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ABSTRACT 

 

 

 

PALYNOLOGICAL INVESTIGATIONS OF AGROPASTORALISM AND 

ECOLOGICAL CHANGE AT LA 20,000, NEW MEXICO 

 

 

 

August 2018 

 

 

Anya Gruber, B.A., Smith College 

M.A., University of Massachusetts, Boston 

 

 

Directed by Heather B. Trigg 

 

 How did Spanish colonialism alter the landscape of north-central New Mexico? 

Agropastoral practices imported by Spanish colonists made indelible impacts on an 

anthropogenic landscape already shaped by hundreds of years of Pueblo agriculture. 

However, the precise nature of these changes is poorly understood. This project uses two 

sets of archaeological pollen data from LA 20,000, a Spanish rancho in New Mexico, to 

demonstrate how 17th century agriculture and animal husbandry made geographically 

specific, multifaceted changes to the environment. First, patterns analyzed from a pollen 

column illuminates fluctuations in plant communities over time, indicating localized 

ecological shifts. Second, sediments collected from 17th century deposits across the site 

characterize the nature of agriculture and animal husbandry at LA 20,000.  
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CHAPTER ONE 

INTRODUCTION 

 

 

In 1598, a band of colonists led by don Juan de Oñate journeyed north from Santa 

Barbara, New Spain, to found the New Mexico Colony. In this remote settlement, 

separated by a forbidding landscape from the core of Spanish influence in the Americas, 

a distinct New Mexican identity emerged (Jenks 2017:213). Informed by interaction with 

Native peoples, a decades-long sojourn in New Spain, and a desire to uphold Iberian 

traditions, this distinctly colonial New Mexican cultural landscape, in turn, shaped the 

physical landscape.  

This project uses archaeological pollen data from LA 20,000, a Spanish estancia, 

or small livestock ranch (Trigg 1999:44), located in La Cienega, New Mexico, to 

demonstrate how 17th-century Pueblo and Spanish agriculture made long-term, 

multifaceted changes to the environment. There are two main parts to this project. The 

first part uses data collected from a pollen column to understand fluctuations in plant 

communities in response to the human activities that were taking place on and near the 

site. The second part of this project uses soil samples collected stratigraphically from 

open excavation units in the field season of 2017 at LA 20,000 to more precisely 

understand the nature of agropastoral practices on the site.  
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 LA 20,000, also known as the Sanchez site, typifies the early Spanish colonial 

ranch. This site is located about 19 km southwest of New Mexico’s capital, Santa Fe, and 

about 5.5 km from the 17th-century Pueblo village La Cienega (Trigg 1999:84; Figure 1). 

LA 20,000 was occupied between A.D. 1630 and 1680 with no known subsequent 

occupation and is considered the most complex and complete early colonial estancia in 

New Mexico (Trigg 2017:1). The site was first excavated in the 1980s and 1990s by Mr. 

David H. Snow and Dr. Marianne L. Stoller from Colorado College. In the 2010s, 

excavations at LA 20,000 came under the direction of Dr. Heather Trigg from the 

University of Massachusetts Boston.   

 

 

Figure 1. Map of archaeological sites near LA 20,000.  Image adapted from Edwards 

(2015).  
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 Archaeopalynology—the analysis of pollen deposits in the archaeological 

record—is a suitable methodology for investigating the environmental impacts of Spanish 

colonialism in New Mexico for a number of reasons. First, pollen analysis provides a 

record of environmental change over time. Palynological patterns transcend the 

prehistory/history divide which has needlessly separated the ecological impacts of 

indigenous and European inhabitants (Lightfoot 1995). Archaeopalynology is also useful 

in environmental reconstruction (Traverse 2008:2) because it allows one to track the 

changing populations of a variety of taxa over a long period of time. The relationships 

between species, their rise, and their decline provides invaluable information about the 

nature of past landscapes. For example, it is possible to use pollen analysis to discern 

whether a given site was more like a grassland or a riparian forest in the past (Hevly 

1981:41).  

 The samples for this study were collected in two separate field seasons: 2015 and 

2017. Each set of data addresses a separate suite of questions. The 2015 samples were 

collected as a pollen column from unit G, on the southern edge of the main site. Here, the 

2015-G patterns are comparatively analyzed alongside data collected by Edwards (2015) 

from a core taken at the nearby Leonora Curtin Wetland Preserve in order to understand 

how the local environment immediately surrounding LA 20,000 compared to the regional 

patterns.  

  The second set of samples was collected during the 2017 field season from six 

layers in four different excavation units. Each sample was collected from a stratigraphic 

layer dating to the period of occupation at the site, A.D. 1630-1680. The data 

extrapolated from these samples complement the 2015-G profile by elucidating highly 
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localized ecological patterns directly on the site. Rare agricultural taxa constitute strong 

evidence for the cultivation of cereal crops.   

 The most landscape-modifying practice undertaken by Pueblo agriculturalists was 

the implementation of fields for maize agriculture, creating some of the oldest identified 

agricultural fields in what is now the United States. Pueblo agricultural technologies 

made scientifically observable changes to the environment in nutrient level and soil 

quality (Homburg et al. 2005:661). When colonists settled in the region, they brought 

with them not just different crops, but a distinctive suite of practices which shaped on the 

character of the landscape.  

 There were economic and social motivations for the implementation of a 

European-style agropastoral complex. The Spanish—not only in New Mexico, but across 

the Americas—focused on controlling the land they settled in order to access the raw 

materials and resources that were valuable to the Spanish Crown in the colonial 

mercantile economy, such as metal and sugar (Deagan 1996:6). Furthermore, tracts of 

land were required to maintain flocks of sheep, the most economically important animal 

imported by the Spanish, though herds of cattle were also kept. Colonial New Mexico 

had a thriving textile industry, bolstered by the production of wool (Trigg 2005:99).  

 The desire for European cereals was a motivating factor in the development of 

Iberian-style agriculture. Wheat (Triticum aestivum) was a defining aspect of Spanish 

cultural identity. Religion was at the core of Spanish culture, and communion wafers 

made from wheat flour were crucial to Catholic ritual practices (Trigg 2005:128). As 

wheat was infrequently available, maize (Zea mays) or barley (Hordeum vulgare) were 

often substituted for communion wafers, though it was far less desirable (Kessell 
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1995:340).  Furthermore, the consumption of European grain was an ethnic and status 

marker, as bread was expensive and difficult to come by (Candau et al. 1994:69; Trigg 

2005:128). Indeed, wheat and other Old World crops were so important that the Spanish 

believed they had a moral obligation to maintain their European diet, and that without it, 

they lost part of their identity (Super 1988:38).  

 It has been demonstrated that food and identity are closely linked. Archaeologists 

in many contexts across the world have used a number of methodologies to understand 

how humans have used food, food choice, and cuisine to assert social, cultural, and ethnic 

identities (Allard 2015; Bowes 2011; Logan et al. 2012; Pilcher 1996; Popper 2016; 

Rodríguez-Alegría 2005; Super 2002; Trigg 2004). For example, in a project at Neolithic 

Çatalhöyük, Turkey, Atalay and Hastorf (2006:285) argue that food procurement and 

preparation is the “ultimate habitus practice”. Food is an intimate part of daily life. The 

way that cultures define cuisine and edibility is closely tied to identity at a personal and 

performative scale, as eating is central to socialization, beginning at a young age (Atalay 

and Hastorf 2006:284). The centrality of food choice in the formation of identity is an 

important facet of exploration when understanding the importation of agropastoral 

regimes in New Mexico. 

 Spanish and Pueblo agricultural regimes, informed by cultural identity, altered the 

physical landscape over the course of centuries. Understanding human-environment 

relationships is a fundamental aspect of archaeological research, particularly in colonial 

contexts, where the landscape becomes imbued with social and economic significance as 

cultures interact. In New Mexico, a semi-arid region with little rainfall (Scurlock 

1998:11), it could be difficult at times to survive the harsh environment. Therefore, 
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understanding environmental fluctuations and ecological processes of the past can 

illuminate the role of human action and agency within the dynamic landscape of New 

Mexico.   

 In the chapters to follow, I discuss the settlement history of New Mexico, 

focusing on the greater Santa Fe region. Then, I describe the ecozones characteristic of 

the region, with an emphasis on the physical environment of LA 20,000. Next, I define 

the methodological aspect of this project and the lab analysis portion. Then, I describe the 

results of the pollen analysis. In the penultimate chapter, I offer interpretations of the 

data. In the final chapter, I offer ongoing research possibilities and discuss the wider 

significance of this project.  
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CHAPTER TWO 

SETTLEMENT HISTORY 

 

 

 

The landscape of north-central New Mexico is characterized by the Rio Grande 

river, which runs approximately 1,200 km from the mountains of Colorado to the U.S.-

Mexico border (Phillips et al. 2003:1). Historically, the Rio Grande provided the 

American Southwest with much of its aquatic resources, and many settlements were 

established along its banks (Porter 2011:ix).  

 The Southwest had been populated by diverse indigenous communities for many 

centuries prior to the arrival of European settlers. Ancestral Pueblo history is divided into 

different eras with corresponding archaeological signatures, and numerous projects have 

undertaken the task of understanding Pueblo history through settlement patterns (Adams 

and Duff 2004; Adler 1996; Barrett 2002; Liebmann et al. 2005; Liebmann and Preucel 

2007; Van West 2016). This study focuses on the eras comprising the end of the Rio 

Grande Classic period (A.D. 1325-1598) through the Late Colonial period (A.D. 1692-

1848; Edwards 2015:20). 
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Pueblo History and Archaeology 

 Before approximately the 12th century, most indigenous communities in the Rio 

Grande region lived in “provinces,” defined as socially hierarchical groups running 

independent economies (Adler 2016:4). By the 15th and 16th centuries, communities 

were often organized according to clan, based on lineage from a common ancestor. In 

other communities, kinship groups were grouped by moieties, in which people were 

divided into dual categories, such as Summer and Winter, or South and North (Kessell 

2012:11).  

Pueblo groups are associated with the area they inhabit, e.g., Cochiti Pueblo, 

Jemez Pueblo, or Northern Tiwa. “The Pueblo” were far from a single, homogeneous 

group, as there was significant variation in not only language but traditions and cultural 

affiliation (Liebmann 2012:30). At the beginning of the 17th century, Spanish documents 

indicated the existence of approximately 100 Pueblo settlements, speaking a diverse array 

of dialects and languages (Barrett 2002:1; Figure 2).   

 Maize and squash seeds were introduced from trade trails originating in 

Mesoamerica by 1500 B.C. (Kessell 2012:9), but at that point, hunting and foraging were 

the primary methods of food procurement. The structure of Pueblo society began to 

change in the 13th and 14th centuries when agriculture intensified and population 

increased. Local production of pottery and the construction of kivas became more 

widespread (Snow 1990:290–291). The kachina belief system, characterized by multi-

formed ancestor spirits such as the Sun Father and Earth Mother, was introduced from the 

south and became widespread around 400 years prior to the late 16th-century appearance 
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of the Spanish, who ultimately suppressed the adherence of kachinas (Kessell 2012:11–

12).   

Pueblo architecture is characterized by clusters of earth-and-stone dwellings 

(Kessell 1997:46), although there were also large, multi-story cliff dwellings, adobe 

structures, and villages built from rock which still stand today (Cordell and McBrinn 

2016:19–21). Some of the most well-known and best-preserved “great houses” built 

during the Bonito Phase (A.D. 860-1140) still remain at Chaco Canyon in northwestern 

New Mexico (Wills and Dorshow 2012:138).   

 

 

Figure 2. Pueblo language groups (Kessell 1997:47).  
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Extensive roadways are another notable aspect of Pueblo architecture. Ancestral 

Pueblo communities maintained thriving trade connections with many other Native 

communities across North America, particularly with Plains tribes. These relationships 

directly supported Pueblo food supplies, providing communities in the Southwest with 

goods such as bison fat and meat in exchange for maize (Spielmann et al. 1990:746–747).  

The Spanish in New Mexico 

 In September 1595, a petition in Zacatecas, Mexico, appointed don Juan de Oñate 

to venture northward into what is now the American Southwest to establish colonies on 

behalf of the Spanish Crown (Hammond and Rey 1953:42). Other groups of Spanish 

colonists originating in Mexico (then known as New Spain) had attempted to establish 

permanent settlements in New Mexico previously, but were largely unsuccessful (Barrett 

2002:6). In 1598, colonists were deployed from Zacatecas, a silver mining town, in 

search of mineral wealth (Figure 3). However, they were not successful at finding 

deposits with easily obtainable silver in New Mexico (Trigg 2005:41).  

 Though the Southwest did not offer these particularly valued resources, 

individuals continued occupation and accumulated landholdings in order to gain higher 

social status granted by the Spanish Crown (Trigg 2005:41). Furthermore, the Spanish 

Crown was interested in expanding its territories as other superpowers including France, 

England, the Netherlands, and Russia eyed the Americas (Trigg 1999:11). At least eleven 

private estates and about twenty-five missions had been built in New Mexico by the mid-

1640s. Most of these establishments were concentrated in the greater Rio Grande Valley 

region (Ivey 1994:78). Missions were particularly important and well-funded because 
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Spain was piously Catholic and had a strong interest in converting the Native peoples of 

the Americas (Trigg 1999:12).  

 The colonial New Mexican economy relied on the importation of supplies from 

caravans traveling north from Mexico (Trigg 2017:4). These supplies were particularly 

important during the 1670s, when the colonies were plagued by a series of famines. Food 

shortages caused major problems for indigenous and Spanish communities alike (Ivey 

1994:83). 

 

 

Figure 3. Map of the American Southwest and Northern Mexico (Trigg 2005:4). 
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 Historic documents suggest the Spanish were impressed with Puebloan 

architecture (Barrett 2002:8). The Spanish distinguished the agricultural, sedentary 

Pueblo from the “barbaric” nomadic tribes they associated with wilderness, including the 

Apache, Teya, and Querecho (Kenner 1969:8). Considering them industrious, the Spanish 

Crown commanded to proselytize rather than enslave the Pueblo (Kessell 1997:46).  

 As the Spanish perceived a dearth of natural resources, they eventually began to 

exploit the Pueblo themselves for labor and goods, forcing them to pay tribute in the form 

of material goods, land, and labor (Kessell 1997:50). By 1600, Spanish landowners 

demanded two thousand fanegas (each equal to approximately 2.6 bushels) of maize from 

Pueblo households biannually as encomienda tribute. Later, cotton and wool blankets 

were added to tribute requirements (Snow 1983:350). 

 Since most of the early settlers to New Mexico were born and raised in the 

Americas, their relationship to Spain and its traditions were different from those settlers 

who had been born in Europe. This was reflected in the colonial diet; Mediterranean 

foods such as wheat bread, olive oil, and wine remained desirable, but New World items 

such as maize and peppers had been incorporated into the diet (Trigg 2005:106).   

 This desire for Iberian cuisine informed the Spanish introduction of European-

style land modification and crop cultivation. Areas of intensive Spanish settlements 

depended on the availability of irrigable land for agricultural production. This was 

arguably the most important factor influencing locations of settlement. Colonists 

depended on the availability of irrigable land in order to produce the volume of food 

necessary to sustain their villages. The Spanish colonists in New Mexico, at the request 

of the Spanish Crown, implemented a number of land regimes which consolidated the 
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populations of New Mexico and displaced huge numbers of Pueblo inhabitants 

(Liebmann 2012:31).   

The influx of Spanish colonists also severely disrupted the social ties among 

indigenous societies throughout the Southwest. Prior to colonization, the Pueblo 

frequently traded with seasonally mobile Plains tribes, including the ancestral Apache, 

Ute, and Navajo. The introduction of Spanish goods, particularly livestock, replaced and 

devalued trade goods made from hunted bison. These actions increased hostilities 

between the Pueblo and the Plains peoples, leading to violence and destruction of Pueblo 

communities (Liebmann 2012:42).  

 

LA 20,000: History and Archaeology 

 LA 20,000 was first excavated in the spring of 1980 when 17th-century material 

was recovered during trenching for the construction of a gas line. Following initial 

excavations by archaeologists at the Museum of New Mexico’s Lab of Anthropology, the 

site came under the direction of Dr. Marianne Stoller and Mr. David H. Snow, assisted by 

students from Colorado College. Stoller and Snow conducted a total of 44 weeks of 

excavations from 1980 to 1992 until the site was purchased and donated to El Rancho de 

las Golondrinas, a living history museum. The upper course of a cobblestone footing was 

recovered in 1982, which was the first sign of an architectural footprint at the site (Snow 

1994:3).  

 Snow and Stoller described three main components of LA 20,000; the house 

(Units A and E), barn (Unit B), and corral (Units C and D). Excavations throughout the 
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1980s described the extent of Unit A, including multiple individual rooms. An horno, or 

bread oven, was excavated during the 1988 and 1989 field seasons. Unit B and Unit C are 

defined by a series of basalt wall footings. Excavations in 1991 and 1992 in Unit D, on 

the easternmost edge of the site, revealed a sequence of parallel basaltic rock footings and 

stone-and-mortar columns surrounded by ash and burnt material, likely deposited in 1680 

during the Pueblo Revolt (Snow 1994:5–9).  

 Since 2014, excavations at LA 20,000 have been directed by Dr. Heather Trigg 

with support from the National Science Foundation (Trigg 2017:3). The most recent field 

seasons have focused on further exploring and defining the extent of the site’s 

architectural footprint, particularly the interior walls (Trigg 2017:9).  

 The material culture recovered from the site has supported the interpretation that 

LA 20,000 was culturally pluralistic, with people of diverse ethnic, racial, and cultural 

backgrounds inhabiting the site. Based on cooking implements and archaeobotanical 

evidence, the food prepared at the site likely had colonial and Pueblo influences, like 

many other settlements housing people of indigenous and Spanish descent. Pueblo-made 

ceramics, including soup plates (a form introduced by the Spanish), comales (griddles), a 

few manos and one metate, as well as Mexican-made majolica and olive jar fragments 

have been found at the site (Trigg 2017:12). This material evidence is relevant to 

palynological interpretation. It illuminates the varied demand for certain food items and 

ingredients, which are the reflected in the pollen record.  
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CHAPTER THREE 

ECOLOGICAL AND AGRICULTURAL HISTORY 

 

 

 

 

 Pollen enters the archaeological record in a variety of ways depending on the 

species and the overall environmental context. Therefore, it is important to understand the 

vegetation patterns in the environmental zones surrounding LA 20,000 and wider La 

Cienega before interpreting palynological data. New Mexico hosts diverse environments 

with a wide variety of plants and animals. There are a few main ecological zones in 

north-central New Mexico. These zones roughly include the cottonwood bosque, pinyon-

juniper forest, sagebrush steppe, and mixed conifer forests. Each of these areas have 

different weather and climatic patterns, providing plants, animals, and humans with 

various habitats and natural resources (Edwards 2015:12). 

 

The Physical Environment of La Cienega 

The area surrounding LA 20,000 looks different now than it did in the 17th 

century. The modern landscape is dry with no flowing water directly on the site. The 

vegetation on and near the site today includes saltbush (Atriplex sp.), rabbitbrush 

(Chrysothamnus sp.), juniper (Juniperus spp.), cottonwood (Populus fremontii), willow 
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(Salix spp.), mallow (Sphaeralcea sp.), groundcherry (Physalis sp.), several species of 

cactus (Opuntia spp.), Siberian elm (Ulmus pumila), and Russian olive (Elaeagnus 

angustifolia). There is a slope to the north of the site, which has influenced erosion and 

deposition patterns of sediment on the site itself.   

 In the past, this site was much wetter, with a perennial stream known as La 

Cienega creek fed by a nearby spring. Modern demand for water associated with 

increased population in this area of New Mexico has resulted in a lower water table 

(Johnson et al. 2015:61). Only recently has this stream begun to run dry; as recently as 

the 1990s it still appeared after periods of rainfall (Trigg 1999:86). Geomorphological 

analysis conducted by Snow in 1995 suggested that the land immediately surrounding LA 

20,000 in the 17th century may have been quite wet, perhaps even too marshy for crops 

(Trigg 199:86).  

The Leonora Curtin Wetland Preserve, also located in La Cienega, is a riparian 

bosque ecozone (Edwards 2015:13) characterized by plants such as willow and horsetail 

(Equisetum spp.). Botanists have worked to return the preserve to its “natural” state with 

native plants, insects and wildlife (Hillerman 2009:151-152), though many invasive 

species such as Russian olive and Siberian elm remain. The Leonora Curtin Wetland 

Preserve is fed by the El Dorado buried valley at the base of the Ancha aquifer which, 

despite yearly fluctuations in water level, has continued to feed this marshy area (Johnson 

et al. 2015:2). Several dams across the preserve have created ponds out of previously 

flowing streams (Edwards 2015:42).  
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Environmental Zones of New Mexico 

 

 The greater Rio Grande Valley area is home to four major ecological zones, each 

with its own distinct plant communities and climatic conditions: the cottonwood bosque; 

pinyon-juniper forest; sagebrush steppe; and mixed conifer forests. The differences in the 

climates of each zone can be attributed to elevation, intensity of human settlement, and 

average rainfall and other weather patterns, among other factors (Edwards 2015:12).  

 The forested riparian zone along the banks of the Rio Grande is known as the 

bosque (Molles et al. 1998:750). The bosque is characterized by cottonwood, quaking 

aspen (Populus tremuloides), willow, and birch (Betula sp.) (Scurlock 1998). Riverine 

zones rely on groundwater and flowing streams for a constant supply of moisture, which 

cottonwoods and other members of the Populus genus prefer (Bhattacharjee et al. 

2006:691). In the past, the banks of the Rio Grande flooded the surrounding bosque after 

spring brought rising temperatures. However, 20th-century levees and dams have largely 

stopped this formerly seasonal rise in water levels. Because the plant communities had 

learned to expect regular episodes of flooding for centuries (Howe and Knopf 1991:218), 

these modified patterns have diminished the ability of cottonwood and willow trees to 

thrive in their usual habitat (Molles et al. 1998:749).  

 The loss of cottonwood-willow stands has been further impacted by the late 19th-

century proliferation of salt cedar (Tamarisk sp.), an invasive species. Salt cedar has 

colonized the bosque and limited the habitat ranges of cottonwoods and willows (Ellis et 

al. 1997:13). Alongside salt cedar and invasive Russian olive, common understory shrubs 

of the bosque include the seepwillow (Baccharis salicina), coyote willow (Salix exigua), 

and false indigo bush (Amorpha fruticosa) (Howe and Knopf 1991:219). The coniferous 
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woodlands of New Mexico are primarily pinyon-juniper forests found at higher 

elevations and farther from flowing water (Dick-Peddie 1999:87). Typically, pinyon-

juniper woodlands are found at elevations of 1,500–2,500 m (Huffman et al. 2008:2097) 

on mountainsides and mesas (Dick-Peddie 1999:88).  

 Vegetation patterns vary strongly according to elevation. Lower, drier elevations 

are dominated by juniper species, while higher slopes and peaks are dominated by 

ponderosa pine (Pinus ponderosa) (Huffman et al. 2008:2097–2098). Vegetation at the 

pinyon-juniper woodlands tend to be more widely spaced than those at higher elevations, 

where trees grow closer together. Areas with sparse tree growth amid low-lying grasses 

and shrubs at the edge of grasslands are known as transitional savanna zones (Dick-

Peddie 1999:87).  

 Mixed grassland steppe, dominated by sagebrush (Artemisia tridentata), is 

another important environmental zone in Northwestern New Mexico. Sagebrush steppe is 

often found along the boundaries between grasslands and pinyon-juniper woodland 

(Dick-Peddie 1999:88–90), growing alongside other species including Mexican cliffrose 

(Purshia mexicana) and Apache plume (Fallugia paradoxa) (Huffman et al. 2008:2099). 

Sagebrush is also found in fallow and abandoned fields along with other weedy grasses 

and shrubs (Homburg et al. 2005:669). Wild fire patterns, combined with the historic 

introduction of livestock grazing, strongly affect the fluctuating boundaries between 

mixed sagebrush grasslands and the pinyon-juniper woodlands. Contemporary studies 

using dendrochronology and palynology have suggested that wild fires and animal 

grazing have contributed to the overall expansion of the sagebrush steppe across New 

Mexico (Miller and Rose 1999:550).  
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Forests at the highest elevations primarily consist of ponderosa pine trees (P. 

ponderosa) (Figure 4). Douglas fir (Pseudotsuga menziesii) and Engelmann spruce 

(Picea engelmannii) are also common in these mountainous zones, depending on the 

elevation. Ponderosa pines prefer 850-1,300 m. At mid-elevations, Douglas fir 

dominates, and at the highest elevations—approximately 2,000 m—spruce can be found 

in abundance (Pierce et al. 2004:88). These species prefer moister soils than the semi-arid 

zones of the pinyon-juniper forests and sagebrush grasslands, and cooler temperatures 

than riparian zones (Homburg et al. 2005:669). Like the pinyon-juniper zones, woodlands 

dominated by fir and ponderosa pine have suffered habitat loss due to increased wild fire 

damage as well as erosion due to animal grazing, though studies have also suggested that 

the increase in global temperature over the last century has also detrimentally affected the 

growth of ponderosa pines and other high-elevation conifers (Pierce et al. 2004:87–88). 

 

 

Figure 4. Mixed-conifer stands at Bandelier National Monument. Photo by the author.  

 

Figure 6. Mixed-conifer stands at an elevation of approximately 1,500 m at Bandelier National 

Monument, New Mexico.  
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Pueblo Agriculture and Ethnobotany  

 

 Though ancestral Pueblo communities diverged in language and customs, 

agricultural production was a common interest across the Southwest (Vlasich 2005:xiii), 

with maize being the most important staple crop. In addition to comprising 70-80% of the 

diet (Snow 1990:289), maize was an important source of economic income as a trade 

product as early as the 10th century (Van West 2016:216).  

 Since maize cultivation requires water, a precious resource, the Pueblo developed 

a number of water control strategies which made agriculture possible. Agricultural 

terraces captured the sporadic summer rainfall through a series of upstream damming 

systems. There is evidence that this type of technology was used as early as 500 B.C. in 

the American Southwest (Sandor et al. 1990:71). This system required modification of 

the existing landscape, including altering gradients and the direction of streams. “Dry 

farming” utilized mountain run-off or water catchment to irrigate. This system did not 

require heavy modification of existing landforms (Woosley 1980:318). Despite the 

development of water control technologies, droughts were still a serious problem in this 

region and, as has been suggested by some researchers, may have contributed to the 

abandonment of numerous communities in both pre-colonial and colonial periods 

(Chavez 2006:21).   

 Maize appeared in the American Southwest by approximately 2100 B.C. (Reed 

and Geib 2013:103) and is considered the earliest staple crop for ancestral Pueblo 

populations (Cordell et al. 2001), as stable isotope analysis suggests that maize was a 

major component of the diet by at least 400 B.C. (Reed and Geib 2013:103).  

Palynological and macrobotanical analysis has been used extensively in New Mexico in 
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order to trace the introduction and development of maize agriculture in the region 

(Benson et al. 2003; Benson et al. 2009; Hall 2010).  

 In addition to maize, the Pueblo raised beans (Phaseolus vulgaris) and squash 

(Cucurbita spp.) on a smaller, horticultural scale. Wild plants such as goosefoot 

(Chenopodium spp.) and prickly pear cactus (Opuntia spp.) were also important 

components of the Pueblo diet (Cordell and McBrinn 2016:19).  People ate the edible 

inner bark of ponderosa pine trees, though that was possibly consumed only during 

famines (Swetnam 1984).  

 

Spanish Agriculture and Ethnobotany 

 The most visible Spanish alteration to the landscape of New Mexico was the 

introduction of plants and animals including cattle (Bos taurus), sheep (Ovis aries), and 

Old World cereal grains including wheat and barley (Jones 2015:1698). Old World 

grains, particularly wheat, were highly prized by the Spanish, but required a significant 

amount of water for irrigation, which placed a huge demand on limited resources 

(MacCameron 1994:28). Due to the difficulty of producing wheat, the Spanish were left 

with the more widely-available maize. This is corroborated by the presence of Pueblo 

cooking implements associated with maize consumption on Spanish sites, including LA 

20,000 (Trigg 2017:12), as well as written documents which indicate the wider 

availability of maize than wheat (Knaut 2015:62–63).   

 Macrobotanical, palynological, and documentary evidence have demonstrated that 

the Spanish colonial diet included peas, peaches, apricots, cabbage, onion, lettuce, 
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peppers, barley, cantaloupe, garlic, and watermelon, among other vegetables, fruits, and 

herbs (Trigg 2005:105). Plants such as chamomile, rue, marshmallow, and dill were used 

for medicinal purposes (Trigg 1999:202). When supply caravans traveled north to New 

Mexico from Mexico, traders frequently brought additional stores of food (Ivey 1994:81). 

Some herbs and vegetables they brought included raisins, olives, peppers, capers, 

rosemary, hazelnuts, sesame, and penny-royal (Trigg 1999:202).  

 Animal husbandry was also a critical aspect to the economy in colonial New 

Mexico. Documents detailing the first colonists’ stock of good show that they brought 

both ganador menor—smaller animals including sheep, goats and pigs—as well as 

ganador mayor—larger animals including cattle, mules, and horses (Trigg 1999:194). 

Sheep were of particular importance in 17th-century New Mexico (MacCameron 

1994:22).  

The economic potential for trading animal products, such as wool, leather, tallow, 

and milk in Spain’s colonial mercantilist economy as part of a thriving textile industry 

were major motivations for the importation of the European-style agropastoral complex, 

beyond the use of these mammals for food (Trigg 2005:99).  The archaeological evidence 

of animal husbandry on estancias like LA 20,000 is plentiful, even though written 

records seldom allude to livestock production in rural areas (Trigg 1999:196). 

 Colonists also believed the green expanses they described in written documents 

were best put to use by grazing sheep. In the 1580s, the earliest years of Spanish 

exploration in the American Southwest, observers in the Chamuscado-Rodriquez and 

Espejo expeditions described the landscape as “lush grasslands” and “untouched 

pastures” (MacCameron 1994:22). Quickly after the introduction of domesticated 
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herbivores, however, many of these formerly lush fields were denuded by herds of 

herbivores. This was a common phenomenon across the Spanish Americas. For example, 

before the New Mexico colony was established, even small flocks of sheep in Mexico 

swiftly consumed the grasses in designated pasture land. As pasture lands shrank, sheep 

began to decimate wild grasslands, exacerbated as sheep populations increased (Melville 

1990:31). As Melville (1990) noted, in the Valle de Mezquital, Mexico, the introduction 

of Old World domesticated livestock contributed to the alteration of a grassy landscape 

into an eroded expanse. The overgrazing of sheep in many areas in and around the Valle 

de Mezquital made the soil infertile for agriculture, suitable only for the continued 

grazing of sheep despite the deleterious ecological effects (Melville 1990:31–32).  

 Just as indigenous agriculturalists had implemented water control technology, 

colonists also required methods of guiding water to their fields. As agricultural 

production grew, the Spanish introduced a number of irrigation projects including flumes, 

dams, and movable wooden ditch gates. In the 17th and 18th centuries, the Spanish built 

irrigation channeling allowing the allocation of water among separate properties, called 

acequias (Crawford 1993:xi; Wise and Crooks 2012:563). These waterways were 

inspired by technologies introduced to Spain in the centuries before by Muslim influence 

in Granada, Valencia, and Murcia. Since governing bodies in New Mexico differed from 

those on the Iberian Peninsula, the acequia canal system in the New World was not 

identical in form or construction as Spain’s, but the general function was replicated 

(Clark 1987:12).  

Colonists also introduced metal European tools, including hoes and shovels 

(Quintana 1990:289), but these implements did not immediately or completely overtake 
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indigenous agricultural tools generally made from wood (Dunmire 2004:152; Rodríguez-

Alegría 2008).  The Andalusian scratch plow (Kessell 2013:7) was another notable 

contribution from the Iberian agricultural complex. The scratch plow was built from iron, 

wood, or steel, and cut into the ground about 6 inches deep, eroding the soil more 

significantly than was possible with Pueblo tools but less than the deep cutting plows 

used elsewhere in the New World, particularly in New England (MacCameron 1994:25–

26). The scratch plow soon became ubiquitous across New Mexico (Kessell 2013:7). 

Overall, the most significant aspects of Spanish environmental colonialism are the 

introduction of animal husbandry and the intense desire for wheat agriculture. These 

importations, collectively known as the Iberian agropastral complex had long-term 

implications on the environment and culture of New Mexico 
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CHAPTER FOUR 

METHODS 

  

 

 

 

 

 Pollen analysis is useful in understanding long-term changes to the land because it 

provides a profile of vegetation over time, illuminating how environmental conditions 

fluctuate throughout history. This study uses pollen diachronically and synchronically. 

First, pollen profiles are used to characterize how Pueblo and Spanish land-use practices 

made long-term changes to the local landscape within the context of regional 

environmental patterns, with a particular focus on the effects of agropastoralism. Then, 

intra-site pollen analysis, focusing on the 17th century early colonial period, will be used 

in order to understand cereal crop production at LA 20,000 and animal foddering 

practices.   

 The diachronic aspect of this project illuminates how Pueblo and Spanish land use 

impacted the local plant populations, with a particular focus on agropastoralism. This 

analysis is complemented by Kyle Edward’s research (2015), which focused on 

understanding the long-term changes to the environment at the Leonora Curtin Wetland 

Preserve, located approximately two miles from LA 20,000. Edwards used a sediment 

core taken at the preserve to observe a series of vegetation changes during the Pueblo, 

Spanish, and Anglo occupations of the area, showing different uses of the land. 
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Similarities between Edwards’ data and mine will indicate larger regional patterns, while 

differences should indicate localized variation. 

 

Pollen Dispersal Processes 

 First, in order to effectively analyze past vegetation patterns, it is imperative to 

understand the habits of pollen deposition. Pollen enters the archaeological record when 

it falls from a plant, a process called “pollen rain” (Bryant and Hall 1993:278). Since 

different plant species employ various pollen dispersal behaviors, pollen can be analyzed 

on a broad or highly localized scale, in some cases simultaneously (Ford 1979:309). 

There are four main mechanisms of pollination: wind, water, animal, and self-pollination 

(Pearsall 2015:190).  

 Generally, plants which disperse pollen on the wind create a relatively large 

number of pollen grains, upwards of 10,000 per anther, and release it indiscriminately in 

a wide-reaching pollen rain (Pearsall 2015:190). For example, ponderosa pine, pinyon 

pine, and firs disperse pollen in this way. Pine pollen has been known to disperse as far as 

1,800 miles (ScienceDaily 2010). Wind-dispersed pollen tends to comprise a high 

percentage of the pollen assemblage because it is produced in such large numbers.  

 Zoophilous taxa, whose pollen is transported by animals or insects, tend to create 

far fewer pollen grains per anther. Zoophilous pollen does not disperse far from the 

parent plant on its own, rather relying on its sticky oils or spines to attach it to a passing 

pollinator such as bats or birds (Bryant 1974:412). Plants in the Onagraceae family, such 

as evening primrose (Oenothera biennis), pollinate in this way. It is much more difficult 
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to find zoophilous pollen in the archaeological record because it does not disperse as 

widely as wind-pollinated species (Pearsall 2015:190).  

 Insect-pollinated plants, like zoophilous plants, rely on living, mobile vectors to 

disperse pollen, but primarily attract bees, butterflies, moths, flies, and other insects. 

Many food plants are pollinated by insects, such as squash, carrot, and apple (Calderone 

2012:1). Importantly for this project, maize pollen is dispersed by both wind and insects 

(Emberlin et al. 1999:2), though the exact patterns of dispersal depend on the specific 

ecological conditions in which the plant is growing (Klein et al. 2003). The many anthers 

on the maize plant produce prodigious amounts of pollen, upwards of 2,000, but the 

pollen is heavy, so it does not disperse widely (Emberlin et al. 1999:4). Experimental 

data shows that maize pollen travels approximately up to 100 m (Jarosz et al. 2005:2). 

Because of this, observing maize pollen archaeologically suggests local use or harvest.  

 Water-pollinated plants are often hard to detect in archaeological sediments, as 

they tend to be thin and fragile, thus preserving poorly (Pearsall 2015:191). No water-

pollinated taxa were identified in this project.  

 Because self-pollinating plants do not rely on outside vectors, they produce 

relatively low quantities of pollen and do not disperse them widely. Many crop plants, 

including Old World cereals, are self-pollinated (Klein et al. 2007:303). This is why 

observing European cereal pollen in archaeological samples is notable; there is little of it 

to begin with, so identifying it is strong evidence of its nearby presence. Macrobotanical 

remains from sites in and around Santa Fe show that domesticated cereal grains were 

some of the most important species in the early Spanish colonial period, though often the 

most difficult to recover palynologically (Dean and Wolcott Toll 1995).  
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 Wheat is self-pollinating (Waines and Hedge 2003), and based on laboratory 

research, wheat pollen generally falls within a distance of 8 meters of the parent plant. 

The exact dispersal area depends heavily on ambient environmental conditions including 

temperature, wind conditions, and rainfall (Loureiro et al. 2007:25; Wilcock and Neiland 

2002:262). In addition, the pollen remains inside the closed flower head. As a result, 

wheat pollen is not released into the ambient environment until it is disturbed in some 

way, for example, threshing and processing for consumption. Thus, large quantities of 

wheat pollen are interpretively significant because it indicates very specific human 

activities (Kelso and Beaudry 1990:69).  

 Since different taxa have varying behaviors and pollen dispersal habits, their 

representation and relationship between parent vegetation and archaeopalynological 

representation is different. Therefore, these patterns illuminate different aspects of the 

ecological past. Arboreal, shrub, and certain herbaceous pollen including pine, fir, 

sagebrush, and aspen, are better for understanding large-scale ecological changes because 

of their wide dispersal area. On the other hand, herbaceous and domesticate pollen is 

more suited for detecting patterns in microregional land use. The depositional patterns of 

pollen grains are important to consider in order to understand not only how pollen entered 

the archaeological record, but also in identifying whether pollen was dispersed according 

to natural processes or due to cultural, anthropogenic activities (Bohrer 1981).   

 For the sake of interpretation in this project, pollen is broadly categorized as 

“domesticate,” “natural background,” and “land use” (Kelso and Beaudry 1990:61). 

“Domesticate” pollen refers to taxa that have been intentionally selected and raised by 

human beings. “Natural background” pollen refers to the trees, shrubs, and other plants in 
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the environment that do not necessarily reflect human activities. “Land use” pollen refer 

to ruderal, “weedy” plants that colonize disturbed soils and are often associated with 

human agricultural clearance (Kelso and Beaudry 1990:61).  

 These categories are used as guides for understanding the role of each taxon 

within the larger picture of the environments surrounding LA 20,000. Generally, 

“arboreal” species, such as pines and fir, refer to “natural background.” However, 

because other arboreal species, such as juniper and cottonwood, can indicate 

anthropogenic activities such as deforestation, some are categorized under “land-use.” 

“Shrub” pollen, too, encompasses these two categories, as some shrubs including saltbush 

are better indicators of background patterns, while herbaceous Cheno-ams are indicative 

of field clearance and thus more appropriate under “land-use.” All domesticated taxa, 

including barley, wheat, and maize, belong under “domesticate.”  

 

Sampling Methods 

 This project used two discrete sets of data, sampled in different years using 

different methods. The diachronic data was obtained in 2015 as a continuous pollen 

column from a unit called 2015-G. The location of the 2015-G samples was chosen 

strategically in an area near the immediate site (Figure 5), with the intent that it would 

encompass local and regional patterns but would not be directly disturbed by human 

activity such as construction or midden heaping.  
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Figure 5. Site map of LA 20,000 showing location of 2015-G pollen column.  Image 

adapted from Trigg (2017).  

 

For the collection of these samples, a single 50 cm x 50 cm unit was excavated 

and the pollen samples collected continuously as a column every two centimeters. The 

unit was excavated for the sole purpose of sediment collection. Thirty-three samples in 

total were collected over 60 cm. Based on AMS dates (Table 1), five of these samples 

were selected for pollen analysis, chosen strategically to capture the pollen profile of the 

target time period – the 17th century – as well as approximately one hundred years before 

and after that period. Based on the nature of radiocarbon dates, it was difficult to 

determine which samples would be most exemplary of the 17th century and which 

indicated the centuries before and after that target date, but a combination of dates and 

sedimentation rates provided an approximate time frame for each sample.  
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Table 1  

Provenience Data for 2015-G Pollen Column Samples from LA 20,000, New Mexico 

 

FS # Sample # Context # Cm below surface Date ± 10 years* 

292 9 224 16-18 A.D. 1790 

293 10 225 18-20 A.D. 1712 

295 12 227 22-24 A.D. 1673 

296 13 228 24-26 A.D. 1634 

297 14 229 26-28 A.D. 1595 

299 16 231 30-32 A.D. 1517 

*Italicization indicates date extrapolated from radiometric dating results. 

 

 

Samples #9, #10, and #22 were sent to Beta Analytic Testing Laboratory for 

radiometric dating using organic compounds occurring in the soil. Sample #9 dated to 

BP±10 228 (calibrated date A.D. 1790). Sample #22 dated to BP±10 1248 (calibrated date 

A.D. 770) but was not analyzed for pollen because it was outside the time period scope of 

this project. Sample #10 was intended to help refine the dates for sample #9, according to 

whether it was determined to be around the same time period as #9. However, the dates 

for #10 were not easily interpreted and it did not end up being particularly helpful in 

dating the remainder of the samples. 

Sedimentation rates were calculated using samples #9 and #22 with the 

extrapolated radiocarbon as well as measured centimeters below surface (Mudie and 

Byrne 1980). The difference between the years 770 A.D. and 1790 A.D. (1,020 years) 

was divided by the difference in the centimeters below surface (26 centimeters) to yield a 

sedimentation rate of 39 years/cm. Using this rate, the dates of the remaining samples 
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were extrapolated. This put samples #12 and #13 at the target 17th century. The dates 

span approximately 180 years, with the occupation of LA 20,000 falling approximately in 

the middle of the sample range. 

 The second series of data was collected in the 2017 field season from across the 

three main components of the site (Figure 6). These samples were taken in order to 

understand intra-site differences in pollen patterns, which might suggest cultural 

activities across the site while it was inhabited between 1630 and 1680. Eight samples 

were selected for pollen extraction (Table 2). 

 

 

Figure 6. Site map of LA 20,000 showing locations of on-site samples. Image adapted 

from Trigg (2017).  
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 Sample #420 was collected from a stratum believed to be the floor of the house in 

EU 2017-A. Sample #454 was from EU 2017-C.2, also from a floor stratum in the house 

area. Samples #321 and #323 were from 2016-K, above and between two burn layers 

thought to be associated with the barn area. Samples #439 and #442 came from 2017-F, 

inside the barn area. Sample #439 is associated with a manure layer, whereas #442 is 

believed to be from a floor surface. Samples #450 and #451 were taken from EU 2017-H, 

in the corral area. Thick layers of alternating reddish and greenish sediment in the strata 

of this unit were interpreted as manure layers in various states of decomposition.  

 

 

Table 2  

Provenience Data for On-site Pollen Samples from LA 20,000 New Mexico  
 

FS# EU Level 

 

Context 

 

Unit 

Cm below 

surface 

321 2016-K 4 Above burn layer Barn 68 

323 2016-K 6 

Between first and second burn 

layers 

Barn 

84 

420 2017-A 3 Floor sample House 78 

439 2017-F 1 Manure layer Barn 30 

442 2017-F 3 Manure layer Barn 55 

454 

2017-

C.2 

Pinch 

sample 

Floor surface House 

80 

450 2017-H 4 

Red and green lamination –  

manure layers 

Corral 

52 

451 2017-H 5 

Red and green lamination –  

manure layers 

Corral 

55 
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 The samples were purposely collected from each major areas of the site in order 

to detect intra-site variation of possible crop production and understand agropastoral 

patterns and the presence of smaller-scale horticultural operations. Manure samples were 

also specifically targeted in order to understand what kinds of grazing patterns these 

animals had, and whether they were mostly feeding on wild grasses or fodder grown in 

fields near the site or were allowed to stubble graze. 

 

Pollen Extraction 

 

 In the fall following the 2017 summer field season, sediment samples were 

shipped to Boston and analyzed in Dr. Heather Trigg’s Paleoethnobotany Laboratory at 

the Andrew Fiske Memorial Center for Archaeological Research at the University of 

Massachusetts Boston. In order to extract the pollen from the surrounding soil in the 

samples, it was treated with a series of chemical rinses. This process aids the ability to 

observe pollen under a microscope (Pearsall 2015). The extraction was completed based 

on standard palynological practices and is described below.  

 First, each sample was dried in its own beaker in a fume hood for two to three 

days. Then, approximately 25 mL of hydrochloric acid (HCl), which dissolves calcium 

and calcium carbonate, was added to 20 g of the dried soil. Two Lycopodium tablets were 

added to each sample at this stage (Brugam 1978). After two hours, the HCl was poured 

off. To rinse to neutral pH, distilled water was added and then the sediment was 

centrifuged at 2,000 R.P.M. for seven minutes repeatedly until the sediment reached 

neutral pH. Then, 50 mL of hydrofluoric acid (HF) was added to dissolve the silicates in 

the sediment. After soaking in HF overnight, the samples were centrifuged and rinsed to 
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neutral. Glacial acetic acid was added to draw out any remaining distilled water in the 

samples. In the final step, acetolysis, one mL of acetic anhydride ((CH3CO)2O) and 9 mL 

of sulfuric acid (H2SO4) were added to the sediment. Then, the samples were warmed in a 

hot water bath for five minutes. This process breaks down remaining organic compounds 

in the sediment and makes the pollen easier to identify by staining the grains (Traverse 

2008:62). The final samples were placed into vials with distilled water and ethyl alcohol, 

which preserves the sediment by inhibiting bacteria growth.  

 In order to identify the pollen, a glass pipette was used to place a few drops of the 

preserved sample onto a small amount of glycerin placed on a microscope slide, with a 

microfilm slide cover placed on top. The slides were then observed under 400x 

magnification using a compound microscope. Glycerin is the preferred medium for this 

process due to its low refractive index, making it easier to see the pollen than other 

mounting media (Edwards 2015:48).   

 Pollen keys were utilized throughout this study to aid in the identification of the 

species. Paldat.com, Ronald Kapp’s (1969) detailed field guide, and the extensive 

reference collection at the Fiske Center for Archaeological Research at University of 

Massachusetts Boston were crucial resources for the pollen identification involved in this 

project.  

 According to Hall (1981), pollen recovered archaeologically virtually always 

experiences some degree of deterioration. Hall also found that pollen grains with certain 

structures are more likely to deteriorate more severely. Cupressaceae and Pinus, two of 

the most common taxa recovered in the samples for this study, are especially susceptible 

to deterioration (Hall 1981:198). Hall also describes the difficulty of identifying 
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deteriorated Poaceae grains. Many Poaceae grains observed in this project were crushed, 

folded, or torn. Therefore, it was difficult to measure and differentiate maize, Old World 

grains, and non-domesticated grasses. Poor preservation also affected the ability to 

observe a pore or annulus, and these features were often obscured by debris.  

 Pollen generally preserves well in anaerobic environments, such as peat bogs, 

where it is less likely to degrade as a result of bacterial activity (Pearsall 2015:185). 

Typically, pollen preserves poorly in semi-arid zones like the American Southwest. In 

these environments, the main factor impacting pollen preservation is soil moisture, and 

even small differences in rainfall between one area and another can have a significant 

impact on the quality of preservation over time (Hall 1985:101).  

  In order to control for the inevitability of decayed pollen grains, palynologists 

have developed a method of quantifying the preservation rate of archaeological pollen 

deposits. This is calculated by using the density of the pollen in each sample in units of 

grains per gram. This is obtained by using the following equation: 

 
𝑂𝐿

𝐾𝐿 
=

𝑂𝑃

𝑥
 

  

 Where OL=observed number of Lycopodium tracer spores during pollen 

identification; KL= known number of Lycopodium spores added to the sample; and OP= 

observed number of pollen grains. This equation provides the approximate number of 

total pollen grains in the sample, based on the proportion between the number of 

observed tracer spores, observed pollen, and known quantity of spores. The result of this 

equation is then divided by the weight in grams of the sample, which results in the pollen 

density in grains/gram. The known number of spores is obtained from the manufacturer. 
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Two Lycopodium tablets were dissolved in each, corresponding to 37,166 spores (at 

18,583 spores in each tablet). Hall (1981) studied the state of pollen preservation in the 

American Southwest and introduced an empirically-based threshold for determining the 

severity of deterioration in pollen samples from this region.  According to Hall (1981), 

adequate preservation requires at least 1,000 grains per gram. This threshold was met by 

all of the samples analyzed for this project (Appendix A).  
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CHAPTER FIVE 

RESULTS 

 

 

Using the raw data obtained from observing pollen grains under the microscope, I 

created diagrams in order to observe the relationships between land-use, the history of 

LA 20,000 and the resulting impacts on the physical environment. This chapter provides 

an overview of the results and wider trends suggested by the data. First, I l discuss the 

observed pollen profile in the diachronic 2015-G column. Then, I  describe the spatial 

orientation of the on-site data and the relationships between the locations and the 

proportions of specific taxa.  

 

Taxa Observed 

 In all, 35 taxa were identified in this project, including 13 different arboreal taxa, 

3 shrubs, 15 herbs, and 4 domesticates (Table 3). While this is generally considered to be 

a relatively low rate in palynological studies, it is not unusual in the American Southwest 

where preservation is often poor (Hall 1981). Characteristics such as size, surface 

sculpturing, aperture appearance, and exine thickness are all used in pollen identification. 

It can be difficult to distinguish the pollen of related species because they often are 

morphologically similar. Therefore, pollen is generally identified to genus or family 

rather than species (Pearsall 2015:225).  
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Table 3 

Identified Taxa 

 

Taxon Common name Group 

Pseudotsuga menziesii Douglas fir Arboreal 

P. ponderosa Ponderosa pine Arboreal 

P. edulis Pinyon pine Arboreal 

Abies spp. Fir  Arboreal 

Pinus spp. Pine  Arboreal 

Larix spp. Larch/ tamarack  Arboreal 

Pinaceae Pine family Arboreal 

Juniperus spp. Juniper  Arboreal 

Populus spp. Cottonwood/ aspen  Arboreal 

Cupressaceae Cypress family Arboreal 

Salix sp. Willow  Arboreal 

TCT Cypress, Juniper, Aspen category Arboreal 

Rosaceae Rose/ peach family Arboreal 

Ephedra spp. Ephedra Shrub 

Artemisia tridentata Sagebrush Shrub 

Ambrosia artemisiifolia Ragweed Shrub 

Plantago spp. Plantain Herb 

Portulaceae Purslane family Herb 

Crassulucaceae Stonecrop family Herb 

Chenopodiaceae-Amaranthus Goosefoot genus/ amaranth family Herb 

Atriplex canescens Saltbush Herb 

Sphaeralcea sp. Globemallow Herb 

Compositae/ Asteraceae Daisy family Herb 

Tamarix sp. Salt cedar Herb 

Onagraceae Evening primrose family Herb 

Typha spp. Cattail Herb 

Opuntia spp. Prickly pear cactus Herb 

Ranunculaceae Buttercup family Herb 

Poaceae Grass family Herb 

Zea mays Maize Domesticate 

Cucurbita spp. Squash family Domesticate 

Triticum spp. Wheat Domesticate 
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Pinus, including both pinyon and ponderosa, appeared frequently in these 

samples. Though they look very similar, it is possible to tell them apart based on their 

size, structure, and ornamentation (Hansen and Cushing 1973). Pinyon pine, at 

approximately 60 microns long, is smaller than ponderosa pine, which averages 100 

microns long (Hansen and Cushing 1973:1187–1190). The distinction between these two 

species of pine is important in understanding the subtleties of regional environmental 

change at LA 20,000 over time because these two species have different growing habits 

and preferred habitation zones. Pinyon pine prefers lower elevations and tolerates a more 

arid climate. Ponderosa grows best in wetter conditions at higher elevations. In cases 

where the two species were too difficult to distinguish, they were grouped together as 

“unidentifiable Pinus.” Pine pollen is especially fragile and susceptible to crumpling 

because of its size (Hall 1981). In this project, bladders of pine pollen grains were 

frequently separated from the bodies, which complicated accurate counting. Isolated 

bladders were tallied, and every two bladders were ultimately counted as one complete 

grain. The bladders alone were not identified as either pinyon or ponderosa pine and 

categorized alongside ponderosa and pinyon pine under “Total Pine.”  

Cheno-ams also appeared frequently in both the 2015-G and 2017 data. “Cheno-

am” is the category referring to species in the family Chenopodiaceae and the genus 

Amaranthus in the Amaranthaceae family, which are closely related and morphologically 

similar (Hevly et al. 1965:128). Some notable species included in this broad category are 

goosefoot (Chenopodium album), quinoa (C. quinoa), saltbush (Atriplex canescens), and 

amaranth (Amaranthus spp.) (Tsukada 1967:157). Several of these species, including 

goosefoot and amaranth, were important sources of nutrition in the ancestral Puebloan 
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diet (Trigg 2005:45).  Cheno-ams are particularly important to the interpretation of 

palynological data in areas impacted directly by human settlement because they thrive in 

disturbed soils, especially agricultural fields (Scharf 2010:163). 

Saltbush, though considered a Cheno-am, is distinguishable from other Cheno-

ams based on pore frequency. Many Chenopodiaceae pollen have 75 or more pores 

whereas saltbush has 40-45 pores (Kapp 1969). Therefore, saltbush is counted separately 

from the rest of the Cheno-ams.  

 The Compositae family was another important classification in this project. Two 

categories of Compositae pollen, high- and low-spine, refer to the grain’s surface 

sculpturing. The high-spine Compositae, including sunflower (Helianthus annuus), have 

at least 2.0 micron-long spines. High-spine Compositae are generally insect pollinated 

and their pollen does not travel far from the parent plant.  

The low-spine Compositae include ragweed (Ambrosia sp.), whose spines are less 

than 2.0 microns long, generally measuring approximately 1.5 microns (Hevly et al. 

1965:128). Ragweed is one of the three “shrub” species identified in this project. Low-

spine Compositae are generally wind pollinated, and they generate abundant pollen, 

which is widely dispersed. Ragweed is an important species in the study of colonial 

ecologies, as it is closely associated with the clearance of woodlands and the 

establishments of large tracts of farmland, particularly in the Northeast United States, 

where the so-called “Ambrosia rise” is highly characteristic of the 17th century (Cronon 

2003:143). Like Cheno-ams, ragweed grows profusely in disturbed soils (Fuller et al. 

1998:80).  
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Sagebrush and ephedra are the other two “shrub” species identified in this project 

aside from ragweed. Sagebrush, as mentioned in Chapter Three, is an important plant in 

the savanna ecozones of the New Mexico and tends to prefer arid areas with little tree 

cover (Dick-Peddie 1990:91).  Ephedra thrives in desert conditions and rapidly adapts to 

changing climatic conditions (Carlquist 1989:442), often growing on well-drained slopes 

alongside grasses, cactuses (Brand 1936:41). Mallows (Sphaeralcea spp.) are bushy, 

drought-tolerant perennial flowering plants common in the Southwest (Lady Bird 

Johnson Wildflower Center). Mallows are particularly important in the arid regions 

because they are restorative plants that replenish nutritionally deficient desert landscapes 

(Shryrock et al 2015:1304). These were common in the 2015-G pollen profile. Cattail 

(Typha spp.) is a common marsh species, more frequent in Edwards’ samples than mine 

(2015:65). Cattails are distinctive with tall, slender leaves, often growing as clumps in 

standing water (Wooten and Standley 1915:39).  

 Distinguishing between wild grasses and domesticated cereal grains, including 

both Old and New World varieties, was a crucial methodological aspect of this study. 

Poaceae pollen is monoporate, meaning it has a single pore, and typically psilate, 

meaning it has a smooth surface without sculpturing. Grain size is an important 

determinant when identifying grasses. Wild grains are smaller, approximately 20-30 

microns, whereas domesticated grains are significantly larger. Wheat pollen is generally 

about 50 microns in diameter, while barley averages 32-45 microns. Maize pollen grains 

are even larger, measuring about 100-110 microns. The size of the annulus–the thickened 

ridge around the pore–is also indicative of wild versus cultivated varieties. Wild grains 

have smaller annuli, approximately 5 microns, while domesticated grains are larger, 
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about 7-10 microns. The annulus wall is also slightly thicker on domesticated pollen 

grains (Tweddle et al. 2005).   

Palynologically, wheat and barley pollen are morphologically very similar. 

However, wheat is larger. In many instances, the grains were too degraded to be able to 

differentiate them confidently, but the better-preserved grains demonstrated this size 

differential more readily. However, since I could not routinely differentiate between 

wheat and barley, all European cereals are categorized together as “Old World cereal 

grains.” 

In order to observe fluctuations in past plant populations, the pollen counts were 

entered into TiliaGraph, a computer program which calculates the sums of each taxon 

within each sample (Table 4; Table 5).  The 2015 data were then converted into a pollen 

diagram to graphically represent comparative fluctuations in pollen levels. The taxa 

appear at the top of the graph along the x axis, while the y axis shows the depth of the 

samples in centimeters below surface, sample number, and radiometric date. The 2017 

on-site data were not converted into pollen diagrams. A typical pollen diagram was not 

used because these data represent spatial rather than temporal differences. The pollen 

diagram generated by the 2015-G data (Figure 7) shows a series of fluctuating pollen 

patterns. The samples range in date between 1517 and 1751 A.D.  a time scale of 

approximately two centuries, which encompasses the occupation of LA 20,000. The 

diagram also captures the pollen profile immediately before and after the occupation of 

LA 20,000, which is important in order to understand how the inhabitation of this area 

impacted the environment within the longer-term trajectory of the local ecology. 
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Table 4 

2015-G Pollen Counts 

 

 

 

 

 

Name Group 

Sample 

#9 #10 #12 #13 #14 #16 

Pseudotsuga Arboreal 1 1 0 2 0 1 

P. ponderosa Arboreal 78 53 29 42 16 32 

P. edulis Arboreal 103 105 55 61 18 45 

Total Pinus Arboreal 198.5 170 114.5 195.5 81 140.5 

Abies spp.  Arboreal 19 6 8 7 3 6 

Juniperus spp. Arboreal 21 18 22 52 47 45 

Populus spp.  Arboreal 21 19 42 68 49 47 

Cupressaceae Arboreal 13 5 2 0 4 7 

Salix spp. Arboreal 7 4 8 7 6 5 

Ephedra sp. Shrub 1 1 1 2 1 3 

Ambrosia  

artemisiifolia Shrub 10 5 12 5 11 1 

Artemisia 

tridentata Shrub 0 0 2 3 0 0 

Cheno-am Herb 106 105 123 258 119 96 

Atriplex 

canescens Herb 11 10 22 16 12 24 

Sphaeralcea Herb 4 0 11 18 3 0 

High-spine 

Compositae Herb 0 0 0 1 0 0 

Low-spine 

Compositae Herb 8 2 13 20 8 5 

Typha sp. Herb 0 0 0 0 0 1 

Ranunculaceae Herb 1 0 0 9 0 0 

Wild grass Herb 0 0 1 0 3 3 
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Table 5 

2017 Pollen Counts 

 

Taxa Group 

Sample 

#321 #323 #439 #420 #442 #450 #451 #454 

Pseudotsuga Arboreal 0 0 1 0 1 0 0 0 

P. ponderosa Arboreal 14 30 32 38 12 23 22 40 

P. edulis Arboreal 13 30 23 70 18 41 29 55 

Total Pinus Arboreal 32.5 65 67.5 112 35.5 66.5 53 102 

Abies spp. Arboreal 5 7 7 6 5 7 3 7 

Larix spp. Arboreal 0 0 0 0 0 0 0 0 

Juniperus spp.  Arboreal 23 23 15 20 17 31 9 13 

Populus spp. Arboreal 19 25 16 22 16 21 13 14 

Cupressaceae Arboreal 0 1 1 0 1 0 1 0 

Salix spp. Arboreal 14 16 19 3 15 21 3 5 

Ephedra spp. Shrub 4 0 2 2 1 2 3 1 

Ambrosia  

artemisiifolia Shrub 10 6 14 7 5 1 1 15 

Artemisia 

tridentata Shrub 3 0 6 0 0 4 11 4 

Cheno-am Herb 53 61 92 69 175 67 35 89 

Atriplex 

canescens Herb 24 11 10 10 17 22 11 12 

Sphaeralcea 

spp. Herb 22 15 9 22 1 13 10 8 

High-spine 

Compositae Herb 9 20 0 3 2 3 4 3 

Low-spine 

Compositae Herb 36 13 20 7 18 13 16 13 

Onagraceae Herb 1 2 1 0 1 1 1 0 

Ranunculaceae Herb 6 3 1 1 0 0 0 0 

Wild Grass Herb 33 32 28 20 24 52 140 16 

Zea mays Domesticate 11 14 2 0 0 5 1 1 

Hordeum 

vulgare Domesticate 1 0 1 1 0 0 0 0 

Triticum spp. Domesticate 0 3 2 0 3 0 0 0 

Cucurbita spp. Domesticate 2 1 0 0 0 0 0 0 
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Figure 7. Pollen diagram showing 2015-G profile.  
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Environmental Change Over Time at LA 20,000  

 The earliest dates in the 2015-G core refer to samples that were 26-32 cm deep 

(samples #14 and #16) and reflect the time prior to the Spanish occupation of the site, 

from A.D. 1517-1595 (Figure 8). This time period demonstrates the decreasing presence 

of arboreal pollen, most notably, pinyon and ponderosa pine. Fir and willow, too, 

decrease over time, but less dramatically than pine. Juniper and cottonwood remain 

steady. Shrubs, including ephedra and saltbush, and herbs, including ragweed and Cheno-

ams, remain steady.  

 LA 20,000 was inhabited between 1630 and 1680, corresponding to sediments at 

20-26 cm in depth (samples #12 and #13) (Figure 9). During this interval, the vegetation 

had changed in a number of ways. Pine, both ponderosa and pinyon, increase 

dramatically while fir increases slightly. These patterns indicate changes in the plant 

communities immediately around the collection area. The marked increase in fir 

furthermore suggests an increase in long-distance dispersal of wind-pollinated arboreal 

pollen. Juniper and cottonwood both increase, but juniper less markedly so. Ephedra 

remains steady. Other shrubs including sagebrush and saltbush increase. The most 

notable change during this interval is the dramatic increase in Cheno-ams. Cattail, a 

marshy plant, occurs at the early and late ends of this time period.  
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Figure 8. Pollen diagram highlighting A.D. 1517-1595.  
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Figure 9. Pollen diagram highlighting A.D. 1634-1673.  
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The samples at a depth of 16-20 cm correlate to the years A.D. 1712-1790 (Figure 

10).  Ponderosa pine increases during the first half of this time period, and spikes again in 

the late 18th century. Pinyon pine increases, and then slightly decreases around the same 

time that ponderosa pine increases again. Fir remains steady until the latter half of the 

18th century when it slightly increases. Juniper, willow, and cottonwood dip at the 18 cm 

mark but increase slightly thereafter. Sagebrush decreases, and its presence tapers off at 

16 cm. Ephedra remains steady. Saltbush decreases slightly. Cheno-ams remain steady. 

No marshy plants, such as cattail, were recovered from this suite of data.  

 One grain of maize was recovered from sample #9, at a 16-18 cm depth, in 

preliminary analysis, but no grains after that were identified and maize was not included 

in the final counts. However, its presence does corroborate existing palynological 

evidence of agricultural maize production in the area (Edwards 2015:61), but dating well  

after the occupation of the site. 
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Figure 10. Pollen diagram highlighting A.D. 1712-1790.  
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Activity Areas and Microregional Palynological Signatures 

 

The arboreal and shrub species observed in the on-site samples did not vary 

significantly from the 2015-G profile. However, the on-site samples included 

domesticated species including wheat, barley, maize, and cucurbits. These taxa are 

interpretatively significant because they indicate the presence of agropastoral activities at 

LA 20,000 during the 17th century. The presence of cereal pollen is also noteworthy 

because these species are rare to find in the archaeological record.  

A greater variety of insect-pollinated species, including flowers in the evening 

primrose family, prickly pear cactus, and ephedra were found in these samples. Non-

domesticated grasses were observed with far more frequency in the on-site samples than 

in 2015-G.  

Even though “rare” taxa appeared in these samples, the majority of the observed 

pollen grains belonged to arboreal or ruderal plants. This is not unusual because, as 

discussed in Chapter Four, these “natural background” species produce great amounts of 

pollen which fall across a wide area, thus, are far more frequently identified than insect- 

or self-pollinated species (Kelso and Beaudry 1990:61).  
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CHAPTER SIX 

DISCUSSION 

 

 By contextualizing fluctuations observed in pollen profiles with known 

palynological signatures associated with agriculture and animal grazing, changes in 

vegetation can be correlated with what is already known about agropastoral practices at 

LA 20,000 based on architectural, faunal and macrobotanical evidence. The pollen record 

reveals complex, interconnected patterns of ecological change, including changing 

populations of land-clearance weeds, riparian species, and woodland arboreal species.  

Additionally, the presence of wheat in these samples is highly significant. 

Documentary evidence of wheat cultivation in early colonial New Mexico was abundant, 

in the forms of letters, inventory lists, and reports (Hammond and Rey 1953; Trigg 1999). 

It was clear from these documents that the difficulty of wheat cultivation did not dampen 

enthusiasm for the European crop. Indeed, by 1601, the first mill to process wheat had 

been built, and a number of productive wheat fields had been established (Trigg 

1999:202-203).   

The presence of Old World grain pollen is significant. Prior to this project, 

Edwards (2015) observed maize pollen in his core from the Leonora Curtin Wetland 

Preserve, but no Old World grains. Trigg (1999) recovered wheat and barley seeds in 

flotation samples in midden deposits, and Jacobucci (Jacobucci and Trigg 2011) 
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tentatively identified one cereal pollen grain in a poorly defined context at LA 20,000. 

Therefore, this project provides the first securely identified Old World cereal pollen from 

LA 20,000. These findings were significant in themselves, especially combined with the 

presence of an horno (a bread oven) at LA 20,000. Until this project, however, no Old 

World domesticate pollen had been recovered from a 17th-century site. These data 

significantly contributes to the knowledge of early colonial wheat cultivation in New 

Mexico, demonstrating that rural estancias were producing Old World grains. 

 

LA 20,000 Within the Context of Regional Ecological Change 

 One objective of this study is to understand the local environment around LA 

20,000 as it reflects human activity at the site. Because pollen assemblages typically have 

local and regional pollen inputs, it can be difficult to disentangle local from regional 

signatures. Some archaeopalynologists have suggested that arboreal pollen reflects 

regional vegetation patterns, whereas herbaceous pollen is indicative of local vegetation 

(Kelso and Beaudry 1990:61). However, in an environment as open as that of LA 20,000 

and where changes in local tree cover could signal important activities, I sought a more 

refined way of identifying vegetation around the site.  

 In order to accomplish this, I compared my 2015-G pollen assemblage with 

previous palynological research undertaken at the Leonora Curtin Wetland Preserve, a 

35-acre protected area managed by the Santa Fe Botanical Garden, by Edwards (2015; 

Edwards and Trigg 2016). The Leonora Curtin Wetland Preserve is located 

approximately two miles away from LA 20,000, but represents a very different ecological 
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zone, and thus captures very different palynological signatures from the same time period 

(Figure 11). Variation elucidates specific activities at LA 20,000 itself that did not 

necessarily affect the regional environment. The 2015-G profile does not encompass a 

time span as wide as Edwards’, rather, focuses more specifically on the targeted colonial 

period during the occupation of LA 20,000. Edwards’ data offer a more comprehensive 

understanding of the environment before and after the occupation of LA 20,000.    

 

 

 

Figure 11. La Cienega, New Mexico. Image by the author.  

  

 

 



56 

 

Edwards described the pollen profile from A.D. 1414 to the present, illuminating 

major ecological changes throughout the centuries. In the Leonora Curtin core, the most 

drastic changes appeared in the 18th and 19th centuries. His research characterized the 

early colonial period by subtle increases in ruderal taxa associated with land clearance, a 

continuing pattern from pre-Hispanic agriculture when the Pueblo were using large tracts 

of land for growing maize (Edwards 2015:16). Later decreases in shrubs and riparian 

trees, along with dramatic increases in pines were associated with later 19th-century 

grazing intensification.  

 There were both similarities and differences between the 2015-G pollen column 

and Edwards’ Leonora Curtin core. The earliest years encompassed by these data 

approximately correspond to A.D. 1517 to 1595, reflecting the environment prior to the 

Spanish occupation of the site. This interval shows that LA 20,000 was located near a 

riverine environment, characterized by the presence of trees such as cottonwood, willow 

and aspen, which all prefer to grow near rivers and streams.  Edwards’ data indicated that 

the pre-Hispanic environment was dominated by a meadow-like landscape with high 

levels of ruderal taxa based on the relative percentages of high-spine Compositae and 

Cheno-ams (Edwards 2015:60–61). Edwards also found higher levels of cattail and plants 

in the parsley family (Apiaceae). Together, these species suggest standing water. The 

presence of these particular taxa is unsurprising, due to the fact that the core was taken 

from pond sediment in a wetland.  

The 2015-G profile also indicates a proximity to water; however, the observed 

taxa were less directly associated with marshes or standing water. This is interpreted from 

the lack of plants such as cattail and Apiacaeae that are well known to thrive in standing 
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water. The 2015-G pollen column also lacked water-pollinated plants. Water-pollinated 

species are very rarely observed archaeologically, so this result was not surprising.  

Instead of marshland, seventeenth-century inhabitants of LA 20,000 had access to 

a flowing stream, rather than wetlands like Leonora Curtin (Trigg 1999:86). These 

differences in hydrology – one with marshy, standing water and the other with a fast-

running stream – could contribute to these observed differences in the pollen record. It is 

also possible that Edwards’ data reflect a more local characterization of what the pre-

Hispanic environment looked like. Prior to the permanent establishment of Spanish 

settlement and the introduction of their grazing animals, the colonists described the 

landscape as a green and “untouched” (MacCameron 1994:22). This description aligns 

with the lush landscape described by Edwards, and parallels the patterns from 2015-G, 

but to a lesser extent.   

 Another major difference between the Leonora Curtin core and the 2015-G pollen 

column is the divergence in populations of low-spine Compositae and Cheno-ams. 

Edwards’ data show demonstrably higher levels of low-spine Compositae as compared to 

the 2015-G data. Conversely, the 2015-G data show higher levels of Cheno-ams than 

Edwards’. This, too, could be attributed to the differential hydrologies of LA 20,000 and 

Leonora Curtin. Schoenwetter (1962) suggests that Cheno-ams prefer to grow in 

dissected floodplains with low water tables, whereas low-spine Compositae can more 

consistently be found in wet, marshy environments with higher water tables. Since the 

area around LA 20,000 was characterized by the La Cienega stream, it is likely that the 

Cheno-ams proliferated in the soil disturbed by this fast-moving stream. Conversely, the 
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wet soils of Leonora Curtin would have been more hospitable to low-spine Compositae 

(Edwards 2015; Schoenwetter 1962).  

 During the occupation of LA 20,000, which corresponds to Zone III of Edwards’ 

data and samples #15, #14, #13, and #12 in the 2015-G pollen profile, pollen patterns 

include steady herb and shrub levels, high proportions of ruderal pollen including low-

spine Compositae, and high percentages of pine pollen. Overall, Zone III showed an 

increase in arboreal pollen over the course of the early colonial period (Edwards 

2015:70). The relative percentages and proportions of taxa are similar between Edwards’ 

data and mine. That is, both datasets demonstrate relatively high percentages of pine – 

likely due to the significant pollen production and wide dispersal range of these wind-

pollinated trees – as well as high proportions of Cheno-ams, but lower levels of high-

spine Compositae. One maize pollen grain was recovered from Edwards’ Zone III; the 

only maize pollen from 2015-G was found at relatively the same time.  

Furthermore, differential profiles of cottonwood and juniper between Leonora 

Curtin and LA 20,000 suggest localized patterns relating directly to the establishment of 

LA 20,000. Edwards’ data show low and steady levels of these trees throughout the 

profile. This suggests that there were changes to juniper and riverine trees in the early 

17th century that were localized to LA 20,000 and did not extend to the wider region. 

Ponderosa pine, pinyon pine, and fir all increase as juniper and cottonwood experience a 

spike, and then a dramatic decrease. As I explain in more detail below, I believe that 

these patterns – of the simultaneous increase of alpine trees with the sudden decrease of 

riverine trees – are interrelated.  
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According to historic documents, juniper and cottonwood were used for fuel, 

construction, food, dyes, medicines, and tools in the early Spanish colonial period. A high 

volume of charred wood fragments has been recovered in flotation samples from a 

midden at LA 20,000. It is likely that the majority of the charcoal was burned in a 

thermal feature such as a hearth (Trigg 1999:108). Some species recovered from charcoal 

analysis include juniper, various types of pine, oak, willow, and cottonwood (Trigg 

1999:107).  

Ponderosa pine and fir pollen do not grow at elevations as low as at LA 20,000, 

rather preferring alpine zones. As mentioned before, the pollen of many species in the 

Pinaceae family, including ponderosa pine and fir, can travel upwards of hundreds of 

miles away. Therefore, these trees did not likely constitute the majority of the vegetation 

immediately surrounding LA 20,000, but they are still represented in the data. According 

to the 2015-G data, over time, pine pollen experiences a steady increase. This could 

partly be a methodological problem, as pine pollen is easier to identify due to its 

distinctive morphology.  

Alternatively, these interrelated patterns may suggest local deforestation. As 

species such as cottonwood and juniper diminished, pine pollen then had a greater range 

uninhibited by this vegetation at lower elevations and could, therefore, deposit itself more 

prolifically. This could account for this increase in pine pollen through time. This pattern 

of deforestation at the site is one I have characterized as local variation unique to LA 

20,000, as Edwards’ data does not offer evidence of deforestation across the wider area 

until later in history. This suggests that the felling of trees was restricted to the site, and 

likely used on a household basis. Additionally, a spike in the Cheno-ams suggests 



60 

 

intensified agricultural field clearance, as these plants thrive in soils disturbed by 

agriculture and grazing livestock.  

These data indicate numerous patterns that have various implications for the 

interpretation of local specificity in the archaeological pollen record. By comparing data 

describing the Leonora Curtin Wetland Preserve with the 2015-G pollen column, 

complementary patterns emerged showing how, despite geographical similarity, nearby 

sites can have very different ecological histories. Furthermore, this project demonstrates 

that it is possible to use pollen data to understand these highly specific regional variances.  

 

Agropastoralism in 17th-Century New Mexico  

 While the 2015-G data focus on the ecological history of LA 20,000, the on-site 

data provide an even more site-specific understanding of the physical environment and 

land use in 17th-century New Mexico. The on-site data tackle the importance and 

environmental implications of the Spanish-introduced Iberian agropastoral complex 

which centered on Old World grains and domesticated mammals.   

While Pueblo foodways did not rely on domesticated animals for meat, 

agropastoralism was a significant aspect of Spanish foodways and economic production. 

Turkeys were tamed by some Pueblo communities, but they were mostly kept for their 

symbolic value and use of their feathers (Lipe et al. 2016:98). Overall, the ancestral 

Pueblo supplemented their cultivated crops and gathered plants with hunting and fishing 

(Vlasich 2005:4).  
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In Mediterranean Spain, on the other hand, grapes, wheat, olives, cattle, pigs, and 

sheep were important sources of food (Butzer 1988:29-30; Vassberg 1978:47-48), and 

perhaps even more importantly, they exported products in the form of olive oil, wine, 

wool textiles, leather and soap (Phillips and Phillips 2010:115). Sheep, cattle, horses, and 

other Old-World mammals were introduced in the 16th and 17th centuries with the 

advent of Spanish settlement in the region. Animal husbandry required large tracts of 

grassy plains for grazing.   

As discussed in Chapter Three, there were significant ecological costs associated 

with the introduction of the Iberian agropastoral complex. Generally, the most visible 

deforestation, desertification, and erosion in New Mexico’s ecological history occurred 

when Anglo-Americans began flooding into the west, causing significant environmental 

damage due to the dramatic increase in population (Liebmann et al. 2016:696). However, 

there were detectable ecological fluctuations caused by Pueblo agriculture, as well as 

substantial landscape changes wrought by Spanish colonists in the early colonial period 

(Edwards 2015:72).  

The introduction of animal husbandry is apparent in the archaeopalynological 

record on both a large and small scale. The emergent patterns in the 2015-G data, 

discussed above, allude to regional changes in the environment in the decades following 

the introduction of domesticated herbivores. On a smaller scale, pollen analysis of 

domestic surfaces in archaeological contexts has shown that taxa identified from indoor 

floors suggest foddering and bedding practices. For example, researchers found a high 

percentage of Poaceae pollen from stratigraphic layers associated with floor contexts at 

Moel-y-gar, an experimental reconstruction of an Iron Age house in Hampshire, England. 
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These taxa were associated with the types of grass on which the animals grazed, thus 

demonstrating that this kind of analysis can show livestock diet (Macphail et al. 

2004:181). 

 At LA 20,000, the importance of livestock is demonstrated by the relatively 

extensive barn and corral complex. Pollen sampling from manure layers in the barn and 

corrals suggest what types of plants that the animals on the site were consuming. 

Determining whether wild grasses, domesticated cereal grains or other plants appear in 

animal dung illuminates foddering practices (Rosen 2005:2). For this reason, I 

specifically targeted strata containing layers of manure in the barn and corral. Samples 

#439, #442, #450, and #451 were samples from manure layers in order to analyze the 

diets of the livestock on-site.  

 However, not all of the on-site samples are associated with manure layers. 

Samples #321 and #323 were collected above and between burn layers. Samples #420 

and #454 were collected from historic floor surfaces. These samples, taken from the barn 

and the house, were collected in order to understand how pollen deposited differently 

across the site and how those patterns correspond to activity areas.  

 In the following discussion, data from the 2017 samples are displayed in a 

different way from traditional pollen analysis. Instead of interpreting these data through 

diagrams, I used spatial analysis in GIS to visualize the deposition of the taxa across the 

site. The data are presented as pie charts on a map rather than as a pollen diagram. This 

kind of spatial analysis, while common for other types of archaeological data, is 

relatively rarely done in palynological studies.  
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 The first map of the on-site data with pie charts showing the proportions between 

types of vegetation shows the relationships between arboreal, herb, and domesticate 

species (Figure 12). For the sake of simplicity, “shrub” species are included in “arboreal.” 

In this map, arboreal and herb species dominate, so it is overall difficult to understand the 

spread of domesticate species.  

However, it is important to note that while arboreal and herb pollen dominates, 

there is an observably high level of domesticated species in the barn and corral areas. It is 

also interesting that arboreal and herb pollen is so common across the site, even inside the 

house. This suggests that the pollen rain from these species was significant enough across 

the site that people would have tracked it into the house, perhaps on their shoes and 

clothing. It is particularly noteworthy that the herb species appear in such high quantities; 

in almost all the units, there is even more herb than arboreal pollen. This supports the 

2015-G interpretation that ruderal weeds—the most frequent type of herb species in the 

data—thrived at LA 20,000, further indicating soil disturbance at the site.   

In order to more closely examine the patterns of domesticate cereal pollen 

deposition across the site, it is necessary to distill the most relevant species onto the map 

and eliminate the “natural background” taxa. Excluding arboreal and herb pollen (except 

for wild grasses) makes it easier to understand exactly which taxa besides domesticates 

appear in the manure layers. Based on macrobotanical evidence from the site, it is 

possible that livestock were consuming some Old World grains, particularly barley, 

which was grown as animal feed, along with non-domesticated grasses that grow well in 

disturbed soils (Trigg 1999:157). The on-site pollen data corroborates the macrobotanical 

evidence that livestock were eating Old World grains alongside wild grasses (Figure 13).  
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Figure 12. On-site arboreal, herb, and domesticate occurrence.  

 

 

Figure 13. On-site wild grass, wheat/barley, and maize occurrence.  
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 In two of the units with manure layer contexts—2017-H and 2017-F—there is a 

relatively high proportion of Old World cereals, suggesting that the livestock were eating 

wheat and/or barley. This is not surprising, given the macrobotanical evidence from barn 

deposits at LA 20,000. In Spain, barley was a lower-status grain and was mostly used for 

animal feed (Simmons 1996:72). Thus, it seems likely that barley may have been a source 

of food for the livestock at LA 20,000, therefore accounting for the presence of Old 

World pollen grains in the manure layers of the barn and corral. The combined presence 

of wheat and barley suggests that livestock were stubble grazing on the fields 

surrounding LA 20,000 after they had been harvested (Raish 1996:190).  

Maize, a New World grain with little prestige according to the Spanish, appeared 

in overall greater quantities than Old World cereals. This corroborates documentary 

evidence that Spanish livestock grazed on (and in the process, frequently destroyed) 

Pueblo maize fields, thus accounting for the preponderance of New World grains in these 

samples (Kessel 2013:40). Furthermore, this evidence indicates that there were maize 

fields near LA 20,000 (Edwards 2015:61).  

An interesting pattern emerged from the proportions between Old and New World 

grains in 2017-A and 2017-C.2. Both of these units are inside the house. They are both 

dominated by wild grasses, but 2017-A has a higher incidence of Old World species, 

while maize dominates 2017-C.2. A possible interpretation for this could be that both 

these cereals were being made into food items (such as bread or tortillas) inside the 

house, thus accounting for the deposition of pollen inside.  

Several species of horticultural pollen were found in 2016-K, where wheat pollen 

was also found. Garden plants are grown on a smaller scale than agricultural field crops. 
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A horticultural taxon found in this data includes a species in the Cucurbitaceae family. 

This suggests that the area surrounding 2016-K may have once been the home of a 

horticultural kitchen garden. Interestingly, prickly pear cactus pollen was found at the 

site. Cactus was an important source of food for many years for Pueblo communities 

across New Mexico (Reinhard et al. 2006:104) and may have also been consumed at LA 

20,000. These data, along with macrobotanical remains of horticultural plants such as 

peaches, apricots, and apples, suggest the production of small-scale garden plants to 

supplement food procured through agriculture and foraging. The higher percentage of 

maize in 2016-K may indicate that the inhabitants on the site were perhaps shucking corn 

in this area, which would deposit high levels of maize pollen.  

 The palynological data from LA 20,000 exemplifies how the colonization of New 

Mexico altered the character of the physical landscape. Pueblo agriculture shaped the 

environment in a uniquely anthropogenic way, while the Spanish introduction of 

agropastoralism left a distinct ecological footprint. The palynological signatures observed 

at LA 20,000 demonstrate perceivable differences from the characterization of the 

Leonora Curtin Wetland Preserve, thus illuminating local patterns. Meanwhile, 

synchronic data from the site illustrates the nature of agriculture and animal husbandry.  

  



67 

 

 

 

 

 

 

CHAPTER SEVEN 

CONCLUSION 

  

 

New Mexico, with its long, culturally pluralistic history, has captivated 

archaeologists for decades. Ancestral Pueblo communities had been raising crops and 

altering waterways for hundreds of years when colonists from New Spain introduced a 

different kind of agriculture alongside animal husbandry. LA 20,000 embodies the 

diverse nature of the colonial estancia, with people of different backgrounds experiencing 

life on the ranch in deeply divergent ways. These lived experiences were manifested on 

the physical landscape through the production of both Old and New World crops, as well 

as long-term impacts to local ecologies due to collection of wood and increased clearance 

for wheat agriculture. This project sought to add to the dialogue about how food, identity, 

agriculture, animal husbandry, and human-environment relationships intersect to create 

uniquely anthropogenic landscapes that can be examined through archaeopalynological 

analysis.  

A main goal of this study was to identify localized variation in the long-term 

pollen profile of LA 20,000, with a focus on the period of settlement between 1630-1680. 

The other main goal was to characterize the palynological signatures of agropastoral 
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practices at LA 20,000 through the analysis of barn and house deposits. Two sets of 

data—one diachronic, the other synchronic—were used to explore these questions.  

The diachronic samples collected from a pollen column on the southern edge of 

the site, 2015-G, showed fluctuations in plant communities which represent the dynamic 

nature of the physical landscape changing in response to human land-use. This dataset 

was also used to define local versus regional environmental patterns using previously 

analyzed data observed in a pollen core taken from lake sediment at the Leonora Curtin 

Wetland Preserve. These complementary data illuminate a few important patterns: That 

LA 20,000 was located near a perennial stream, while Leonora Curtin was significantly 

marshier with standing water; and that there was likely more intensive, earlier 

deforestation at LA 20,000 than Leonora Curtin.  

Some of the changes ushered in by Spanish colonists have had long-lasting 

impacts and have directly informed the character of the landscape of La Cienega today. A 

number of studies (Ellis et al. 1997; Farley et al. 1994; Howe and Knopf 1991) have 

demonstrated how historic deforestation continues to shape the modern environment. 

Cottonwood populations, in particular, have suffered not only from deforestation but 

from changes in the flow of rivers and streams over the past century as water supplies are 

redirected into agricultural fields (Howe and Knopf 1991:218). Invasive species, 

including salt cedar, introduced by colonists in the 18th and 19th centuries, also have 

negatively impacted riparian environments as they out-compete native species (Howe and 

Knopf 1991:219).  

 The on-site data tell a slightly different story. The presence of wheat pollen on the 

site is significant in itself, as this is the first time that wheat pollen has been securely 
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identified at LA 20,000. The use of a common archaeological method of spatial analysis 

allows for the interpretation of these on-site data more effectively than traditional pollen 

diagrams. The presence and distribution of domesticated cereal grains elucidates 

foddering and agricultural practices. Both New and Old World crops were recovered 

from the sediment samples collected at LA 20,000, supporting documentary and 

macrobotanical evidence of maize, wheat, and barley agriculture in 17th-century New 

Mexico. The spatial distribution of these species illuminates foddering practices, 

suggesting that livestock probably subsisted primarily on wild grasses, supplemented by 

stubble grazing on maize, wheat and barley fields. These data also indicate that wheat, 

barley, and maize were likely processed in some way inside the house.  

 These on-site data are particularly relevant to discourse surrounding food and 

identity. In this case, as the Spanish colonists arriving from New Spain were devout 

Catholics, the data speak to the desire for wheat for religious ceremony. It is well 

documented that wheat was as coveted as it was difficult to grow. Thus, its existence at 

the site represents a larger issue of identity expression that is inextricable from 

agricultural production.    

 Going forward, the types of questions posited in this study could be used in other 

archaeological sites in New Mexico to further refine regional and localized patterns. 

Archaeopalynological analysis at missions and 17th-century Pueblo communities would 

be beneficial to diversify the site type in this kind of study in the future. There would 

likely be different palynological signatures at various sites, and it would be fascinating to 

see the variation among then, especially if analyzed alongside ethnohistoric data. These 
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ideas could also be applied other regions where colonial land regimes were imposed atop 

and comingled with existing patterns.  

Furthermore, in future research, the data from this study would benefit from a 

more explicit examination through the lens of labor and race relations. The production 

and consumption of European grains are a direct product of the labor regimes enforced at 

Spanish colonial sites at the expense of Pueblo and Plains people, thus contributing to the 

inequalities than culminated in the Pueblo Revolt in 1680 and the resulting temporary 

halt of Spanish occupation. Indeed, impositions set by the Spanish including 

proselytization and displacement were closely tied with rights to land, which directly 

contributed to the violence in the Revolt (Belfy 2004:696; Liebmann 2012:29). In future 

research, palynological data could be used explicitly alongside ethnohistoric documents 

to understand the tangled web of relationships between land-use, identity, and economic 

production.  
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APPENDIX A 

 

POLLEN DENSITIES IN GRAINS/g 

 

Sample  Pollen 

Observed 

Lycopodium 

Observed 

Lycopodium 

Total 

Sample 

Weight (g) 

Pollen Density 

(grains/g) 

9 421.5 71 37,166 25.93 8,509.08 

10 346 30 37,166 26.73 16,036.21 

12 379.5 63 37,166 29.61 7,560.10 

13 485.5 124 37,166 23.03 6,318.58 

14 347 74 37,166 28.11 6,199.87 

16 378.5 147 37,166 25.73 3,719.24 

321 313.5 41 37,166 21.54 13,193.31 

323 326.5 159 37,166 20.43 3,735.62 

420 301.5 76 37,166 20.42 7,220.44 

439 318.5 53 37,166 20.92 10, 676. 22 

442 335 32 37,166 23.93 16,259.2 

450 326 44 37,166 25.41 10,836.93 

451 315 76 37,166 26.14 5,893.0 

454 309 84 37,166 23.4 5,842.64 
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