
University of Massachusetts Boston University of Massachusetts Boston 

ScholarWorks at UMass Boston ScholarWorks at UMass Boston 

Graduate Masters Theses Doctoral Dissertations and Masters Theses 

8-2020 

Modeling the Obscuring Features in Active Galactic Nuclei: an X-Modeling the Obscuring Features in Active Galactic Nuclei: an X-

Ray Analysis of NGC 1052 Ray Analysis of NGC 1052 

Samantha E. Cabral 
University of Massachusetts Boston 

Follow this and additional works at: https://scholarworks.umb.edu/masters_theses 

 Part of the Astrophysics and Astronomy Commons, and the Physics Commons 

Recommended Citation Recommended Citation 
Cabral, Samantha E., "Modeling the Obscuring Features in Active Galactic Nuclei: an X-Ray Analysis of 
NGC 1052" (2020). Graduate Masters Theses. 630. 
https://scholarworks.umb.edu/masters_theses/630 

This Open Access Thesis is brought to you for free and open access by the Doctoral Dissertations and Masters 
Theses at ScholarWorks at UMass Boston. It has been accepted for inclusion in Graduate Masters Theses by an 
authorized administrator of ScholarWorks at UMass Boston. For more information, please contact 
scholarworks@umb.edu. 

https://scholarworks.umb.edu/
https://scholarworks.umb.edu/masters_theses
https://scholarworks.umb.edu/diss_theses
https://scholarworks.umb.edu/masters_theses?utm_source=scholarworks.umb.edu%2Fmasters_theses%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/123?utm_source=scholarworks.umb.edu%2Fmasters_theses%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=scholarworks.umb.edu%2Fmasters_theses%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umb.edu/masters_theses/630?utm_source=scholarworks.umb.edu%2Fmasters_theses%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@umb.edu


MODELING THE OBSCURING FEATURES IN ACTIVE GALACTIC NUCLEI:

AN X-RAY ANALYSIS OF NGC 1052

A Thesis Presented

by

SAMANTHA E. CABRAL

Submitted to the Office of Graduate Studies, University of Massachusetts
Boston, in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2020

Physics Program



© 2020 by SAMANTHA E. CABRAL

All rights reserved



MODELING THE OBSCURING FEATURES IN ACTIVE GALACTIC NUCLEI: 

AN X-RAY ANALYSIS OF NGC 1052 

 

 

A Thesis Presented 

by 

SAMANTHA E. CABRAL 

 

Approved as to style and content by: 
 
 
_______________________________________________ 
Stephen Arnason, Associate Professor 
Chairperson of Committee 
 
_______________________________________________ 
Jonathan Celli, Associate Professor 
Member 
 
_______________________________________________ 
Chandra Yelleswarapu, Associate Professor 
Member 
 
_______________________________________________ 
Mislav Baloković, Fellow 
Black Hole Initiative, Harvard University 
Member 
 

_______________________________________________ 
Jonathan Celli, Program Director 
Physics Program 
 
_______________________________________________ 
Rahul Kulkarni, Chairperson 
Physics Department 



ABSTRACT

MODELING THE OBSCURING FEATURES IN ACTIVE GALACTIC NUCLEI:

AN X-RAY ANALYSIS OF NGC 1052

August 2020

SAMANTHA E. CABRAL,
B.S., University of Massachusetts Amherst
M.S., University of Massachusetts Boston

Directed by Associate Professor Stephen Arnason

We present a multi-epoch analysis of the X-ray spectrum of NGC 1052, a nearby galaxy

notorious for its well-studied spectral variability. We utilize observations from NuSTAR,

XMM-Newton, Chandra, Swift, Suzaku, BeppoSAX, and ASCA to create a comprehen-

sive set of data that spans roughly 20 years. Organizing our data by observation date

and grouping into specific epochs allows us to explore a model allowed to flex and ac-

commodate any spectral changes that occur over time in the X-ray spectrum of NGC

1052. We find that the spectrum takes on a relatively flat nature and is best modeled

with two neutral absorption components in addition to a component representing torus

reprocessing. We are able to successfully constrain properties of the dense obscuring

torus, reporting a high covering factor of ∼ 80%.
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CHAPTER 1

INTRODUCTION

1.1 Active Galactic Nuclei

An extremely luminous compact region known as an active galactic nucleus (AGN)

lives at the center of a small fraction of large galaxies. As the most consistently lumi-

nous sources in the observable universe, AGN luminosity is distributed across the elec-

tromagnetic spectrum with strong emissions observed in the X-ray and infrared bands.

This strong radiative output is assumed to be powered by the accretion of material onto

the supermassive black hole (SMBH) located at the AGN’s center.

It is commonly suggested that material flowing inward to the SMBH takes on the

configuration of a geometrically thin accretion disk [Shakura and Sunyaev, 1973]. Black-

body photons from the inner region of the accretion disk approach the corona, a neutral

region surrounding the SMBH composed of hot gas and relativistic protons and elec-

trons. The incident photons are Compton scattered by electrons in the corona, producing

high-energy X-rays which we observe [Haardt and Maraschi, 1991]. This intrinsic spec-

trum is well approximated as a power law with an exponential cutoff at high energies.

In addition to being observed directly, the powerlaw continuum is partially reprocessed

while traveling through the outer regions of the accretion disk. While the accretion disk

takes on the geometry of a thin disk, it is considered to be optically thick.
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The simplest standard model for AGN suggests that there is a dense toroidal structure

(commonly known as a torus) comprised of gas and dust located at the outer extremities

of the AGN’s accretion disk [Antonucci, 1993, Urry and Padovani, 1995]. As incident

X-rays travel through the torus, they are subject to a significant amount of absorption

and reprocessing. This reprocessed emission from the torus is primarily observed in the

infrared portion of the spectrum. However, two distinct signatures of torus reprocessing

emerge in the X-ray band: a narrow Fe Kα emission line with a rest-frame energy of

6.4 keV, and a Compton hump peaking at ∼ 30 keV [George and Fabian, 1991].

Figure 1: The current standard model for AGN. Material approaching the central SMBH
takes on the form of a geometrically thin accretion disk. A dense torus surrounds the
central region and is composed of thick, compact clouds. In radio-loud AGN, large-scale
radio jets extend out on galactic scales.
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Significant variation in X-ray absorption on the time scale of years, months, weeks,

and even days has indicated that the obscuring torus most likely takes on an anisotropic,

clumpy distribution where gas adopts the form of thick, compact clouds. As these clouds

pass through the line of sight between the observer and the central engine, a more sig-

nificant amount of obscuration will occur [Risaliti et al., 2002, Markowitz et al., 2014].

Strong magnetic fields can lead to the formation of relativistic jets that extend from

the central region on megaparsec1 scales, or the scale commonly used to quantify the

diameter of galaxy clusters. By considering the orientation of relativistic jets and the

obscuring torus, we can categorize AGN into two types of Seyfert galaxies, which in

general describe spiral galaxies with bright nuclei. In Seyfert I galaxies, the AGN is

oriented with the jet axis pointed towards an observer. In Seyfert II galaxies, the observer

views the central engine “edge-on”, or through the torus. In Figure 1, we illustrate the

current standard model for AGN, demonstrating the geometry and relation to the AGN’s

central SMBH, the thin accretion disk, the dense obscuring torus, and the approaching

and receding jets.

Spectral analysis of AGN emission in the X-ray band is crucial in understanding ab-

sorption characteristics of obscured AGN. By modeling the spectral features present due

to reprocessing of the torus, we can constrain some of its properties and improve our un-

derstanding of the nature of obscured AGN [Krolik et al., 1994, Levenson et al., 2002].

1.2 NGC 1052

In this thesis, we explore a multi-epoch approach to analyze the NGC 1052 broadband

X-ray spectrum. NGC 1052 is a relatively nearby elliptical galaxy housed within the

Virgo Cluster at a distance of roughly 18 Mpc [Jensen et al., 2003]. It hosts a low-

11 parsec = 3.08 ×1016 meters, roughly 3.26 light years
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luminosity AGN at its center along with a prominent double-sided jet oriented at a

minimum inclination angle of 76◦ [Sawada-Satoh et al., 2008]. Its classification as a

Seyfert II galaxy tells us that we view the central region edge-on, rather than along the

jet axis.

NGC 1052 is a valuable source for studying AGN structure. Its relative proximity

and brightness allow for a more detailed characterization of the central engine environ-

ment than what is typically attainable. The relatively high inclination angle suggests

that the approaching jet does not have a significant contribution to the X-ray spectrum,

and we can assume the majority of the X-ray emission characterizes the workings of

the innermost regions of the AGN. NGC 1052 is well-documented in studies spanning

a variety of energy ranges [Kameno et al., 2001, Kadler et al., 2004].
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CHAPTER 2

DATA REDUCTION AND ANALYSIS

For our X-ray analysis of NGC 1052, we utilize observations from seven different space-

based observatories. The observatories that make up our comprehensive list are ASCA,

BeppoSAX, Chandra, XMM-Newton, Swift, Suzaku, and NuSTAR. Each X-ray observa-

tory utilizes different software and methods for data reduction, which is described in

detail in Chapter 2.

2.1 Astronomical X-ray Data Acquisition

While each X-ray observatory has different data reduction methods and instrument spec-

ifications, the overall instrumental design and general method of data acquisition has the

same primary approach. The design of X-ray instruments is extremely different from

that of optical instruments. Atmospheric absorption requires X-ray instruments to be

placed in orbit outside the atmosphere, which differs from the ground-based approach

allowed by instruments operating in the radio, infrared, and visible bands. Optical obser-

vations employ mirrors to focus incident light before traveling to a detector. However,

X-rays are far too energetic and pass directly through the focusing mirrors, requiring X-

ray instruments to have an entirely different geometry for diverting the incident photon

paths.
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To focus high-energy X-rays, mirrors with an orientation nearly parallel to the pho-

ton’s beam are utilized. This evokes a grazing incidence, allowing the X-ray photons to

converge towards a detector. The majority of X-ray telescopes utilize Charge-coupled

Devices (CCDs) to translate focused incident photons from distant sources into readable

images. Once the raw data are processed, these images can be displayed with software

like DS9, a data visualization application designed by the Smithsonian Astrophysical

Observatory (SAO). To correctly define the source spectrum from an image, the back-

ground region first needs to be specified from a source-free area. Once the source and

background regions are correctly defined, analysis tools can be used to correctly re-

move the background spectra. An example of this process can be seen in Figure 2,

where the source is defined as a circular region and the background is defined as a poly-

gon for the FPMA image provided by NuSTAR’s February 2013 observation (OBSID

60061027002).

Furthermore, observations need to consider instrument response files to produce a

final spectrum. These are files that contain crucial information regarding instrumental

specifications, such as effective area of the detector and quantum efficiency as a function

of photon energy. The typical approach for visualizing acquired data first explores the

distribution of count rates within a range of binned energies. In Figure 3, we plot the

count rate n(E) as a function of energy on a log scale. The count rate holds the unit s−1,

which defines counts occurring per second, which is then divided by keV to normalize

the width of energy bins across a large energy range when plotting on a logarithmic

scale. This is typically referred to as the “folded” spectrum. We utilize a joint NuSTAR

and XMM-Newton from 2017 January 17 as a sample observation to visualize the folded

spectrum, though details on these observations will be further explained later in this

chapter.
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Figure 2: Defining source and background regions in X-ray observations. As a demon-
stration, the source and background regions are defined here in DS9 using circular and
polygonal regions, respectively, for the NuSTAR observation provided by FPMA for
OBSID 60061027002.

With the folded spectrum defined, we can now visualize what is typically referred

to as the “unfolded” spectrum. The folded spectrum is first divided by the appropriate

response file to correctly consider the effective collecting area of the instrument, which

introduces a factor of cm−2. A factor of keV2 is then introduced by first multiplying

the spectrum by the width of each bin, allowing us to translate counts per bin to a

more useful quantity, photons per bin. The spectrum is then multiplied by the average

energy per bin. In Figure 4, we visualize the unfolded spectrum, E2 n(E), when plotted

as a function of energy on a logarithmic scale for the same spectra used in Figure 3.

Important features emerge when plotting the unfolded spectrum. A distinct peak at 6.4

keV represents the narrow Fe Kα emission line, and a soft excess is apparent with a

7



Figure 3: Visualizing the folded spectrum. For a sample observation, count rate as a
function of energy is plotted on a logarithmic scale.

peak ∼ 1 keV. For the remainder of this thesis, spectra will be plotted in terms of the

unfolded spectrum.

2.2 ASCA

The Advanced Satellite for Cosmology and Astrophysics (ASCA) [Tanaka et al., 1994]

was a Japanese X-ray observatory launched in February 1993 and served as a collabo-

ration between U.S. and Japanese institutions. ASCA was monumental, being the first

mission in X-ray astronomy to employ Charged- Coupled Devices (CCDs). The satellite

8



Figure 4: Visualizing the unfolded spectrum. The folded spectrum is divided by a re-
sponse file, then multiplied by bin width and average photon energy per bin. The result-
ing plot shows distinct features, such as the Fe Kα emission line with a rest energy of
6.4 keV shown here as the inset.

carried four large imaging telescopes that focus X-rays onto two pairs of detectors lo-

cated at the focal plane. Two of these telescopes are Solid-State Imaging Spectrometers

(SIS, referred to as SIS0 and SIS1 in this paper) which operate in the 0.4-10 keV range

[Inoue, 1993]. The remaining two are Gas Imaging Spectrometers (GIS, referred to as

GIS2 and GIS3) which operate in the 0.7 to 10 keV range [Ohashi et al., 1996].

ASCA observed the source on 1996 August 11 (OBSID 74061000), which serves as

the first observation of NGC 1052 in the 2-10 keV band. Processed spectral files and

9



response files for all four instruments were downloaded from the Tartarus Database1.

Exposure times vary for different instruments, but range between 35.7 ks and 38.6 ks.

2.3 BeppoSAX

BeppoSAX [Boella et al., 1997a] was a major X-ray mission for the Italian Space Agency

and was launched in April 1996. The Narrow Field Instruments (NFI) on board are

partly comprised of four X-ray telescopes. One of these telescopes is a Low Energy Con-

centrator Spectrometer (LECS) which operates in the 0.1-4 keV range [Parmar et al., 1997],

while the remaining three are Medium Energy Concentrator Spectrometers (MECS)

which operate in the 1.3-10 keV range [Boella et al., 1997b]. However, during the

time of observation, only two of the MECS detectors were operational. The NFI also

houses the Phoswich Detection System (PDS), which operates in the 15-300 keV range

[Frontera et al., 1997] to help extend the observational capabilities of BeppoSAX to con-

sider hard X-rays.

Processed data were downloaded from NASA’s High Energy Astrophysics Science

Archive Research Center (HEASARC) and contained spectra from LECS and MECS.

Data reduction and analysis followed standard procedures as outlined in the BeppoSAX

ABC Guide2. BeppoSAX observed the source on 2000 January 11 (OBSID 5082800).

Source spectra were extracted from circular regions with 180” radii centered on the

source. The spectra produced by MECS 2 and 3, the two operational MECS detectors,

were co-added. The appropriate response and background files were downloaded from

the online repository3 maintained by the Italian Space Agency (ASI). The exposure

times for LECS, MECS, and PDS are 25.7, 47.5, and 30.0 ks, respectively.

1https://heasarc.gsfc.nasa.gov/FTP/asca/data/tartarus/
2https://heasarc.gsfc.nasa.gov/docs/sax/abc/saxabc/saxabc.html
3ftp://ftp.asdc.asi.it/sax/cal

10



2.4 Chandra

The Chandra X-ray Observatory [Weisskopf et al., 2002] launched in July 1999 and

served as the X-ray addition to NASA’s Great Observatories program. Chandra uti-

lizes two main instruments, a High Resolution Camera (HRC) and an Advanced CCD

Imaging Spectrometer (ACIS) to provide sensitive coverage in the 0.1-10 keV range.

The standard reduction and analysis steps are detailed in the Ciao Analysis Guides4

provided by the Chandra X-ray Center. Data from Chandra were obtained from HEASARC

and all featured observations collected by the ACIS instrument, and observations from

Chandra were processed using CIAO v4.11

Chandra observed the source on 2005 September 18 (OBSID 5910) for a duration of

2.3 ks and 2001 September 5 (OBSID 385) for 59.2 ks. For each of the two observations,

source extraction regions were specified in DS9 using a circular region with a radius of

15.9” centered on the NGC 1052 nucleus. The background region was specified in a

source-free area, similar to data extraction for other observatories as specified in this

paper. Once these regions were specified, specextract was used to generate spectra

and response matrices.

2.5 XMM-Newton

The XMM-Newton observatory [Jansen et al., 2001] was launched by the European Space

Agency (ESA) in December 1999 as part of their Horizon 2000 program. The European

Photon Imaging Camera (EPIC) on board XMM-Newton is composed of three CCD

cameras, each housed on a separate X-ray telescope. Two of these cameras are Metal

Oxide Semi-conductor CCD arrays (commonly known as MOS; referred to as MOS1

4http://cxc.harvard.edu/ciao/guides/acis_data.html
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and MOS2) which only consider a portion or the original incoming flux. The third cam-

era views an unobstructed incident beam and uses pn CCDs (commonly known as pn).

Together, the three cameras cover an energy range of 0.15-15 keV.

The Observation Files (ODFs) were obtained from the XMM-Newton Science Archive.

Standard procedures for data reduction and analysis were followed as outlined in the

XMM-Newton ABC Guide5. Data were processed using XMM-Newton Science Anal-

ysis System (SAS) v17.0 [Gabriel et al., 2004].

XMM-Newton observed the source on 2017 January 1 (OBSID 0790980101) for a

duration of CHECK ks, 2009 August 12 (OBSID 0553300401) for a duration of CHECK

ks, and 2006 January 12 (OBSID 0306230101) for a duration of CHECK ks. Source

data were extracted using circular regions of 67.5” and 72.2” for MOS1 and MOS2

respectively, and 68.4” for pn. Background regions were again extracted from image

regions with low photon activity. Once these regions were specified, response files were

generated for each detector using rmfgen and arfgen.

2.6 Swift

The Swift Observatory was launched by NASA in November 2004. Swift is comprised of

three co-aligned instruments, The Burst Alert Telescope (BAT), X-ray Telescope (XRT),

and Ultraviolet/Optical Telescope (UVOT), that work together to form a powerful multi-

wavelength observatory.

5https://heasarc.gsfc.nasa.gov/docs/xmm/abc/
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2.6.1 Swift/BAT

Swift/BAT [Krimm et al., 2013] is the largest of the instruments of the Swift observatory

and operates in the 14-195 keV range. In addition to its ability to detect Gamma Ray

bursts, BAT can run in a survey mode, performing an all-sky X-ray survey to provide

a long-term average hard X-ray spectra for bright, local AGN. The first 105 months

of observations made by Swift/BAT have been made public as an online catalogue6 of

X-ray sources detected by the instrument. We utilize the NGC 1052 source data from

the Swift/BAT catalogue to serve as a time-averaged spectrum. While the downloaded

spectra are ready for analysis, the data processing procedures are publicly available

[Oh et al., 2018].

2.6.2 Swift/XRT

Swift/XRT [Gehrels and Swift Team, 2003] was designed to measure the simultaneous

X-ray spectra of Gamma Ray Bursts detected by Swift/BAT and operates in the 0.2-10

keV range. Data were downloaded and processed through the online interface provided

by the ASI Space Science Data Center7.

The source was observed by Swift/XRT 2015 January 19 (OBSID 00030874001)

for 9.4 ks, 2009 June 29 (OBSID 00030874016) for 3.7 ks, 2009 June 26 (OBSID

00030874014) for 9.8 ks, 2008 September 12 (OBSID 00030874007) for 3.9 ks, 2008

September 9 (OBSID 00030874006) for 4.8 ks, and 2007 August 4 (OBSID 00030874003)

for 2.4 ks. Swift/XRT data when loaded as individual epochs did not provide photon

statistics comparable to other instruments. Thus, in Section 3.2, XRT exposures are

6https://swift.gsfc.nasa.gov/results/bs105mon/
7http://www.asdc.asi.it/mmia/index.php?mission=swiftmastr
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coadded and their response files are combined using a custom script based on standard

ftools.

2.7 Suzaku

Suzaku [Mitsuda et al., 2007] was a Japanese X-ray observatory launched in July 2005

and, like ASCA, served as a collaboration between U.S. and Japanese institutions. Suzaku

is comprised of two co-aligned instruments, a X-ray Imaging Spectrometer (XIS) op-

erating in the 0.2-10 keV range [Koyama et al., 2007], and a collimated Hard X-ray

Detector (HXD) operating in the 10-600 keV range [Takahashi et al., 2007]. At launch,

the XIS consisted of four imaging CCD cameras (nicknamed XIS0-4). However, in

November 2006, the majority of the imaging area of XIS2 became unusable. Therefore,

we employ observations from the HXD (referred to as PIN) in addition to observations

provided by XIS0, XIS1, and XIS3.

The data were downloaded via HEASARC and reduced using the standard proce-

dures as outlined in the Suzaku ABC Guide8. Suzaku observed the source on 2007

February 16 (OBSID 702058010). Once filtered, the exposure times were 83.5 ks for

the three XIS detectors and 78.1 ks for the HXD/PIN detector. XIS source extraction

regions were specified in DS9 using circular regions with a radius of 180” centered on

the source. The background region was specified using source-free circular areas for

each XIS detector.

Once these regions were specified, the tasks xisrmfgen and xissimarfgen were

utilized to generate response matrices for each XIS detector. The spectra from XIS0

and XIS3 were coadded (referenced as XIS0+3 throughout this paper). These spectra

were binned with a minimum of (blank) counts per bin, and data outside of the 0.5-8.5

8https://heasarc.gsfc.nasa.gov/docs/suzaku/analysis/ abc/
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keV range were ignored. For HXD/PIN, the hxdpinxbpi script was used to generate

response files and background spectrum. The PIN spectrum is background-dominated,

so we grouped the data with a minimum of 3000 counts per bin. This resulted in 12 bins

over an energy range of 12-70 keV.

2.8 NuSTAR

The Nuclear Spectroscopic Telescope Array (NuSTAR) [Harrison et al., 2013] was launched

in June 2012 and became the dominant observatory for hard X-ray observations, operat-

ing in the 3-79 keV band. NuSTAR is comprised of of two co-aligned X-ray telescopes,

FPMA and FPMB, that observe a source simultaneously while carried by a three-axis-

stabilized spacecraft. The two telescopes each features a focal plane of pixel detectors

arranged in a 2x2 grid.

Typical data reduction and analysis steps as outlined in the NuSTAR Data Analy-

sis Software Guide9 were followed. We employed the standard NuSTAR data analysis

software, NuSTARDAS v1.8.0, provided within HEASOFT v6.26 along with the NuS-

TAR calibration database, CALDB v20190430. Upon downloading NuSTAR data from

HEASARC, observations are not ready for analysis and need to first be sent through

nupipeline, a script that takes the downloaded data in FITS format and produces clean,

calibrated event files. This is accomplished by applying pre-specified cleaning criteria

based on NuSTAR instrument parameters and event properties. The result is event files

that are ready for analysis in DS9,

NuSTAR observed the source on 2013 February 14 for a total time of 15.6 ks (OBSID

60061027002) and 2017 January 1 (OBSID 60201056002) for a total time of 59.8 ks.

Source spectra are extracted using circular regions in DS9 centered on NGC 1052. A

9https://heasarc.gsfc.nasa.gov/docs/nustar/analysis/nustar_swguide.pdf
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circular region with radius of 47.4” was utilized for OBSID 60061027002 along with a

radius of 87.3” for OBSID 60201056002. Background regions were then specified with

a polygon in a source-free region that is housed within the same chip as the source. Once

regions are specified, the nuproducts task is used to generate source and background

spectra.

2.9 Observation Summary

By utilizing observations from seven observatories, we observe NGC 1052 in an energy

range spanning roughly 0.4 - 100 keV. This allows us to observe the AGN in both the

soft (< 10 keV) and hard (> 10 keV) bands. In Table 1, we compile a detailed list of

each individual observation used, characterized by OBSID, corresponding observatory,

start date, and exposure time.
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Table 1: Observational details for each epoch. Observations are listed in reverse chrono-
logical order, where Epoch 1 represents the most recent observation. Epoch 0 denotes
the time-averaged Swift/BAT epoch.

Observatory OBSID or SID Start Date Epoch Exposure (ks) Instrument(s)
Swift 105-month survey - 0 1.855E4 BAT

NuSTAR 60201056002 2017 Jan. 17 1 47.03 FPMA
48.57 FPMB

XMM-Newton 0790980101 2017 Jan. 17 1
49.42 MOS1
68.23 MOS2
43.17 pn

NuSTAR 60061027002 2013 Feb. 14 2 13.39 FPMA
13.26 FPMB

XMM-Newton 0553300401 2009 Aug. 12 3
36.98 MOS1
57.85 MOS2
17.96 pn

Suzaku 702058010 2007 Feb. 16 4
78.09 XIS0+3
100.7 XIS1
201.3 PIN

XMM-Newton 0306230101 2006 Jan. 12 5
33.17 MOS1
26.89 pn

Chandra 5910 2005 Sep. 18 6 59.20 ACIS

BeppoSAX 50828001 2000 Jan. 11 7
25.73 LECS
63.69 MECS2+3
30.03 PDS

ASCA 74061000 1996 Aug. 11 8
36.59 SIS0
35.75 SIS1
38.59 GIS2
38.59 GIS3
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CHAPTER 3

METHODS AND MODELING

3.1 Single-Epoch Approach

We first explore creating a model using data from our most dominant epoch in terms of

data quality. This allows us to explore features of the X-ray spectrum of NGC 1052 to

create a comprehensive model which can later be applied to a collection of data spanning

a broader set of dates. The combined 2017 NuSTAR and XMM-Newton observations

creates an epoch that provides sensitive coverage in both the soft and hard X-ray bands,

suggesting it should be used as the singular epoch when building our model.

3.1.1 The Intrinsic Spectrum

The intrinsic X-ray spectrum of AGN can be approximated as a power law with a gradual

rolloff in the 300 keV range. We model this with the Xspec model cutoffpl, which

is defined in Equation 3.1. In this equation, Γ represents the power law photon index,

where a smaller value denotes a harder, flatter spectrum. The energy of the exponential

rolloff is defined by β which we fix at 300 keV, and K denotes the normalization.

A(E) = KE−Γexp(−E/β ) (3.1)
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Figure 5: Residual comparison for single-epoch model variations. When building the
single-epoch model, we utilize data from our most comprehensive epoch before apply-
ing our model to multi-epoch data. Each panel represents a significant change to the
base model, justified both by the reduced chi-squared values and a visualization of im-
provement on residuals when fitting the corresponding model to the single-epoch data.
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We need to consider that our source is located in a separate host galaxy, which will

contribute photoelectric absorption to partly conceal the spectrum. We therefore scale

the intrinsic spectrum with the Xspec model phabs which is defined by Equation 3.2.

In this model, NH represents the equivalent hydrogen column density (with units 1022

atoms cm−2) and σ(E) defines the photo-electric cross-section. We fix the line-of-sight

column density at NH = 2.83×1022cm−2 [HI4PI Collaboration et al., 2016], which de-

fines the expected additional absorption for NGC 1052 due to any galactic extinction.

M(E) = exp[−NHσ(E)] (3.2)

Throughout the modeling process, we consider a reduced chi-squared statistic (χ2/ν)

to justify the reliability of our models, where ν represents the number of degrees of free-

dom. Considering the modeling components cutoffpl and phabs produces a starting

fit statistic of χ2/ν = 12011.62/354.

3.1.2 Absorption Components

Previous work has found that the X-ray spectrum of NGC 1052 shows significant ab-

sorption toward the nuclear emission region. It is believed that the main contributor to

this absorption is the torus. As X-ray photons travel through the dense torus, they are

subject to both photoelectric absorption and Compton scattering. To model the neutral

absorption of the intrinsic spectrum, we use the Xspec model zpcfabs to modify the

original power law component. The zpcfabs component is defined by Equation 3.3,

and is similar to the form of Equation 3.2. Here, NH again represents the equivalent

line-of-sight absorption and σ(E) defines the photo-electric cross-section. The newly

introduced variables are z, the galactic redshift, and f , the dimensionless covering frac-
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tion which is reported as a value between 0 and 1. The covering fraction represents the

amount of the incident spectrum that is absorbed.

M(E) = f exp[−NHσ(E[1+ z])]+1− f (3.3)

When considering this neutral absorption component within the model, the fit statis-

tic is reduced to χ2/ν = 1058.48/352 (3.007). However, residuals still remain at inter-

mediate energies (1-4 keV). This is visualized within the first panel of Figure 5, which

displays the residuals present when models are fit to single-epoch data. We therefore

consider a second zpcfabs component to model these residuals, which produces an up-

dated fit statistic of χ2/ν = 965.49/350 (2.759). The residuals corresponding to the

updated version of our model are displayed within the second panel of Figure 5.

3.1.3 Extended Emission Spectrum

Residuals further show a need for a soft component strongly peaking around 1 keV. Fol-

lowing previous analysis of the X-ray spectrum of NGC 1052 [Brenneman et al., 2009]

we explore any additional extended emission contributions in our spectrum by including

an additive mekal [Mewe et al., 1985] component. The mekal component accounts for

any additional emission that may result from the host galaxy. This component allows us

to define the plasma temperature, kT , in keV.

With the inclusion of a mekal component, we observe a drastic decrease in residuals

present < 1 keV range, which is visualized in the third panel of Figure 5. This produces

an improved fit statistic of χ2/ν = 614.18/348 (1.765).
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3.1.4 Torus Reprocessing

Our model correctly accounts for line-of-sight absorption of the intrinsic X-ray spectrum

with two zpcfabs components. However, it does not yet consider the reprocessing

component present from the torus. We include borus02 [Baloković et al., 2018] as an

additive component to the original power law continuum, which allows any reprocessed

emission to be incorporated into the model. The borus02 component allows us to define

the spectrum in terms of the AGN’s inclination angle and torus covering factor. The

torus is typically assumed to be a structure with dense, anisotropic nature. However,

complexities arise when modeling such a dynamic feature. For simplicity, borus02

models the torus as a uniformly dense sphere with conical cutouts along the jet axis.

While other methods for modeling torus reprocessing are used in other works, namely

MYtorus [Murphy and Yaqoob, 2009] and BNtorus [Brightman and Nandra, 2011], we

opt to use borus02 for its inclusion of additional free parameters. Allowing variation

in crucial parameters such as the iron abundance and high energy cutoff allow borus02

to be applied to wider sample of AGN. This component considers the cosine of the in-

clination angle, which we define to be cos(θi) = 0.1736 for an inclination angle of 80◦

above the line of sight.

It is important to note that borus02 only considers scattering into the line of sight,

but does not include photons Compton scattered out of the line of sight. To incorporate

any possible extinction along the line of sight, we include the Xspec model cabs as

a multiplicative component to our powerlaw. The cabs model is defined in Equation

3.4. This is similar to the equation for phabs seen in Equation 3.2. However, σT (E)

represents the Thomson cross-section with corrections at high energies. We consider the

total column density for photons scattered out of the line of sight equal to the photons

22



scattered in. We therefore set the cabs column density, NH, to be equal to the sum of

the equivalent parameter from both neutral absorption components.

M(E) = exp[−NHσT (E)] (3.4)

With the inclusion of components modeling torus reprocessing and beam extinction,

the fit statistic is slightly reduced to χ2/ν = 479.17/346 (1.385). Residuals are im-

proved upon in the 5-10 keV range, which is visualized in the bottom panel of Figure 5.

The finalized single-epoch model takes on the following form in Xspec:

phabs(mekal +atableborus02 + zpcfabs * zpcfabs * cabs * cutoffpl)

3.2 Multi-Epoch Approach

As the model is now defined in the single-epoch setting, we can adapt our model for

multi-epoch application. Our goal is to create an environment that will allow us to

observe any possible spectral variability of NGC 1052 over the course of our 20-year

span of observations. We accomplish this by allowing specific parameters unique values

for each epoch. This differs from the default approach when applying a model to a large

amount of spectra, which only considers the leading spectrum when fitting parameters.

By freeing important parameters once per epoch, our model is allowed to vary and

accommodate spectral changes present in each distinct epoch. When we apply the model

defined in Section 3.1.4, the resulting fit statistic is χ2/ν = 5649.24/1793 (3.15).

We first consider the multiple observatories that were utilized to acquire data. We

account for a possible variation in instrumental flux calibration by including the Xspec

model constant, which considers an energy-independent multiplicative factor. NuS-

TAR has the most overlap in energy with the long-exposure BAT observation and we
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consequently consider it to be perfectly calibrated. This requires both FPMA and BAT to

hold cross-normalization constants of 1.0. Cross-normalization constants for Swift/XRT,

XMM-Newton, and Suzaku are provided in previous literature [Madsen et al., 2017] with

relation to a perfectly calibrated FPMA. However, the remainder of the cross-normalization

constants require deriving. Values for Chandra and ASCA instruments are provided

[Snowden, 2002] with relation to a perfectly calibrated SIS1. Instruments and corre-

sponding cross-normalization constants can be seen in Table 2. Consideration for flux

calibration produces a fit statistic of χ2/ν = 4044.82/1779 (2.27).

Residuals are most significant in the high-energy range of each epoch. To address

this, we designate each epoch a unique power law normalization by freeing the pa-

rameter. This allows the model to flex and accommodate changes in the high-energy

range of each epoch’s spectra. We designate a principal instrument for epochs that con-

tain observations from multiple instruments, which will each hold a free, untied value

corresponding to the powerlaw normalization parameter. We define these principal in-

struments to be NuSTAR/FPMA, XMM-Newton/MOS1, Suzaku/XIS1, ASCA/SIS0, and

BeppoSAX/LECS. The normalization for the remaining instruments is then linked to

the free normalization parameter defined by the principal instrument in their respective

epoch. This same method will follow for other parameter variations throughout this the-

sis. Swift/BAT serves as a time-averaged spectrum of the eight unique epochs. Thus, it

should hold a powerlaw normalization constant that is a numerical average of the eight

freed normalization parameters present in the model. This produces an improved fit

statistic of χ2/ν = 2284.17/1771 (1.29).

We next explore if allowing each epoch a unique value for the neutral absorption col-

umn density yields a better fit of our data, which will allow us to explore how this param-

eter varies over time. Our model contains two neutral absorption modeling components
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Table 2: List of instrumental cross-normalization constants. In each epoch, one instru-
ment is considered perfectly calibrated, denoted here with a value of 1.0.

Observatory Instrument Value Referencea

NuSTAR FPMA 1.0 —

NuSTAR FPMB free —

Swift BAT 1.0 —

Swift XRT 1.045 M17

XMM-Newton MOS1 1.02b M17

XMM-Newton MOS2 free —

XMM-Newton pn free —

Suzaku XIS0+3 0.94 M17

Suzaku XIS1 free —

Suzaku PIN 1.12 M17

Chandra ACIS 0.943 M17

ASCA SIS0 1.047 S02+M17

ASCA SIS1 free —

ASCA GIS2 free —

ASCA GIS3 free —

BeppoSAX LECS 1.0 F99

BeppoSAX MECS2+3 free —

BeppoSAX PDS 1.15 F99

Notes: a References: M17=[Madsen et al., 2017], S02=[Snowden, 2002], F99=Fiore
et al. (1999), Cookbook for BeppoSAX NFI Spectral Analysis; b Free in the epoch shared
with NuSTAR.
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Figure 6: Multi-epoch model comparison. Data is plotted for each of the individual
eight epochs in addition to the time-averaged epoch. Data is organized by observation
date from most recent observation (Epoch 1) to oldest observation (Epoch 8). Below
each epoch is a residual plot, showing which energy bins contribute most to the fit’s
chi-squared value.
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(zpcfabs), which requires us to test different combinations of parameter variation. We

test three different situations:

1. only the line-of-sight column density from the first neutral absorption component

(NH,1) varies, producing a fit statistic of χ2/ν = 2062.39/1765 (1.17),

2. only the line-of-signt column density from the second neutral absorption compo-

nent (NH,2) varies, producing a fit statistic of χ2/ν = 2100.07/1764 (1.19), and

3. both neutral column densities (NH,1 + NH,2) vary together, producing a fit statistic

of χ2/ν = 1910.13/1760 (1.085).

The third variation of this step results in the best fit, and we proceed forward with

each epoch holding a freed value for line-of-sight column densities of both neutral ab-

sorption components simultaneously. This current model will be referred to as “Model

1” for later comparison with other well-fitting models.

We need to again consider that the Swift/BAT spectrum is a time-averaged obser-

vation. To reflect this in our model, we set the values of both NH,1 and NH,2 for the

Swift/BAT epoch equal to the numerical average of the untied column densities from

the remaining eight epochs. However, an issue arises with Epoch 2 containing the lone

NuSTAR observation. A lack of data coverage in the low-energy band leads to an untied

NH,1 that cannot be constrained well. Therefore, this parameter is excluded from the

Swift/BAT average, and within Epoch 2 the column density is set to equal this average

for simplicity. This issue was not present when constraining NH,2 within Epoch 2 due to

data coverage in the energy range where the second zphabs component most effects the

model.

Our model currently features variations in line-of-sight column density from both

neutral absorbers, NH,1 and NH,2. In Section 3.1.4, we define the cabs column den-

27



Figure 7: Time variation in the line-of-sight column density. For each of the three best-
fitting models, NH values are quantified for each neutral absorption modeling compo-
nent. Each of the unique eight epochs are represented, and dashed lines represent the av-
eraged value held by the Swift/BAT epoch. In Epoch 2, NH,1 cannot be well-constrained
as a free parameter due to a lack of low-energy coverage where the first neutral absorp-
tion component dominates within the model. It is therefore not represented within this
figure, and set equal to the Swift/BAT average within the model.
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sity (NH,Comp) to be equal to the sum of the column densities from the two absorption

components. In the multi-epoch setting, this model component will now need to reflect

the newly allotted variation in column density. We accomplish this by setting NH,Comp

equal to the sum of NH,1 and NH,2 in each epoch. For the Swift/BAT epoch, we again set

the value for this parameter to be equal to the average of the varying NH,Comp from the

eight unique epochs. We then assume that the majority of molecular absorption in the

NGC 1052 spectrum is due to the presence of the torus and set the torus column density

(log NH,tor) equal to the line-of-sight column density (log NH,Comp). In the single-epoch

setting, this parameter within the borus02 model remained an untied parameter. These

updates to the model produce a fit statistic of χ2/ν = 1908.16/1759 (1.08).

We now aim to explore possible variation in the structure of the absorber over time,

parameterized by the line-of-sight covering factor. Similar to the strategy used when

exploring variation in line-of-sight column density, we test two different situations:

1. only the covering fraction from the first neutral absorber (C1) varies, producing a

fit statistic of χ2/ν = 1884.42/1754 (1.074), and

2. only the covering fraction from the second neutral absorber (C2) varies, producing

a fit statistic of χ2/ν = 1881.47/1753 (1.073).

Throughout the paper, these models will be referred to as “Model 2” and “Model 3”, re-

spectively. Model 3 produces a slightly better fit in comparison, and our finalized model

only includes variations in C2. Again, in both Model 2 and Model 3, the Swift/BAT cov-

ering fractions were considered to be an average of the free covering fractions from the

eight unique epochs. However, issues arise when considering C1 within Model 2. This

model features variation in NH,1, which previously could not be constrained when left as

a free parameter in Epoch 2. Consequently, the same issue arises when considering the

covering fraction, and the covering fraction corresponding to NH,1 can not be left free.
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Figure 8: Time variation in the covering fraction. Similar to the structure of Figure 7, C1

and C2 are quantified for the corresponding neutral absorption modeling component as
reported in Model 2 and Model 3. In Epoch 2, NH,1 could not be left as a free parameter
due to lack of low-energy coverage within that epoch. Similarly, C1 can also not be
well-constrained, and is omitted from the plot.

In Figure 7, we visualize the variation over time present in the parameters NH,1 and

NH,2 in Model 1, Model 2, and Model 3. As previously mentioned, the first neutral

column density could not be well-constrained when left as a free parameter in Epoch 2.

Therefore, it is not shown in this plot, and within the model the value is set equal to the

Swift/BAT average. The variation over time for the covering fractions for Model 2 and

Model 3 is visualized in Figure 8, where again the value for C1 in Epoch 2 cannot be left

as a free parameter.
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CHAPTER 4

DISCUSSION

4.1 The X-ray Spectrum of NGC 1052

Our modeling process and spectral analysis allows us to better constrain the geometry

of the central engine environment in NGC 1052. We find that the line-of-sight column

density varies between epochs, and likely consists of a neutral material that is best mod-

eled with two neutral absorption components. In Figure 7, we visually compare the

variations over time in column density present in all three of our best-fitting models. As

the Swift/BAT epoch for each model has a column density defined to be the average of

the free column densities from the remaining eight epochs, we can easily define an aver-

age line-of-sight column density for each of the two neutral absorbers. Our best-fitting

model (Model 3) produces average column densities of NH,1 = 3.38 × 1022 cm−2 and

NH,2 = 18.07 × 1022 cm−2.

The variation in order of magnitude between the column densities of the two neutral

absorbers is telling. It suggests that the second, more dominant absorber likely char-

acterizes the presence of the obscuring torus, while the first, more subsidiary absorber

suggests possible absorption from the AGN’s host galaxy. This is justified by the lack of

significant change over time for NH,1 as seen in Figure 7. As dense clouds come in and

out of the line-of-sight, the column density representing the presence of the dense torus

should undergo significant fluctuations as we see with NH,2. We observe a significant
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Table 3: Free parameters and 1σ errors of best-fitting models. Below the parameters that
are being quantified, the fit statistic of each model is represented, where the best-fitting
model is Model 3.

Model
Component Parameter Model 1 Model 2 Model 3

mekal
kT (keV) 0.63+0.0094

−0.0095 0.63+0.015
−0.016 0.63+0.0094

−0.0095
norm (×10−5) 2.82+0.097

−0.096 2.82+0.016
−0.016 2.81+0.098

−0.096

borus02
Γ 1.65+0.014

−0.015 1.66+0.015
−0.015 1.66+0.015

−0.015
log NH,tor 23.32 23.32 23.33
Ctor 0.80+0.053

−0.045 0.81+0.053
−0.050 0.80+0.055

−0.053

zpcfabs
NH (×1022 cm−2) 3.59 3.29 3.38
Covering Fraction 0.79+0.010

−0.012 0.80+− 0.80+0.011
−0.012

zpcfabs
NH (×1022 cm−2) 17.36 17.54 18.07
Covering Fraction 0.74+0.013

−0.014 0.76+0.020
−0.022 0.74

χ2/ν
1999.76/1841

(1.086)
1972.88/1835

(1.075)
1968.76/1834

(1.073)

increase in both NH,2 and C2 in Epoch 7 corresponding to 2000 January 11 BeppoSAX

observation date, suggesting that a cloud within the torus may have been passing through

the observational line-of-sight at that time.

In Figure 6 we visually compare the eight unique epochs, in addition to the time-

averaged epoch, and corresponding model for each in reverse chronological order. It is

evident from the plots that in the hard X-ray range, the model takes on a relatively flat

and featureless shape. Our best fitting model reports a photon index of Γ = 1.66+0.015
−0.015.

This is similar to a spectral slope representative of the Seyfert population [Ricci et al., 2017].

However, this is in contrast to previous X-ray analyses of NGC 1052, reporting values in

the range of 1.0 - 1.6 [Guainazzi and Antonelli, 1999, Osorio-Clavijo et al., 2019]. We

also observe that the expected Compton hump, which typically peaks at ∼ 30 keV, does

not have a significant presence in our model.
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In Table 3, we report the numerical values that untied parameters converge to in

our three best-fitting models with 1σ errors. The three models are able to constrain

some parameters relatively well in relation to each other. This is apparent with the

plasma temperature parameter within the mekal component, where all three models

agree (within their errors) to be 0.63 keV. This value agrees well with previous X-ray

analysis of NGC 1052 [Brenneman et al., 2009, Osorio-Clavijo et al., 2019]. Addition-

ally, all three models feature a first neutral absorber with a column density between

3.38-3.59 (×1022 cm−2) which absorbs ∼ 80% of the incident spectrum, and a more

dominant second absorber with a column density between 17.36-18.07 (×1022 cm−2)

which absorbs ∼ 74% of the spectrum. We can compare our resulting column densities

with previous NGC 1052 analysis [Weaver et al., 1999] which reports a column den-

sity corresponding to our defined NH,1 of ∼ 3-5 (×1022 cm−2) and a secondary column

density corresponding to our NH,2 of ∼ 3-5 (×1023 cm−2). Our value corresponding

to NH,1 agrees well with the previous analysis. However our model produces a slightly

lower value for our more substantial absorber, NH,2, which most likely represents the

absorption due to the presence of the torus.

In Figure 9, we visualize the geometrical configuration of NGC 1052 as defined by

our model. While Figure 1 displays the current accepted model for obscured AGN, our

approach utilizes the borus02 component which models the torus as a sphere of constant

density with conical cutouts along the jet axis. We define the angle of orientation to be

76◦ following previous work, which is detailed in Section 1.2, orienting the approaching

jet and jet axis to be closer to the line of sight of the observer. Furthermore, Model 3

reports an expected toroidal covering factor of ∼ 80% allowing us to visualize a more

dominant obscuring feature within our figure.
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Figure 9: Our modeled configuration of NGC 1052. The expected geometrical definition
of the torus is defined to be a uniformly dense sphere with conical cutouts. Model 3
reports a covering factor of ∼ 80%, allowing us to visualize the torus as being a more
dominant feature than previously illustrated.
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4.2 NGC 1052 Spectral Variability

Previous studies have shown that for AGN with relatively low accretion rates, an in-

crease in luminosity corresponds to a decrease in the photon index that is characteristic

of the emission spectrum. This notion is further explored by testing the spectral vari-

ability for 24 local AGN with low accretion rates [Connolly et al., 2016]. Their findings

suggest that a ‘harder-when-brighter’ correlation is present within the data for NGC

1052, and that the photon index can be related to the flux with a simple linear function

defined by Equation 4.1.

Γ = (−0.52 ergs−1 s)(Flux) + 2.07 (4.1)

We test this relation in application to our best-fitting model, which requires us to

modify the defined photon index. We now allow the photon index to vary once per

epoch. Corresponding luminosities are calculated with the lumin command in XSPEC

and plotted for each epoch in Figure 10, where the average luminosity held by the

Swift/BAT average is denoted by a black star. The linear equation defined in Equation

4.1 is adjusted to instead relate photon index to luminosity.

Our findings displayed in Figure 10 indicate that there is no clear relationship be-

tween photon index and luminosity within the confines of our model as previously ex-

pected for AGN with low accretion rates. However, this relationship should be further

tested by applying our best-fitting model, which allows for time variation of important

spectral features, to a large sample of AGN.
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Figure 10: Spectral variability in NGC 1052. We test the “harder-when-brighter” re-
lationship expected for low-luminosity AGN by plotting variation in luminosity as a
function of photon index. The dotted line function represents the expected linear rela-
tionship defined in literature.
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4.3 Post-Analysis Modeling Tests

Throughout the modeling process, we implement modifications to our model that test

other possible initial conditions for our finalized version. While some of these modi-

fications are complex and involve addition of new components that alter the model we

defined in Section 3.1, the majority of the tests involve simple redefining of pre-existing

parameters. The parameter changes that we explore throughout the modeling process,

but could not contribute to a better-fitting model, are as follows.

1. Different assumption for the inclination angle. The inclination angle has not

been well constrained previously, leading to minor discrepancies in the literature.

While we adopted 80◦ inclination for our borus02 spectral component, various

studies have suggested that this angle could be as low as 50◦ [Kameno et al., 2001,

Sawada-Satoh et al., 2008]. More recent work has suggested an angle as high as

86◦ [Baczko et al., 2016]. To test if a change in this angle would influence our

spectral fit, we also considered an inclination angle of 60◦, which corresponds to

cos(θi) = 0.5.

2. Freeing the high energy cutoff. When freeing the high-energy cutoff previously

defined in our model as 300 keV, the parameter converges to a significantly lower

value of Ecut = 119.7+74.1
−37.4 keV.

3. Freeing instrumental cross-normalization constants. Our finalized model utilizes

cross-normalization constants listed in Table 2 to account for differences in flux

calibrations among the various instrumentation we used. However, we also ex-

plore allowing these parameters to vary within the fit. Both NuSTAR/FPMA and

Swift/BAT are still considered perfectly calibrated and their cross-normalization

parameters remained at 1.0.
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4. Freeing log NH,tor. Our finalized model defines the log of the torus column density

to be equal to the log of the Compton scattering column density in cabs, though

we test a model where this parameter is allowed to converge to a value not tied

to the Compton scattering parameter. This results in the torus column density

converging to a value of log NH,tor= 23.101+0.031
−0.066 cm−2.

We also explore methods of characterizing the AGN accretion disk. A previously

common method of modeling is pexrav [Magdziarz and Zdziarski, 1995], which con-

siders possible Compton reflection from a neutral accretion disk. We chose to model the

neutral reflection with an updated version of this model, pexmon [Nandra et al., 2007],

which expands on pexrav by considering absorption lines for Fe Kα , Fe Kβ , and Ni

Kα . We include the model as an additive component to our original powerlaw and con-

sider the same high energy cutoff value of 300 keV that was used previously. X-ray

emissions are thought to originate from a source close to the accretion disk, so we make

the assumption that both the intrinsic powerlaw and disk component vary in a similar

manner. The disk normalization is then set to be equal to the varying power law normal-

ization.

Additionally, we test including a scaling component, kdblur [Laor, 1991], to our

disk reflection component. This allows for convolution of the pexmon component by

considering the possible relativistic influence from a rotating black hole on the nearby

accretion disk. The powerlaw dependence parameter is held at 3.0, the inner radius of

emission from the disk (ri) is set at 10.0 rg, and the outer radius (ro) is held at 400 rg

where rg = GM/c2.

While we tested considering the accretion disk at multiple stages throughout our

modeling process, it did not improve the fit statistic. Introducing these modeling com-

ponents to our best-fitting model produces a fit statistic of χ2/ν = 2045.13/1834 (1.12).
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Table 4: Supplementary observation information. These observations could not hold unique
epochs due to low exposure times and low photon count rates. The Chandra and co-added Swift
observations are compared to our best-fitting model in Section 4.4.

Observatory OBSID or SID Start Date Epoch
Exposure

(ks) Instrument(s)

Swift 00030874001 2015 Jan. 19 - 9.34 XRT
Swift 00030874016 2009 June 29 - 1.11 XRT
Swift 00030874014 2009 June 26 - 9.71 XRT
Swift 00030874007 2008 Sep. 12 - 3.77 XRT
Swift 00030874006 2008 Sep. 9 - 4.74 XRT
Swift 00030874003 2007 Aug. 4 - 2.33 XRT
Chandra 385 2009 Aug. 29 - 2.34 ACIS

We can improve on this fit by leaving ri and ro as free parameters. However, this leads

to values for these parameters that are not well constrained.

Lastly, we explore the possibility of absorption due to the presence of an ionized

material. We accomplish this by defining the secondary absorption model component as

zxipcf. While previous analysis of NGC 1052 have found success introducing ionized

absorption into their model, we find that the resulting column density (NH,2) converges

to a value far less than expected. This indicates that any additional absorption of the

spectrum is due to the presence of a neutral, not an ionized, medium.

4.4 Comparison to Additional Lower-quality Data

While we initially explored all of the available data, additional Swift/XRT and Chan-

dra observations were utilized and held unique epochs. However, these observations

were characterized by short exposure times and low photon count rates. This produced

epochs with lower-quality data, leading to corresponding models that could not be cor-

rectly fitted and in general impaired our ability to produce a well-fitting model with our
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multi-epoch approach. The Swift/XRT and Chandra observations that were ultimately

removed from our data set are listed below the double line in Table 1.

We again consider the previously removed data to explore its agreement with our

finalized model. To accomplish this, we co-add the six Swift/XRT observations to pro-

duce one observation with higher data quality. We then plot this co-added observation

and removed Chandra observation alongside the multi-epoch model comparison pro-

duced by the eight unique epochs from Model 3. This is displayed in Figure 11, where

red denotes the Swift/XRT data and blue denotes the Chandra data.

We fit Model 3 without considering the newly added data, allowing us to visualize

how these ”epochs” compare to our defined best-fitting model. While these observations

hold the same general shape as the model, residuals are seen in the low-energy range.

While the removed data lead to parameters that could not be well-constrained within the

modeling process, it is evident that our best-fitting model will agree with all available

X-ray observations of NGC 1052.

4.5 Torus Constraints Within the NGC 1052 Spectrum

We demonstrate the benefit of our multi-epoch approach by applying constraints in the

parameter space spanned by the torus column density (NH,tor) and torus covering factor

(Ctor) from the borus02 model to three different singular epochs. Epoch 7 (BeppoSAX),

Epoch 4 (Suzaku), and epoch 1 (joint NuSTAR+XMM) are chosen as the singular epochs

to demonstrate the contours of 1, 2, and 3σ parameter constraints. These epochs are

chosen for their strong coverage in both the soft and hard X-ray bands. We compare

the constraints for the three singular epochs to the constraints for the multi-epoch data

comprised of eight unique epochs in Figure 12.
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Figure 11: Model comparison to supplementary observations. We test the agreement
between Model 3 to additional data not originally considered within the modeling pro-
cess. Here, the blue spectrum represents an additional Chandra observation, while the
red spectrum represents the co-added Swift observations.
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This figure strongly suggests that the use of a large data set to employ time-varying

parameters leads to a model that is significantly better constrained when compared to a

singular epoch, even if the single epoch has exceptional data coverage.

4.6 Updated Tools for Torus Modeling

We introduce an extension to the borus set of models, borus12 [Baloković et al., 2019],

which serves as an update to the borus02 component used throughout our modeling

process. This updated table follows the same basic geometry as borus02, modeling the

torus as a uniformly dense sphere with conical cutouts along the jet axis. The primary

difference between models lies in the preferred representation of the intrinsic spectrum.

Where we consider the intrinsic portion of our spectrum to best be represented as a

powerlaw, borus12 utilizes nthcomp [Zdziarski et al., 1996, Życki et al., 1999]. There-

fore, to correctly update our model with the borus12 component, we must also replace

cutoffpl with nthcomp to update the continuum shape. This new component is de-

fined by a black-body photon distribution with a temperature of 0.05 keV. We define the

coronal electron photon temperature within borus12 to be equal to kTe/keV , the elec-

tron temperature divided by the plasma temperature, which serves as the high-energy

cutoff we previously define as 300 keV in our powerlaw model.

This new approach to modeling the NGC 1052 spectrum fits relatively well, produc-

ing a fit statistic of χ2/ν = 2000.57/1758 (1.14). Average line-of-sight column densities

are calculated to be NH,1 = 4.14 (×1022 cm−2) and NH,2 = 29.14 (×1022 cm−2), sug-

gesting a much stronger presence of spectral absorption due to the obscuring torus. A

significant change emerges in the toroidal covering factor, with the inclusion of borus12

suggesting a factor as low as ∼ 56 %. This is a considerable decrease from the covering

factor of 80 % produced by Model 3. However, it is important to note that choosing
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Figure 12: Contour plots comparing NH,tor amd Ctor. Constraints in the parameter space
for the two parameters are plotted based on the borus02 model applied to single-epoch
and multi-epoch data. Contours show 1, 2, and 3σ constraints going from darkest to
lightest colors. The first three panels show single epoch data for BeppoSAX, Suzaku,
and joint XMM and NuSTAR observations taken in 2001, 2007, and 2017, respectively.
The rightmost panel displays constraints from the joint modeling of eight epochs.

.
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specific components to utilize when modeling our spectra in addition to any underlying

assumptions that are made when using modeling components may have significant im-

pact on constraints of parameters. This introduces a factor of uncertainty that should be

quantified in any future analysis.
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CHAPTER 5

CONCLUSION

Our multi-epoch approach to modeling the X-ray spectrum of NGC 1052 and utilization

of years of data proved useful in demonstrating the long-term variability of a heavily

obscured AGN’s spectrum. Organizing observations by date into distinct epochs al-

lowed us to create a model that was sensitive to possible spectral variations that may

have occured over time. As previously mentioned, this allows us to better constrain the

obscuring nature of NGC 1052 by quantifying specific parameters such as the neutral

absorption column densities and covering fraction.

Our model suggests that the spectrum of NGC 1052 can best be explained with the

presence of two neutral absorption components, where the more dominant of the two

represents obscuration from the torus, while the second component represents galactic

absorption from the AGN’s host galaxy. While these parameters were allowed to vary

throughout the model, we observe average line-of-sight column densities from Model 3

to be NH,1 = 3.38 × 1022 cm−2 and NH,2 = 18.07 × 1022 cm−2.

Our approach allows us to effectively constrain properties of the torus. Our analysis

suggests that the torus of NGC 1052 features a dominant covering factor of ∼80%,

with an average line-of-sight column density of log NH,tor = 23.10 cm−2. By visualizing

constraints in the parameter space of the torus column density versus the covering factor

in Figure 12, we demonstrate that our multi-epoch approach with a varying model is
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significantly more beneficial than only utilizing singular epochs, regardless of how much

energy coverage those singular epochs provide.
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