

qna2[sin(2πn−2ωt)+ sin(0)] (3.38)

Applying the sine difference formula,

Qxy =
2

∑
n=1

3
2

qna2[sin(2πn)cos(2ωt)− cos(2πn)sin(2ωt)] (3.39)

Expanding the sum and once again breaking the equation down for clarity,

n = 1 : sin(2π)cos(2ωt)− cos(2π)sin(2ωt) (3.40)

n = 2 : sin(4π)cos(2ωt)− cos(4π)sin(2ωt) (3.41)
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Recalling that sin(2π) = sin(4π) = 0 and cos(2π) = cos(4π) = 1, the expression sim-

plifies to

Qxy =
3
2

qa2[−2sin(2ωt)] (3.42)

Qxy =−3qa2 sin(2ωt) (3.43)

Where we recall that Qxy = Qyx, meaning we have found the final two pieces of our

quadrupole moment tensor! It turns out they too are time-dependent and therefore ra-

diative. Our assembled matrix appears as follows,

Qi j = qa2


1+3cos(2ωt) −3sin(2ωt) 0

−3sin(2ωt) 1−3cos(2ωt) 0

0 0 −2

 . (3.44)

3.4 Electric Quadrupole Radiation

For calculations regarding our radiation, it is only necessary to examine the time-dependent

entries. Therefore, for our purposes, the matrix simplifies to

Qi j(t) = 3qa2


cos(2ωt) −sin(2ωt) 0

−sin(2ωt) −cos(2ωt) 0

0 0 0

 . (3.45)

Now, utilizing the fact that the vector potential of a radiating quadrupole is described by

the equation

A⃗ =− µ0

24π
ck2 eikr

r
Q⃗(k̂). (3.46)

[14] Where, Q⃗(k̂) is the quadrupole radiation vector which can be represented as

Q⃗(k̂) = Qi j(t)k̂. (3.47)

In an effort to neatly explore the angular dependence of our rotating quadrupole, we

will convert k̂ from the Cartesian coordinates of our initial system to spherical coordi-
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nates.

k̂ =


x

y

z

=


sin(θ)cos(φ)

sin(θ)sin(φ)

cos(θ)

 (3.48)

Carrying out the multiplication to evaluate Q⃗(k̂), we find

Q⃗(k̂) = 3qa2


cos(2ωt) −sin(2ωt) 0

−sin(2ωt) −cos(2ωt) 0

0 0 0




sin(θ)cos(φ)

sin(θ)sin(φ)

cos(θ)

 (3.49)

Q⃗(k̂) = 3qa2


cos(2ωt)sin(θ)cos(φ)− sin(2ωt)sin(θ)cos(φ)

−sin(2ωt)sin(θ)cos(φ)− cos(2ωt)sin(θ)sin(φ)

0

 . (3.50)

Rearranging, and factoring out the common sin(θ)

Q⃗(k̂) = 3qa2 sin(θ)


cos(2ωt)cos(φ)− sin(2ωt)cos(φ)

−[sin(2ωt)cos(φ)+ cos(2ωt)sin(φ)]

0

 . (3.51)

Now, once again using our friendly neighborhood sum and difference trig identities, the

matrix simplifies to

Q⃗(k̂) = 3qa2 sin(θ)


cos(2ωt +φ)

−sin(2ωt +φ)

0

 . (3.52)

Further simplifying the elements inside the vector, we can expand each entry into Euler’s

Formula, factor that out, and recover the original terms by taking the real part of the

expression.

Q⃗(k̂) = 3qa2 sin(θ)


cos(2ωt +φ)+ isin(2ωt +φ)

i[cos(2ωt +φ)+ isin(2ωt +φ)]

0

 (3.53)
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Q⃗(k̂) = 3qa2 sin(θ)


ei(2ωt+φ)

iei(2ωt+φ)

0

 (3.54)

Q⃗(k̂) = 3qa2 sin(θ) ei(2ωt+φ)


1

i

0

 (3.55)

Separating the exponential sum and explicitly rewriting in terms of our unit vectors as

described by the previous vector components,

Q⃗(k̂) = 3qa2 sin(θ) ei2ωteiφ (x̂+ iŷ). (3.56)

Finally, having derived the quadrupole radiation vector, we can continue evaluating

the previously expressed equation for vector potential

A⃗(⃗r, t) =− µ0

24π
ck2 eikr

r
Q⃗(k̂). (3.57)

Substituting in Eq. 3.56,

A⃗(⃗r, t) =− µ0

24π
ck2 eikr

r
3qa2 sin(θ) ei2ωteiφ (x̂+ iŷ). (3.58)

However, spherical polar coordinates prove to be the superior choice of coordinate rep-

resentation for this angularly dependent vector potential. Therefore, let’s rewrite our

current set of coordinates in that basis.

x̂ = sin(θ)cos(φ)r̂+ cos(θ)cos(φ)θ̂ − sin(φ)φ̂ (3.59)

ŷ = sin(θ)sin(φ)r̂+ cos(θ)sin(φ)θ̂ + cos(φ)φ̂ (3.60)

In the effort to transform our original x̂+ iŷ coordinates, let’s break down the complex

sum of each r̂, θ̂ , and φ̂ term independently.

r̂ : sin(θ)cos(φ)r̂+ isin(θ)sin(φ)r̂ = [cos(φ)+ isin(φ)]sin(θ) r̂ (3.61)
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θ̂ : cos(θ)cos(φ)θ̂ + icos(θ)sin(φ)θ̂ = [cos(φ)+ isin(φ)]cos(θ) θ̂ (3.62)

φ̂ : −sin(φ)φ̂ + icos(φ)φ̂ = i[cos(φ)+ isin(φ)] φ̂ (3.63)

Now, we can use Euler’s identity to factor out a common exponential from each compo-

nent.

(x̂+ iŷ) = eiφ [sin(θ) r̂+ cos(θ)θ̂ + iφ̂ ] (3.64)

Finalizing our transformed spherical coordinate expression for the vector potential

A⃗(⃗r, t) =− µ0

8π
ck2 eikr

r
qa2 sin(θ) ei2ωtei2φ [sin(θ) r̂+ cos(θ)θ̂ + iφ̂ ]. (3.65)

With the vector potential out of the way, it is time to tackle the propagating elec-

tric and magnetic fields created by our rotating charges. We can express the radiated

magnetic field in terms of our vector potential

B⃗(⃗r, t) = i⃗k× A⃗(⃗r, t). (3.66)

Where k⃗ = kr̂. Substituting in our expression for A⃗(⃗r, t),

B⃗(⃗r, t) = −i
µ0

8π
ck3 eikr

r
qa2 sin(θ) ei2ωtei2φ r̂× [sin(θ) r̂+ cos(θ)θ̂ + iφ̂ ] (3.67)

B⃗(⃗r, t) = −i
µ0

8π
ck3 eikr

r
qa2 sin(θ) ei2φ [cos(θ)φ̂ − iθ̂ ] ei2ωt (3.68)

Now, from the magnetic field, we can derive our radiating electric field.

E⃗ (⃗r, t) = −ck̂× B⃗(⃗r, t). (3.69)

E⃗ (⃗r, t) = i
µ0

8π
c2k3 eikr

r
qa2 sin(θ) ei2φ r̂× [cos(θ)φ̂ − iθ̂ ] ei2ωt (3.70)

E⃗ (⃗r, t) = −i
µ0

8π
c2k3 eikr

r
qa2 sin(θ) ei2φ [cos(θ)θ̂ + iφ̂ ] ei2ωt (3.71)

Notably, one of the key takeaways from this model is the frequency of the Electric
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and Magnetic field’s oscillations. The electromagnetic waves produced from this model

have a frequency of 2ω , or in other words, twice the orbital frequency of the binary

black holes. Holy Moly! This radiation can directly communicate the orbital frequency

of binary pairs of black holes, something we have (to this point) relied entirely on grav-

itational waves for. Much like with gravitational waves, the in-spiral of two black holes

could be monitored via the evolution of this radiation’s frequency. The implications of

this correlation and example signal characteristics will be further explored in the next

chapter.

3.5 Quadrupolar Power Radiated

Finally, in our last act of quadrupolar acrobatics, we will determine the power radiated

per unit solid angle for our system of rotating charges. The necessary equation as found

in [14] is written (
dP
dΩ

)
E2

=
µ0c3k6

1152π2

(
|Q|2 −|r̂ · Q⃗|2

)
. (3.72)

Focusing first on the calculation of the quadrupole radiation vector related terms,

|Q|2 = Q⃗ · Q⃗∗ (3.73)

Where Q⃗∗ denotes the vector whose entries are the corresponding complex conjugates

to the entries of Q⃗.

|Q|2 = 9q2a4 sin2(θ) [sin(θ) r̂+ cos(θ)θ̂ + iφ̂ ] · [sin(θ) r̂+ cos(θ)θ̂ − iφ̂ ] (3.74)

|Q|2 = 9q2a4 sin2(θ) [sin2(θ)+ cos2(θ)+1] (3.75)

|Q|2 = 9q2a4 sin2(θ) [1+1] (3.76)

|Q|2 = 18q2a4 sin2(θ) (3.77)
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Onto our second term.

|k̂ ·Q|2 =
∣∣∣3qa2 sin(θ) ei2ωtei2φ r̂ · [sin(θ) r̂+ cos(θ)θ̂ + iφ̂ ]

∣∣∣2 (3.78)

|k̂ ·Q|2 =
∣∣∣3qa2 sin2(θ) ei2ωtei2φ

∣∣∣2 (3.79)

|k̂ ·Q|2 = 9q2a4 sin4(θ) (3.80)

Constructing the full equation with our newly derived components we find(
dP
dΩ

)
E2

=
µ0c3k6

1152π2

(
18q2a4 sin2(θ)−9q2a4 sin4(θ)

)
(3.81)

(
dP
dΩ

)
E2

=
9q2a4µ0c3k6

1152π2

(
2 sin2(θ)− sin4(θ)

)
. (3.82)

Simplifying the trigonometric terms,

(
2 sin2(θ)− sin4(θ)

)
= sin2(θ)

(
2− sin2(θ)

)
(3.83)

=
(
1− cos2(θ)

)(
2−1+ cos2(θ)

)
(3.84)

=
(
1+ cos2(θ)− cos2(θ)− cos4(θ)

)
(3.85)

=
(
1− cos4(θ)

)
. (3.86)

Finally substituting back into our complete equation, we find(
dP
dΩ

)
E2

= q2a4 µ0c3k6

128π2

(
1− cos4(θ)

)
. (3.87)

Note that the power radiated per unit solid angle scales exponentially with both charge

(in our case charge being absorbed by each black hole), and the orbital radius between

both black holes. Additionally, the magnitude is governed by an angular dependence

with respect to the plane of our rotating BH’s. On the orbital plane, the power radiated is

maximized, and as you move off the plane the power radiated falls reaching a minimum

of zero perpendicular to the orbital plane. A visualization of this radiation pattern can

be seen in Figures 6 and 7.
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Figure 6: Radiation power diagram expressing the orbital plane of the binary black holes

on the horizontal axis.

Figure 7: Radiation power diagram expanded into three dimensions, providing an im-

proved spatial intuition of the radiation pattern of the binary black hole system.
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In addition to the power radiated per unit angle, we can also calculate the average

power radiated by the system across all angles. To do so, we take our expression from

Eq. 3.87, and integrate over dΩ.

P̄ =
∫

dΩ
dP
dΩ

(3.88)

Recalling that dΩ = sin(θ) dθdφ ,

P̄ =
∫

sin(θ) dθdφq2a4 µ0c3k6

128π2

(
1− cos4(θ)

)
(3.89)

P̄ = q2a4 µ0c3k6

128π2

∫ 2π

0

∫
π

0
dθdφ

(
sin(θ)− sin(θ)cos4(θ)

)
(3.90)

P̄ = q2a4 µ0c3k6

128π2 2π

[∫
π

0
dθ sin(θ)−

∫
π

0
dθ sin(θ)cos4(θ)

]
(3.91)

P̄ = q2a4 µ0c3k6

128π2 2π

[
−cos(θ)|π0 +

cos5(θ)

5

∣∣∣∣π
0

]
(3.92)

P̄ = q2a4 µ0c3k6

128π2 2π

[
2− 2

5

]
(3.93)

P̄ = q2a4 µ0c3k6

40π
(3.94)

Rewriting in terms of ω rather than k for a simpler expression of dependencies in regard

to our system.

P̄ = q2a4
ω

6 µ0

40πc3 (3.95)

As we can see, the average power radiated is simply an expression which depends on

the charge absorbed by each black hole, the radius of the binary orbit, and the frequency

of the orbit.
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CHAPTER 4

EXPLORING THE UPPER LIMIT OF OUR MODEL

4.1 Summary of Chapter 3 Significant Results

A quick summary of the significant results from the previous calculation-heavy chapter.

1. Our model exhibits a dominant electric quadrupole moment that radiates with

frequency 2ω (twice the orbital frequency of our binary black holes). Eqns.3.68

3.71

2. The radiation pattern has a 1−cos4(θ) dependence on θ , the elevation angle with

respect to the orbital plane. Fig. 6

3. The average power radiated is a function of charge absorbed by each black hole,

orbital radius, and orbital frequency of the black hole pair. The expression is

written as:

P̄ = q2a4
ω

6 µ0

40πc3

Our goal now is to derive an upper limit for average radiated power, and then employ

all that we have learned to construct and investigate sample signals.

4.2 Eddington Accretion Limit

First and foremost, I would like to address the fact that this ”upper bound” we will derive

is in fact quite... squishy. Accretion disk physics and super-Eddington accretion rates
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are still active areas of research, and the scope of this paper is not to break new ground

on those fronts. The aim of imposing such a limit is simply to gain some intuition into

the conceivable magnitudes of radiative power from the previously derived mechanism.

The Eddington limit is, at its core, a limit on the luminosity of a stellar body consid-

ering the outward radiation pressure and the opposing gravitational force. As infalling

matter is accelerated towards the massive body (for us a black hole), the particles gain

kinetic energy. However, the energized particles interact and their motions change as

they dart through this accelerated particle soup. These interactions increase the thermal

energy of the infalling particles, and depending on the system, can heat the surround-

ing matter up to millions of degrees! As a result, the matter radiates thermally and the

outgoing photons are scattered off the surrounding particles, introducing the aforemen-

tioned radiation pressure. If enough heated material finds itself close to the massive

object the radiation pressure overcomes the gravitational influence and surrounding in-

falling matter is pushed away. Assuming a sufficient supply of surrounding matter, this

leads to a natural hydrostatic equilibrium between gravity and radiation pressure. The

described balance is (almost) the Eddington limit. The general formula that describes

this relationship is written as

L =
4πGMc

κ
. (4.1)

Where L is the luminosity, M is the mass of the massive object, c is the speed of light,

and κ is the opacity of the surrounding matter. [16]

Opacity is related to the scattering cross-section for a given cosmic medium. For

example, in a simple model, if a collection of ionized hydrogen surrounds a black hole,

the associated opacity is a function of the free electron scattering cross-section and the

free electron density [17]. It is a measure of how much outgoing radiation energy will

be absorbed by the surrounding particle distribution. The true Eddington limit, referred

to as the Classical Eddington Limit, is the form of Eq. 4.1 that solely considers free
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electron scattering (aka Thompson Scattering) dependent opacity [16]. The Eddington

Limit or Eddington Luminosity can be expressed as

LEdd =
4πcGM

κT
. (4.2)

When constructing a specialized model with the intent to more accurately approxi-

mate the properties of a stellar material, additional scattering mechanisms can be con-

sidered when deriving opacity, κ . [18] The Thompson Scattering, however, is a suitable

enough approximation for many high-temperature systems [16]. So, in the interest of

simplicity we will only consider Thompson free electron scattering for our squishy up-

per limit.

In addition to our current expression for luminosity, we need to expand the formu-

lation to include the accretion, or rate of mass absorption, dependent luminosity as-

sociated specifically with black holes. The same thermal radiation pressure is present

for compact massive objects like black holes, however, the increased gravitational po-

tential close to the object allows for higher temperatures of accelerating matter and in

turn, tremendously high luminosities. [16] The equation describing luminosity for an

accreting body is

Laccretion = εṀc2 (4.3)

Where again, Laccretion represents luminosity, Ṁ is the accretion rate of matter, and

ε corresponds to the radiative efficiency of the accretion process. Accretion efficency

is described as the component of the matter’s rest mass energy which is radiated away,

and is most often set to ε = 0.1 for systems considering a black hole accreting matter

through a disk [16].

We now have two expressions for luminosity, the limiting Eddington Luminosity

and the luminosity associated with an accretion process. Let us equate the two to derive
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an upper limit on the accretion rate of a black hole.

εṀc2 =
4πcGM

κT
(4.4)

Ṁ =
4πGM
εκT c

(4.5)

Utilizing the fact that G = 4π2

M⊙
AU3

year2 , we can rearrange our equation.

Ṁ =
16π3

εκT c
AU3

year2
M

M⊙
(4.6)

Assuming our accretion disk is composed of fully ionized hydrogen, the Thompson

scattering dependent opacity takes on the value κ = 0.4 cm2

g . Additionally, using the

previously quoted ε = 0.1 efficiency value, and a few unit conversions, we arrive at the

equation

Ṁ =
16π3 [149,597,870,700 m]2

[0.1][0.4 cm2

g × ( 1 m
100 cm)

2][3×108 m
s ][1 year× 3.154×107

1 year ]2

M
M⊙

. (4.7)

Which evaluates to

Ṁ = 1.4 ×1018 M
M⊙

g
s
. (4.8)

Outstanding! Now we have an expression which tells us the rate at which our black

holes can absorb the surrounding plasma. It is worth noting, however, the sweeping na-

ture of the binary black holes likely implies that a component of the swallowed plasma

falls directly into the black hole rather than a decaying orbital motion. This direct in-

fall could generate Super-Eddington accretion rates, however that would increase the

charge consumed transitively increasing the radiated power of our quadrupolar mech-

anism under investigation. Therefore, considering super-eddington effects only aids in

the intensity of our radiation, I will use this conservatively derived upper accretion limit

for our purposes.
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4.3 Implications of the Derived Accretion Rate

Given the previously derived accretion limit in Eq. 4.8, we can evaluate the mass of

plasma absorbed by each of our binary black holes over one orbital cycle. The period

of each black hole’s orbital motion is described by T = 1
ω

, where once again ω is the

orbital frequency of our black holes. Therefore, if our black holes are accreting at the

Eddington Limit, the swallowed matter in a given orbital cycle is given by the equation

Mcycle = 1.4 ×1018 M
M⊙

g
s
× 1

ω
. (4.9)

Allow me to motivate the coming discussion on the basis of expressing q, the charge

absorbed by each black hole in our model, in terms of the limiting accretion rate above.

If we succeed, we will have an upper bound for q that allows us to further explore the

properties of our proposed radiation.

Extrapolating this Mcycle result into the average instantaneous charge absorbed by

each black hole at any given point in their orbits requires an investigation of the associ-

ated volumes. If each black hole acts as an absorbing sphere whose radius is that of the

BH’s innermost stable circular orbit, then we also know that over the time of each cycle

the binary orbit of that black hole will have carved out a toroidal volume. The volume

of our (ideally spherical) plasma hole is given by

VHole =
4
3

π r3
ISCO, (4.10)

and the volume of a torus is given by

VTorus = (2πa)(πr2
ISCO). (4.11)

Where the first component in our expression of the toroidal volume corresponds to the

circumference traced by our BH’s orbital motion with radius a, and the second compo-

nent describes the area of the circle along that circumference determined by our BH’s

ISCO.
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Having derived the mass of plasma absorbed by each black hole over one orbital

orbital cycle (Eqn.4.9) and now having an expression for the volume traced over one

cycle (Eqn. 4.11), we can describe the plasma absorbed per unit volume as

Mcycle

VTorus
=

MCycle

2π2 a r2
ISCO

(4.12)

Note that this faux plasma density is simply a calculational tool allowing us to express a

time-dependent process such as accretion in terms of the instantaneous charge absorbed

at any given time. Moreover, this mathematical plasma density is NOT the density of

plasma inside a black hole, it is simply a geometric bookkeeping trick. Moving on.

The ratio of mass of absorbed per unit volume is a simple proportion that holds true

for any corresponding mass/volume pair in this system. Therefore, we will construct the

proportion
MHole

VHole
=

Mcycle

VTorus
. (4.13)

Substituting in our equation for VHole and VTorus we find

MHole
4
3π r3

ISCO
=

Mcycle

2π2 a r2
ISCO

(4.14)

MHole =
2
3

rISCO

πa
Mcycle (4.15)

This expression tells us that the average mass of plasma contained in the superimposed

orbiting plasma spheres earlier addressed in this theory (which we have since simplified

to rotating points of charge in our mathematical model) can be represented as a fraction

of the mass absorbed each orbital cycle scaled by the ratio of ISCO radius to the binary

BH’s orbital radius.

Depending on the characteristics of a black hole, the size of its innermost stable

circular orbit varies. For example, the ISCO of a non-rotating black hole with no charge

(Schwarzschild Black Hole) is described by the equation

rISCO = 6km
M

M⊙
(4.16)
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[8]. As different properties of the black hole’s charge and spin are considered, this rela-

tion ranges anywhere from 1− 9km M
M⊙

. We will continue with the relation associated

with a Schwarzschild Black Hole, but this is a trivial swap if one wishes to explore a

black hole of particular type.

Expanding our entire expression for the mass of plasma enclosed by our spherical

volume, we find

MHole =
2
3

[
6 km M

M⊙

πa

] [
1.4 ×1018 M

M⊙

g
s
× 1

ω

]
(4.17)

MHole =
5.6 ×1018 km g

s
πaω

[
M

M⊙

]2

(4.18)

Which at long last will allow us to extract the charge enclosed in our plasma spheres.

One assumption we will make here is that the plasma being consumed by the black

hole is mostly comprised of protons. This is a valid assumption for several reasons.

First, from the notion of radiation pressure regulating the influx of accreted matter, the

radiation pressure can be predicted to have a more significant impact on the surrounding

electrons seeing as though their masses are significantly smaller. This allows protons to

persist through the high pressures approaching the black hole where electrons are more

likely to be blown away. Additionally, for the sake of an upper limit, it is worth exploring

the case when the black hole is accreting uniformly charged matter. That being said, let

us break down the derived mass into individual protons and asses the total charge from

proton count.

qplasma =
MHole

mp
qp (4.19)

Where the mass in our plasma sphere is divided by the mass of a proton to yield the

number of protons present. From there, the proton number is then multiplied by the

charge of a single proton to find the total charge. Expanding the relation we see

qplasma = 5.6 ×1018 km g
s

qp

πaω mp

[
M

M⊙

]2

. (4.20)
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An expression for the plasma ”missing” from the accretion disk at any given time due

to a black hole consuming matter at the Eddington limit. With this result, we can con-

struct a complete sample signal from the radiative quadrupole moment model derived in

Chapter 3.
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CHAPTER 5

CHARACTERISTIC PROPERTIES OF A SAMPLE RADIATION SIGNAL

5.1 Calibration of our Binary System Inputs

For the construction of our sample signal, we will be considering a binary system of

black holes with mass M1 = M2 = 30M⊙. This system is similar to the original binary

black hole merger discovered by LIGO in 2015. Their binary system consisted of a

36M⊙ black hole and its accompanying 29M⊙ black hole companion [19]. The char-

acteristic frequency ”chirp” associated with the accelerating orbital frequency during

binary black hole mergers can be visualized in spectrogram of the 2015 LIGO event

found in Fig. 8.

In an attempt to capture this frequency evolution in our sample signal, we will fit a

model frequency curve to the pattern seen in Fig. 8 in order to create a realistic evolution

of our own binary system’s orbital frequency. Recalling that gravitational radiation is

quadrupolar, much like the radiative mechanism we are exploring now, the gravitational

radiation frequencies from Fig. 8 represent twice the orbital frequency. The LIGO report

claims that the orbital frequency should rise from 17.5 Hz to 75 Hz in 0.2 seconds, which

is reflected in the modeled frequency chirp shown in Fig. 9

In addition, we must consider the shrinking orbital radius of the system. The orbit

shrinks due to the gravitational waves radiating energy away from the system. As the

inspiral continues, the gravitational waves grow more pronounced radiating away more

energy, leading to an aggressive and swift merger as we can infer from the frequency
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Figure 8: Plot depicting the frequency evolution of two merging black holes. Graphic

created using the Gravitational Wave Open Science Center’s data analysis tool based on

the first recorded LIGO event [19].
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Figure 9: Binary black hole orbital frequency model which will be used to evolve the

derived parameters of our radiation from Chapter 3. The equation used to fit this model:[
ω = − 1

4(t−0.444) +16.28
]
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Figure 10: Binary black hole orbital radius model which will be used to evolve the

derived parameters of our radiation from Chapter 3.

chirp spectogram. The shrinking orbital radius is approximated by the equation

a = a0

(
1− t − t0

τ

)
(5.1)

Where a0 is the starting radius, t0 is the starting time, and τ is the characteristic time

scale of the merger [20]. For the sample case currently being considered, we will set t0 =

0.2s, τ = 0.24s, and the report from ligo claims an initial orbital radius of roughly 5 Rs

(Rs refers to the Schwarzschild Radius) [19]. As we are considering two Schwarzschild

black holes with Masses M1 = M2 = 30M⊙, the Schwarzschild Radius Rs = 3 km
M⊙

simply

evaluates to Rs = 90km. Substituting into our expression, we find

a = 450km
(

1− t −0.2s
0.24s

)
(5.2)

Which produces a decaying orbital radius of the form seen in Fig. 10.
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5.2 Sample Signal

With the foundations of our sample signal in place, we can evaluate the characteris-

tic charge evolution in our rotating point charge model, along with the frequency and

average power radiated of the resulting radiation.

The charge evolution for both point charges in the model is governed by the equation

qplasma = 5.6 ×1018 km g
s

qp

πaω mp

[
M

M⊙

]2

. (5.3)

When evaluated for the current system in consideration we find

qplasma =
1.539 ×1026

a(t) ω(t)
km C

s
. (5.4)

Which exhibits the inspiral evolution characteristics displayed in Fig. 11. Next, the
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Figure 11: Charged absorbed by each binary black hole throughout the inspiral and

merger process. The spike at the end of the plot is an artifact of the orbital radius

shrinking to zero.
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frequency is a simple case. The radiation’s frequency is exactly double the orbital fre-

quency of the black holes. Therefore, our frequency evolution can be observed in Fig. 12

Finally, the average power radiated, a function of the freshly expressed charge, radius,

0.20 0.25 0.30 0.35 0.40 0.45

40

60

80

100

120

140

Time, t (s)

F
re
qu
en
cy
,
ω

(H
z)

Radiation Frequency Evolution Merging Binary Black Holes

Figure 12: Radiation frequency throughout the inspiral. These frequencies are exactly

twice the orbital frequency.

and frequency, is described by the equation

P̄(t) = q(t)2a(t)4
ω(t)6 µ0

40πc3 . (5.5)

Rewriting with values,

P̄(t) = 3.7037×10−34 q(t)2a(t)4
ω(t)6 kg s3

m2 C2 (5.6)

The inspiral evolution of our quadrupolar radiated power, dependent on each of our

previously derived evolutions, is represented in Fig. 13
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Figure 13: Plot showing the average power radiated of the proposed quadrupolar radia-

tion as it evolves throughout the black hole merger .
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CHAPTER 6

CONCLUSION AND OUTLOOK

6.1 Discussion of Results

Over the course of this theoretical investigation, we were able to derive the presence of

an electric quadrupolar radiative mechanism in active binary black hole systems whose

frequency is directly coupled to the orbital frequency of its host black holes. Addi-

tionally, simulating our sample signal, we saw substantial charge absorbed and power

radiated values. These calculated upper limiting values, granted, should be viewed with

reservations as they are likely in the non-linear regime of electric field strength. It should

be noted, the considered case included both of our black holes accreting matter at the

Eddington limit, therefore maximizing the possible charge considered in our system. In

reality however, accretion disk densities and therefore available plasma around black

holes span a dramatic range, some black hole systems are maximally fed to the Ed-

dington Limit while others are entirely inactive. This range indicates that for many

sub-Eddington limit accreting black holes our initial linear super position model is ap-

plicable and therefore radiation of the form presented in this investigation will occur.

The characteristic evolution of our derived quantities throughout the inspiral of the black

hole binary also unearthed interesting dependencies between our radiation’s properties

and the time evolution of frequency and orbital radius during a merger. Additionally, the

consistently high power radiated even before the final merger of the black holes suggests

a potential area of pre-merger orbital study not previously possible with LIGO due to

the irrecoverably low signal strength of pre-merger gravitational waves.
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While neither the model nor the assumptions with in it are perfect representations of

our true astrophysical system, it is clear that the discussed form of radiation can manifest

in active binary black hole systems and furthermore it would radiate at a significant

power.

6.2 Future work

In regard to the improvement of our model, several avenues of continued work imme-

diately make themselves apparent to me. Firstly, expanding this formulation to account

for differing mass black hole systems, implying variable absorbed charge corotating in

non circular orbits, would widen the population of applicable systems dramatically. Ad-

ditionally, given the incredible charges present in the calculation of our sample signal,

surely the next natural step is to re-derive this mechanism accounting for the extreme

electric fields present and therefore the emerging non-linearities of the system. Lastly,

the expansion of our simplified rotating point charge system to true three dimensional

voids representing the carved plasma holes in our accretion disk would more realisti-

cally represent the missing charge’s effect on the surrounding electric field. While these

adjustments do add complexity to the pleasantly simple model presented here, the abil-

ity to evaluate more general systems dramatically increase the utility of the model in

step.

Notwithstanding these pending improvements, interesting research can already be

imagined. An obvious extension of this theoretical formulation into the realm of experi-

mental physics lies within the observability of the proposed radiation. The characteristic

frequencies of the radiation emitted by merging black holes would be confined to ex-

tremely low frequency (ELF) radio wave range between 3 - 300 Hz. This range of

frequencies is associated with wavelengths on the order of 100,000 - 1000 km. As a
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first step into the hopeful existential confirmation and future study of the proposed ra-

diation, it is necessary to develop adequate infrastructure to observe some portion of

the quoted wavelengths. Once said infrastructure is complete, the detection can be used

to compare and supplement LIGO’s gravitational wave merger events. More uniquely,

the radiation also has potential to expand upon LIGO’s current population of observable

systems. As mentioned in the discussion above, the system should radiate with signif-

icant power long before the merger of the black holes. Such a phenomena implies that

unlike the quantum limited strain sensitivity of LIGO which prevents the resolution of

any gravitational waves prior to the merger, our radiation would illuminate the orbits of

binary black holes long before any such cataclysm.

Further work will be conducted in the continued investigation of our proposed radi-

ation, and any major developments will be communicated in subsequent papers. Thank

you for your attention.
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