
University of Massachusetts Boston University of Massachusetts Boston 

ScholarWorks at UMass Boston ScholarWorks at UMass Boston 

Graduate Doctoral Dissertations Doctoral Dissertations and Masters Theses 

8-2019 

High Performance Computing Techniques to Better Understand High Performance Computing Techniques to Better Understand 

Protein Conformational Space Protein Conformational Space 

Arpita Joshi 
University of Massachusetts Boston 

Follow this and additional works at: https://scholarworks.umb.edu/doctoral_dissertations 

 Part of the Bioinformatics Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Joshi, Arpita, "High Performance Computing Techniques to Better Understand Protein Conformational 
Space" (2019). Graduate Doctoral Dissertations. 500. 
https://scholarworks.umb.edu/doctoral_dissertations/500 

This Open Access Dissertation is brought to you for free and open access by the Doctoral Dissertations and 
Masters Theses at ScholarWorks at UMass Boston. It has been accepted for inclusion in Graduate Doctoral 
Dissertations by an authorized administrator of ScholarWorks at UMass Boston. For more information, please 
contact scholarworks@umb.edu. 

https://scholarworks.umb.edu/
https://scholarworks.umb.edu/doctoral_dissertations
https://scholarworks.umb.edu/diss_theses
https://scholarworks.umb.edu/doctoral_dissertations?utm_source=scholarworks.umb.edu%2Fdoctoral_dissertations%2F500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/110?utm_source=scholarworks.umb.edu%2Fdoctoral_dissertations%2F500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umb.edu%2Fdoctoral_dissertations%2F500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umb.edu/doctoral_dissertations/500?utm_source=scholarworks.umb.edu%2Fdoctoral_dissertations%2F500&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@umb.edu


HIGH PERFORMANCE COMPUTING TECHNIQUES
TO BETTER UNDERSTAND PROTEIN

CONFORMATIONAL SPACE

A Dissertation Presented
by

ARPITA JOSHI

Submitted to the Office of Graduate Studies,
University of Massachusetts Boston,

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
August 2019

Computer Science Department



c© 2019 by Arpita Joshi

All rights reserved.



HIGH PERFORMANCE COMPUTING TECHNIQUES
TO BETTER UNDERSTAND PROTEIN

CONFORMATIONAL SPACE

A Dissertation Presented
by

ARPITA JOSHI

Approved as to style and content by:

Nurit Haspel, Associate Professor
Chairperson of the Committee

Eduardo Gonzalez, Associate Professor
Member

Ouyang Ming, Associate Professor
Member

Dan Simovici, Professor
Member

Dan Simovici, Graduate Program Director
Computer Science Department

Marc Pomplun, Chair
Computer Science Department



ABSTRACT

HIGH PERFORMANCE COMPUTING TECHNIQUES TO BETTER
UNDERSTAND PROTEIN CONFORMATIONAL SPACE

August 2019

Arpita Joshi, B.E., Rajiv Gandhi Technical University, India
M.S., University of Massachusetts Boston
PhD., University of Massachusetts Boston

Directed By Professor Nurit Haspel

This thesis presents an amalgamation of high performance computing techniques to
get better insight into protein molecular dynamics. Key aspects of protein function and
dynamics can be learned from their conformational space. Datasets that represent the
complex nuances of a protein molecule are high dimensional. Efficient dimensionality
reduction becomes indispensable for the analysis of such exorbitant datasets. Dimen-
sionality reduction forms a formidable portion of this work and its application has been
explored for other datasets as well. It begins with the parallelization of a known non-liner
feature reduction algorithm called Isomap. The code for the algorithm was re-written
in C with portions of it parallelized using OpenMP. Next, a novel data instance reduc-
tion method was devised which evaluates the information content offered by each data
point, which ultimately helps in truncation of the dataset with much fewer data points
to evaluate. Once a framework has been established to reduce the number of variables
representing a dataset, the work is extended to explore algebraic topology techniques
to extract meaningful information from these datasets. This step is the one that helps
in sampling the conformations of interest of a protein molecule. The method employs
the notion of hierarchical clustering to identify classes within a molecule, thereafter,
algebraic topology is used to analyze these classes. Finally, the work is concluded by
presenting an approach to solve the open problem of protein folding. A Monte-Carlo
based tree search algorithm is put forth to simulate the pathway that a certain protein
conformation undertakes to reach another conformation.

The dissertation, in its entirety, offers solutions to a few problems that hinder the
progress of solution for the vast problem of understanding protein dynamics. The motion
of a protein molecule is guided by changes in its energy profile. In this course the molecule
gradually slips from one energy class to another. Structurally, this switch is transient
spanning over milliseconds or less and hence is difficult to be captured solely by the work
in wet laboratories.
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Chapter 1

INTRODUCTION

High Performance Computing (HPC) is defined as the process of amassing the power of
a supercomputer efficiently in order to reduce the computation time on large data sets.
A protein molecule’s representation often needs data of the order of 25 MB. Efficient
HPC techniques can be a boon in processing and understanding data of such magnitude.
This is the basis for the work here.

1.1 Machine Architectures

John von Neumann first wrote the general requirements for an electronic computer in
1945. Earlier, the computers were programmed through hard wiring. But over the years,
the notion of stored-program computer has evolved. Now, both the program instructions
and the data are kept in electronic memory. Processor is a logic circuitry that responds
to and processes the basic instructions that drive a computer. Central to a processor
is an ALU (Arithmetic and Logic Unit). A processor has its own memory inside it
in the shape of small cells. Each memory cell is called a register. Registers are used
to store data temporarily for performing operations. Control Unit, is responsible for
all the activities of the processor and also manages the input and output devices of the
computer. It also controls the flow of instructions, obtains instructions from the program
stored in main memory, interprets (translation of instructions into computer language)
the instructions, and issues signals that cause other units of the computer to execute
them.[1]

A single core processor has only one processor, so it can only start one operation at
a time. It can however in some situations start a new operation before the previous one
is complete1. A multi-core processor is a processing system composed of two or more
independent cores. It is basically an integrated circuit to which two or more individual
processors have been attached. Multi-core machines have various advantages like better
resource utilization, efficient data sharing, increased performance etc.

1One example, process scheduling might invoke a process with higher priority
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1.1.1 Flynn’s Taxonomy

Following are excerpts from [2].

• SISD:
Short for Single Instruction Stream, Single Data Stream. It is a serial computer
that acts on only one instruction during any one clock cycle. Also, only one data
stream is being used as input during any one clock cycle. It has a deterministic
execution.

• SIMD:
It is a contraction for Single Instruction Stream, Multiple Data Stream. It is a type
of parallel computers. All processing units in this type of machine execute the same
instruction at any given clock cycle, but it differs from an SISD machine because
each of the processing units here can operate on different data sets. Such machines
are best suited for specialized problems characterized by a high degree of regularity,
such as graphics and image processing. These machines are synchronous (lockstep)
and have a deterministic execution. Most modern computers, particularly those
with graphics processor units (GPUs) employ SIMD instruction and execution
units.

• MISD:
Short for Multiple Instruction Stream, Single Data Stream are another type of
parallel computers. In this case, each processing unit operates on the data in-
dependently via separate instruction streams. A single data stream is fed into
multiple processing units. Very few examples of such a scenario have ever ex-
isted. Some conceivable use cases could be, multiple frequency filters operating on
a single signal stream and multiple cryptography algorithms attempting to crack
a single coded message.

• MIMD:
It is a contraction for Multiple Instruction Stream, Multiple Data Stream and
is the most common type of parallel computers around. Here, every processor
might be executing a different instructions stream and working on a different data
stream. Execution could be both synchronous or asynchronous and deterministic
or non-deterministic. Many MIMD architectures also include SIMD execution sub-
components.

1.1.2 Graphics Processing Unit

A GPU was originally designed to meet the growing needs of 3D gaming industry, but
eventually it developed into a more general high-performance computing device. As
is clear from Figure-1.1 a GPU has multiple control units. Each of which has its own
cache. A separate cache for each control unit is key to the speed-up offered by algorithms
implemented over GPUs. In turn, each control unit has its own series of ALUs. These

2



Figure 1.1: Fundamental Differences between CPU and GPU

separate ALUs can function independent of each other and can tackle different portions
of execution simultaneously.

1.2 Parallel Computing

The foremost step in parallelizing a piece of code is the optimization of serial code. Sub-
optimal serial algorithms can result in inefficient and unreliable speed-up. Following is
the breakdown of the process at a coarse level:

• Identify portions of the work that can be parallelized.

• Mapping the concurrent pieces of work onto multiple processes running in parallel

• Distributing the input, output and intermediate data associated with the program

• Managing accesses to data shared by multiple processors

• Synchronizing the processors at various stages of the parallel program execution

The process of dividing a computation into smaller parts, some or all of which may po-
tentially be executed in parallel, is called decomposition. Tasks are programmer defined
units of computation into which the main computation is subdivided by means of decom-
position. Some tasks may use data produced by other tasks and thus may need to wait
for these tasks to finish execution. An abstraction used to express such dependencies
among tasks and their relative order of execution is known as a task-dependency graph.

3



The number and size of tasks into which a problem is decomposed determines the
granularity of the decomposition. A decomposition into a large number of small tasks
is called fine-grained and a decomposition into a small number of large tasks is called
coarse-grained. Maximum number of tasks that can be executed simultaneously in a
parallel program at any given time is known as its maximum degree of concurrency.
Expectedly, the average degree of concurrency, is the average number of tasks that can
run concurrently over the entire duration of execution of the program.

As mentioned earlier, one of the fundamental steps that we need to undertake to
solve a problem in parallel is to split the computations to be performed. Following are
the ways in which we can to do so-

• Recursive Decomposition is a method for inducing concurrency in problems that
can be solved using the divide-and-conquer strategy. In this technique, a problem
is solved by first dividing it into a set of independent subproblems. Each one of
these subproblems is solved by recursively applying a similar division into smaller
subproblems followed by a combination of their results.The divide-and-conquer
strategy results in natural concurrency, as different subproblems can be solved
concurrently.

• Data decomposition is a powerful and commonly used method for deriving con-
currency in algorithms that operate on large data structures. In this method, the
decomposition of computations is done in two steps. In the first step, the data on
which the computations are performed is partitioned, and in the second step, this
data partitioning is used to induce a partitioning of the computations into tasks.

• Exploratory decomposition is used to decompose problems whose underlying com-
putations correspond to a search of a space for solutions. In exploratory decom-
position, we partition the search space into smaller parts, and search each one of
these parts concurrently, until the desired solutions are found.

• Speculative decomposition is used when a program may take one of many possible
computationally significant branches depending on the output of other computa-
tions that precede it. In this situation, while one task is performing the compu-
tation whose output is used in deciding the next computation, other tasks can
concurrently start the computations of the next stage.

The serial runtime of a program is the time elapsed between the beginning and the end of
its execution on a sequential computer. The parallel runtime is the time that elapses from
the moment a parallel computation starts to the moment the last processing element
finishes execution. Following are the metrics that can be used to guage the efficiency of
a parallelized program-

• The overheads incurred by a parallel program are encapsulated into a single ex-
pression referred to as the overhead function. We define overhead function or

4



total overhead of a parallel system as the total time collectively spent by all the
processing elements over and above that required by the fastest known sequential
algorithm for solving the same problem on a single processing element.

• When evaluating a parallel system, we are often interested in knowing how much
performance gain is achieved by parallelizing a given application over a sequential
implementation. Speedup is a measure that captures the relative benefit of solving
a problem in parallel. It is defined as the ratio of the time taken to solve a problem
on a single processing element to the time required to solve the same problem on
a parallel computer.

• Efficiency is a measure of the fraction of time for which a processing element is
usefully employed; it is defined as the ratio of speedup to the number of processing
elements.

• We define the cost of solving a problem on a parallel system as the product of
parallel runtime and the number of processing elements used. Cost reflects the
sum of the time that each processing element spends solving the problem.

1.3 Parallel Programming Platforms

Numerous programming languages and libraries have been developed for explicit parallel
programming. These differ in their view of the address space that they make available
to the programmer, the degree of synchronization imposed on concurrent activities, and
the multiplicity of programs. Here we explore three such platforms.

1.3.1 Message-Passing Paradigm

The message-passing programming paradigm is one of the oldest and most widely used
approaches for programming parallel computers. Message-passing programs are of-
ten written using the asynchronous or loosely synchronous paradigms. In the asyn-
chronous paradigm, all concurrent tasks execute asynchronously. This makes it possible
to implement any parallel algorithm. However, such programs can be harder to rea-
son about, and can have non-deterministic behavior due to race conditions. In loosely
synchronous programs, tasks or subsets of tasks synchronize to perform interactions.
However, between these interactions, tasks execute completely asynchronously. Since
the interaction happens synchronously, it is still quite easy to reason about the program.

MPI: the Message Passing Interface
MPI defines a standard library for message-passing that can be used to develop
portable message-passing programs using either C or Fortran. The MPI standard
defines both the syntax as well as the semantics of a core set of library routines
that are very useful in writing message-passing programs. MPI was developed by
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a group of researchers from academia and industry, and has enjoyed wide support
by almost all the hardware vendors. The MPI library contains over 125 routines,
but the number of key concepts is much smaller. In fact, it is possible to write
fully-functional message-passing programs by using only the six routines shown in
Table-1.1.

Table 1.1: Main MPI routines.

Routine Description
MPI_Init Initializes MPI

MPI_Finalize Terminates MPI
MPI_Comm_size Determines the number pf processes
MPI_Comm_rank Determines the label of the calling process

MPI_Send Sends a message
MPI_Recv Receives a message

The binding and calling sequences of MPI_Init and MPI_Finalize functions
are illustrative of the naming practices and argument conventions followed by MPI.
All MPI routines, data-types, and constants are prefixed by "MPI_ ". The return
code for successful completion is MPI_SUCCESS .This and other MPI constants
and data-structures are defined for C in the file "mpi.h" . This header file must be
included in each MPI program.

1.3.2 Shared Address Space Paradigm

Explicit parallel programming requires specification of parallel tasks along with
their interactions. These interactions may be in the form of synchronization be-
tween concurrent tasks or communication of intermediate results. In shared ad-
dress space architectures,communication is implicitly specified since some (or all)
of the memory is accessible to all the processors. Consequently, programming
paradigms for shared address space machines focus on constructs for expressing
concurrency and synchronization along with techniques for minimizing associated
overheads. Shared address space programming paradigms can vary on mechanisms
for data sharing,concurrency models, and support for synchronization.

The overheads associated with enforcing protection domains make processes
less suitable for parallel programming. In contrast, lightweight processes and
threads assume that all memory is global. By relaxing the protection domain,
lightweight processes and threads support much faster manipulation. Directive
based programming models extend the threaded model by facilitating creation
and synchronization of threads. A thread is a single stream of control in the flow
of a program. Threaded programming models offer significant advantages over
message-passing programming models as under:
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Software Portability: Threaded applications can be developed on serial machines
and run on parallel machines without any changes.

Latency Hiding: One of the major overheads in programs (both serial and paral-
lel) is the access latency for memory access, I/O, and communication. By allowing
multiple threads to execute on the same processor, threaded APIs enable this la-
tency to be hidden.

Scheduling and Load Balancing: While writing shared address space parallel pro-
grams, a programmer must express concurrency in a way that minimizes overheads
of remote interaction and idling. Threaded APIs allow the programmer to specify
a large number of concurrent tasks and support system-level dynamic mapping of
tasks to processors with a view to minimizing idling overheads.

Ease of Programming, Widespread Use: Due to the aforementioned advantages,
threaded programs are significantly easier to write than corresponding programs
using message passing APIs. Achieving identical levels of performance for the two
programs may require additional effort, however. With widespread acceptance of
the POSIX thread API, development tools for POSIX threads are more widely
available and stable.

POSIX Threads
Also referred to as Pthreads, POSIX has emerged as the standard threads API,
supported by most vendors. Multi-threading concepts are largely independent of
the API and can be used for programming with other thread APIs (NT threads,
Solaris threads, Java threads,etc.) as well. Threads can be created in the Pthreads
API using the function pthread_create. The prototype of this function is:

#include <pthread.h>
int
pthread_create (
pthread_t *thread_handle,
const pthread_attr_t *attribute,
void * (*thread_function)(void*),
void *arg);

The pthread_create function creates a single thread that corresponds to the
invocation of the function thread_function (and any other functions called by
thread_function). On successful creation of a thread, a unique identifier is asso-
ciated with the thread and assigned to the location pointed to by thread_handle.
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The thread has the attributes described by the attribute argument. When this
argument is NULL, a thread with default attributes is created. The arg field
specifies a pointer to the argument to function thread_function. This argument is
typically used to pass the workspace and other thread-specific data to a thread.
The thread_handle variable is written before the the function pthread_create re-
turns; and the new thread is ready for execution as soon as it is created. If the
thread is scheduled on the same processor, the new thread may, in fact, preempt
its creator.

Using pthread_create and pthread_join calls, we can create concurrent tasks.
These tasks work together to manipulate data and accomplish a given task. When
multiple threads attempt to manipulate the same data item, the results can often
be incoherent if proper care is not taken to synchronize them. Threaded APIs
provide support for implementing critical sections and atomic operations using
mutex-locks (mutual exclusion locks). Mutex-locks have two states: locked and
unlocked. At any point of time, only one thread can lock a mutex lock. A lock is an
atomic operation generally associated with a piece of code that manipulates shared
data. To access the shared data, a thread must first try to acquire a mutex-lock. If
the mutex-lock is already locked, the process trying to acquire the lock is blocked.
This is because a locked mutex-lock implies that there is another thread currently
in the critical section and that no other thread must be allowed in. When a thread
leaves a critical section, it must unlock the mutex-lock so that other threads can
enter the critical section. All mutex-locks must be initialized to the unlocked state
at the beginning of the program.

OpenMP
Conventional wisdom indicates that a large class of applications can be efficiently
supported by higher level constructs (or directives) which rid the programmer of
the mechanics of manipulating threads. Such directive-based languages have ex-
isted for a long time, but only recently have standardization efforts succeeded in
the form of OpenMP. OpenMP is an API that can be used with FORTRAN, C,
and C++ for programming shared address space machines. OpenMP directives
provide support for concurrency,synchronization, and data handling while obviat-
ing the need for explicitly setting up mutexes, condition variables, data scope, and
initialization. A huge portion of the Parallelized version of Isomap in Chapter-2
has been done using OpenMP. OpenMP directives in C and C++ are based on
the #pragma compiler directives. The directive itself consists of a directive name
followed by clauses.

#pragma omp directive [clause list]

OpenMP programs execute serially until they encounter the parallel directive.
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This directive is responsible for creating a group of threads. The exact number of
threads can be specified in the directive, set using an environment variable, or at
runtime using OpenMP functions. The main thread that encounters the parallel
directive becomes the master of this group of threads and is assigned the thread
id 0 within the group. The parallel directive has the following prototype:

pragma omp parallel [clause list]
/* structured block */

Each thread created by this directive executes the structured block specified by
the parallel directive. The clause list is used to specify conditional parallelization,
number of threads, and data handling.

• Conditional Parallelization: The clause if (scalar expression) determines whether
the parallel construct results in creation of threads. Only one if clause can
be used with a parallel directive.

• Degree of Concurrency: The clause num_threads (integer expression) speci-
fies the number of threads that are created by the parallel directive.

• Data Handling: The clause private(variable list) indicates that the set of
variables specified is local to each thread – i.e., each thread has its own copy
of each variable in the list. The clause firstprivate(variable list) is similar to
the private clause, except the values of variables on entering the threads are
initialized to corresponding values before the parallel directive. The clause
shared(variable list) indicates that all variables in the list are shared across
all the threads, i.e., there is only one copy. Special care must be taken while
handling these variables by threads to ensure serializability.

1.3.3 Compute Unified Device Architecture (CUDA)

It is an extension of the C programming language and was created by nVidia. Using
CUDA allows the programmer to take advantage of the massive parallel computing
power of an nVidia graphics card in order to do general purpose computation.
Following are excerpts from the beginners CUDA course on NVIDIA’s website.

CPUs like Intel Core 2 Duo and AMD Opteron are good at doing one or two
tasks at a time, and doing those tasks very quickly. Graphics cards, on the other
hand, are good at doing a massive number tasks at the same time, and doing those
tasks relatively quickly. To put this into perspective, suppose you have a 20 inch
monitor with a standard resolution of 1,920 x 1200. An nVidia graphics card has
the computational ability to calculate the color of 2,304,000 different pixels, many
times a second. In order to accomplish this feat, graphics cards use dozens, even
hundreds of ALUs. Fortunately, nVidia’s ALUs are fully programmable, which
enables us to harness an unprecedented amount of computational power into the
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Figure 1.2: CUDA architecture

*As per Nvidia CUDA/C Programming Guide
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programs that we write. As stated previously, CUDA lets the programmer take
advantage of the hundreds of ALUs inside a graphics processor, which is much
more powerful than the handful of ALUs available in any CPU. However, this
does put a limit on the types of applications that are well suited to CUDA. A
description of the architecture of a GPU was provided in Introduction. In order to
run efficiently on a GPU, you need to have many hundreds of threads. Generally,
the more threads you have, the better. If you have an algorithm that is mostly
serial, then it does not make sense to use CUDA. Many serial algorithms do have
parallel equivalents, but many do not. If you can’t break your problem down into
at least a thousand threads, then CUDA probably is not the best solution for you.
If there is one thing that CUDA excels at, it’s number crunching. The GPU is fully
capable of doing 32-bit integer and floating point operations. In fact, it GPUs are
more suited for floating point computations, which makes CUDA an excellent for
number crunching. Some of the higher end graphics cards do have double floating
point units, however there is only one 64-bit floating point unit for every 16 32-bit
floating point units. So using double floating point numbers with CUDA should
be avoided if they aren’t absolutely necessary for your application. Most modern
CPUs have a couple megabytes of L2 cache because most programs have high
data coherency. However, when working quickly across a large dataset, say 500
megabytes, the L2 cache may not be as helpful. The memory interface for GPUs
is very different from the memory interface of CPUs. GPUs use massive parallel
interfaces in order to connect with it’s memory. For example, the GTX 280 uses a
512-bit interace to it’s high performance GDDR-3 memory. This type of interface
is approximately 10 times faster than a typical CPU to memory interface, which is
great. It is worth noting that most nVidia graphics cards do not have more than
1 gigabyte of memory. Nvidia does offer special CUDA compute cards which have
up to four gigabytes of ram onboard, but these cards are more expensive than
cards originally intended for gaming. As stated previously, CUDA can be taken
full advantage of when writing in C. This is good news, since most programmers
are very familiar with C. Also stated previously, the main idea of CUDA is to
have thousands of threads executing in paralle. What wasn’t stated is that all of
these threads are going to be executing the very same function, known as a kernel.
Understanding what the kernel is and how it works is critical to your success when
writing an application that uses CUDA. The idea is that even though all of the
threads of your program are executing the same function, all of the threads will
be working with a different dataset. Each thread will know it’s own ID, and based
off it’s ID, it will determine which pieces of data to work on. Don’t worry, flow
control like ‘if, for, while, do, etc.’ are all supported.

One important thing to remember is that your entire program DOES NOT
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need to be written in CUDA. If you’re writing a large application, complete with
a user interface, and many other functions, then most of your code will be written
in C++ or whatever your language of choice is. Then, when something extremely
computationally intense is needed, your program can simply call the CUDA ker-
nel function you wrote. So the main idea is that CUDA should only be used
for the most computationally intense portions of your program. While CUDA is
specifically meant to run on nVidia’s graphics cards, it can also run on any CPU.

1.4 Protein Folding

Understanding protein structure and dynamics is at the forefront of studies in
Bioinformatics and Computational Biology. How and why a protein molecule at-
tains a certain structure is what being attempted to be understood. A protein
molecule has a hierarchy of structure. The very first level being the sequence of
amino acids it has. The entire sequence of conformational changes that a protein
goes through is encoded in this sequence, (Anfinsen’s dogma) and this sequence
itself is referred to as the primary structure of a protein. The secondary structure
of a protein is made up of alpha helices and beta sheets, which are stable folding
patterns that result from hydrogen bonding between amino groups and carboxyl
groups that are nearby in a protein chain. Interactions between various secondary
structure elements like salt bridges, hydrogen bonds, and the tight packing of side
chains and disulphide bods lead to tertiary structure. The tertiary structure is
referred to as the formulations that occur in a single linear polypeptide chain and
lastly, the quaternary structure is the ultimate three dimensional shape attained
by a protein molecule with multiple polypeptide chains that operate as a single
functional unit (multimer).

A protein when synthesized, attains a final shape which is reached by under-
going through a series of structures. The chosen one is typically the one that is
energetically most favorable. Several types of molecular interactions lead up to the
folding of a protein. Thermodynamic stability of a molecule plays the biggest role
in determining its ultimate structure. Next type of molecular interactions that
drive protein motion are the hydrophobic interactions within the molecule. These
interactions have their impact even after a protein has found its most stable state,
they drive inter-molecular dynamics and chaperon proteins (the ones that govern
the folding of other proteins). Another type of interaction is the disulfide linkages,
they are a sulphur-sulphur chemical bond formed because of oxidation within a
protein. [3] Figures 1.3 and 1.4 show the native and folded states of a protein.
The inactive form, Trypsinogen when synthesized goes through a series of changes
to get activated to ultimately fold into a more stable structure of trypsin.
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Figure 1.3: Inactive Trypsinogen

Figure 1.4: Active folded form of trypsinogen, Trypsin

*Both the figures above were obtained from www.rcsb.org
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1.5 Parallel Computing in Bioinformatics

Data sets representing the complex nature of a macromolecule like protein are
often humongous. These data sets are so diverse that storing them itself is a chal-
lenge. Computational time of such high dimensional data poses a big problem in
understanding it. These data sets can be classified as ’biological big data’. Expect-
edly, a wide variety of high performance computing techniques can be employed to
deal with it. Parallel programming methods have found application in emulating
all the possible pathways of a protein molecule simultaneously. The suitable ones
can be extracted using various filtering methods and the synchronization offered
by these parallel platforms. Chapter-2 presents one such application.

Bioinformatics is a multidisciplinary field that is in constant evolution due to
technological advances in correlated sciences (eg, computer science, biology, math-
ematical, chemistry, and medicine). Thus, it requires skills from these domains
of sciences for modeling, gathering, storing, manipulating, analyzing, and inter-
preting biological information, ie, “biological big data”. Since biological big data
is generated by several different bioinformatics/biological/biomedical experiments,
it can be presented as structured or unstructured data. Due to the complexity in
the nature of the biological big data, a shift to discovery-driven data science is
under way, especially in the genomic field. [4]

1.6 Objectives

This thesis is a result of a collection of work each of which was aimed at coming
up with way to better understand the structure and dynamic of proteins, all of
which can be summed up as under:

1. Write parallelized versions of well-established dimensionality reduction meth-
ods best suited for protein data.

2. Design novel algorithms for dimensionality reduction, that are more effective
and faster.

3. Use the techniques above to model physical pathways that a protein under-
takes.

1.7 Organization of the Thesis

• Chapter 2 describes the parallelization of a known non-linear feature reduc-
tion algorithm.

• Chapter 3 proposes and analyses a novel data instance reduction technique.
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• Chapter 4 combines the findings of Chapters 2 and 3 to investigate interme-
diate conformations.

• Chapter 5 takes the results of other chapters to develop an approach to
simulate actual protein motion.

• Chapter 6 summarizes the results of all of the research projects and discusses
how these can be taken further.
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Chapter 2

PARALLELIZATION OF ISOMAP

Ascertaining the conformational landscape of a macromolecule, like protein is in-
dispensable to understanding its characteristics and functions. In this work, an
amassment of these techniques are presented, that would be an aid in sampling
of these conformations better and faster. The datasets that represent these con-
formational dynamics of proteins are complex and high dimensional. Therefore,
there arises a need for dimensionality reduction methods that best conserve the
variance and further the analysis of the data. We present a parallelized version of
a well-known dimensionality reduction method, Isomap. Isomap has been shown
to produce better results than linear dimensionality reduction in approximating
the complex landscape of protein folding. However, the algorithm is compute-
intensive for large proteins or a large number of samples, used to model a path
that a protein undergoes. We worked on an algorithm, parallelized using OpenMP,
with a speed-up of approximately twice. The results are in agreement with the
ones obtained using sequential Isomap.

2.1 Representation of Data: The Problem

In order to understand how proteins perform their function, it is essential to charac-
terize their conformational space. Understanding the connection between protein
structure, dynamics and function can contribute to our understanding of cellu-
lar processes. The question of how the structure and dynamics of proteins relate
to their function has challenged scientists for several decades but still remains
open. Methods that explore the conformational landscape of proteins include
Molecular Dynamics (MD) [5], Monte Carlo sampling [6] geometric-based sam-
pling [7, 8, 9, 10], Elastic Network Modeling [11, 12], normal mode analysis [13, 14],
morphing [15] and several other methods. The complex, high dimensional nature
of the protein conformational space requires the generation of tens of thousands,
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if not more, conformations per trajectory. An average protein contains several
hundreds to several thousands of atoms. Therefore, this is an enormous amount of
data which requires a large amount of time and space to process, store and analyze.
The data is presented in a way that each row represents a different conformation.
If a protein has N atoms, then every row that represents the atomic coordinates of
the protein has N ×3 variables. All the numbers in the columns together make up
for also the orientation that the specific conformation would have. However, due
to the mutual constraints between atoms in the protein, the real dimensionality of
the conformational space is much lower than that. Therefore, one of our prelim-
inary tasks is to find a more efficient way to represent the data. Dimensionality
reduction techniques are often used to form a lower-dimensional representation of
high dimensional data.

2.2 Other methods

Linear dimensionality reduction like Principal Component Analysis (PCA) and
its variants may not capture the complex, non-linear nature of protein conforma-
tional landscape. Dimensionality reduction techniques are broadly classified based
on the solution space they generate, as convex and non-convex [16]. Techniques
described in [17] give explicit details of the various well established non-convex
methods. These methods are further sub-divided into Full Spectral Techniques,
the ones that perform the eigen decomposition of a full matrix and Sparse Spectral
Techniques, the ones that do the same for a sparse matrix. The latter ones have
better time-complexity but these approaches are local. They attempt at retaining
only the local structure that the sparse portions of the dataset present. On the
other hand, Full Spectral Techniques, capture the covariance between all the data
instances and form a more thorough representation of the structure as a whole.
The Isomap algorithm [18] is a non-linear dimensionality reduction method that
falls into the Convex Full Spectral category. It takes as input the distances between
points in a high-dimensional observation space, and outputs their coordinates in a
low-dimensional embedding that best preserves their intrinsic geodesic distances.
The algorithm operates in three modes, each of which differs in the kind of data
they accept (see Methods). Despite its advantage in efficient representation of
molecular data[19, 20], Isomap is computationally expensive, especially with very
large, multi-dimensional datasets. To overcome this, we have implemented our
version of the Mode-III of Isomap. Improvements over Isomap are presented in
[21, 22]. A similar approach is adopted but in a way that is more suited for protein
data.

Our method uses a distance function to calculate the distance between the
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points that in turn measures the similarity between the conformations that each
of these points represent. The algorithm runs twice as fast as the serial implemen-
tation with comparable results. The output is a lower-dimensional projection that
can be used later for purposes of visualization and analysis. In particular, one of
our goals is to detect intermediate structures by obtaining distinct clusters using
Persistent Homology as in our previous work [23].

2.3 Isomap and Tweaks to it

The parallelization of the dimensionality reduction algorithm used here, Isomap,
begins with the very first step itself of Isomap,

1. The search for k-nearest neighbors of every point in the dataset. This yields
a neighborhood graph. If the input matrix is N ×M , the neighborhood graph
would be N × k which is made to be N ×N substituting the value of distance for
the k neighbors of each point and infinity for the rest (except for the point itself,
because distance of a point with itself would be zero).

2. Next comes the computation of the shortest path tree of this graph.

3. Once this is done, Multi-dimensional scaling is performed. The dimension
of the matrix still remains N ×N .

4. Next, the eigen vectors and values are computed, and the matrix dimension
after it, is reduced to N × i, where i is the number of dimensions desired for the
final embedding.

Each of these algorithms, is elucidated in detail as under:

• KNN:
The dataset here is of the order of tens of thousands points. The word ’near’
finds its meaning in quantization of the features for every point with respect
to every other point. A distance function [18] has been formulated to achieve
this. In contrast with the sequential Isomap, each of the data points can be
operated on simultaneously. The number of neighbors to be sought for each
point are so chosen, so as to obtain one connected component in the resultant
neighborhood graph. We opt for least such number.

• Floyd-Warshall:
Floyd-Warshall’s all pair shortest path algorithm can be used for construction
of the shortest path tree in case the graph is directed and non-symmetric and
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preserves the sense of direction by negative distances. The algorithm has a
triple nested loop, of which the middle one executes independently and hence
has been parallelized [24]. This parallelization of the middle loop renders the
run-time of the algorithm O(N2).

for(int a=0; a<N; a++)
{
#pragma omp parallel for
for(int b=0; b<N; b++)
for(int c=0; c<N; c++)
if (...)
...
}

• Dijkstra’s Algorithm:
For the protein data in this work, we have an undirected, symmetric graph
with positive distances. So, Dijkstra’s algorithm with multiple sources is
used. We chose this algorithm over Floyd Warshall’s to exploit the sym-
metry of the neighborhood graph; which allows for having to save only a
triangular matrix in the memory, reducing the storage requirements to half.
Also, it allows for an early notification if the numbers of neighbors are not
enough to get one connected component. In this scenario, the algorithm is
allowed to halt at the first iteration itself, knowing that there is at least one
point that isn’t reachable from the first. At each iteration the number of
nodes to be worked with is reduced by one. The first iteration of the loop
establishes the shortest paths between the first source node and the rest of
the nodes. Subsequent iterations do the same for the remaining nodes. So,
by the time the last node of the graph is reached, there is just one node left
to work with and that is the node in question itself and so the algorithm
walks out of the loop.

• Union-Find:
The number of connected components in the graph so produced can be found
using the classic union-find operations [25]. This portion of code comes into
play if the Floyd-Warshall is used as the shortest path tree finding algorithm.
While using Dijkstra’s algorithm, the first iteration itself tells whether the
chosen number of neighbors are enough to find one connected component, if
they aren’t the program is designed to halt prompting for more neighbors.
The largest component found first is chosen to embed. Since we aim at only
reducing the dimensionality of the available data in this step, we find as
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Table 2.1: Details about data samples

Molecule Name No. of atoms Rows1 Columns2 k3 RMSD error
4did CDC42, complexed with GDP 1880 20000 534 3 432.98
Hgalanin Human Galanin, a neuropeptide 434 22750 363 18 532.76
Pgalanin Porcine Galanin 442 22750 351 8 489.62
Neuromedlin a mammalian peptide 116 22750 123 7 312.45
Oxytocin a hormone 135 22750 111 8 328.98
Vasopressin a hormone 140 22500 111 6 516.23

Table 2.2: Isomap trends in residual variance with increasing dimensions

Molecule 1 2 3 4 Time (min)
4did 0.012 0.006 0.005 0.003 195
Hgalanin 0.544 0.383 0.269 0.184 380
Pgalanin 0.234 0.142 0.138 0.095 362
Neuromedlin 0.665 0.544 0.428 0.349 245
Oxytocin 0.448 0.3 0.199 0.144 253
Vasopressin 0.533 0.246 0.184 0.144 282

many neighbors of each point as would be required to obtain one connected
component. This gives a thorough coverage of the conformational space.

• MDS:
Next, the classical version of Multi-Dimensional Scaling is performed on the
data thus far [18].

• Eigenvectors and Eigenalues:
To obtain a rigid transformation, eigenvectors and values are to be found in
as many dimensions as one wishes to observe. The power method is used to
find the dominant eigenvalue and its corresponding eigenvector in a loop that
stretches for as many iterations as the number of dimensions. The number
of dimensions has been set to five to observe the residual variance, and the
first three dimensions are embedded and written to a file.

2.4 Analysis of Results

The proteins we used here range between 9 and around 200 amino acids. Each data
point here, represents a conformation of the molecule generated using Molecular
Dynamics simulations. We typically use an average of twenty two thousand such
conformations. Table-1 gives more details about the molecules used. As mentioned

1no. of conformations used
2no. of features used to represent one conformation of the molecule
3no. of neighbors that produced one connected component
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earlier, OpenMP has been employed to parallelize the algorithms rewritten in C.
Due to the need of computing all pair shortest paths, the time complexity of
Isomap is O(N3). In our version, because we harness the capabilities of a modern
multi-core CPU, it has been brought down to O(N2) when the Floyd Warshall
method of shortest path evaluation is used and O(N2logN) when the Dijkstra’s
method is used for this purpose (see Methods).

In order to compare the performance of our method to that of the serial Isomap,
we compared the residual variance in each sample molecule for a number of di-
mensions for each of the two embeddings. Residual variance is a measure of how
different the generated embedding is with the original data. With increasing di-
mensionality, the number received gives an estimate of how much of the variance in
the data is still unexplained. It is computed as the unit difference from the squared
correlation coefficient at each dimension. The data matrix of N points is first sub-
ject to thorough analysis, by obtaining the shortest path tree that represents the
connectivity of each of these points with every other point. The low-dimensional
embedding obtained by eigen-decomposition of this tree forms the matrix with
which the correlation coefficient is calculated. The residual variance is supposed
to decrease with increasing dimensionality, as each dimension explains a fraction
of the variance. A sphere when observed in two dimensions would be a circle. So,
more dimensions are to be taken into account to reveal the true structure of any
object. More the dimensions, less is the unaccounted information. For instance,
for Oxytocin, the residual variance for the first dimension in Sequential Isomap
(refer Table-2.2) is 0.448 which means 44.8 percent of the data is still unexplained,
it decreases to 30 percent in the second dimension and it continues to decrease
as more dimensions are added. The trend is reported for the first four dimen-
sions for both serial and parallel versions. Similarly, in the Parallel Isomap (refer
Table-2.3), the corresponding values for Oxytocin are 66.7 percent, 54 percent and
they continue decreasing as more dimensions are observed. The difference in these
values can be alluded to the way eigen-decomposition is performed in our version
of the algorithm. A three dimensional projection of the embeddings generated
by the serial and parallelized version of the algorithm is presented in Figure-2.1
in the same order as they appear in Table-2.1. The first three dimensions were
embedded.

Another proof of quantitative validation comes with the least RMSD (Root
Mean Square Deviation) computation for the two embeddings. This method is the
same as described in the Data instance Reduction section. It is enlisted for the
various protein molecules in Table-2.1 in the column named reconstruction error.
Our implementation offers a good coverage even in lower dimensions.

The last column of Table-2.2 shows the performance of the serialized code in

21



Table 2.3: Parallel-Isomap trends in residual variance with increasing dimensions

Molecule 1 2 3 4 Time (min) for 8 cores 4 cores 2 cores
4did 0.054 0.032 0.00852 0.0056 92 132 156
Hgalanin 0.754 0.690 0.623 0.491 175 255 306
Pgalanin 0.421 0.334 0.259 0.062 152 243 290
Neuromedlin 0.974 0.783 0.642 0.341 125 165 198
Oxytocin 0.667 0.54 0.378 0.254 110 170 205
Vasopressin 0.834 0.657 0.278 0.109 162 190 230

Matlab. The last three columns of Table-2.3 do so for our version of the algorithm
with scalability, depending on how much power of a CPU is harnessed. As is
evident, the time consumption is much less for the parallelized code. The time
consumption in the parallelized version depends on the number of cores of the
CPU being employed for the computations. The results of Table-2.3 represent the
time taken by a system with two quad-core processors, which means at a time
eight threads are at work simultaneously for the parallelized portions of the code.
The number of threads can be set for any program written in C using OpenMP [2].
The chunk of pseudo-code in Methods shows how to parallelize a simple for loop
and how many threads one wishes to use can be set before executing the program,
in the shell, using the command:

OMP_NUM_THREADS=8.
Since the number of cores here are eight, the performance isn’t affected much by
using more threads for this configuration of a machine. The average speed-up
drops to about 1.5 when only four threads are at work and about 1.248 for two
threads.

Besides the improvement in average time complexity due to betterment in com-
putation of the shortest path tree, the algorithm offers better speed at every stage,
when each function is compared in isolation. In future, we plan on attempting to
do this even faster. The algorithm in its current form, only reduces the features of
the data. Coming up with a way to reduce the noisy and redundant points them-
selves, is an area of ongoing research. As mentioned earlier, the Isomap algorithm
is compute intensive. It executes in a way that hogs the system’s resources, leav-
ing all the other applications running on the system starved. In comparison, our
parallelized version, efficiently makes use of the available memory, without having
to write anything on the disk and hence doesn’t hamper any other processes run-
ning on the system. The amount of data to be operated on is so large here, that
programming platforms for vectorized data like Matlab and R sometimes cannot
allocate memory for it. The coordinate data here is about 80 MB and the inter-
mediate data files can be about 4GB. In situations like these, our version of the
algorithm becomes the only resort.
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Figure 2.1: Isomap (left) and Parallel-isomap (right) Embeddings
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Chapter 3

A NOVEL DATA INSTANCE
REDUCTION TECHNIQUE

Representation of structurally significant data is indispensable to modern research.
The need for dimensionality reduction finds its foray in varied genres viz-a-viz,
Structural Bio-informatics, Machine Learning, Robotics, Artificial Intelligence, to
name a few. The number of points required to effectively capture the essence
of a structure is an intuitive decision. Feature reduction methods like Principal
Component Analysis (PCA) have already been explored and proven to be an aid
in classification and regression. In this work we present a novel approach that
first performs PCA on a data set for reduction of features and then attempts to
reduce the number of points itself to get rid of the points that have nothing or
very little new to offer. The algorithm was tested on various kinds of data (points
representing a spiral, protein coordinates, the Iris dataset prevalent in Machine
Learning, face image) and the results agree with the quantitative tests applied.
In each case, it turns out that a lot of data instances need not be stored to make
any kind of decision. Matlab and R simulations were used to assess the structures
with reduced data points. The time complexity of the algorithm is linear in the
degrees of freedom of the data if the data is in a natural order.

3.1 The Problem

Dimensionality reduction is a process of expressing high-dimensional data using a
low-dimensional representation, while trying to preserve the variance in the data
as much as possible. Principal Component Analysis is now one of the age-old and
well-established methods for feature reduction [26]. It takes as input a data matrix
with M observations and N features. The algorithm performs an orthogonal linear
transformation and produces the principal components, which are the eigen vec-
tors of the covariance matrix of the original data that in decreasing order represent
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the variance captured by them. The components are obtained from the Singular
Value Decomposition of the data matrix. More details of the core algorithm can
be found in [27, 28].
There are many approaches to obtaining these principal components, some of which
are categorized as robust. Such algorithms, take into consideration the sparseness
and possible corruption in the values of the data matrix [29]. We use one such
approach called the spherical PCA. The data points in this approach are projected
onto a sphere. The sphere is centered around the biggest cluster in the dataset
and the radius is so chosen that most data points are covered. It offers a clever
way of dealing with the outliers inherently present in the data. A single outlier
affects the average of the data tremendously and ultimately the direction of prin-
cipal components [30].
Real world structurally significant data is often so huge that its processing and
analysis is long and tedious. Such datasets are also intensive on the system’s
memory. Also, in higher dimensions, the data becomes sparse. Consider the ra-
tio of the areas of a square of length r and that of a circle of radius r, which is
about 0.3183. Now consider the ratio of the volume of a cube and the volume of
a sphere in three dimensions, the ratio now becomes approximately 0.2387. This
ratio continues to decrease as the dimensions increase, which indicates that in
high dimensional data the significant information moves towards the boundaries.
The notion is referred to as the curse of dimensionality. Therefore, there arises a
need for an algorithm that would make a decision as to whether a particular data
instance in high dimensionality contributes to the shape of a structure or not. In
particular, the motivation for this work was forked off because of dealing with hu-
mongous molecular data sets[19, 20]. These data sets are often in the form of text
files of the order of 25 MB. Each row of these files represents a conformation that
the molecule can have. Each conformation is represented by a set of attributes.
These attributes can be normalized and reduced using various feature reduction
techniques like PCA itself. Studies have shown that not all of these conformations
need to be worked with to understand macro-molecular dynamics [7, 8, 9, 10]. Our
algorithm attempts to reduce these conformations.

The goal here is to obtain a reliable method to reduce the number of observa-
tions for data sets while losing as little information as possible. It finds relevance in
the fact that lesser points would need less storage space and also reduce computing
times of algorithms used to analyze these data sets. PCA processing in this work
is used so as to obtain three distinctive features of the data that among them-
selves preserve the most variance. The algorithm then assesses the information
content offered by each point. The assessment is done by the relative positioning
of the points in the space defined by these first three principal components. As the
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Abstract claims, the algorithm has been shown to produce noteworthy results in
eclectic data sets. In image processing, the classical techniques of edge detection
and image recognition are of paramount importance. The algorithm can be an
aid for all of these procedures. Details of more widespread applications of image
processing with efficient data reduction and its importance in the medical world
can be found in [31] and [32].

3.1.1 Literature Survey

Existing algorithms for data instance reduction are broadly divided into, incremen-
tal, decremental, batch and mixed [33, 34, 35, 36, 37]. The incremental algorithms
begin with a null set and data instances are added to it depending on the result of
the algorithm. The decremental algorithms, on the contrary, begin with the entire
set of instances and depending on the decision offered by the selection algorithms,
instances are taken out from the set one had at the beginning. The batch algo-
rithms function in a way that each instance is first analyzed and then a decision
is made as to which ones to keep. Mixed algorithms begin with a preselected set
of instances and the process then continues to figure whether instances should be
deleted or added. The proposed algorithm falls into the decremental bracket.

An evaluation of the age-old techniques of instance reduction is explained in
[33]. Another work that performs an elaborate evaluation of existing algorithms
and presents two ways based on Locality Sensitive Hashing [35] is presented in
[34]. Another novel approach based on similarity calculation between instances
and then clustering is presented in [36]. Another novel entropy based approach is
presented in [37]. All of these algorithms are aimed to produce the best training
set to produce accurate classification of a dataset. The algorithm proposed in this
work explores a range of datasets and has been shown to work in each scenario.
Comparative results and their analyses are provided in section 3.3.3.

3.2 The Algorithm

As mentioned earlier, the first step is to perform spherical PCA on input data
matrix. The data matrix could be a distance metric for all the data instances or a
combination of attributes that measure the similarity of each data instance. If the
data has non-numerical information, then that information needs to be translated
into numerical data. Computing spherical principal components is a well known
algorithm and we followed the procedure described in [29, 30, 38]. We wrote a
short Matlab script for the purpose, it takes as input the data matrix (with only
numeric features) and the number of dimensions (principal components) desired
of all the data instances. The output is a matrix file that retains all the points
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with the number of desired principal components. We work with two and three
dimensions, in order to better visualize structurally significant data. It is observed
that over eighty percent of the variance is explained by the first three principal
components in all kinds of data the algorithm was tested on, although it is not
always the case. The method can be readily extended to higher dimensions. PCA
redoes the features of the data set and produces a new set in decreasing order
of variance captured by each of them. The relative values of these high variance
capturing principal components is used to pick the relevant data instances.

3.2.1 General Outline

The data set at the beginning has N rows and M columns. The PCA processed
data with N rows and three columns (first three principal components is fed to the
algorithm). For a blind dataset (or a data set of known random nature), a sort
should be performed based on the first principal component so that the points can
be processed in order. Following is the pseudo-code that describes our approach:

1. //2-D case: data set has N points
2. for i=2:N-2 {
3. a = ratio of slope between i-1, i and i,i+1
4. if(a < threshold)
5. remove point i
6. }
7. //3-D case: the data set now has Q points
8. for q=2:Q-4 {
9. P1 = position vector of point q-1
10. P2 = position vector of point q
11. P3 = position vector of point q+1
12. P4 = position vector of point q+2
13. N1 = cross product(P1-P2, P1-P3)
14. b = angle between N1 and P4
15. if(b<pi/5 || b>3*pi/5)
16. remove point q+1
17. }

3.2.1.1 Projection Score

We seek an optimum value of the slope threshold (in line-4 of the algorithm above)
and the angle between planes (line 14). Their optimality is decided by the what
is called the projection score of a dataset. It implies how much a given point con-
tributed to the variance of the entire data set. A mathematical formulation of a
proof of correctness has been adapted from a method described in [39]. This work
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Figure 3.1: Elucidation of the Algorithm. The middle point would be kept or rejected
depending on where it lies with respect to the other two.

formulates a way to credit the informativeness of a variable in huge data sets. We
use this formulation on data instances instead of features. For this, first the matrix
is multiplied by its transpose to obtain an empirical covariance matrix. Let A be
the data matrix of dimensions N×M . The covariance matrix of dimension N×N
is:

Cov(A) = A ∗ AT

Next, the eigen-values of the covariance matrix are computed. . Let λx denote
the eigen-value in xth dimension. The ratio of the sum of these values in rejected
data points to the total number of points is referred to as the projection score of
these data instances. Let S denote the set of points eliminated by the algorithm,
projection score α can be denoted by the following equation.

α =
∑

x∈S
λx∑N

x=1 λx

The lower this number is, the lower is the information content offered by this
set of points. This number is found to be of the order of 10−3 at the very least in
almost all data sets. The Projection Score column of Table-3.1 shows these results.

3.2.2 2D case

To decide whether a point can be removed from a projection, we measure how
much information it adds to it. Intuitively, if three close by points are co-linear,
the middle point does not add new information to the projection. To obtain
information about these points, the first two principal components are traversed
in the order in which they exist in the data file and the information content offered
by each point is assessed as follows: Given three points p1, p2, p3 at coordinates
(x1, y1), (x2, y2) and (x3, y3), respectively, then the threshold is defined as the ratio
of the slopes of the lines p1 − p2 and p2 − p3:

y2−y1
x2−x1
y3−y2
x3−x2

= y2 − y1

x2 − x1
× x3 − x2

y3 − y2
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Figure 3.2: The Algorithm in three dimensions. Amongst the four co-planar points the
one encountered third would be rejected or kept depending on how much the plane is to
be tilted in order to include the point that is out of the plane.

If this change of slope is above a threshold, the middle point is kept, otherwise it
is discarded. Figure-3.1 illustrates an example of three points. The middle point is
the one being investigated. The method checks for collinearity. The ratio of slopes
that constitutes collinearity depends on the kind of data. To find an optimal value
we conducted a binary search starting from a given threshold, as detailed below.
The threshold values for the various data sets are reported in the last column of
Table 3.1. This value of the threshold maintains much of the variance in the data,
while rejecting the most number of points. The process is explained in details in
Section 3.2.4. Decreasing this number any further may eliminate more points from
the set but loses too much of its variance, according to the score described below.

3.2.3 3D case

A straightforward extension of this algorithm can be applied to three dimensions,
where we seek to eliminate points that do not contribute to the projection by
testing whether they are co-planar with three other close-by points. Since every
three points define a plane, a fourth point on the plane does not contribute to
the projection. The algorithm is performed on the reduced data set received from
the two dimensional projection. As before, the points again are traversed in the
order they appear in the dataset (or the sorted order based off of first principal
component if the data was know to be random). In a sequence of four points,
the threshold (the definition of threshold here is the same as in 2-D case) of angle
required to tilt the plane on which the first three points lie helps in deciding
whether the fourth point in this sequence is informative or not. If this change of
angle is above a threshold, the fourth point is retained, otherwise it is rejected.
The details of how this is achieved are in the next section. Figure 3.2 provides for
visualization of this procedure in three dimensions.

3.2.4 Determine the Threshold

As mentioned earlier, the thresholding here is paramount and depends on the kind
of dataset being dealt with. For a new (blind) dataset, we start with an initial
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slope ratio value (for the 2-D case). Starting with 0.5 we assess the results based
on the percentage of points eliminated and the projection score defined below.
Assessing the results, there are three options, this threshold is either adequate,
too high, or too low:

1. If the initial value 0.5 is too high, the reduced dataset will be too small. Per
our definition, this means over 75% of the data is lost and the projection score
is 10−2 or higher. A combination of the percentage of eliminated points and
the projection score decide whether the subset obtained is acceptable or not.
For example, in the Swiss Roll dataset, described in the following section, the
percentage of points eliminated is at slope threshold of 0.5 was over 75%, but
the projection score is much lower (3.1, column 1) which meant that a slope
threshold of 0.5 is not too hight this dataset. But for the datasets that do fall
in this category, the next step would be to perform a binary search between
0 and 0.5, to obtain an optimal threshold. The next value of threshold to try
would be 0.25, if the projection score is still high, try 0.125 and so on. The
maximum number of trials in this study, 15 iterations, were needed for the
face image dataset.

2. If the initial value 0.5 is too low, the dataset ends up retaining most of
its points. By our standards, it happens if only 15% or fewer points of
the original data are eliminated. In this case we perform a binary search
between 0.5 and 1 until the convergence criterion mentioned above in the
first case is achieved. All of the protein datasets in this study fall into this
category, where (even though we began with a much lower threshold for
experimentation purposes), the eliminated points were well above 60% and
the projection scores as low as 10−5 were achieved.

3. The slope threshold of 0.5 is considered near adequate if the percentage of
points eliminated are between 15 and 75. In this case, the threshold and the
corresponding projection score should be considered for the values of slope
threshold of 0.4 and 0.6.

a) If the percentage of points decreased is less than 50 and the threshold of
0.6 results in an even smaller dataset while maintaining (or lowering) the
projection score, we perform a binary search between 0.6 and 1. If not,
the search should be between 0.5 and 0.6. As soon as the projection score
becomes higher, stop and return the slope threshold for this dataset.

b) If the percentage of points eliminated is over 50, we still try a higher slope
threshold of 0.6 because the goal here is to be able to represent data with
as fewer points as possible while capturing maximum variance. The spike
in projection score is evident of the fact that informative point(s) have
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been removed from the dataset. Reducing the threshold to 0.4 results in
a comparatively larger dataset while maintaining the projection score,
we conduct a binary search between 0.4 and 0.5. If the projection score
at 0.4 becomes lower, it is indicative of the fact that at the threshold of
0.5 there has been a loss of few informative points. The search should
then be between 0 and 0.4. As soon as the projection score becomes
higher, stop and return the slope threshold for this dataset.

5-6 trials are usually enough for the purpose. Most machine learning datasets
fall in this category.
Figure-3.3 shows the process for the two extremes. In both the cases the
stopping point for the threshold for the process is decided by the projection
score at that point for the corresponding dataset.

;

Figure 3.3: Slope Threshold versus the percentage of points reduced. In both the cases
the stopping point for the threshold for the process is decided by the projection score at
that point for the corresponding dataset.

4. As mentioned earlier, the next step is to try to eliminate even more points
from the data set by progressing onto the 3-D version of the algorithm. The
decision of rejecting a point, in this case, is determined by how much the plane
created by the previous three points is to be tilted in order to accommodate
the current point. The process of determining this angle threshold is the same
as for the slope threshold. The angle that we begin with is π/2 (and 3× π/2
to account for the negativeness of the angle). Depending on the size of the
reduced data set and the projection score, a binary search can be started
between π and π/2 or π/2 and 0.

Also, besides the projection score and the percentage of points eliminated, each
dataset has its own method of evaluation that presents insight. The goal of Su-
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Figure 3.4: 2-D PCA projection of the Swiss Roll dataset with 1600 (left), 833 (middle)
and 210 points (right).

Table 3.1: Projection Score trends in various data sets

Data Set Projection Score % of points eliminated Reconstruction Error Slope Threshold
Swiss Roll 3.204 ∗ 10−4 86.875 0.006 0.99
Human Galanin 2.159 ∗ 10−5 68.954 1.562 0.76
CDC42 1.42 ∗ 10−3 69.875 1.022 0.78
Vasopressin 1.893 ∗ 10−5 74.302 0.358 0.82
Lena Image 2.03 ∗ 10−5 53.36 0.13 0.00001
Iris Dataset 7.37 ∗ 10−9 52.67 0.02 0.16
Isolet Dataset 6.4 ∗ 10−3 40.23 0.14 0.46

pervised Learning is to exploit the information known about the dataset. The
datasets that represent a shape, like the Swiss Roll and Face Images, can be eval-
uated on the basis of their simulation as well. In the context of machine learning,
the reduced dataset is treated as a training set to classify the rest of the data,
details can be found in section 3.3.2.1.

3.3 Results and Discussion

3.3.1 Simulation Results

3.3.1.1 Swiss Roll Dataset

Figure-3.4 (left) shows the PCA projection of a data set representing a Swiss Roll
[18, 21]. It is a two dimensional projection that uses 1,600 points to represent
the structure. After applying just the 2-D version of the algorithm, about half
of these points were found to be redundant. Figure-3.4 (right) shows the plot
of the PCA projection of the remaining points. Only 833 points were used to
construct this plot. As mentioned earlier, this is one of the datasets that represent
a shape. Apart from the projection score and the percentage of elimination of
data instances, the simulation results are quite instrumental in determining the
validity of a reduced subset of points. In search of validation, a very different kind
of structurally significant data set was chosen next.
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Figure 3.5: 2-D PCA projection of the Human Galanin dataset with 22750 (left) and
15680 (right) points respectively.

3.3.1.2 Protein Datasets

We used simulations of protein structures. As mentioned in section 3.1, these
molecular datasets are in the form of matrices, each row of which represents a
conformation that the protein can attain in its trajectory. The data was created
using Molecular Dynamics (MD) simulations [40]. If a molecule is composed of N
atoms, it has N × 3 attributes (columns), taking into account three-dimensional
coordinates of each atom, that distinguish a conformation. The two structural
extremes of the molecule are represented often with tens of thousands of confor-
mations, making the data humongous. Human Galanin is one such example. It
is a neuro-peptide and is a known heavy protein molecule with ample structural
niceties. Figure-3.5 (left) shows a two dimensional plot of the PCA projection of
this macro-molecule with 22750 data points. The algorithm does away with about
two-thirds of these points. Figure-3.5 (right) is a PCA plot of the reduced data
and was constructed with 15,680 points.

These results were obtained with just the application of the two-dimensional
version of the algorithm. To do further tests, a set of medium to large protein
molecules with well-established structures were chosen. Figure-3.6 (left) shows
the three dimensional plot of the PCA projection of one such protein, Cdc42,
with 20,000 instances. Cdc42 is a protein from the Ras superfamily, involved
in regulation of the cell cycle and has been shown to be involved in cancerous
processes [41]. When subjected to the two dimensional version of the algorithm,
a data set of about 15,000 points was obtained. The number of points obtained
subsequently by progressing to a plane was 4,985. Figure-3.6 (right) shows a three-
dimensional plot of these points. When the Swiss roll data set is again subjected
to the progression of the algorithm, a set of 210 points was obtained. A two-
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Figure 3.6: 3-D PCA projection of the CDC42 dataset with 20000 (left) and 4985 (right)
points respectively.

dimensional plot of these points is shown in Figure-3.4 (right). Figures-3.7- left
and right show the same for Vasopressin, a hormone.

3.3.1.3 Face Image

In light of the fact that the algorithm preserves a great deal of variance in struc-
turally significant data, testing it on facial images seemed like a test that would
consolidate its function. In image processing, efficient algorithms for de-noising an
image are imperative. Many filtering processes exist for the purpose [42], [43]. The
Lena image, shown in Figure-3.8 was used as a test dataset here too. This image is
pervasive and was procured form the Internet with a basic Google search. Its jpg
file format was then converted into coordinate data using the method described
in [44]. A two-dimensional projection of these points is shown in Figure-3.9 (left).
Once a coordinate matrix is obtained, it is PCA processed and the algorithm is
performed as with other data sets. The reduced data set obtained here contained
less than half the points in the original image and its plot is shown in Figure-3.9
(right). In this data set, the algorithm discarded almost all the points (only three
points were retained) for the values as low as 0.01. In this case the slope was
decreased gradually until a considerable number of points were retained, which
when plotted recreated the structure of the image. This number was 0.000001.
Among the datasets used, this was the most complicated one, structurally. It had
more nooks and crannies to cover in order to capture the variance and hence the
slope threshold here is the lowest.

3.3.2 Quantitative Analysis

An advantage of using PCA processing presented itself in search of validation
proofs. PCA is linear and the original data matrix can always be recreated. This
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Figure 3.7: 3-D PCA projection of the Vasopressin dataset with 25000 (left) and 5320
(right) points respectively.

Figure 3.8: The original Lena image.

Figure 3.9: 2-D projection of Lena data set with 28,080 (left) and 13,097 (right) points
respectively.
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fact was exploited to formulate a number termed the reconstruction error. First,
the points eliminated by the algorithm are removed from the original data, this
leaves the data matrix with as many points as the PCA projection returned by
the algorithm (but all the original features/attributes). PCA projection of this
smaller data set is then obtained. Then, the root mean square deviation (RMSD)
of these two embeddings is calculated. This method first eliminates the translation
component by shifting their center of mass to the same place, and then it finds
the optimal rotation between the two sets using Singular Value Decomposition.
The difference between the two structures is reported in the form of an error. Let
the two matrices being compared be, A and B with dimensions N ×M . First,
the centroid of the two is found, both the molecules are dragged to the origin by
subtracting from each point the value of the centroid. The RMSD between the
structures can then be calculated as under:

√
1
N

∑N
i=1(

∑M
j=1(aij − bij)2)

Here, aij and bij are the corresponding elements of A and B respectively. The
number returned by equation above indicates how similar the two structures are. It
is enlisted for the various data sets in Table 3.1 in the column named reconstruction
error. Also, as mentioned earlier, in the data sets the algorithm was tested on, the
first three principal components preserve over eighty percent of variance inherent in
data. The PCA projection on the reduced data set follows these trends very closely.
For example, in Cdc42, the first three principal components capture respectively
42.082, 34.35 and 23.569 percent of variance. In the reduced form of Cdc42, the
first three principal components capture 49.436, 28.34 and 22.22 percent of residual
variance respectively. This trend is observed in all of the other data sets too. It is
reported in Table 3.2 for the original data sets and in Table 3.3 for the reduced form
of these data sets. If the corresponding principal components capture a similar
amount of variance, this indicates that the algorithm retains those points that
actually contribute to generating the variance values in the original data.

3.3.2.1 Machine Learning Datasets

The slope threshold defined in Methods and enlisted for all data sets in Table-3.1
plays a crucial role in the analysis of datasets for classification and regression.
These datasets had non-numerical attributes and so were preprocessed to either
convert them to numbers or just get rid of them depending on what they rep-
resented. Subsequently, the rest of the algorithm was applied similarly as with
other datasets. These were the only datasets that didn’t represent a structure and
unlike the protein datasets, a better understanding of the structure is not what

1Principal Component
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Table 3.2: Residual Variance trends in original data sets

Data Set Variance in 1st PC1 Variance in 2nd PC Variance in 3rd PC
Swiss Roll 55.55 27.87 16.59
Human Galanin 41.22 34.05 24.72
CDC42 42.082 34.35 23.569
Vasopressin 47.75 33.23 19.012
Lena Image 52.88 35.11 13.02
Iris Dataset 78.37 13.59 8.04
Isolet Dataset 57.13 31.06 11.82

Table 3.3: Residual Variance trends in reduced data sets

Data Set Variance in 1st PC Variance in 2nd PC Variance in 3rd PC
Swiss Roll 63.44 27.30 9.26
Human Galanin 43.112 29.43 27.46
CDC42 49.436 28.34 22.22
Vasopressin 53.68 28.98 17.33
Lena Image 56.07 32.23 10.63
Iris dataset 86.65 10.35 3.00
Isolet Dataset 58.59 31.01 10.40

was sought here. Nevertheless, like the protein datasets, a pictorial representation
makes sense in terms of clusters of similar or close by points [45], after a projection
of the original data is obtained (PCA, or any other feature reduction method for
that matter). The first dataset used here was the Fisher’s Iris dataset [46, 47]. It
is a collection of three species of Iris flowers. It has 50 instances each of Iris Setosa,
Iris Versicolour and Iris Virginica. Iris Setosa is the one that is linearly separable
from the latter two. Figure-3.10 (left) shows the PCA projection of the entire
dataset. The instances differ on the basis of four attributes, namely, sepal length,
sepal width, petal length and petal width, all in centimeters. Any value of the
slope threshold here, as expected, gives two disjoint sets of data instances. Table-
3.1 reports this value for the Iris data set to be 0.16. The reduced data set so ob-
tained is the smallest such set which when used as a training set, produces a 100
percent correct classification of Iris Setosa for the rest of the data set, which here
is used as the validation set. Figure-3.10 (right) shows the PCA projection of the
reduced Iris data set. Perturbing the slope threshold further to include more data
samples, as expected gives the same results. Increasing the slope threshold any
further to obtain an even smaller training set mis-classifies a few data instances. A
slope threshold of 0.17 produced a mis-classification of 1.92 percent. R simulations
with five-fold cross validation using a Support Vector Machine with a linear kernel
were used for verification purposes [48]. The reconstruction error in Table-3.1 and
the trends in residual variance of Tables- 3.2 and 3.3 bear the same explanation as
for the other datasets. In order to assess the scalability of the algorithm, another
multivariate dataset was chosen to test the abilities of extraction of a suitable
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Figure 3.10: Full and reduced Iris data set with 150 (left) and 71 (right) data instances
respectively.

Figure 3.11: Full and reduced Isolet data set with 6238 (left) and 3164 (right) data
instances respectively.

39



training set that produces better classification. The Isolet dataset was generated
for speech recognition [49, 50, 51]. It contains 52 samples of voice for 150 subjects.
Each person uttered a letter of the English alphabet twice. The dataset, as on the
Machine Learning group’s website of University of California, Irvine,[?] is divided
into five groups of 30. Four of these are used as the training dataset and the fifth
one as the validation set. The attributes of this dataset are described in the paper
[49]. They include spectral coefficients like contour features, sonorant features etc,
all real numbers describing a sample of a voice of a subject. The goal of this work
was to produce a 26 way classification, to identify which alphabet was spoken by
a subject. It achieves over 95% accuracy. When this dataset is subjected to the
algorithm described in Methods, it again produces a reduced dataset eliminating
40.23% of the instances. The PCA projections of the full and reduced forms are
shown in Figures-3.11 left and right respectively. Evident from the projections,
the reduced dataset clearly produces the same clusters. This dataset when used as
the training set also produces the same classification. The procedure was the same
as described for the Iris dataset. The Isolet dataset has more groups to classify
than the Iris and many of these groups (each one representing an alphabet of the
English language) are phonetically more similar than others, so the percentage
of points eliminated here should be lesser than the Iris dataset because the data
here is more diverse. This was found to be true, and the algorithm distinguishes
between these two very similar, real-valued, multivariate datasets by a margin of
12.44% in context of data instance elimination.

3.3.3 Comparison with Other Instance Reduction Methods

As pointed out in section 3.1.1, all of the other data instance reduction methods
have only analyzed the machine learning datasets. Therefore, their method of
validation is using the reduced dataset to produce a classification and measure
its accuracy. The average accuracy of classification and the percentage of points
eliminated for these methods versus the proposed algorithm is in Table-3.4. The
datasets used here are the same as on UC Irvine’s website, including the Iris and
Isolet datasets described in the previous section. The values for the proposed algo-
rithm in the table have been evaluated to produce the most accurate classification.
If saving space is the motivation, the slope threshold can be compromised with
the accuracy to produce even smaller datasets.

With the exception of LSH, all of the algorithms in Table-3.4 are linearithmic
(NlogN) at best. LSH, like the proposed algorithm (provided a sort on the data is
not needed), is linear, but works in a very different way. It depends on formulation
of hash functions over the dataset that are sensitive to data instances. In other
words, a family of hash functions represents the various categories a data instance
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Table 3.4: Comparison of the proposed algorithm with other instance reduction algo-
rithms.

Algorithm Average Accuracy for classification % of points reduced
Instance Based Learning Algorithms [33] 78.85 16.13
DROP-3 [33] 81.14 14.31
Entropy based algorithm[37] ≈ 85 88.72
LSH based algorithm [34] ≈ 90 ≈ 60
Instance reduction Algorithm [36] 78.23 ≈ 50
Proposed Algorithm ≥ 90 ≈ 70

can belong to. Each data point’s compatibility with each of these functions is
evaluated. One point representative of each category is chosen to be a part of
the reduced data set. The point chosen is the first one that makes its way into
a certain category. The proposed algorithm works better for the purpose as it is
adherent to the dataset. It does a better job in evaluating the information content
offered by a particular data point. Only one point per category is not always
enough to represent a category in its entirety. How many and which of the points
of a certain category should be chosen is the strength of the proposed algorithm.
Also, formulation of a class of functions is a task in itself and not having to do so,
betters the time complexity. The proposed algorithm also performs better when
the data is highly sparse, or in other words the categories for classification are of
the same order as the number of data instances available.
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Chapter 4

SAMPLING OF INTERMEDIATE
PROTEIN CONFORMATIONS

Datasets representing complex protein structures are high dimensional and hence
tedious to work with. Efficient and effective dimensionality reduction of these
datasets is therefore paramount. Having fewer data samples with only the at-
tributes that capture the most variance of the data, makes for quicker and precise
analysis of these structures. In this work we make use of two dimensionality re-
duction methods- one for reducing the number of instances and another for feature
reduction. The refined dataset so obtained is then subjected to topological and
quantitative analysis. In this step we perform hierarchical clustering to obtain
different sets of conformations. The structures represented by these conformations
are then analyzed by studying their high dimension Betti numbers to establish or
disparage their distinctiveness.

Isolating transient protein conformations is difficult to do experimentally due
to the fleeting nature of these structures. Doing so is imperative for understanding
and characterizing protein function and dynamics. This work presents a way to do
the same, using mathematical tools for extracting meaningful information inherent
in these structures.

4.1 Problem Statement

The protein folding problem, aims at predicting the correct protein structure from
its sequence, it is an important problem in Biology. The conformational search
problem is a related problem that aims at characterizing the conformational space
of proteins in order to find minimum energy regions corresponding to highly popu-
lated structures and characterize dynamic events such as folding or docking [52, 53].
The potential energy landscape of a protein is immense. A typical protein molecule
has hundreds of amino acids and several thousand atoms. Consequently, the num-
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ber of configurations that a molecule can attain are humongous and are practically
impossible to enumerate. This has given rise to a foray of methods that attempt
to model the actual pathways that a protein undertakes while transitioning from
one conformation to another that ultimately help in pinpointing the conforma-
tions that actually get attained in the entire process. In this work we present
a combination of efficient ways to first reduce the dimensionality of the diverse
datasets that represent the molecule and then use a number of filtering techniques
to identify clusters of imminent conformations. The molecules used range from
small (Oxytocin and Vasopressin) to medium (CDC42) to large (GroEl). Details
about them can be found in the Results section. The main contributions of the
paper can be summed up as under:

1. Data Refinement- Using previous works described in sections [54] and [55],
we come up with a space efficient way to represent molecular data. The
datasets in use have just enough instances and attributes that capture max-
imum variance.

2. Use versions of hierarchical clustering, depending on the molecule, to sample
different conformations of a molecule. Details can be found in section 4.2.2.1.

3. Use advanced algebraic topology to analyze distinctiveness among various
clusters of conformations.

4.1.1 Generation of Data

The molecules chosen with in this work are diverse and very different in their
function and dynamics. There are two distinct ways in which the various confor-
mations and their periphery was recorded. Although the datasets that resulted
represented the same information. For, oxytocin, vasopressin, hGalanin, pGalanin
and CDC42 Molecular Dynamics(MD) simulations were ran. Backbone resolutions
were generated for all of them. The initial linear peptide was modeled using the
Chimera software [56] as an idealized helix. Hydrogens and solvent were added
using the AMBER software package [5]. Simulations were performed in constant
volume (NVT) in an orthorhombic box using the TIP3 solvent model [57] to simu-
late infinite dilution. Periodic boundary conditions were applied using the nearest
image convention. The overall charge of the system was kept neutral for the use
of particle mesh Ewald summation to calculate electrostatic charges [58]. The
simulations were carried out with the NAMD package [59] using the AMBER ff03
force field [60]. The other method used for the heavy GroEl molecule is a Monte
Carlo (MC) [6] based conformational pathway search. The search begins with the
PDB (Protein Data Bank) format of one conformational extreme and expands
following a biased Rapidly-expanding Random Tree (RRT) algorithm to simulate
the pathway that can be undertaken to reach the goal conformation [61]. At every
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iteration a parent protein conformation is chosen from pool of new conformations,
the one selected is the one which has its energy below a threshold 1. The new
conformation is added to the pool2 if its RMSD (Root Mean Square Deviation) is
closer to the goal.

4.1.2 Literature Review

Algebraic topology approaches are hugely unexplored in the context of sampling
protein structures. The work in [62] describes the use of topological signatures,
which the authors call evolutionary homology (EH) barcodes, reveal the topology-
function relationship of the network and thus give rise to the quantitative analysis
of nodal properties. The proposed EH is applied to protein residue networks for
protein thermal fluctuation analysis, rendering accurate B-factor prediction for a
number of proteins. A thorough review of the emerging applications of topological
methods to genomics is presented in [63]. An insightful piece presenting concisely
the ramifications of these approaches are elucidated in [64].

4.2 Procedure

4.2.1 Dimension Reduction

Both the feature and the instance reduction methods used here have been discussed
at length in Chapter 2 and 3 respectively. The combined result of these processes
is the input here.

4.2.2 Topological Analysis

After obtaining a reduced embedding that represents the dataset, the next step is
to slot the data to sample different conformations inherent in these embeddings. To
ascertain the number of conformations that can be extracted, we use two methods,
namely, hierarchical clustering and persistent homology. Persistent Homology is
also used as the next step but here both these methods reveal the same structural
niceties in each dataset and hence act as a proof of validation for the process.

4.2.2.1 Hierarchical Clustering

Hierarchical Clustering is a method for identifying similar groups in a dataset.
Built-in function in R, hclust is used for the purpose. Hierarchical Clustering is
an alternative to k-means clustering wherein, one has to pre-declare the number
of clusters sought, there is no such stipulation with hierarchical clustering. The

1it is predefined, takes care of whether a conformation would be feasible, keeping in mind atom
collisions

2the conformational pathway
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results of hierarchical clustering can always be presented coherently in the form of
a dendrogram. Depending on how similar or dissimilar the data instances are, it
can be divided into two categories:

Agglomerative Hierarchical Clustering It works in a bottom-up fashion. Each
data instance is considered a single element cluster to begin with. At each step
of the algorithm, two most similar clusters are combined into one. The process
continues until all instances have been combined into one big cluster containing
all the data instances.

Divisive Hierarchical Clustering This method works complementary to the pre-
vious one. Here, all the data instances are considered a point of one big cluster
at the beginning. At each iteration of the process, the most heterogeneous cluster
is divided into two. The process continues until all the data instances are a single
element cluster.

Agglomerative form of hierarchical clustering is good for more heterogeneous
data that has a large number of small clusters to identify. On the other habd,
divisive clustering expectedly, is good at isolating big clusters. We use both
these approaches depending on which molecule we are dealing with. The molec-
ular datasets that are known to undergo large scale conformational changes like
Calmodulin, Adenylate kinase and GroEl were subjected to agglomerative hierar-
chical clustering and the others to the divisive one.

4.2.2.2 Persistent Homology

Persistent homology is a method for computing topological features of a space at
different spatial resolutions [65]. To find the persistent homology of a space, the
space must first be represented as a simplicial complex. A distance function on
the underlying space corresponds to a filtration of the simplicial complex, that is
a nested sequence of increasing subsets. A brief review of these terms is as under
[66]:

Simplicial Complexes An abstract simplicial complex is given by the following:

• A set Z of vertices or 0-simplices.

• For each k ≥ 1, a set of k-simplices σ = [z0z1...zk], where zi ∈ Z.

• Each k-simplex has k + 1 faces obtained by deleting one of the vertices. The
following membership property must be satisfied: if σ is in the simplicial
complex, then all faces of σ must be in the simplicial complex.

We think of 0-simplices as vertices, 1-simplices as edges, 2-simplices as triangular
faces, and 3-simplices as tetrahedra.
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(a)
(b)

(c)

Figure 4.1: Elucidation of Betti Numbers: (a)- 1 connected component, 2 loops and
1 void, (b)- 1 connected component and 1 loop, (c)- 1 connected component

Homology Betti numbers help describe the homology of a simplicial complex X.
The value Bettik , where k ∈ N , is equal to the rank of the k-th homology group
of X. Roughly speaking, the kth Betti number gives the number of k-dimensional
holes. In particular, Betti0 is the number of connected components. For instance,
a k-dimensional sphere, has all Betti numbers equal to zero except for Betti0
= Bettik = 1. In algebraic topology, the Betti numbers are used to distinguish
topological spaces based on the connectivity of n-dimensional simplicial complexes.
To gain more insight into the concept, see Figure-4.1. Thus, for example, a torus
has one connected surface component so Betti0=1, a circular (two-dimensional)
hole at each end of the central space, so Betti1=2 and a single cavity enclosed
within the surface so Betti2=1. Similarly, for a circle, Betti0 = Betti1 = 1, and
for a point (or a filled circle) Betti0 = 1; all higher Betti numbers are zero, for
both the circle and the point.

Filtered simplicial complexes A filtration on a simplicial complex X is a collec-
tion of subcomplexes X(t)|t ∈ R of X such that X(t) ⊂ X(s) whenever t ≤ s.
The filtration time of a simplex σ ∈ X is the smallest t such that σ ∈ X(t).
Javapleax is a library that implements persistent homology and related techniques
from computational and applied topology, designed for ease of use, ease of access
from Matlab and java-based systems, and ease of extensions for further research
projects and approaches [67]. In javaPlex, filtered simplicial complexes (or more
generally filtered chain complexes) are called streams.

In this work, on the embeddings produced by dimensionality reduction, we per-
form both hierarchical clustering and compute its persistent homology. The Betti0
of the embeddings produces the same number as the number of relevant clusters
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Figure 4.2: Clustering hierarchy for CDC42

Figure 4.3: Barcodes of the first cluster for CDC42

in hierarchical clustering. The results are presented in the next section. Further-
more, these clusters are then subjected to further topological analysis. We used
the R package TDA’s (Topological Data Analysis) function calculate_homology
[68]. We say a cluster is relevant if it has at least 100 data instances. Each of
these clusters (of a molecule) is a connected component of the embedding. Conse-
quently, the Betti0 of each of these is 1. We observe Betti1 and Betti2 (loops and
voids respectively) of each of these clusters to find out whether these clusters are
truly distinct conformations of the molecule or not.

In this work we chose a number of medium to large proteins with different
conformational dynamics. As mentioned earlier, to generate clusters from the re-
duced dimension embedding various methods were used depending on the molec-
ular dataset. A thorough analysis for the various molecules is as under.
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Figure 4.4: Quantitative representation of the barcodes for the second cluster for CDC42

4.2.3 CDC42

Cell Division Control-42 is a GTP (Guanosine Triphosphate) binding protein [69].
Human CDC42 is a small GTPase with 191 amino acids of the Rho protein family,
which regulates signaling pathways that control diverse cellular functions includ-
ing cell morphology, cell migration, endocytosis and cell cycle progression. It
switches between cycles an active GTP-bound state(4did) and an inactive GDP
(Guanosine Diphosphate)-bound state (4js0). Recently, CDC42 has been shown
to actively assist in cancer progression. Several studies have established the basis
for this and hypothesized about the underlying mechanisms [70]. The data for all
of the molecules was procured using Molecular Dynamics trajectories.

4DID:
Both forms of hierarchical clustering produced the same clusters here, shown in
Figure-4.2. There were four significant clusters produced for 4did. We call a clus-
ter significant if it has at least 100 data instances. Expectedly, when the homology
of the entire embedding is computed it returns the Betti0 of 4, meaning there are
four connected components in the embedding. These four clusters are then inves-
tigated for structural comparison to deduce conformational information. The first
cluster’s barcodes are depicted in Figure-4.3.

The longer bars are the significant ones, the small bars are considered noise.
The figure suggests that there is one connected component with Betti0 = 1, it has
a number of loops, denoted by a number of long green bars. The conformation
has a number of small voids, denoted by intermittent blue bars. As said earlier,
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Figure 4.5: Barcodes of the second cluster for CDC42

Figure 4.6: Barcodes of the third cluster for CDC42

49



Figure 4.7: Barcodes of the fourth cluster for CDC42

all of the clusters (in all the molecules) are one connected component of a larger
structure, so Betti0 of all of them is 1. The second cluster, in Figure-4.5, on the
other hand has Betti1 = 3, with two significant loops and no significant voids mak-
ing Betti2 = 0. A quantitative representation of these barcodes for this cluster is
shown in Figure-4.4. It is another way of visualizing persistent homology. Each
feature is depicted by a single point with the horizontal axis representing feature
birth and the vertical axis representing feature death. The line y=x is included as
a reference. Since feature birth always precedes feature death (x < y), all points
in a persistence diagram lie above the reference line. In persistence diagrams, the
persistence of a feature is depicted as the vertical distance between the point rep-
resenting the feature and the reference line. Just like topological barcodes, feature
dimension is coded as the point’s color, with an accompanying legend. In the
Figure-4.4, we see a number of 0-cycles (red circles); it is difficult to differenti-
ate between most individual 0-cycles due to all of them being a part of the same
connected component. However, there a number of loops (blue triangles) two of
which have been encircled, they are the ones that correspond to the two loops of
this cluster. The upper encircled triangle has a smaller y-coordinate than upper
triangle closest to it, yet this is the one that contributes to the Betti1. When eval-
uating persistence diagrams, it must be kept in mind that a point’s y-coordinate
by itself is not an accurate measure of feature persistence; rather, it is the vertical
distance between the point and the reference line that represents persistence. We
count a feature if it is at a distance of at least 1.5 from the reference line. None of
the small blue squares make this cut, which makes the Betti2 of this cluster to be
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(d)

Figure 4.8: Conformations of CDC42 : (a)- Conformation representative of first clus-
ter, (b)- Conformation representative of second cluster, (c)- Conformation representative
of third cluster, (d)- Conformation representative of fourth cluster

zero. Betti numbers for all other clusters for CDC42 and all other molecules were
evaluated similarly. The third cluster, in Figure-4.6, has three small but clearly
defined slightly overlapping voids, making Betti2 = 3. Figure-4.7 shows this for
the fourth cluster which has a number of overlapping voids only one of which is
significant, making Betti2 = 1 here. The significant thing to note here is that
all of these conformations have different distributions of the higher Betti numbers
which means that conformations represented by these clusters are all different.
One conformation representative of each of these clusters is shown in Figure-4.8.

4JS0
This conformation of CDC42 was also subjected to both forms of hierarchical
clustering that produced the same set of significant clusters. Here there were just
two and both of them are similar. The two conformations representative of this
cluster are shown in Figure-4.9.

4.2.4 Oxytocin and Vasopressin

Oxytocin and Vasopressin are both small peptide hormones, both with 9 amino
acids[71]. They differ only in two positions in their amino acid sequence, as shown
under:
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(a) (b)

Figure 4.9: Conformations of CDC42-4js0 : (a)- Conformation representative of
first cluster, (b)- Conformation representative of second cluster

Oxytocin: Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly
Vasopressin: Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Arg-Gly

These are smaller peptides that do not have one stable 3-D structure. So, intu-
itively, divisive hierarchical clustering works better to sample conformations here.
Nonetheless, for oxytocin we performed agglomerative clustering and obtained five
clusters, but their analysis revealed that most of them were way too similar. The
first three Betti numbers of these five clusters are in Table-4.1. These numbers
indicate that there really are just two different clusters here, which was also the
case when a divisive form of hierarchical clustering was performed which resulted
in just two significant clusters. The first cluster had only a two small loops and no
voids. The second cluster on the other hand had three distinctively large loops and
two small voids. Similarly, for Vasopressin, there was just one significant cluster
produced by divisive hierarchical clustering. The dendrograms for both oxytocin
and vasopressin is shown in Figures-4.10 and 4.11 respectively. The only cluster
in Vasopressin is close in structure with the known Oxytocin conformation which
was expected given the similarity in the sequences of the amino acids of the two
molecules.

Table 4.1: Betti Numbers results for Oxytocin.

Cluster No. Betti0 Betti1 Betti2
1 1 1 0
2 1 1 0
3 1 1 0
4 1 4 0
5 1 0 0
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Figure 4.10: Clustering hierarchy for Oxytocin

Figure 4.11: Clustering hierarchy for Vasopressin
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(a) (b)

(c)

Figure 4.12: Conformations of Galanins: (a)- Conformation representative of sec-
ond cluster of hGalanin, (b)- Conformation representative of first cluster of hGalanin,
(c)- Conformation representative of the pGalanin cluster

4.2.5 Human and Porcine Galanin

Galanin is a neuropeptide encoded by the GAL gene that is widely expressed in
the brain, spinal cord, and gut of humans as well as other mammals [72]. Porcine
Galanin (pGalanin) and human Galanin (hGalanin) are two variants of Galanin
that differ by 5 out of their amino acids. pGalanin contains 29 amino acids and
hGalanin has 30. Both these molecules are also not known to undergo large scale
conformational changes. Divisive hierarchical clustering on hGalanin resulted in
two major clusters and that of pGalanin produced only one relevant cluster, shown
in Figures-4.13 and 4.14. The two structures of hGalanin are quite different from
each other, shown in Figures-4.15 and 4.16, which is in agreement with experimen-
tal results [73]. The pGalanin barcodes are shown in Figure-4.17. As is evident
from the barcodes, the first cluster of hGalanin and the pGalanin cluster are very
similar. The study of hGalanin in [73] also shows that there are two molecular
forms of hGalanin, one of 30 and another of 19 amino acids. The larger of the two
peptides has a sequence which is identical to that of pGalanin except for the fol-
lowing substitutions: Val16, Asn17, Asn26, Thr29 and Ser30. The PDB structures
of these clusters is shown in Figure-4.12.
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Figure 4.13: Clustering hierarchy for hGalanin

Figure 4.14: Clustering hierarchy for pGalanin

Figure 4.15: Barcodes for the first cluster of hGalanin

Figure 4.16: Barcodes for the second cluster of hGalanin

Figure 4.17: Barcodes for the pGalanin cluster

55



Figure 4.18: Clustering hierarchy for GroEl

4.2.6 GroEL

GroEl is a known chaperonin protein which is needed by many other proteins
for their proper folding. Structurally, GroEL is a dual-ringed tetradecamer, with
both the cis and trans rings consisting of seven subunits each. The conformational
changes that occur within the central cavity of GroEL cause for the inside of GroEL
to become hydrophilic, rather than hydrophobic, and is likely what facilitates pro-
tein folding. It is required for the correct folding of many proteins. GroEL requires
the lid-like co-chaperonin protein complex GroES. Binding of substrate protein,
in addition to binding of ATP, induces an extensive conformational change that
allows association of the binary complex with GroES. It is the heaviest molecule in
the study with 524 amino acids. It is known to undergo large scale conformational
changes and hence agglomerative form of hierarchical clustering was used here. It
helped in identifying six different clusters, the dendrogram is in Figure-4.18. The
conformations representative of each of these clusters are shown in Figure-4.19.

4.2.7 Energy Filtration

As mentioned earlier, the data here was generated using molecular dynamics sim-
ulations; they also yield the energy of each simulated conformation. Topological
analysis of the entire energy space is the same as computing persistent homology
of the entire embedding generated after feature reduction. In this step, we filtered
the conformations based on their energy. Figure-4.24 shows the clusters of the
4did version of CDC42 at 100%, 75%, 50% and 25% energy filtration respectively.
At k% filtration, the space contains k% lower energy conformations. The colors
from blue to yellow signify a drop in energy. As the figures suggest, the increase in
the amount of filtration creates voids in the conformational space and most high
energy conformations are filtered out (signified by the dominant yellow). At 100%
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(e) (f)

Figure 4.19: Conformations of GroEl: (a)- Conformation representative of the first
cluster, (b)- Conformation representative of the second cluster, (c)- Conformation rep-
resentative of the third cluster, (d)- Conformation representative of the fourth cluster,
(e)- Conformation representative of the fifth cluster, (f)- Conformation representative of
the sixth cluster

Figure 4.20: Barcodes for the first cluster of GroEl.

Figure 4.21: Barcodes for the second GroEl cluster.
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Figure 4.22: Barcodes for the third cluster of GroEl.

Figure 4.23: Barcodes for the fourth cluster of GroEl.

(a) (b) (c) (d)

Figure 4.24: Energy clusters of 4did: (a)The entire energy space, (b) 75% energy
space, (c) 50% energy space, (d) 25% energy space
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filtration, the entire space is represented as one connected component (Figure-
4.24(a)). At 75%, the high energy conformations, represented by blue, have been
removed and a small void appears between components that are near. There are
significant changes in the embedding at 50% filtration. The persistence diagrams
are shown in Figure-4.25. At 25% filtration, number of connected components are
maximum and also the number of loops, shown in Figure-4.25(c). The number
of loops here is the sum of the loops in all the connected components. The four
clusters produced by algebraic topology all have energy below 50%, and three of
them have energy below 25%. This is proof that effective dimensionality reduc-
tion followed by algebraic topology coupled with hierarchical clustering produces
clusters of conformations that are probable and comparatively low energy.

Similarly, energy filtration of 4js0 at various levels of filtration is shown in
Figure-4.26. At 75% filtration(not shown in figure), the space looked very similar
to that of part (a) of the figure. Even at 50% filtration, the structure of the
embedding is retained with two large connected components. At 25% filtration,
there survived only one significant connected component with a number of loops in
the entire structure. The two conformations of this molecule, isolated by algebraic
topology above, both have energy less than 50%, which is the average for all the
conformations generated by the simulation. One of these two, belong to the set of
conformations with less than 25% energy.
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(c)

Figure 4.25: Persistence diagram for 4did: (a) at 75% energy filtration, there are
four relevant connected components, (b) at 50% filtration, three relevant clusters with
a number of loops, (c) at 25% filtration with increased connected components, and an
increase in number of loops.
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(a) (b) (c)

Figure 4.26: Energy clusters of 4js0: (a) The entire energy space, (b) at 50% filtra-
tion, (c) at 25% filtration.
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Chapter 5

IMPROVED SEARCH
METHODOLOGIES FOR
SIMULATING PROTEIN

CONFORMATIONAL PATHWAYS

The work described in this chapter is based on a preliminary work presented in [61].
The problem addressed in this work is to extend our structural characterization to
dynamic proteins that switch between different structural states to modulate their
biological function. Specifically, we propose a way to compute molecular motions
employed by dynamic proteins in switching between different functionally relevant
structural states.

5.1 Problem Statement

Given a protein that undergoes a large scale conformational motion, we present
an algorithm to search for conformational pathway that link the two end-points.
The input to the algorithm is the two end-points, denoted start and end, and the
output is a trajectory made of conformations along the pathway. The degrees of
freedom of the protein molecule are defined as the dihedral angles or planar angles
located between various residues. While usually secondary structure elements
do not change much during conformational transition and most of the protein
flexibility lies in loops, this is not always the case. Each conformation in the
sampling path is ranked with a potential energy and is retained if its value is lower
than a threshold. The path needs to satisfy additional constraints. The energetic
difference between conformations in a path is controlled via different means, either
by placing a bound on the maximum energy in a path or through the Metropolis
criterion.
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5.2 Related Work

The conformational changes are usually a continuous and transient process and
intermediate structures are hard to be determined experimentally. Nonetheless,
the intermediate structures are important for our understanding of the mecha-
nism by which proteins interact with ligands or other proteins. They help us to
design drugs targeting proteins and understand critically important processes in
the cell. Computational methods provide an efficient way to calculate conforma-
tional changes in proteins and other macromolecules. Molecular Dynamics (MD)
simulations [5] can now sample protein dynamics up to the microsecond level but
they are still not fast enough to capture conformational motions that take place
over larger timescales – such as folding or conformational changes that may take
place over milliseconds or more. Another class of methods sample the conforma-
tional space efficiently by perturbing the molecular structure at certain degrees
of freedom and using geometric and biophysical constraints to guide the search.
The search is done using various techniques such as normal mode analysis (NMA)
[13, 11], elastic network [74, 75], robotic motion [76, 77] planning and more. These
methods are usually faster than MD but do not result in physical pathways due to
randomness in the search and the approximations being used. Therefore, further
processing should often be applied to extract biologically meaningful information.
Several motion-planning methods were developed in the past to sample the con-
formational space of proteins using prior knowledge [8] or multi-scale sampling
[10, 7, 78]. In this work, we present a biased Monte Carlo (MC)- based algorithm
called Rapidly-exploring random tree (RRT) to efficiently sample the conforma-
tional pathways on medium and large sized proteins.

5.2.1 Molecular Dynamics based Approaches

Many adaptations are pursued to lower the computational demands of MD-based
approaches. Essentially, MD-based methods for elucidating transitions incorporate
some suitable bias at the expense of obtaining possibly different transition trajec-
tories. Methods include targeted, biased, or steered MD, importance sampling,
umbrella sampling, replica exchange, local flattening of the energy surface, acti-
vation relaxation, conformational flooding, swarm methods, and others [79]. Effi-
ciency concerns are also addressed through coarse graining and techniques based
on normal mode analysis and elastic network modeling. Some methods focus on
deforming a trivial conformational path (obtained, for instance, through morph-
ing) to improve its energy profile. Examples include the nudged elastic band,
morphing, zero-temperature string, and finite-temperature string methods. While
the incorporation of a suitable bias towards the goal structure forces the simulation
to reduce dwell time in a given stable or meta-stable state, the bias possibly sacri-
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fices a more expansive view of possibly different transition trajectories to the goal
structure. This is typically addressed by repeating the simulation to obtain many
transition trajectories, which taken together can cover the transition ensemble in
the absence of correlations between trajectories.

5.2.2 Robotics Inspired Tree-based Approaches

Since simulation of dynamics is the limiting factor in dynamics-based methods, ef-
ficiency concerns can be addressed by foregoing or at least delaying dynamics until
credible conformational paths have been obtained. A different class of methods
focus not on producing transition trajectories but rather computing a sequence of
conformations (a conformational path) with a credible energy profile. The working
assumption is that credible conformational paths can then be locally deformed with
techniques that consider dynamics to obtain transition trajectories. Most notably,
methods in this category adapt sampling-based search algorithms developed for
the robot motion-planning problem which bears strong analogies to the problem
of computing conformations along a structural transition. The objective in robot
motion planning is to obtain paths that take a robot from a start to a goal configu-
ration. In robotics and molecular motion computation, a start and a goal state are
specified. The goal is then to produce a feasible path that the system can follow
to navigate its environment and transition from the start to the goal state. There
are some unique challenges offered up by molecular systems. First, molecular sys-
tems typically have an exceptionally high number of degrees of freedom. Also,
in a protein system, the cost surface or energy surface is typically more complex
and with many local minima. The methods developed in algorithmic robotics to
address the robot motion planning problem fall under either the roadmap-based or
tree-based category. The method we propose in this chapter falls under tree-based
methods. Roadmap-based methods suffer from what is called the steering prob-
lem, which means, if one has two sampled conformations or configurations, it may
not be possible to find a constraint-satisfying path steering the system from one
conformation to another. Tree-based methods have a number of ways to guide the
search, they are broadly classified into, expansive search trees(EST) [80], path- di-
rected subdivision tree (PDST) [81] and, the method followed in this work, rapidly
expanding random tree (RRT). It is discussed in detail in the next section. All
these approaches vary by how the tree is grown in the robot configuration space.
EST expands the tree by selecting and expanding existing configurations within
the tree. Briefly, a configuration is selected using some probabilistic weighting
scheme. The selection configuration is then slightly perturbed to arrive at a new
configuration. If a collision free path can be obtained between the selection and
the new configuration, the new configuration can be added to the tree. PDST,
on the other hand, was designed to deal with motion problems that suffer from
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significant drift, under actuation, and discrete system changes. This method uses
a low-dimensional projection of the sampled configurations to approximate cov-
erage of the configuration space. This projection is decomposed into cells. All
cells are stored in a priority queue based on a score. The expansion of the tree
proceeds as follows. The highest scoring cell is dequeued, and a configuration from
the cell is selected uniformly at random. This selected cell is then subdivided and
the resulting cells are returned to the priority queue. A cell’s score is primarily
based on its size, with larger cells given higher priority. A perturbation function is
then applied to the selected configuration resulting in a new configuration which
is stored in the tree and mapped to its appropriate cell. By selecting larger cells,
the search is biased towards under explored areas of configuration space.

5.3 Rapidly-expanding Random Tree

A rapidly exploring random tree (RRT) is an algorithm designed to efficiently
search non-convex, high-dimensional spaces by randomly building a space-filling
tree. The tree is constructed incrementally from samples drawn randomly from
the search space and is inherently biased to grow towards large unsearched areas
of the problem. RRTs were developed by Steven M. LaValle and James J. Kuffner
Jr [82]. RRTs can be viewed as a technique to generate open-loop trajectories for
nonlinear systems with state constraints. An RRT can also be considered as a
Monte-Carlo method to bias search into the largest Voronoi regions 1 of a graph
in a configuration space.

The conformational changes are usually a continuous and transient process and
intermediate structures are hard to be determine experimentally. Nonetheless, the
intermediate structures are important for our understanding of the mechanism by
which proteins interact with ligands or other proteins. They help us to design
drugs targeting proteins and understand critically important processes in the cell.
Following is a brief account of various methods to do so and has been adapted
from [83]. Computational methods provide an efficient way to calculate conforma-
tional changes in proteins and other macromolecules. Molecular Dynamics (MD)
simulations [5] can now sample protein dynamics up to the microsecond level but
they are still not fast enough to capture conformational motions that take place
over larger timescales such as folding or conformational changes that may take
place over milliseconds or more. Another class of methods sample the conforma-
tional space efficiently by perturbing the molecular structure at certain degrees
of freedom and using geometric and biophysical constraints to guide the search.
The search is done using various techniques such as normal mode analysis (NMA)

1In mathematics, a Voronoi diagram is a partitioning of a plane into regions based on distance to
points in a specific subset of the plane.
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[13, 11], elastic network [74, 75], robotic motion [76, 77] planning and more. These
methods are usually faster than MD but do not result in physical pathways due to
randomness in the search and the approximations being used. Therefore, further
processing should often be applied to extract biologically meaningful information.
Several motion-planning methods were developed in the past to sample the con-
formational space of proteins using prior knowledge [8] or multi-scale sampling
[10, 7, 78]. Another sampling based motion planning approach is described in
[84]. A brief review of adaptive sampling methods is in [85]. In [86], the authors
presented a hierarchical clustering and algebraic topology based method on coarse
grained protein conformational search that detects regions of interest in protein
conformational space on. An accurate sampling of protein trajectory helps better
identifying intermediate clusters which also correspond to locally minimal confor-
mations. The SPIRAL method described in [87] tries to solve the same problem of
simulating molecular motion but is computationally expensive. A novel evolution-
ary algorithm that aims to sample regions of interest in the conformational space
is presented in [88]. It presents a promising research direction in improving decoy
generation for template-free protein structure prediction. The same problem is
addressed in [89] by using a highly parallelized version of RRT called, Transition-
based RRT. This algorithm also aims at identifying most probable conformations
of a class highly-flexible biomolecules such as Intrinsically Disordered Proteins
(IDPs).

Many methods attempt to lower the computational demands of MD-based ap-
proaches. Essentially, MD-based methods for elucidating conformational transi-
tions incorporate some suitable bias at the expense of obtaining possibly different
transition trajectories. Methods include targeted, biased, or steered MD, um-
brella sampling, replica exchange, activation relaxation, conformational flooding,
swarm methods, and others [79, 90, 91, 92]. Efficiency concerns are also addressed
through coarse graining and techniques based on normal mode analysis and elas-
tic network modeling. Some methods focus on deforming a trivial conformational
path (obtained, for instance, through morphing) to improve its energy profile. In
[10], authors combined methods originating from robotics and computational bio-
physics, to model protein conformational transitions. To reduce the dimension
of the problem, normal modes are computed for a coarse-grained elastic network
model built on short fragments of three residues. This added biased helps to effi-
ciently sample conformational search space. While the incorporation of a suitable
bias towards the goal has an impact on the accuracy of the simulation, structure
forces reduce dwell time in a given stable or meta-stable state, the bias possibly
sacrifices a more expansive view of possibly different transition trajectories to the
goal structure. This is typically addressed by repeating the simulation to obtain
many transition trajectories, which taken together can cover the transition en-
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semble in the absence of correlations between trajectories. A brief review of the
current methods and their comparison can be found in [93].

A different class of methods focus not on producing transition trajectories but
rather computing a sequence of conformations (a conformational path) with a cred-
ible energy profile. The working assumption is that credible conformational paths
can then be locally deformed with techniques that consider dynamics to obtain
transition trajectories. Most notably, methods in this category adapt sampling-
based search algorithms [94] developed for the robot motion-planning problem
which bears strong analogies to the problem of computing conformations along a
structural transition. There are some unique challenges offered up by molecular
systems. First, molecular systems typically have an exceptionally high number of
degrees of freedom. Also, in a protein system, the cost surface or energy surface is
typically more complex and with many local minima. The methods developed in
algorithmic robotics to address the robot motion planning problem fall under either
the roadmap-based or tree-based category. Roadmap-based methods [87] are lim-
ited by the steering problem, which means, if one has two sampled conformations,
it may not be possible to find a constraint-satisfying path steering the system from
one conformation to another. This method uses a low-dimensional projection of
the sampled conformations to approximate coverage of the conformational space.

5.3.1 Evolutionary Information from Multiple Sequence Alignment

Over the past few years, there has been a growing interest in methods that ap-
ply evolutionary information extracted form protein sequence changes to protein
structural and functional problems such as protein folding and protein-protein
interactions, and identifying proteins hotspot residues [95, 96, 97, 98]. Hotspot
residues help in stabilizing the protein during conformational changes [99]. Since
sequence information is much more readily available than structural information,
many methods attempt to identify the co-evolving residues within a protein us-
ing multiple sequence alignment (MSA). Existing approaches use various methods
of statistical analysis to detect signals among co-evolving residues. These meth-
ods utilize phylogenetics, undirected graphical models, deep learning, and more
[98, 96]. This information has been used to reduce the search space on multi-
ple domains of structural bioinformatics. In this work, we present a biased Monte
Carlo tree search (MCTS)-based algorithm to efficiently sample the conformational
trajectory on medium and large sized proteins. Given a protein that undergoes a
large scale conformational motion, we present an algorithm to search for confor-
mational trajectory that links the two end-points. The input to the algorithm is
the two end-points, denoted as start and end conformations, and the output is a
trajectory made of conformations along the pathway.
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Figure 5.1: An overview of steps of the Monte Carlo tree search algorithm

5.3.2 Simplifying the Search Space

We begin with the start and goal (end points) conformations of a protein. These
two endpoints are the structures of the molecule, where the molecule undergoes
transformation from the start to the goal. The degrees of freedom of the protein
molecule are defined as the dihedral angles or spatial angles located along the
backbone, as we consider bond lengths and angles fixed. We decide upon a score
threshold (optimal RMSD) which is the acceptable distance tolerance between the
actual goal conformation and the one discovered by the search. We run the al-
gorithm until the threshold is reached, or until a maximum level of iterations is run.

The resolution of proteins representation of our algorithm is on backbone +
C − β. We represent every conformation with two lists of the backbone dihedral
angles φ and ψ. φ involves the backbone atoms C −N − Cα − C, and ψ involves
the backbone atoms N − Cα − C − N between two consecutive residues. All the
perturbation are performed on the backbone dihedral angles.

5.3.3 Search Methodology

The conformational pool between two endpoints is generated by a biased Monte
Carlo tree search (MCTS) algorithm. Figure 5.1 represents an overview of MCTS
steps. The conformation pool contains initially only the start conformation. Each
iteration is divided into four steps and the pool keeps expanding. During the se-
lection step, a conformation called the successive conformation (node) is selected
for the expansion. Initially, the algorithm starts with one of the given endpoints
which is denoted by start conformation. At the expansion step for the selected
conformation, a residue with the largest difference in dihedral angle (first we con-
sider φ and then ψ) compared to the goal conformation is determined. Then the
selected residue is randomly perturbed (rotated) by ±5 degrees and the new con-
formation is generated. Then the new conformation is corrected for steric clashes
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at the atoms level by correcting the distance between two adjacent atoms caused
by numeric error accumulated during sampling. The new conformation is added to
the pool if it passes the energy criteria. Otherwise the expansion step is repeated
by selecting the next largest difference between selected conformation and goal
conformaion. The expansion step will be repeated until a new valid conformation
is generated. The potential function we used for the semi-coarse grained (backbone
+ C − β model) is as follows [100]:

Etotal = EV dW + EHB + Eburial + Ewater + Ebond + Eangle

where the VdW, bond and angle terms are taken from the AMBER ff03 force
field [101]. The VdW term was slightly modified to allow soft collisions between
atoms, due to the lower resolution. This function was also used by us in the past
[102] to cluster conformational changes in proteins. The potential energy threshold
for the new perturbed molecule is equal to the number of residues of that molecule
( The total potential energy of a new molecule must below than number of its
residues).

Once the expansion step is passed and the new selected conformation is added
to the conformational pool, the algorithm moves to the simulation step. The goal
of the simulation step is to generate a path of conformations between the expanded
and the goal conformations based on the following criteria:

1. lRMSDnew < lRMSDparent

2. r < e−
lRMSDnew−lRMSDparent

lRMSDnew.a

Here, r is a random number within the range of [0,1), and a is a predefined
constant. This allows us to accept, with small probability, conformations that do
not lead us closer to the goal structure, in order to escape possible local minima.
In this study, a is defined as 0.01. The sampling continues until lRMSDnew is less
than a predefined threshold value or the lRMSDminima of the entire pool does not
decrease for M iterations. In this study the threshold is set to 1.5 and M is set to
500. Finally, the algorithm gets into backpropagation step if it fails to find a new
acceptable path after 1000 attempts. In this case the expanded conformation will
be marked for not being selected for the next iteration of MCTS. In order to avoid
expanding the conformational pool to some intractable search space, we introduced
a guided selection step which occurs every three iterations. In other words, after
two consecutive unsuccessful iterations of MCTS, during the selection step of the
3rd iteration of MCTS, we select the successive conformation among the top N
conformations with the smallest lRMSD compared to the goal conformation from
the entire pool where N is user-defined, and in this work is set to 20.

Eventually a pathway, or multiple pathways, from the tree root to goal con-
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formation are detected and the search is finished. Each search can result in a
possible pathway, but due to the inherent randomness it may not be the only pos-
sible pathway. Combining the results from multiple runs provides an estimation
of the conformational space between start and goal protein structures.

5.3.4 Incorporating Evolutionary Information to The Search Space

In a previous work [61], the search space was reduced by perturbing only the
dihedral angles that do not correspond to a rigid 2 part of the molecule. In
this work, we use co-evolution information that can be obtained form MSA. We
limit the search space of selecting residues for perturbation to those residues with
high co-evolution score. To isolate these specific sites in a molecule, we utilize
the PSICOV and Meta-PSICOV methods described in [96, 103]. PSICOV is a
probabilistic graphical model-based method for identifying proteins’ 3D structure
by inferring top co-evolving residues from multiple sequence alignment (MSA) of
homologue sequences of the query protein. Meta-Psicov utilizes two stages of the
neural network to improve upon PSICOV. In the first stage, the results of PSICOV
are combined with GREMLIN [97] to predict the top co-evolving residues within
a protein. Later, in the second stage, the predictions are refined based on other
features such as amino acid propensity, hydrogen bonds, and secondary structure
[103]. Meta-PSICOV returns a list of top co-evolving residues. For a molecule
with k residues,we take the k

4 top pairs, which at most gives k
2 residues of interest

on the molecule, thereby reducing the search space by half (some residues may
appear among top co-evolving pairs of residues more than once with different
partners). After identifying these residues from Meta-PSICOV, this information
integrated into the MCTS method during the expansion step where the selection
of the residues for the perturbation is limited to those residues that have a high
co-evolution score. Although not all the co-evolving residues that obtained from
a MSA corresponding to the hotsplot residues due to phylogenetics and MSA
construction biases, this information can help for selecting nearby hotspot residues
which may contribute to the stability of proteins conformation.

5.4 Results and Discussion

Table-5.1 shows similar results but without any information about contact-residues.
As expected, the time consumed to attain similar results is much more. The
molecules used in this study are well known and have concerted structures. They
are explained in brief in the section to follow.

2The rigid parts of a molecule are its portions that do not undergo any structural change in its course
of conformational change.
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Table 5.1: RMSD Results with entire search space

Molecule Conformations RMSD at start Accuracy achieved Time (in min)
Calmodulin 1CLL −→ 1CTR 14.83Å 3.5Å ≈ 55

2F3Y −→ 1CFD 10.61Å 3.35Å ≈ 63
Adenylate Kinase 1AKE −→ 4AKE 7.13Å 2.8Å ≈ 70

GroEl 1SS8 −→ 1SX4 12.21Å 5.5Å ≈ 65
Chemotaxis 3CHY −→ 1CHN 5.61Å 4.2Å ≈ 120
Cynovirin-N 2EZM −→ 1L5B 13.26Å 4.98Å ≈ 90

Ribose binding protein 1URP −→ 2DRI 4.08Å 2.2Å ≈ 190

5.4.1 Chemotaxis Protein CheY

CheY is a single domain protein, which is a variant of the ubiquitous receiver
domain that is found in response regulators of classic two-component signal trans-
duction systems as well as chemotaxis systems. The CheY proteins are cytoplasmic
proteins that are part of a signal transduction pathway between the attractant or
repellent and the flagellar motor switch. CheA is a histidine kinase which belongs
to the class of signaling proteins. It has conserved amino acid sequences at the C-
terminal domain which is phosphorylated at a histidine residue, and transfers the
phosphoryl group to a response regulator protein. CheY and CheB are response
regulator proteins. They have N-terminal domains similar to the other response
regulators and undergo phosphorylation and dephosphorylation. CheY transitions
between 1CHN and 3CHY with an RMSD of 5.61Å between the two endpoints.
The proposed algorithm reaches the goal conformation (3CHY) within accuracy
of 4.2Å±10%. Alluding to the randomness in producing the next conformation to
expand, in 10 runs of the algorithm the average RMSD of 4.2Å is plateaued. The
runtime for each run is reduced to about half, with the contacting residue directive
for the same accuracy. Figure-5.2 shows the contact residues over the backbone of
this protein.

5.4.2 Ribose Binding Protein (RBP)

Conformational changes are necessary for the function of bacterial periplasmic
receptors in chemotaxis and transport. Here, we used two conformations of the
protein from Eschericia Coli (E.coli). In E. coli RBP (Ribose Binding Protein)
small-scale backbone movements are restricted to the hinge region, whereas the
secondary structure elements in the two domains and the amino acids in the bind-
ing pocket adopt essentially the same conformations. According to the studies,
[104, 105], the least open form of an RBP is probably the dominant one in solu-
tion under normal conditions, although a mixture of species seems likely. The open
(1URP) and closed (2DRI) forms have distinct surfaces in the regions known to be
important in chemotaxis and transport, which will differentiate their interactions
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Figure 5.2: Contact residues of CheY

with the membrane components. It seems certain that the conformational path
that links the forms described here is that followed during ligand retrieval, and
in ligand release into the membrane-bound permease system. In this work we try
to simulate the conformational change between these two forms and the results
are summarized in Tables-5.1 and 5.2. Figure-5.3 shows the contact residues and
figures-5.4(a) and (b) show the two extreme conformations of this molecule.

5.4.3 Adenylate Kinase (AdK)

AdK is a monomeric phosphotransferase enzyme that catalyzes reversible transfer
of a phosphoryl group from ATP to AMP. The structure of AdK, which contains
214 amino acids, is composed of the three main domains, the CORE (residues
1-29, 68-117, and 161-214), the ATP binding domain called the LID (residues
118-167), and the NMP binding domain (residues 30-67). AdK assumes an ’open’
conformation in the unligated structure and a ’closed’ conformation. The lRMSD
between the two structures is 7.13Å. Supposedly, during the transition from the
’open’ to ’closed’ form, the largest conformational change occurs in the LID and
NMP domain with the CORE domain being relatively rigid. The distance measure
threshold for successful termination of the algorithm was a conformation with an
RMSD difference of 2.2Å from the goal conformation.

5.4.4 GroEl

The GroEL protein belongs to the chaperonin family and is found in a large number
of bacteria. It is required for the correct folding of many proteins. GroEL requires
the lid-like co-chaperonin protein complex GroES. Binding of substrate protein,
in addition to binding of ATP, induces an extensive conformational change that
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Figure 5.3: Contact residues of the Ribose-binding protein

(a) (b) (c)

(d)

Figure 5.4: Superimposition of the actual and simulated goal structure: (a) Ribose bind-
ing protein-2DRI, (b)Calmodulin- 1CTR, (c)Chemotaxis-1CHN
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allows association of the binary complex with GroES. This was the largest molecule
in the study with 524 amino acids. We work with two well-studied conformations
of the molecule 1SS8 and 1SX4. The RMSD difference for successful termination
of the algorithm was 2.96Å from the goal conformation.

5.4.5 Calmodulin

Calmodulin (CaM) is a multi-functional intermediate calcium-binding messenger
protein expressed in all eukaryotic cells. It is an intracellular target of the sec-
ondary messenger Ca2+, and the binding of Ca2+ is required for the activation
of calmodulin. Calmodulin is a small, highly conserved protein that is 148 amino
acids long. The protein has two approximately symmetrical globular domains each
containing a pair of EF-hand3 motifs (the N- and C-domain) separated by a flexible
linker region for a total of four Ca2+ binding sites. The two forms of Calmodulin
used for this study are 1CLL and 1CTR, the RMSD difference between them is
14.83Å. The binding site directive produced a goal conformation that was 3.2Å
to the actual goal conformation, the regular RRT-MC algorithm without any in-
formation on contact residues did so with 3.5Å. The time consumed although was
about half with the selective residue directive.

Two other conformations of Calmodulin, namely 1CFD and 2F3Y were also
studied. Former is the calcium free form of Calmodulin and the latter is bound to
a putative IQ motif in the C-terminal tail of the pore-forming subunit. Figures-
5.4(c) and (d) show the two end points of conformations for this molecule.

5.4.6 Cynovirin-N

CVN is an anti-viral fusion inhibitor protein that binds to viral sugars, and is tri-
aled for preventing sexual transmission of HIV. It comprises two repeat domains
of 30% sequence identity. The domain swapped dimer has higher anti-viral affinity
than the monomer, and it was shown that the two forms can exist in solution, with
a high energy transition barrier between them. In addition, it has been reported
that certain mutations can affect the energy barrier and stabilize alternative con-
formations. We simulated the unpacking of the repeat domains of a single chain
from the intertwined monomeric conformation to an extended domain-swapped
conformation. The two conformations differ form each other with an RMSD of
13.26Å. CVN contains 101 amino acids. As expected, limiting the search space for
the algorithm by incorporating the binding site information, the algorithm con-
sumed much less time, with slightly better accuracy towards goal conformation
(Table-5.1, 5.2). Figures-5.4(g) and (h) show the two conformations path between

3The EF hand is a helix-loop-helix structural domain found in a large family of calcium-binding
proteins.
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which is approximated.

5.4.7 Analysis of Results

As expected, the results qualitatively represented a path between the two endpoints
of their respective proteins. It should be noted that such information is hard to
determine with experimental methods due to the transient nature of intermediates.
Also, despite the fact that the proteins were represented in a coarse-grained man-
ner and the intermediates were not subjected to further energy minimization, the
structures were reasonably close to the actual known structures of the molecule.
Table 5.2 shows the results of this study. It reports the RMSD between simulated
goal conformation attained by the search and the actual goal conformation, which
is the right hand side of the column named Conformations. The algorithm starts
with the two end points and the score threshold RMSD that would be acceptable
between the actual and simulated goal. So, when an extremely low threshold is
chosen, for example 1Å, the simulation runs for longer trying to better the sim-
ulated goal towards the actual one. As seen, we were able to generate pathways
within low lRMSD with respect to the goal structure (the best lRMSD per path-
way was less than 3Å) in nearly all cases. The average time a simulation takes
is between 45 minutes to 1 hour, depending on the size of the protein. A confor-
mation close to the goal was found in each run. The method produced thousands
of conformations before the final path was detected. Due to the inherent ran-
domness, the pathways produced are not necessarily the biological pathway. The
method described in [87] achieves better accuracy and uses the entire molecule for
simulation but is computationally more expensive, taking a minimum of 56 CPU
hours.

Figure 5.5 shows the RMSD trend of the simulation with (red) and with-
out (blue) the contact-residue directive. The results are significantly better for
some molecules like Chemotaxis and Cynovirin-N where much better accuracy is
achieved with this information. For others too, the lack in accuracy is made up for
by the save in time. As is evident, in each case the red line is always lower than
the blue, indicating that similar (or better) RMSD is achieved in lesser time.

5.5 Comparison with Known Hinges

Flexibility of protein molecules is critical to understanding their conformational
change. Hinge motions are critical for molecular identification, and knowledge
of their location can guide the sampling of protein conformations for docking.
To further validate the work done here, we identified the hinge residues for these
molecules where such information was available and measured the correlation with
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Table 5.2: RMSD Results with limited search space.

Molecule Path RMSD† Time(min)†
Calmodulin 1CLL −→ 1CTR 3.2Å ≈ 25

2.8Å ≈ 40
2F3Y −→ 1CFD 2.98Å 42

AdK 1AKE −→ 4AKE 2.2Å ≈ 25
2.2Å 70

GroEL 1SS8 −→ 1SX4 3.1Å ≈ 35
2.96Å 52

CheY 3CHY −→ 1CHN 4.2Å ≈ 55
3.7Å 70
3.2Å 150

Cyanovirin 2EZM −→ 1L5B 4.9Å 52
3.5Å 92
2.98Å 120
2.98Å 135

RBP 1URP −→ 2DRI 2.5Å 100
1.98Å ≈ 130

† The top number is the RMSD when a threshold was set. The bottom number is when
the simulation was allowed to run the maximum number of iterations.

our results. Combined results of studies from [7, 106, 107, 108] are presented in
Table 5.3. Each of these works identifies regions within the molecules that are
flexible. The list of residues to perturb for inducing conformational changes in
each of these molecules was compared with the residue set in the second column
of Table-5.3. In most cases, the residues in the flexible region form over 15% of
the list of contacting residues, if not more. However, there is an exception with
Chemotaxis. Here, according to [106], which has 3CHY as one of the molecules it
analyses, this protein is thermally quite stable and undergoes changes only around
temperatures of 400K, wherein residue 76 is the most active one. The residue set
70-80 did not appear in the list we used for perturbation (although 67, 82, 84 did
appear). The residue sets by the META-PSICOV algorithm are merely the ones
that evolve together. They may or may not have an effect on the flexibility. The
implementation in this work can be readily extended to any external information
about flexible residues. This is the subject of current work.

It must be emphasized that the contacting-residue bias does not account for
all of the points that undergo change in the conformational transition. It shows
a grouping of buildup matches that have a higher likelihood of evolving and po-
tentially represents the neighboring of hotspot residues. In future, we intend to
combine this information with the rigidity analysis which will allude more credi-
bility to the feasible paths. We also intend to use rigidity analysis in a way that
reduces randomness and focuses on generating a single path closest to the actual
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Figure 5.5: RMSD towards goal versus time: the dotted lines show the simulation results
coupled with contact-residue information and the solid lines without it

Table 5.3: Hinge Residues of various molecules

Molecule Flexible Regions
Calmodulin 73-82 [108]
Adenylate Kinase 113-124, 155-65, 174 [108, 7]
GroEl 16-32 (mobile loop), 19-376(apical domain)
Ribose Binding Protein 100-103, 234-237
Cynovirin-N 48-55
Chemotaxis 70-80 [106]

path that the molecules take.
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Chapter 6

CONCLUSION

For the parallelized version of the feature reduction algorithm Isomap, besides
the improvement in average time complexity due to betterment in computation
of the shortest path tree, the algorithm offers better speed at every stage, when
each function is compared in isolation. In future, we plan on attempting to do
this even faster by combining the compute powers of the MPI and CUDA archi-
tectures described in the Introduction. The algorithm in its current form, only
reduces the features of the data. Coming up with a way to reduce the noisy and
redundant points themselves, is an area of ongoing research. As mentioned earlier,
the Isomap algorithm is compute intensive. It executes in a way that hogs the sys-
tem’s resources, leaving all the other applications running on the system starved.
In comparison, our parallelized version, efficiently makes use of the available mem-
ory, without having to write anything on the disk and hence doesn’t hamper any
other processes running on the system. The amount of data to be operated on is
so large here, that programming platforms for vectorized data like Matlab and R
sometimes cannot allocate memory for it. The coordinate data here is about 80
MB and the intermediate data files can be about 4GB. In situations like these, our
version of the algorithm becomes the only resort.

The methods and results of Chapter-3 manifest the validation of our novel data
instance reduction algorithm. The conclusions here are, however, far-reaching.
The algorithm not only successfully reduces the data points required to represent
a structure, it does so in a naturally cogent way. More complex the structure,
lesser are the number of points reduced. In other words, the algorithm adheres
to the complexities inherent in the data. The two dimensional projection of the
swiss roll data set as expected is just a spiral and it is safe to assume that not
too many points are required to assert that these points indeed represent a spiral.
So, expectedly, the algorithm does away with the most number of points here.
Amongst the macro-molecule datasets, Vasopressin (in these examples) is known
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to be less structurally complex than Human Galanin and CDC42 and so, compar-
atively, ends up with a smaller portion of data points. A dataset representing the
complexities of a visage intuitively has more intricacies to take care of and hence
the Lena image data set ends up with a large portion of its original dataset. The
Isolet dataset has 26 defined categories and so a training set for the best possible
classification here eliminates lesser points than the Iris dataset.

The assessment of the information content offered by a data instance lets one
decide whether to continue storing the particular data instance or not. The two
Machine Learning datasets were used to draw conjectures of this sort. This could
be an aid in determining and making sure that minimum number of data instances
are stored. It would help in deciding whether new prospective data would affect
the subsequent analysis or not. This is especially useful in large and complex data
sets that require a lot of storage. If numerous attributes identify an instance, being
able to do so is a boon. How this algorithm (or a variant of it) can be used for
non-linear classification forms the basis for future work.

What lies ahead is to narrow down a way to obtain accurate projections of
larger and relevant data sets using minimum possible data instances. A way to
parameterize the dissimilarity of data instances would pave the way for non-linear
feature reduction and then ultimately data reduction. One of our primary goals
is to reduce protein data sets and use just enough points to isolate intermediate
protein conformations [109, 110]. Their isolation would be key to characterization
of their conformational landscape which would pave the way for understanding the
convoluted relation between protein structure, dynamics and function.

Many proteins undergo large-scale conformational changes as part of their func-
tion. Characterizing the conformational space of proteins is crucial for understand-
ing their function and dynamics. In Chapter-4 we presented an efficient filtration
procedure that works well for sampling the intermediate conformations for protein
molecules that undergo large scale conformational changes as well as for the ones
that have a pervasive native state. The method presented is well suited to establish
distinctiveness among the clusters generated. Refining these methods to produce
finer sampling and study the significance of fleeting high energy conformations is
the goal ahead. Hierarchical clustering merges (splits) two sets of conformations
based on the heterogeneity of the entire set. In future, we aim at coming up with a
way to bias this divide in a way that is more suited for protein datasets. Molecules
that undergo rigorous changes in structure are the ones suited for such work. In
particular, having known intermediates, would help in guiding the conformational
pathway search problem as well. It can divide the search space into smaller in-
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stances of the same problem. This is a portion of the ongoing research.

Chapter-5 lays the basis of actually simulating the actual physical pathways
that proteins undertake. The proposed method effectively captures large-scale con-
formational changes and produces pathways that are consistent with experimental
data and other computational studies. This work proposes a novel way to guide
the conformational search process in finding a plausible path between two stable
conformations of a protein molecule. The search is developed based on MCTS
conformational sampling algorithm and it is biased by evolutionary information
to guide the search and cut the run time. MCTS plays out a more comprehensive
search than other stochastic based methodologies and because of the arbitrari-
ness natural in the calculation and updating sampling iteratively, it yields various
energetically doable ways between the conformations, which meet in view of the
biasing towards the goal. The method represents an important first step towards a
larger scale modeling of more complex biological systems. Future directions of this
work include the integration of the coarse-grained and semi-coarse grained sam-
pling into a multi-resolution search scheme, where the level of resolution can be
determined on the fly according to the desired region in the conformational space
to be sampled. The missing details can then be completed and interesting regions
in the conformational space can be sampled in full representation. We also plan to
scale up to larger proteins and protein complexes through multi-scale search and
parallel computing.
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