
University of Massachusetts Boston University of Massachusetts Boston

ScholarWorks at UMass Boston ScholarWorks at UMass Boston

Graduate Masters Theses Doctoral Dissertations and Masters Theses

8-31-2017

Effect of Observational Cadence on Orbit Determination for Effect of Observational Cadence on Orbit Determination for

Synthetic Near-Earth Objects Synthetic Near-Earth Objects

Thomas G. Endicott
University of Massachusetts Boston

Follow this and additional works at: https://scholarworks.umb.edu/masters_theses

 Part of the Astrophysics and Astronomy Commons

Recommended Citation Recommended Citation
Endicott, Thomas G., "Effect of Observational Cadence on Orbit Determination for Synthetic Near-Earth
Objects" (2017). Graduate Masters Theses. 446.
https://scholarworks.umb.edu/masters_theses/446

This Open Access Thesis is brought to you for free and open access by the Doctoral Dissertations and Masters
Theses at ScholarWorks at UMass Boston. It has been accepted for inclusion in Graduate Masters Theses by an
authorized administrator of ScholarWorks at UMass Boston. For more information, please contact
scholarworks@umb.edu.

https://scholarworks.umb.edu/
https://scholarworks.umb.edu/masters_theses
https://scholarworks.umb.edu/diss_theses
https://scholarworks.umb.edu/masters_theses?utm_source=scholarworks.umb.edu%2Fmasters_theses%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/123?utm_source=scholarworks.umb.edu%2Fmasters_theses%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umb.edu/masters_theses/446?utm_source=scholarworks.umb.edu%2Fmasters_theses%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@umb.edu

EFFECT OF OBSERVATIONAL CADENCE ON ORBIT DETERMINATION FOR

SYNTHETIC NEAR-EARTH OBJECTS

A Thesis Presented

by

Thomas G. Endicott

Submitted to the Office of Graduate Studies, University of Massachusetts
Boston, in partial fulfillment of the requirements for the degree of

Master of Science

August 2017

Physics Program

© 2017 by Thomas G. Endicott

All rights reserved

EFFECT OF OBSERVATIONAL CADENCE ON ORBIT DETERMINATION FOR

SYNTHETIC NEAR-EARTH OBJECTS

A Thesis Presented

by

Thomas G. Endicott

Approved as to style and content by:

Jonathan Celli, Assistant Professor
Chairperson of Committee

Bala Sundaram, Professor
Member

Chandra Yelleswarapu, Assistant Professor
Member

Stephen Arnason, Program Director
Physics Program

Bala Sundaram, Chairperson
Physics Department

ABSTRACT

EFFECT OF OBSERVATIONAL CADENCE ON ORBIT DETERMINATION FOR

SYNTHETIC NEAR-EARTH OBJECTS

August 2017

Thomas G. Endicott,
B.S., University of Massachusetts Boston
M.S., University of Massachusetts Boston

Directed by Assistant Professor Jonathan Celli

Near-Earth Objects (NEOs) are generally small, dark, and fast-moving. Multiple obser-

vations over time are necessary to constrain NEO orbits. Orbits based on observational

data are inherently uncertain. Here we describe code written in Python and Fortran

used to generate synthetic asteroids and compare calculated orbital fit based on noisy

ephemeris using the a distance criteria, D-value. Observational sessions separated by

more than one month produce very good orbital fits (low D-values) even at the high-

est noise level. Daily observational sessions show the highest D-values, as expected,

since observed points on the orbital ellipse are not well separated. D-value is closely

correlated to differences in the eccentricity and inclination of compared orbits.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER Page

1. INTRODUCTION . 1

1.1. Near-Earth Objects . 1

1.2. Discovery & Challenges 2

1.3. Orbit Determination . 3

1.4. Orbit Comparison with D-value 4

1.5. Orbital Uncertainty & Synthetic Asteroid Choice 5

2. PYTHON ALGORITHMS & MODULES 7

2.1. User Input . 7

2.2. Synthetic NEO Creation 8

2.3. Ephemeris Generation 8

2.4. Simulated Observation & Noise Addition 8

2.5. Orbit Fitting . 9

2.6. D-criteria calculation 9

2.7. Data Acquistion . 10

3. ANALYSIS . 11

3.1. D-value as a Function of Orbital Parameters 11

3.2. Argument of Perihelion 11

3.3. Longitude of Ascending Node 17

3.4. Inclination . 22

3.5. Eccentricity . 27

3.6. Semi-major Axis . 32

3.7. D-value as a Function of ∆-Parameter 37

v

CHAPTER Page

4. CONCLUSION . 42

5. FURTHER WORK . 44

6. ACKNOWLEDGEMENTS . 46

APPENDIX A . 47

REFERENCE LIST . 68

vi

LIST OF TABLES

TABLE Page

1. Perihelion boundaries for NEO subgroups 3

2. Required user-inputs and their default values. 7

3. Example of final code output. 9

vii

LIST OF FIGURES

FIGURE Page

1. Illustration NEO orbital subgroups and diagram of angular orbital
parameters. 4

2. D-value vs. Observation Cadence and Argument of Perihelion, ω ,
at zero noise-added, all groups. 13

3. D-value vs. Observation Cadence and Argument of Perihelion, ω ,
at low noise-added, all groups. 14

4. D-value vs. Observation Cadence and Argument of Perihelion, ω ,
at medium noise-added. 15

5. D-value vs. Observation Cadence and Argument of Perihelion, ω ,
at high noise-added. 16

6. D-value versus Observation Cadence and Longitude of Ascending
Node, Ω, at zero noise-added. 18

7. D-value versus Observation Cadence and Longitude of Ascending
Node, Ω, at low noise-added. 19

8. D-value versus Observation Cadence and Longitude of Ascending
Node, Ω, at medium noise-added. 20

9. D-value versus Observation Cadence and Longitude of Ascending
Node, Ω, at high noise-added. 21

10. D-value versus Observation Cadence and Inclination, i, at zero
noise-added. 23

11. D-value versus Observation Cadence and Inclination, i, at low
noise-added. 24

viii

FIGURE Page

12. D-value versus Observation Cadence and Inclination, i, at medium
noise-added. 25

13. D-value versus Observation Cadence and Inclination, i, at high
noise-added. 26

14. D-value versus Observation Cadence and Eccentricity, e, at zero
noise-added. 28

15. D-value versus Observation Cadence and Eccentricity, e, at low
noise-added. 29

16. D-value versus Observation Cadence and Eccentricity, e, at medium
noise-added. 30

17. D-value versus Observation Cadence and Eccentricity, e, at high
noise-added. 31

18. D-value versus Observation Cadence and Semi-major Axis, a, at
zero noise-added. 33

19. D-value versus Observation Cadence and Semi-major Axis, a, at
low noise-added. 34

20. D-value versus Observation Cadence and Semi-major Axis, a, at
medium noise-added. 35

21. D-value versus Observation Cadence and Semi-major Axis, a, at
high noise-added. 36

22. D-value versus ∆-Parameter for generic NEOs. 37

ix

FIGURE Page

23. D-value versus ∆-Parameter for Atiras. 38

24. D-value versus ∆-Parameter for Atens. 39

25. D-value versus ∆-Parameter for Apollos. 40

26. D-value versus ∆-Parameter for Amors. 41

x

CHAPTER 1

INTRODUCTION

1.1 Near-Earth Objects

Near-Earth Objects (NEOs) are orbiting bodies in near-Earth space. This can include

comets, asteroids, and natural and artificial space debris. Here we are primarily con-

cerned with asteroids in this space. These asteroids typically have small diameters and

low albedo, they are very small, very dark, and difficult to observe [Ia11]. Since these

objects exist in near-Earth space they have the potential for collision with Earth. In

addition, due to their proximity, these asteroids are prime targets for sample return mis-

sions, and resource mining operations [Elv14]. To that end, once discovered, continued

observances and constraining the orbital uncertainty of these objects is a high prior-

ity. Building instruments with increased precision and extending observations of these

objects for a long baseline would provide good orbital fits, however, each of these meth-

ods is resouce-expensive. The goal of this project is to determine what observational

cadence provides an acceptable orbital fit by approximating observations made with

existing resources.

1

1.2 Discovery & Challenges

Discovery of new NEOs is increasing exponentially, as more powerful telescopes and

telescopic networks come online objects that were previously too dim to see are now

observable. Currently there are more than sixteen thousand known NEOs, including

over one thousand eight hundred potentially hazardous asteroids [Jet].

Discovery surveys such as The Catalina Sky Survey, NEO-Wise, PanStarrs, and

others aim to cover as much of the night sky as possible. Using an extremely large

field of view (the Catalina Sky Survey using a FOV of 5.0 deg2 sweeps 1000 deg2 per

night [Ari]) these large scale surveys are designed to detect rapidly moving objects in

the night sky, identify asteroids (both known and previously undiscovered), and trigger

rapid follow-up observations in order to classify and categorize these objects and their

properties. Discovery survey data is typically at too low a resolution to do more than

determine a rough orbital fit for these objects. Newly discovered asteroids are dissem-

inated to the wider asteroid community who are then able to perform more deliberate

follow-up observations in order to determine physical properties of these objects includ-

ing surface composition, albedo, size, and a more precise orbital solution. In the case

of an imprecise orbital fit, these small, dark, fast-moving objects can be lost. With too

short a discovery observation window these objects would need to be rediscovered on a

subsequent approach [PHW00].

Observational bias also affects NEO discovery. Objects with low inclination and

eccentricities are more likely to be detected. Additionally, more NEOs are discovered in

November to December [ENS11], a result of longer nights in the northern hemisphere

which is where most telescopic resources are located.

2

Family Semi-major Axis,

a (AU)

Perihelion, q (AU)

generic NEO q < 1.3

Atira a < 1.0 q < 0.983

Aten a < 1.0 q > 0.983

Apollo a > 1.0 q < 1.017

Amor a > 1.0 q > 1.017

Table 1: Perihelion boundaries for NEO subgroups. All NEOs have semi-major axis

less than 1.3 AU. Atira orbits are strictly within Earth’s orbit, Apollo orbits are strictly

outside Earth’s orbit. Aten and Amor are Earth-crossers.

1.2.1 Classifications/Subgroups

These NEOs are categorized into four orbital subgroups; the Atens, Apollos, Atiras, and

Amors. Aten asteroids have a semi-major axis less than that of Earth, and their orbits

cross that of Earth. Apollo asteroids have a semi-major axis greater than that of Earth,

they too have orbits that cross that of Earth (Table 1). The Atira asteroids have orbits

strictly within that of Earth, and Amor asteroids strictly without (Fig. 1(a)). NEOs are

not uniformly distributed among these subgroups, with Apollos and Amors making up

almost 90% of the total NEO population [GNG12].

1.3 Orbit Determination

An elliptical orbit is calculated based on at least three points of observation. These

observational points, the ephemeris, include datetime, right ascension, and declination.

Once fit, the orbit is described by its Keplerian orbital elements: argument of perihelion

(ω), longitude of ascending node (Ω), inclination (i), eccentricity (e), and semi-major

3

axis (a) (Fig. 1(b)). NEO orbits are affected by gravitational interaction with the plan-

ets and can change over time, this occurs on time scales of ∼100yr. [Tan98]. Here,

we do not consider orbital comparison on a timescale that would include gravitational

perturbation.

(a) NEO Orbital Subgroups (b) Angular Orbital Parameters

Figure 1: Illustration NEO orbital subgroups and diagram of angular orbital parameters.

1.4 Orbit Comparison with D-value

In order to compare two orbits we use a standard distance calculation in the orbital

element space, referred to as D-value. (Eq. 1.1).

D2 = ka

(
δa
a

)2
+ ke(δe)2 + ki(δ sin i)2 + kΩ(δΩ)2 + kω(δω)2 (1.1)

ka = 5/4, ke = ki = 2, kΩ = kω = 1×10−6

The calculation and coefficients given above, are taken from Nesvorný [Nes06].

4

1.5 Orbital Uncertainty & Synthetic Asteroid Choice

It is impossible to make a comparison between the true orbit of an NEO and its cal-

culated orbit based on observation, simply because the only information available is

observational data, which is inherently uncertain. Rather than use observed asteroids,

we construct synthetic asteroids with “known” orbits by specifying orbital parameters.

We then simulate observations of these synthetic asteroids by adding a preset level of

noise to their sky positions. Using these noisy simulated observations we recalculate

an orbital fit, and compare this to the “known” orbit using the D-value. The orbital

elements for our synthetic object are not drawn at random. Since the NEO population

is not uniformly distributed in near-Earth space. There are selection effects due to ob-

servational bias in each of the subgroups of NEOs. The Atira subgroup, for example,

does not spend a large amount of time away from the sun, and therefore the most easily

observable for this group are those that observed when perpendicular to the Sun-Earth

line. There are also non-uniform distribution of the angular orbital elements of the Amor

subgroup, for example, due to resonances with Jupiter [JM14]. We will show, however,

that the distribution of these angular elements do not correlate with D-value, and argue

that a random uniform choice of angular elements is justifiable when constructing our

synthetic NEOs for this analysis. In order to create a synthetic asteroid we randomly

select each of the six orbital elements from a database consisting of observed NEOs,

these synthetic objects are then placed into subgroups based on perihelion criteria. This

choice method provides a set of synthetic objects whose orbital elements are possible, as

they are sourced from observations, but otherwise randomly disctibuted in orbital space.

5

1.5.1 Fortran Code

The code relies on two Fortran executables written by Lowell astronomer Dr. Larry

Wasserman. These are hosted on a remote server maintained by Lowell Observatory.

The first executable generates ephemerides for a provided list of asteroids. The second

executable is an orbital fitting routine that takes an initial set of orbital parameters as

a guess for the orbital fit, and a list of ephemerides. This second executable returns

Keplerian orbital elements.

1.5.2 Python Code

The code, written in Python 2.7, is an adaptation and extension of previous work by

Clément Royer. The code generates a set of synthetic asteroids by randomly sampling

near-Earth asteroid orbital elements from the Lowell AstOrb database [Obs], simulates

observations of these asteroids, and generates a set of orbital fits. The final output of this

code is a set of text files listing the original orbital elements of the synthetic asteroids,

the orbital elements of the fit orbit, and the difference between them along with the

D-value.

6

CHAPTER 2

PYTHON ALGORITHMS & MODULES

2.1 User Input

The code is designed to run from a bash shell and immediately prompts the user for a

series of inputs. The required inputs, and the default values are listed in Table 2.

Variable Default

Asteroid family ‘neo’

Desired number of objects 15

Ephemeris start (YYYY, MM, DD.DDDD) 2015, 05, 12.0

Ephemeris interval (DD, HH, MM) 00, 01, 00

Ephemeris duration (DDD, HH, MM) 365, 00, 00

Date noise (sec) 0.01

Right Ascension noise (sec) 0.01

Declination noise (sec) 0.01

Number of observations per session 4

Hourly interval between observatoins (HH) 1

Number of observation sessions 5

Daily interval between sessions (DD) 15

Table 2: Required user-inputs and their default values.

7

2.2 Synthetic NEO Creation

The code first reads in the AstOrb flatfile and discards any asteroid that does not fall

within the near-Earth range of 1.3 AU. A synthetic NEO is then created from the re-

maining asteroids by randomly selecting each of its six orbital elements from those

available. Once created, this synthetic object is tested to confirm that it is a member of

the user-specified family, and if so, is written to a file with a format identical to AstOrb.

This identical formatting is required in order to generate ephemerides.

2.3 Ephemeris Generation

The newly created AstOrb-like file of synthetic objects is passed to the Fortran ephemeris

calculator. Ephemerides for each asteroid is generated hourly for three hundred sixty-

five days begining at start date May, 12 2015, (MJD 57154.50078). The assumed H

magnitude of the synthetic objects is 0.0, and assumed slope parameter G is 0.15.

2.4 Simulated Observation & Noise Addition

Based on the user-specified observational cadence details a subset of the generated

ephemeris is selected. This subset of ephemerides are the sky coordinates of the syn-

thetic object. In order to simulate an observation of the object at these coordinates noise

is added to the Julian date (in seconds), right ascension (in seconds), and the declination

(in arcseconds). This noise addition is handled by the ENDICOTT noise loop module

which adds random noise from the uniform interval (±) specified by the user.

This noise addition simulates conditions of a real telescopic observation due to at-

mospheric seeing conditions, and electronic noise associated with the CCD chip.

8

periarg(deg) ascnode(deg) inc(deg) ecc(N) SA (AU) D-value

75.4536300 120.7310000 2.7271112 0.5259383 1.7390420

75.5169010 120.7008757 2.7317214 0.5267244 1.7416143

-0.0632710 0.0301243 -0.0046102 -0.0007861 -0.0025723 0.0019992

Table 3: Example of final code output.

2.5 Orbit Fitting

The noisy ephemeris are then passed to the Fortran orbital fitting code. This code also

takes the original orbital elements for the synthetic object as an initial guess for the orbit.

The orbital fit returns a set of orbital elements.

2.6 D-criteria calculation

Once orbital fits were determined, the “true” orbit of each synthetic asteroid was com-

pared to the “noisy” orbital fit from the simulated observations using the D-value (Eq.

1.1). The code then takes the true orbit and the noisy orbit, computes the difference of

each orbital element (or, in the case of inclination a difference of sin(i)), and submits

these values to the D-value calculator module.

The result is output to a text file with three lines per synthetic asteroid: original or-

bital elements, “observed” orbital elements, and differences with D-value. An example

of this output is shown below (Table 3).

9

2.7 Data Acquistion

For each of the orbital families, and for a generic NEO class, the code was run to simu-

late a large number of synthetic asteroids.

Observations were simulated at varying cadences. In order to maintain consistency

across simulated observation sessions only the interval between sessions was adjusted.

Each set of simulated observations consisted of five sessions of observation, with four

observations per session, at one hour intervals. The number of days between sessions

varied between a minimum of one day, and a maximum of 180 days.

For each of these families and cadences observations were simulated by adding noise

to date, right ascension, and declination with noise levels of 0.00, ±0.01, ±0.10, and

±1.00.

For each combination of family, cadence, and noise level a text file was output con-

taining the original orbital elements, the calculated orbital elements, and a row of dif-

ferences, including the D-value for each synthetic asteroid.

10

CHAPTER 3

ANALYSIS

3.1 D-value as a Function of Orbital Parameters

Plots of the D-values calculated at fixed noise level follows. Each orbital element is on a

separate plot to illustrate D-value dependence, if any, on the value of the given element.

As an example, the eccentricity of generic NEOs at fixed noise level 1.0 is shown

in Figure 2(a). Notice for orbital cadences of greater than one month the D-value is

consistently zero for any value of eccentricity. This means that orbital fit is extremely

good for observation sessions separated by a month or more even at the highest noise

level. Figure 2(b) shows the same data for cadences less than one month.

D-value is low or zero for all observing intervals greater than one month for all

noise levels, orbital parameters, and asteroid subgroups. The following plots omit the

cadences greater than one month. (Figs. 2 - 21).

3.2 Argument of Perihelion

There is no correlation between argument of perihelion and D-value for any group or

noise level (Fig. 2 - 5). Notably, for the Atira group at low-noise results show excellent

orbital fit for all cadences (Fig. 3(e)). Also note the increased z-scale at high noise-

added (Fig. 5) compared to the lower noise levels.

11

(a) Plot of D-value versus Observation Cadence

(in months) and Eccentricity at maximum noise-

added. Note at observational cadences greater

than one monht D-value remains flat for all val-

ues of the orbital parameter, this holds true for

lesser noise added.

(b) Plot of D-value versus Observation Cadence

(in months) and Eccentricity at maximum noise-

added. For very short cadences, D-value varies

greatly due to points used for orbital fit that are

closely grouped in time. Maximum D-value of

2.022 occurs at 10 day observing interval.

12

(c) NEO, ω , Zero Noise (d) Amor, ω , Zero Noise

(e) Apollo, ω , Zero Noise (f) Aten, ω , Zero Noise

(g) Atira, ω , Zero Noise

Figure 2: D-value vs. Observation Cadence and Argument of Perihelion, ω , at zero

noise-added, all groups. No correlation between D-value and Argument of Perihelion at

zero noise.

13

(a) NEO, ω , Low Noise (b) Amor, ω , Low Noise

(c) Apollo, ω , Low Noise (d) Aten, ω , Low Noise

(e) Atira, ω , Low Noise

Figure 3: D-value vs. Observation Cadence and Argument of Perihelion, ω , at low

noise-added, all groups. No correlation between D-value and Argument of Perihelion at

the zero noise level.

14

(a) NEO, ω , Medium Noise (b) Amor, ω , Medium Noise

(c) Apollo, ω , Medium Noise (d) Aten, ω , Medium Noise

(e) Atira, ω , Medium Noise

Figure 4: D-value vs. Observation Cadence and Argument of Perihelion, ω , at medium

noise-added. No correlation between D-value and Argument of Perihelion at this noise

level.

15

(a) NEO, ω , High Noise (b) Amor, ω , High Noise

(c) Apollo, ω , High Noise (d) Aten, ω , High Noise

(e) Atira, ω , High Noise

Figure 5: D-value vs. Observation Cadence and Argument of Perihelion, ω , at high

noise-added. No correlation between D-value and Argument of Perihelion at the high

noise level.

16

3.3 Longitude of Ascending Node

Similar to argument of perihelion, there is also no correlation between Longitude of

Ascending Node and D-value for any noise level (Figs. 6 - 9). Neither argument of

perihelion, nor longitude of ascending node correlate to D-value, therefore matching

the non-uniform distrbution of these orbital elements in our synthetic object dataset is

unnecessary.

17

(a) NEO, Ω, Zero Noise (b) Amor, Ω, Zero Noise

(c) (d) Aten, Ω, Zero Noise

(e) Atira, Ω, Zero Noise

Figure 6: D-value versus Observation Cadence and Longitude of Ascending Node, Ω,

at zero noise-added. No correlation between D-value and Longitude of Ascending Node

at zero noise.

18

(a) NEO, Ω, Low Noise (b) Amor, Ω, Low Noise

(c) Apollo, Ω, Low Noise (d) Aten, Ω, Low Noise

(e) Atira, Ω, Low Noise

Figure 7: D-value versus Observation Cadence and Longitude of Ascending Node, Ω,

at low noise-added. No correlation between D-value and Longitude of Ascending Node

at low noise.

19

(a) NEO, Ω, Medium Noise (b) Amor, Ω, Medium Noise

(c) Apollo, Medium Noise (d) Aten, Ω, Medium Noise

(e) Atira, Ω, Medium Noise

Figure 8: D-value versus Observation Cadence and Longitude of Ascending Node, Ω,

at medium noise-added. No correlation between D-value and Longitude of Ascending

Node at medium noise.

20

(a) NEO, Ω, High Noise (b) Amor, Ω, High Noise

(c) (d) Aten, Ω, High Noise

(e) Atira, Ω, High Noise

Figure 9: D-value versus Observation Cadence and Longitude of Ascending Node, Ω, at

high noise-added. No correlation between D-value and Longitude of Ascending Node

at high noise.

21

3.4 Inclination

Orbital fit for low inclinations and short cadences results in large D-values, for all noise

levels. but orbital fit improves with increasing inclination, even at low observing ca-

dences. This holds true for all noise levels (Figs. 10 - 13). For objects at high inclination

even observations separated by one day produce good orbital fits.

22

(a) NEO, i, Zero Noise (b) Amor, i, Zero Noise

(c) Apollo, i, Zero Noise (d) Aten, i, Zero Noise

(e) Atira, i, Zero Noise

Figure 10: D-value versus Observation Cadence and Inclination, i, at zero noise-added.

No correlation between D-value and Inclination at zero noise.

23

(a) NEO, i, Low Noise (b) Amor, i, Low Noise

(c) Apollo, i, Low Noise (d) Aten, i, Low Noise

(e) Atira, i, Low Noise

Figure 11: D-value versus Observation Cadence and Inclination, i, at low noise-added.

No correlation between D-value and Inclination at low noise.

24

(a) NEO, i, Medium Noise (b) Amor, i, Medium Noise

(c) Apollo, i, Medium Noise (d) Aten, i, Medium Noise

(e) Atira, i, Medium Noise

Figure 12: D-value versus Observation Cadence and Inclination, i, at medium noise-

added. No correlation between D-value and Inclination at medium noise.

25

(a) NEO, i, High Noise (b) Amor, i, High Noise

(c) Apollo, i, High Noise (d) Aten, i, High Noise

(e) Atira, i, High Noise

Figure 13: D-value versus Observation Cadence and Inclination, i, at high noise-added.

No correlation between D-value and Inclination at high noise.

26

3.5 Eccentricity

There is no consistent behaviour between eccentricity and orbital fit. The Atira subgroup

shows a poor orbital fit for low eccentricities (Figs. 14(e), 16(e), 17(e)), while D-values

peak in the upper half of the eccentricity range for generic NEOs (Figs. 14(a), 15(a),

16(a), 17(a)), and the Apollo subgroup (Figs. 14(c), 15(c), 16(c)).

27

(a) NEO, e, Zero Noise (b) Amor, e, Zero Noise

(c) Apollo, e, Zero Noise (d) Aten, e, Zero Noise

(e) Atira, e, Zero Noise

Figure 14: D-value versus Observation Cadence and Eccentricity, e, at zero noise-added.

No correlation between D-value and Eccentricity at zero noise.

28

(a) NEO, e, Low Noise (b) Amor, e, Low Noise

(c) Apollo, e, Low Noise (d) Aten, e, Low Noise

(e) Atira, e, Low Noise

Figure 15: D-value versus Observation Cadence and Eccentricity, e, at low noise-added.

No correlation between D-value and Eccentricity at low noise.

29

(a) NEO, e, Medium Noise (b) Amor, e, Medium Noise

(c) Apollo, e, Medium Noise (d) Aten, e, Medium Noise

(e) Atira, e, Medium Noise

Figure 16: D-value versus Observation Cadence and Eccentricity, e, at medium noise-

added.No correlation between D-value and Eccentricity at medium noise.

30

(a) NEO, e, High Noise (b) Amor, e, High Noise

(c) Apollo, e, High Noise (d) Aten, e, High Noise

(e) Atira, e, High Noise

Figure 17: D-value versus Observation Cadence and Eccentricity, e, at high noise-added.

No correlation between D-value and Eccentricity at high noise.

31

3.6 Semi-major Axis

Very low values of semi-major axis correspond to good orbital fit. Large D-values occur

only at the mid-to-high end of the semi-major axis range (Figs. 18(a), 19(c), 20(e),

21(a)) The Aten family shows increasing D-value as semi-major axis increases toward

1AU (and Earth’s orbit), but for very low semi-major Axis values orbital fit is very good

for all noise levels and observational cadences.

32

(a) NEO, a, Zero Noise (b) Amor, a, Zero Noise

(c) Apollo, a, Zero Noise (d) Aten, a, Zero Noise

(e) Atira, a, Zero Noise

Figure 18: D-value versus Observation Cadence and Semi-major Axis, a, at zero noise-

added. No correlation between D-value and Semi-major Axis at zero noise.

33

(a) NEO, a, Low Noise (b) Amor, a, Low Noise

(c) Apollo, a, Low Noise (d) Aten, a, Low Noise

(e) Atira, a, Low Noise

Figure 19: D-value versus Observation Cadence and Semi-major Axis, a, at low noise-

added. No correlation between D-value and Semi-major Axis at low noise.

34

(a) NEO, a, Medium Noise (b) Amor, a, Medium Noise

(c) Apollo, a, Medium Noise (d) Aten, a, Medium Noise

(e) Atira, a, Medium Noise

Figure 20: D-value versus Observation Cadence and Semi-major Axis, a, at medium

noise-added. No correlation between D-value and Semi-major Axis at medium noise.

35

(a) NEO, a, High Noise (b) Amor, a, High Noise

(c) Apollo, a, High Noise (d) Aten, a, High Noise

(e) Atira, a, High Noise

Figure 21: D-value versus Observation Cadence and Semi-major Axis, a, at high noise-

added. No correlation between D-value and Semi-major Axis at high noise.

36

Figure 22: D-value versus ∆-Parameter for generic NEOs.

3.7 D-value as a Function of ∆-Parameter

Plots of D-value versus the difference in orbital parameter follow. Here we are inter-

ested in how a change in the value of orbital parameter between the “true” orbit and the

“noisy” orbit affects orbital fit. Plots of orbital elements are arranged by NEO subgroup.

We draw no conclusions regarding a difference of argument of perihelion, or longitude

of ascending node with regard to D-value. However, there does appear to be a relation-

ship between a difference in eccentricty and D-value, as well as a linear dependence

between change of semi-major axis and D-value.

37

Figure 23: D-value versus ∆-Parameter for Atiras.

38

Figure 24: D-value versus ∆-Parameter for Atens.

39

Figure 25: D-value versus ∆-Parameter for Apollos.

40

Figure 26: D-value versus ∆-Parameter for Amors.

41

CHAPTER 4

CONCLUSION

Observational cadences of one month or greater lead to excellent orbital fits, quantified

by near-zero D-value, for asteroid subgroups without regard to the value or distribution

of their orbital parameters, or the level of noise-added to the simulated observations.

For very short cadences, daily, or weekly, orbital fit is poor unless the object has

inclination greater than ∼45 degrees, except at the highest noise level and shortest ob-

servation cadence (Fig. 13(a)).

The Earth-crossing subgroups, Atens and Apollos, show poor orbital fits at semi-

major axis values close to 1AU, and improving orbital fits as semi-major axis moves

inward and outward, respectively, from that distance. The improvement is more pro-

nounced in the Aten subgroup (Fig. 19).

There is no correlation between the value of the angular orbital parameters, argument

of perihelion and longitude of ascending node, and D-value. Orbital fit is not affected

by the non-uniform distribution of these elements in the observed NEO population.

When comparing D-value to the difference between “true” and “noisy” orbital pa-

rameters, we see no relationship in the argument of perihelion, or longitude of ascending

node. For all groups, however, difference in semi-major axis value is in direct propor-

tion to D-value. There also appears to be a psuedo-proportionality between difference

in eccentricty and D-value.

42

We conclude, that in order to calculate a good orbital fit for NEOs, separating ob-

servational sessions by one month or more is necessary. However, good orbital fits can

still be obtained at shorter observational cadences for objects with large inclinations, or

objects with semi-major axes less than 1 AU.

43

CHAPTER 5

FURTHER WORK

Additional goals of this project include improving the code user-interface, perhaps to

develop a GUI instead of bash shell interaction. More substantively, incorporating open

source, publicly available modules for ephemeris generation and for orbit fitting would

allow this code to exist as a standalone executable, independent of the fortran routines

hosted remotely.

The data set for this project can be expanded dramatically by allowing more freedom

of choice in the intial parameters, especially with regard to the user-specified observ-

ing cadence values. Allowing the number of observations per session, and number of

sessions presets to vary will introduce a larger dimensional space to explore, and this

flexibility grants the ability to hew these presets more closely to the actual details of a

particular telescope (ie, noise level) or observer (ie, observation pattern). As written, the

code can be configured for any number of asteroids, of any type available in the AstOrb

database, to generate any ephemeris interval, and simulate any specified observational

noise and cadence.

Additional goals also include exploring how D-value correlates to predicted ephemeris

position when comparing true orbits to noisy orbits in order to help predict recovery or

loss of a particular object at some noise level.

Lower noise regimes should also be explored. The European Space Agency’s Gaia

Space Observatory [ES] gives much more precise astrometry (∼0.001”) than traditional

44

ground-based observing (∼0.1), determining what cadences are necessary to meet a

particular D-value threshold using space-based or ground-based observing would be

useful.

45

CHAPTER 6

ACKNOWLEDGEMENTS

This research was supported in part by Dr. Nicholas Moskovitz, Assistant Astronomer,

Lowell Observatory, who provided oversight and encouragement on the asteroid science,

and Dr. Larry Wasserman, Astronomer, Lowell Observatory, who wrote and maintains

the ephemeris generating and orbital fitting Fortran code. Additionally, the author would

like to thank Clément Royer, Summer Research Assistant, Lowell Observatory, for his

contribution to the Python code, and Dr. David Polishook of Weizmann Institute of

Science for his commentary and support.

46

APPENDIX A

"""cadence.py

Generate synthetic NEOs, generate ephemeris, simulate observations based

on added noise, and observational cadence, and return orbital fit

difference (D-value)

Usage:

python cadence.py

Notes:

- This script requires python 2.7

- pip dependencies can be found in requirements.txt

- Last modified July 2, 2017

"""

import statements

import cadence_modules as mods

import subprocess

def cadence(

family_string, object_count, ephemeris,

noise_list, cadence_list):

"""This function calls ephemeris calculator,

create noisy ephemeris, grabs noisy eph for a particular

cadence, call minidiffs for that cadence and appends

result of minidiff and D calc to family+details.end

""""

NEO_Selection creates astorb-like file for family

mods.selectNEOs(family_string,object_count)

astorb_like_list=[]

Read in synth_family_astorb.dat

with open('synth_'+family_string+'_astorb.dat','r') as fam_astorb:

47

for line in fam_astorb: astorb_like_list.append(line.rstrip('\n')
.split('\n'))

call ef8, generates ef8.out

ef8 written and maintained by L.Wasserman

mods.generate_eph(family_string, ephemeris)

for x in noise_list:

create a noisy ephemeris file

mods.noisy_eph(x,family_string)

with open('noisy_'+family_string+'_'+x[3]+'_ef8.out') as nef8:

eph_per_object = sum(1 for line in nef8)/object_count

simulate observations at some cadence

for y in cadence_list:

#once each for the synthetic objects, call minidiff and

compare orbits

for z in xrange(0,object_count):

create minidiff stuff

mods.make_mininput()

mods.asteroid_files(z,astorb_like_list, x, y,

eph_per_object,family_string)

minidiff written and maintained by L.Wasserman

subprocess.call('../fortran_binaries/minidiff < mininput',
shell=True)

mods.orbit_files(family,x,y)

compare noisy orbits and perform the D calculation. write to

.end files

.end files contain row of original orbital parameters,

row of noisy orbital parameters

and row of differences plus D-value, 3 rows per object

mods.compare(family, x, y)

if __name__ == '__main__':

USER INPUT, default values included

family = raw_input('Enter asteroid family (NEO,Aten,Atira,Amor,Apollo

): [neo]\n').lower() or 'neo'
print 'You entered ', family.upper(), '\n'

48

objects = int(raw_input('Enter integer desired number of asteroids of

each type: [15]\n') or 15)

print 'You entered ', objects, '\n'

Prompt for ephemeris details

eph_date= raw_input('Please enter an ephemeris start date separated

by commas (YYYY,MM,DD.DDDD): [2015,05,12.0]') or [2015,05,12.0]

eph_int = raw_input('Please enter an ephemeris interval separated by

commas (DD,HH,MM): [00,01,00]') or [00,01,00]

eph_dur = raw_input('Please enter the duration for ephemeris

calculation: (DDD,HH,MM): [365,00,00]') or [365,00,00]

eph_deets = [eph_date, eph_int, eph_dur, 'ef8.out']
print 'You entered ', eph_deets

Prompt for Noise details

date_noise = float(raw_input('Please enter noise value for Julian

Date: [0.01]') or 0.01)

ra_noise = float(raw_input('Please enter noise value for Right

Ascension: [0.01]') or 0.01)

dec_noise = float(raw_input('Please enter noise value for Declination

: [0.01]') or 0.01)

str_noise = raw_input('Please enter an identifier string for this

noise combination') or 'noisestr'
noises = [[date_noise, ra_noise, dec_noise, str_noise]]

print 'You entered ', noises

Prompt for cadence details

nb_obs = int(raw_input('Please enter the number of observations

desired per session: [4]') or 4)

obs_int = int(raw_input('Please enter the hourly interval between

these observations: [1]') or 1)

nb_days = int(raw_input('Please enter the total number of obsevation

sessions: [5]') or 5)

days_int = int(raw_input('Please enter the interval, in days, between

these observing sessions. \n Note: Number of sessions x Daily

intervals must not exceed Ephemeris Duration \n Days Interval:

[15]') or 15)

freq_str = raw_input('Please enter an identifier string for this

cadence choice: ') or 'cadencefreq'
print 'You entered ', cadences

cadences = [[nb_obs, obs_int, nb_days, days_int, freq_str]]

END USER INPUT

49

call main process

cadence(family, objects, eph_deets, noises, cadences)

shell command to clean up directory after successful run

remove_string = 'rm *.dat *.out *.pyc asteroid.* input mininput'
subprocess.call(remove_string,shell=True)

50

"""cadence_modules.py

Contains modules necessary for cadence.py

Notes:

- This script requires python 2.7

- Modules also require fortran executables ef8.f, and minidiff.f

- pip dependencies can be found in requirements.txt

- Last modified July 6, 2017

"""

import statements

import os

import math

import random

import operator

import subprocess

import numpy as np

function definitions

def perihelion(a,e):

"""Calculates perihelion value given a, e"""

return a*(1-e)

def is_number(someString):

"""Tests if line in ef8.out is ephemeris string (true) or header info (

false)"""

try:

float(someString)

return True

except ValueError:

return False

def format_e(n):

"""Converts float numbers into a sci-not format compatible with minidiff

"""

#C.Royer formula

a = '%E' % n

return a.split('E')[0].rstrip('0').rstrip('.').ljust(18,"0") + 'E' +

a.split('E')[1]

51

def make_mininput():

"""Creates mininput file for minidiff call"""

with open('mininput','w') as minidiff_input_file:

minidiff_input_file.write('\n'.join(['asteroid.neworb','asteroid.
ted']))

def family_check(someSA,someEcc,someFamily):

"""Tests synthetic object for family group

based on semimajor axis and perihelion criteria"""

ph = perihelion(someSA,someEcc)

aph = aphelion(someSA,someEcc)

if someSA < 1:

if aph < 0.983: return 'atira'
else: return 'aten'

elif someSA > 1:

if ph < 1.017: return 'apollo'
if 1.017 < ph < 1.3: return 'amor'
else: pass

def generate_synth_obj(some2dlist):

"""Generate Synthetic asteroid randomly choosing

one data point from each column of 6xN 2D list"""

x = [random.choice(some2dlist[:,0]),random.choice(some2dlist[:,1]),

random.choice(some2dlist[:,2]),random.choice(some2dlist[:,3]),

random.choice(some2dlist[:,4]),random.choice(some2dlist[:,5])]

return x

def JD_to_Greg(someJDString):

"""Calculate Gregorian Date given some Modified Julian Date

adapted from http://aa.usno.navy.mil/faq/docs/JD_Formula.php

original formula is for JD, here we use modified JD.

note forced integer division for 'min' """

jd = float(someJDString)

L = jd + 68569 + 2400000.5

N = 4 * L // 146097

L = L - (146097 * N + 3) // 4

I = 4000 * (L + 1) // 1461001

L = L - 1461 * I // 4 + 31

52

J = 80 * L // 2447

day = int(L - 2447 * J // 80)

frac_day = (L - 2447 * J // 80) % 1

hr = int(frac_day * 24)

min = int(frac_day * 24 % 1 * 59 // 1) #59, not 60 to correct

unidentified rounding issue. necessary to match ef8 output

L = J // 11

mo = int(J + 2 - 12 * L)

yr = int(100 * (N - 49) + I + L)

greg_date_string = '{:4d} {:2d} {:2d} {:2d} {:2d}'.format(yr,mo,day,
hr,min)

return greg_date_string

def ENDICOTT_noise_loop(

someEphemerisString,someDateNoiseFloat,

someRANoiseFloat,someDecNoiseFloat):

"""Adds specified noise to JD, RA, and Dec, and return noisy versions""

read in eph as tuple of fixed width strings: [JulianDate,GregorianDate

(y,m,d,hr,min),sec,rah,ram,ras,dec_deg,dec_min,dec_sec,dm_s,dm_p,eu_s

,eu_pp,sAU,eAU,el,ph,eclat,galat,mag]

[JD,Gregorian,sec,rah,ram,ras,dec_deg,dec_min,dec_sec,data] = (

someEphemerisString[:11],someEphemerisString[11:28],

someEphemerisString[29:33],someEphemerisString[33:36],

someEphemerisString[36:39],someEphemerisString[39:46],

someEphemerisString[46:50],someEphemerisString[50:53],

someEphemerisString[53:59],someEphemerisString[60:-1])

[:-1] cuts final '\n' char

flatten DMS to deg and convert to radians, store positive/negative

sign

dec_deg = int(dec_deg)

posneg = math.copysign(1,dec_deg)

dec_noise = random.uniform(-someDecNoiseFloat,someDecNoiseFloat)

ra_noise = random.uniform(-someRANoiseFloat,someRANoiseFloat)

date_noise = random.uniform(-someDateNoiseFloat,someDateNoiseFloat)

dec_sec_noisy = (float(dec_sec) + dec_noise)

declination_noisy = math.radians(abs(dec_deg) + (int(dec_min) / 60.)

+ dec_sec_noisy / 3600.)

ra = float(rah)+float(ram)/60.+float(ras)/3600.

dec = math.radians(float(dec_deg) + float(dec_min)/60. + float(

dec_sec)/3600.)

53

add noise to declination, add noise and flatten RA

ra_noisy = float(rah) + (float(ram) / 60.) + (float(ras) / 3600.) + (

ra_noise / (3600. * 15*math.cos(declination_noisy)))

unflatten dec, and format for output

dec_deg = '{:+03.0f}'.format(posneg*(math.degrees(declination_noisy)
% 360 // 1))

dec_min = '{:02.0f}'.format(math.degrees(declination_noisy) % 360 % 1

* 60 // 1)

dec_sec = '{:05.2f}'.format(math.degrees(declination_noisy) % 360 % 1

* 60 % 1 * 60.)

unflatten RA and format output

rah = '{:02d}'.format(int(ra_noisy % 24 // 1))

ram = '{:02d}'.format(int(ra_noisy % 24 % 1 * 60. // 1))

ras = '{:06.3f}'.format(ra_noisy % 24 % 1 * 60. % 1 * 60.)

add noise to Julian Date, and recover noisy version of Gregorian

date

day_frac_noisy = date_noise/86400.

JD_noisy = '{0:.5f}'.format(float(JD)+day_frac_noisy)
Greg_noisy = JD_to_Greg(JD_noisy)

d[0],d[1] = JD_noisy,Greg_noisy

d[3:9] = [rah,ram,ras,dec_deg,dec_min,dec_sec]

format eph string to be written to noisyef8 file

noisyEphemerisString = ' '.join(map(str,d))+'\n'

return(noisyEphemerisString)

def clean_ef8_creator(eph_file,familyString):

"""Creates a clean copy of ef8.out for specified family"""

with open(eph_file,'r') as ef8, open(familyString+'_clean_ef8.out','w
') as cleanef8:

for line in ef8:

test_for_ephemeris = is_number(line.split(' ')[0]) and

is_number(line.split(' ')[1])
if not test_for_ephemeris:

continue

else:

cleanef8.write(line)

54

def D_calc(someOldInc,someOldSA,someDifferenceList):

"""Calculate D-value, takes original

SA, Inct, and new: nSA, nEcc, nInc,nNode, nPeriarg

order of elements is as follows:

arg of perihelion[0]; longitude of asc node[1]; inc[2]; ecc[3]; sa[4]"""

D-value equation coefficients

ka = 1.25

ke = 2

ki = 2

knode = 1e-6

kperiarg = 1e-6

D-value formula and calculation

d = ka*(someDifferenceList[4]/someOldSA)**2 + ke*someDifferenceList

[3]**2 + (ki*someDifferenceList[2])**2 + knode*someDifferenceList

[1]**2 + kperiarg*someDifferenceList[0]**2

D = round(math.sqrt(d),7)

return D

def compare(familyString, noise_list, cadence_list):

"""Compares orig and noisy orbital parameters and

takes their difference, and calculates D-value"""

open noisy and orig orbit.dat

with open('noisy_'+familyString+'_'+noise_list[3]+'_'+cadence_list
[4]+'_orbit.dat','r') as noisyorbit, open('synth_'+familyString+'
_'+noise_list[3]+'_'+cadence_list[4]+'_orbit.dat','r') as

synthorbit:

noisy_elmnts = noisyorbit.readlines()

synth_elmnts = synthorbit.readlines()

noisy_lines = [x.strip('\n') for x in noisy_elmnts]

synth_lines = [x.strip('\n') for x in synth_elmnts]

prep .end files with header row.

with open(familyString+'_'+noise_list[3]+'_'+cadence_list[4]+'
_D_values.end','a') as dval:

if os.stat(familyString+'_'+noise_list[3]+'_'+cadence_list[4]+'
_D_values.end').st_size == 0:

header = ' '.join('{:16s}'.format(x) for x in ['periarg(deg)
','longascnode(deg)','inclination(deg)','eccentricity(N)
','semimajoraxis(AU)','D-criterion'])

dval.write(header+'\n')
noisy = []

synth = []

55

difference = []

for i in xrange(0,len(noisy_lines)):

if noisy_lines[i] == '':
continue

else:

noisy.append([noisy_lines[i][60:83],noisy_lines[i

][83:106],noisy_lines[i][106:129],noisy_lines[i

][129:152],noisy_lines[i][152:175]])

synth.append([synth_lines[i][60:83],synth_lines[i

][83:106],synth_lines[i][106:129],synth_lines[i

][129:152],synth_lines[i][152:175]])

order of elements for D-value calc is as follows:

arg of perihelion (deg)[0]; longitude of asc node(deg)[1]; inc

(deg)[2]; ecc (N)[3]; semimajor axis (AU)[4]

for i in xrange(0,len(noisy)):

convert str to float, angles to radians, take sin(i)

noisy[i] = map(float(noisy[i])

noisy[i][:3] = [math.radians(z) for z in noisy[i][:3]]

noisy[i][2] = math.sin(noisy[i][2])

convert str to float, angles to radians, take sin(i)

synth[i] = map(float(synth[i])

synth[i][:3] = [math.radians(z) for z in synth[i][:3]]

synth[i][2] = math.sin(synth[i][2])

take the difference element by element

difference.append(map(operator.sub, noisy[i],synth[i]))

calculate D-value and append to difference list

difference[i].append(D_calc(synth[i][2],synth[i][4],difference

[i]))

#convert rads back to degrees for output

noisy[i][:3] = [math.degrees(z) for z in noisy[i][:3]]

synth[i][:3] = [math.degrees(z) for z in synth[i][:3]]

difference[i][:3] = [math.degrees(z) for z in difference[i

][:3]]

write clean orbital elements,\n,noisy orbital elements,\n,

differences plus D-value

for each asteroid in family

synthString = ' '.join('{:16.7f}'.format(y) for y in synth[i])

56

noisyString = ' '.join('{:16.7f}'.format(y) for y in noisy[i])

diff_String = ' '.join('{:16.7f}'.format(y) for y in

difference[i])

dval.write('\n'.join((synthString,noisyString,diff_String))+'\
n')

print 'finished D calculations for ',i,'th',familyString+'_'+
noise_list[3]+'_'+cadence_list[4],'\n\n'

def selectNEOs(familyString,no_of_objsInt):

"""Scrapes AstOrb flatfile for objects matching NEO critera

then creates a synthetic NEO by random selection of orbital parameters

"""

read in astorb as a list

asteroid_list = []

with open('../astorb.dat', 'r') as astorb: #LWasserman AstOrb

flatfile

#ast is a list in which each element is an asteroid and its

orbelts

ast = astorb.read().split('\n')
ast.remove("") #remove final carriage return

evaluate asteroids from astorb and write those meeting NEO criteria

to file

with open('NEOs_from_astorb_ENDICOTT.txt','w') as NEW_neos_Endicott:

for elt in ast:

(a,e) = (float(elt[168:181]), float(elt[158:169])) #read

semimajor axis and eccentricity from astorb list

if perihelion(a,e) < 1.3: # calculate perihelion and add to

NEO list if appropriate

NEW_neos_Endicott.write(elt+'\n') #write elements to

NEW_neos_Endicott file

result is an NEO subset of astorb.

build a list of NEO orbital elements, then select randomly to

create synthetic NEOs

new_elements = [] #order matches astorb organization. [meananomaly,

periarg, node, inc, e, a]

for k, elt in enumerate(ast): #check perihelion criteria for NEOs, if

match, add to 2D element list

peri = perihelion(float(elt[168:181]), float(elt[157:167]))

if peri < 1.3:

try:

57

elmnt_list=[float(elt[115:126]), float(elt[126:137]),

float(elt[137:148]), float(elt[148:158]), float(elt

[158:169]), float(elt[168:181])]

new_elements.append(elmnt_list)

except ValueError:

print("Error on line",k)

convert new_element from list of lists to array of arrays to

facilitate column-by-column random choice

new_elements = np.array(new_elements)

formatting of dummy text here is for ef8 fortran compatibility,

white space is critical, do not edit.

dummy_text_like_astorb ='''
0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00

0.000000000000000E+00

2418230.1 7.8524222429796860E+01 6.8078911704746740E+01

8.1927089436878150E+01 1.0616577185781130E+01 7.7485210393052350E-02

2.7664836338324990E+00

1802 511 2015 321 212.856 6387 104 8 0.53 2.30 2.29 0 0 0 0 0

0 0 0 0 0 0 0 O332812

7.11 1.5E-02 7.7E-05 20150507 2.1E-02 2015 729 2.5E-02 2018 2 8 0.00 2.5

E-02 2018 2 8 2.3324E-12 7.7492E-08 4.9412E-08 5.2904E-08 5.2488E-08

1.3520457003016260E-05 1.6988372522534680E-05 1.0477848839621680E-05

1.8560702102107700E-06 1.6532560884719450E-08 1.1506693831363680E

-09

-7.7341041844849160E-01 3.8722095002188720E-03 -4.9748503444959080E-03

-1.5390213087961620E-01 2.1599958180279470E-01 -6.0806886110876270E

-01 1.1161225808647010E-01 1.3298922767311350E-01

7.2947058206620400E-04 -1.7514789548836640E-01 1.8318539190005470E-04

-2.0163675921880390E-03 -4.3927688113500150E-03 1.6374616091789350E

-03 -1.0283396668216560E-02

0.01 DE430 1 2 3 4 10 15 31 52 511 704 4.74E-10 1.02E-10 1.35E

-11 1.31E-10 5.29E-11 1.31E-11 1.10E-11 1.67E-11 1.48E-11 1.82E-11\n

'''

build a list of size N of six orbetls for each fam, write file

using

N = no_of_objsInt

H = '0' #assumed value for reduced magnitude H

G = '0.15' #assumed value for slope parameter G

for family in ('atira','aten','apollo','amor','neo'):

58

counter = 0

fam_list = []

while counter < N:

synth_obj = generate_synth_obj(new_elements)

if familyString == family_check(synth_obj[-1],synth_obj[-2],

familyString): #send a,e from each synth obj, and current

famiy

fam_list.append(synth_obj)

counter += 1

elif familyString == 'neo' and perihelion(synth_obj[-1],synth_obj

[-2]) < 1.3:

fam_list.append(synth_obj)

counter +=1

else: pass

write astorb-like file population

with open('synth_'+familyString+'_astorb.dat','w') as g:

for i,asteroid in enumerate(fam_list): # enumerates from 0, so

adding 'i+=1' for astorb numbering

for j,elmnt in enumerate(asteroid):

asteroid[j] = format_e(elmnt) # format floats to string

for astorb-like

for each synthetic object, write to file:

dummy number, dummy name

synth elmnts as str

dummy text block for ef8 compatibility

g.write(str(i+1).rjust(6)+' '+familyString.ljust(6)+''.ljust
(13)+H.ljust(6)+G.ljust(5))

g.write(' '.join(elmnt for elmnt in asteroid))

g.write(' 2015 1 1.0'.ljust(11)+'2015 413 T. Riker'.ljust(24)+
dummy_text_like_astorb)

def generate_eph(familyString,ephemerislist):

familyfile = 'synth_'+familyString+'_astorb.dat'
create input file for ef8 ephemeris calculator.

with open('input', 'w') as test_input:

test_input.write('\n'.join(['o','s','n','n','r','n',familyfile
,'1000','0','',ephemerislist[0],ephemerislist[1],ephemerislist
[2],'']))

run ephemeris calculator for the selected family. (obligatory

relative path warning)

output file is ef.out

subprocess.call('../../../../tibro/data/bin/ef8 < input',shell=True)

59

def count_synthetic_objects(famiy_string):

"""Count total number of synthetic asteroids in file"

familyfile = 'synth_'+family_string+'_astorb.dat'
astorb type files have 9 lines per object, do some math to get nb

of asteroids in file

with open(familyfile,'r') as fam_file:

nb_ast = sum(1 for _ in fam_file)/9

return nb_ast

def noisy_eph(noise_list, family):

"""Test line in ef8 for ephemeris then add noise"""

with open('ef8.out','r') as ef8, open('noisy_'+family+'_'+noise_list
[3]+'_ef8.out','w') as noisyef8:

for line in ef8:

test_for_ephemeris = is_number(line.split(' ')[0]) and

is_number(line.split(' ')[1])
if not test_for_ephemeris:

continue

else:

if line is an ephemeris, pass to noise loop and write

noisy version to file

noisyef8.write(ENDICOTT_noise_loop(line,noise_list[0],

noise_list[1],noise_list[2]))

def asteroid_files(j,astorb_list, noise_list, cadence_list, eph_per_ast,

family):

"""Prepare files to feed to minidiff.

asteroid.neworb contains the original orbital elements,

minidiff uses this as an initial guess for the orbital fit

asteroid.ted contains the noisy ephemeris, based on observational

cadence"""

with open('asteroid.neworb','w') as ast_neworb, open('synth_'+family
+'_'+noise_list[3]+'_'+cadence_list[4]+'_orbit.dat','a') as

synthorbit, open('asteroid.ted','w') as ast_ted:

synthorbit.write(astorb_list[9*j][0]+'\n')
ast_neworb.write('\n'.join(elmt_line for x in astorb_list[9*j

:(9*(j+1))] for elmt_line in x))

with open('noisy_'+family+'_'+noise_list[3]+'_ef8.out','r') as

noisyef8:

60

for i,line in enumerate(noisyef8):

for nights in xrange(0,cadence_list[2]):

date = nights*cadence_list[3]*24

for observations in xrange(0,cadence_list[0]):

if i == j*eph_per_ast+observations*cadence_list[1]+

date:

filler = '001000N 500' # minidiff vals

for Mag(blank),name,500(geocentric code)

obs = line.strip().split()

convert hour/minute to fraction of days, to

get .DDD in output format as DD.DDDD

day_frac = str(round(((float(obs[4])+float(obs

[5])/60.)/24.),5)).lstrip('0')
ast_ted.write('{:4s} {:02d} {:02d}{:6s} {:2s}

{:2s} {:3s} {:3s} {:s} {:13s}'.format(obs
[1],int(obs[2]),int(obs[3]),day_frac,obs[7],

obs[8],obs[9][:-1],obs[10],obs[11],obs

[12][:-1])+filler+'\n')
else: pass

minidiff output is neworb.dat containing orbital elements of

calculated orbital fit. append to output file

def orbit_files(family_string,noise_list,cadence_list):

with open('neworb.dat','r') as neworb, open('neworb_fail.dat','r') as

newfail, open('noisy_'+family_string+'_'+noise_list[3]+'_'+
cadence_list[4]+'_orbit.dat','a') as noisyorbit, open('noisy_'+
family_string+'_'+noise_list[3]+'_'+cadence_list[4]+'_orbit_fail.
dat','a') as noisyfail:

noisyorbit.write(neworb.read().split('\n')[0]+'\n')
noisyfail.write(newfail.read())

61

"""plot_3D_cadence.py

Script to scrape *.end files and plot 3D data

Notes:

- This script requires python 2.7

- pip dependencies can be found in requirements.txt

- Last modified July 10, 2017

"""

import statements

import glob

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

function definitions

def get_x_y_z_fromfile(someFile,someElementIndex):

"""Grab the [cadence, element, dval] from the given file cadence

comes from filename string element chosen by user from list,

index value provided by user, dval is the

last element of every third line in the file""

x,y,z = [],[],[]

months = int(someFile.strip().split('_')[2].replace('d',''))/30.
with open(someFile) as f:

next(f) # skip header row

for i, line in enumerate(f):

if not (i+1)%3:

z.append(float(line.strip().split()[5]))

x.append(months)

if i%3 == 1:

y.append(float(line.strip().split()[someElementIndex]))

list_of_points = zip(x,y,z)

return list_of_points

def cut_data(someList,someAxesLimits):

"""checks if cadence and element are in provided range,

returns x,y,z data point as tuple"""

for i,cad in enumerate(someList[0]):

if cad in someAxesLimits[0:1] and someList[1][i] in

someAxesLimits[2:3]:

62

return someList[i][0],someList[i][1],someList[i][2]

orbital element dictionary

used for plot titles and user input

element_dict = {0: 'Argument of Perihelion (deg) ', 1:'Longitude of

Ascending Node (deg) ', 2: 'Inclination (rad) ', 3:'Eccentrictiy ',
4:'Semimajor Axis (AU) '}

abbrv orbelt dictionary

used for filename

element_abbr_dict = {0: 'periarg', 1:'ascnode', 2: 'inc', 3:'ecc', 4:'SA
'}

scrape current directory for all .end files

ask user to choose asteroid family from those available

list_of_filenames = glob.glob('*.end')
family = set(x.split('_')[0] for x in list_of_filenames)

User input section

print 'Available families: ',family
family = raw_input('Please enter family to plot: ')

list_of_filenames = glob.glob(family+'*.end')
noise = set(x.split('_')[1] for x in list_of_filenames)

print 'Please enter the noise level you would like to plot from this

list',set(noise)
noise = raw_input()

print 'Please enter the numeral corresponding to the orbital element to

plot',element_dict
element = int(raw_input())

list_of_filenames = sorted(glob.glob(family+'_'+noise+'*.end'))

dataList = []

for g in list_of_filenames:

dataList.append(get_x_y_z_fromfile(g,element))

points = sum(dataList,[])

print 'Cadence range is ',min(zip(*points)[0]),max(zip(*points)[0])
print 'Element range is ',min(zip(*points)[1]),max(zip(*points)[1])
print 'D-value range is ',min(zip(*points)[2]),max(zip(*points)[2])

63

print 'Choose cadence axis limit (default ',max(zip(*points)[0]),')'
User can specify an axis upper-limit for cadence values

reduce = float(raw_input() or max(zip(*points)[0]))

count = sum(1 for x in points if x[0] < reduce)

colors = ['r','b','g','c','m','y',]

fig = plt.figure()

plt.gca().set_color_cycle([i for i in colors])

ax = fig.add_subplot(1,1,1, projection = '3d')
ax.scatter(*zip(*points[:count]))

ax.set_xlabel('Cadence (Months)')
ax.set_ylabel(element_dict[element])

ax.set_zlabel('D-value')
ax.locator_params(axis='x', nticks=3)

ax.locator_params(axis='y', nticks=4)

ax.locator_params(axis='z', nticks=3)

ax.set_title('D-value vs '+element_dict[element]+'& Cadences \nat Fixed

Noise Level: '+noise.replace('p','.'))
fig.savefig(family+'_'+noise+'_'+element_abbr_dict[element]+'_3D_single.

png', dpi=fig.dpi)

plt.show()

64

"""Plot_fracdiff.py

Script to read in *.end files and plot

dval versus delta-orbelt

Notes:

- This script requires python 2.7

- pip dependencies can be found in requirements.txt

- Last modified July 10, 2017

"""

import statments

import glob

import numpy as np

import matplotlib.pyplot as plt

import pylab

import math

function definitions

def read_results_file(someFile, someElementIndex, someList):

"""Read in results file, create list of selected delta-orbelt"""

with open(someFile) as f:

next(f)

for i,line in enumerate(f):

if not (i+1)%3:

someList.append(abs(float(line.strip().split()[

someElementIndex])))

def read_results_file_D(someFile,someList):

"""Read in results file, create list of D-values"""

with open(someFile) as f:

next(f)

for i,line in enumerate(f):

if not (i+1)%3:

someList.append(abs(float(line.strip().split()[5])))

def plotting_function(someString):

"""Plots user-specified subgroup data"""

element_dict = {0: 'Argument of Perihelion (deg)', 1:'Longitude of

Ascending Node (deg)', 2: 'Inclination (rad)', 3:'Eccentricity',
4:'Semimajor Axis (AU)'}

65

declare list to hold x,y variables

dvals ,periarg ,ascnode ,inc ,ecc ,sa ,fitperiargX ,fitperiargY ,

fitascnodeX ,fitascnodeY ,fitincX, fitincY, fiteccX, fiteccY,

fitsaX, fitsaY,coeffperiarg,coeffascnode, coeffinc, coeffecc,

coeffsa =

[],[]

Rperiarg,Rascnode,Rinc,Recc,Rsa = 1000,1000,1000,1000,1000

orbeltList = [periarg,ascnode,inc,ecc,sa]

fitList = [[fitperiargX,fitperiargY,Rperiarg,coeffperiarg],[

fitascnodeX,fitascnodeY,Rascnode,coeffascnode],[fitincX,fitincY,

Rinc,coeffinc],[fiteccX,fiteccY,Recc,coeffecc],[fitsaX,fitsaY,Rsa

,coeffsa]]

build list of all .end files

results = glob.glob(someString+'*.end')
print results

build lists of x,y data

for x in results:

read_results_file_D(x,dvals)

for i,elt in enumerate(orbeltList):

read_results_file(x,i,elt)

for i,x in enumerate(orbeltList): print len(x),': [',min(x),',',max(x
),']', element_dict[i]

fig = plt.figure(figsize=(14, 6))

for i,orbelts in enumerate(orbeltList[3:5]):

eq = fitList[i][3]

axs = fig.add_subplot(1,3,2-i) #second value is no. of subplots

created

plt.locator_params(nbins=5,axis = 'x')
plt.locator_params(nbins=10,axis = 'y')
axs.plot(fitList[orbeltList.index(orbelts)][0],fitList[orbeltList

.index(orbelts)][1],alpha = 0.5, label = eq)

axs.scatter(orbelts,dvals,marker = 'o',color = 'g',alpha = 0.7)

axs.set_xlabel('Δ'+element_dict[orbeltList.index(orbelts)
])

if i == 1:

axs.set_ylabel('D-value')
else:

66

axs.set_ylabel('')
for item in (axs.get_xticklabels() + axs.get_yticklabels()):

item.set_fontsize(10)

#axs.set_title(element_dict[i])

fig.suptitle(someString+' Δ Orbital Parameter vs D-value')
fig.set_tight_layout(True)

plt.savefig(someString+'_fracdiff1.png',dpi=fig.dpi)
plt.show()

if __name__ == '__main__':
familyString = raw_input('Please enter family name: ').lower()
plotting_function(familyString)

67

REFERENCE LIST

[Ari] University of Arizona. “Catalina Sky Survey.” https://catalina.lpl.

arizona.edu/about/facilities.

[Elv14] Martin Elvis. “How many ore-bearing asteroids?.” Planetary and Space
Science, 91(1):20 – 26, 2014.

[ENS11] V. Emelyanenko, S. Naroenkov, and B. Shustov. “Distribution of the near-
earth objects.” Solar System Research, 45(6):498 – 503, 2011.

[ES] European Space Agency (ESA). “Gaia Space Observatory.” http://sci.

esa.int/gaia/.

[GNG12] Sarah Greenstreet, Henry Ngo, and Brett Gladman. “The orbital distribution
of Near-Earth Objects inside Earths orbit.” Icarus, 217(1):355 – 366, 2012.

[Ia11] Gautier IV and Micheli and. “PRELIMINARY RESULTS FROM NEO-
WISE: AN ENHANCEMENT TO THE WIDE-FIELD INFRARED SUR-
VEY EXPLORER FOR SOLAR SYSTEM SCIENCE.” The Astrophysical
Journal, 731(1):53, 2011.

[Jet] NASA Jet Propulsion Laboratory. “Discovery Statistics.” https://cneos.

jpl.nasa.gov/stats/totals.html. Accessed: 2017-7-31.

[JM14] Youngmin JeongAhn and Renu Malhotra. “On the non-uniform distribution
of the angular elements of near-Earth objects.” Icarus, 229(1):236 – 246,
2014.

[Nes06] David Nesvorny. “New Candidates for Recent Asteroid Breakups.” The
Astronomical Journal, 132(5):1950 – 1958, 2006.

[Obs] Lowell Observatory. “Lowell Observatory.” https://lowell.edu.

[PHW00] Petr Pravec, Carl Hergenrother, Rob Whiteley, Lenka Sarounova, Peter Kus-
nirak, and Marek Wolf. “Fast Rotating Asteroids 1999 TY2, 1999 SF10, and
1998 WB2.” Icarus, 147(2):477 – 486, 2000.

[Tan98] G. Tancredi. “Chaotic dynamics of planetencountering bodies.” Celestial
Mechanics and Dynamical Astronomy, 70(3):181 – 200, 1998.

68

	Effect of Observational Cadence on Orbit Determination for Synthetic Near-Earth Objects
	Recommended Citation

	tmp.1505999019.pdf.uMoUN

