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ABSTRACT    

HOPPING CONDUCTIVITY OF ELECTRON GLASS 

 
 
 

August 2017 
 
 

Mingzhu Cui, B.A., Hebei University, China 
M.S., University of Massachusetts Boston 

 
 

Directed by Associate Professor Stephen Arnason 
 
 

Hopping conductance between the sites in disordered systems is mapped to a 

random resistor network named Miller-Abrahams network. The conductance between 

two sites is in an exponential form depending on two parameters, the space separation 

and energy separation between sites. Our effort is focused on the visualization of the 

random resistor network. We find all the realizations for one electron hop and plot out 

the according random resistor networks. By comparing the random resistor network 

structures, we find that Coulomb interaction plays an important role in calculating the 

hopping conductance between sites. Furthermore, we rank the realizations by total 

energy and plot out its distribution. We find out that the total energy of all these 

realizations for one electron hop may follow a Gaussian distribution. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
  

The interest in the properties of disordered systems revolutionized research in 

solid state physics, which traditionally dealt with materials whose properties were mostly 

determined by crystalline symmetry. The conventional methods for treating such systems 

are based on equilibrium statistical mechanics because the ground state of a solid is 

assumed to have translational symmetry, which do not apply to disordered systems. 

Hence, a disordered system is always out of thermodynamic equilibrium. Nevertheless, 

most materials in nature are disordered; therefore, the understanding of disordered 

systems is relevant for a wide class of materials [1]. This thesis focuses specifically on 

the conductivity of disordered solids. 

At sufficiently low temperatures, transport effects in lightly doped 

semiconductors are not due to free carriers but occur as a result of hopping charge 

transport between localized impurity states. The term impurity conduction denotes this 

type of transport. When the impurity concentration is high, the impurity states overlap 

strongly and lose their localized character. It is often said that an impurity band is formed 

and that conduction takes place in this “band. ” At low concentrations banding does not 

occur and conduction takes place by hopping of electrons from occupied to unoccupied 

localized donor states [2]. In this thesis, the impurity transport is restricted to hopping 
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processes and impurity bands are not considered. 

The process of “hopping” was first studied by Conwell [3] and Mott [4]. They 

individually attributed the lower activation energy to transitions between impurity states 

[1]. The same mechanism was independently proposed by Pines, Abrahams, and 

Anderson in connection with the study of electron relaxation processes in Si [2]. 

The electron hop is the fundamental transport process in the Anderson insulator. 

Anderson insulator is an insulator that can undergo Anderson transition, which is a metal-

insulator transition as a function of concentration or disorder for disordered electronic 

system. The conductivity in such an insulator is often found to be non-Arrhenius [1]. N. 

F. Mott published a paper named “On the Transition to Metallic Conduction in 

Semiconductors” [4]. He conceived of the reason for this effect and called it variable 

range hopping. The basic mechanism is phonon-assisted tunneling between localized 

states. Such a process is governed by a competition between tunneling and activation. 

The greater the distance between the sites, the more difficult the tunneling – the larger the 

energy separation, the more difficult the activation. Thus the optimal hopping distance is 

temperature dependent, which explains the non-Arrhenius behavior. This non-Arrhenius 

dependence of the conductivity, which is characteristic of the hopping was observed in a 

variety of noncrystalline materials such as amorphous chalcogenides, amorphous silicon, 

amorphous germanium and other materials [1]. Fig.1.1 is a schematic description of 

variable range hopping process. Here 𝐸"is the energy of Fermi level, 𝐸# is the mobility 

edge of conductance band, and 𝜉 is the localization length. 

 



 
 

3 

 
Fig. 1.1 Schematic description of the localized states as a function of space and energy. 

Three hopping processes are possible. At high energies the dominant process is excitation  

above the mobility edge (A). At lower temperatures an electron hops to a n nearest 

neighbor available site (B). At yet lower temperatures the preferred hop is to a distant site 

which is closer in energy (C) [1]. 

 
 

Based on the explanation for hopping process, Miller and Abrahams [2] showed 

that the problem of hopping conduction can be mapped on a random network of resistors, 

each resistor connecting a pair of impurities with a resistance in accordance with the 

hopping rate between them [1], which is true according to Landauer formula [5]: the 

conductance of a nanoscale conductor is given by the sum of all the transmission 

possibilities (hopping rate) an electron has when propagating with an energy equals to the 
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chemical potential. Besides, Miller and Abrahams were the first to calculate the hopping 

conductivity of semiconductors using reduced networks. They assumed that the statistical 

distribution of the resistances depends only on the distances between sites and not the site 

energies. This was justified because the experimental data for some semiconductors 

indicated that impurity conduction exhibits a well-defined activation energy. But Mott [6] 

[7] pointed out that the exponential dependence of the resistances on the site energies 

cannot be ignored in most cases; if the activation energy of a nearest-neighbor site is 

large, a hop to a distant site whose energy is lower may be easier than one to a nearest-

neighbor site. This mechanism of hopping conduction is usually called variable range 

hopping. It contrasts with the original work of Miller and Abrahams, which was restricted 

to nearest-neighbor hopping and may be appropriate at high temperatures [8]. 

However, Mott’s optimization process of variable range hopping was not verified 

in detail. Ambegaokar et.al [9], Shklovskii and Efros [10], Pollak [11] reexamined the 

transport paths independently and started to form the percolation theory of hopping to 

deal with hopping conduction. The theories are based on the fact that there is an 

enormously broad distribution of resistances in the Miller and Abrahams network, which 

implies that the resistivity is determined by the largest resistances in an optimal current 

carrying path. Thus there exists an optimal percolation network that maximizes the 

conductivity; hence, much of the material does not participate in carrying the current [1]. 

If we always proceed through nearest-neighbors as in the Miller-Abrahams theory, we are 

certain to arrive at a site where our nearest-neighbor is a large distance away, so it may be 

more efficient to go through non-nearest-neighbors. That is why the Miller-Abrahams 

paths do not usually carry current [8].  
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Later people realize that Coulomb interaction energies are often at least as large 

as the energy band of the random potential due to disorder [1]. Efros and Shklovskii [12] 

showed that the Coulomb interaction between localized electrons is shown to create a 

‘soft’ gap in the density of states near the Fermi level--a depletion of the single-particle 

density of states(DOS). The effect of Coulomb interaction can modify the conductance 

from Mott’s variable range hopping dramatically. 

In the early 1980s, a number of groups realized that the combination of disorder 

and interactions may lead to glassy behavior that would show up as very slow relaxation 

to equilibrium and memory effects. Davies et al. [13] were the first to name this 

phenomenon the “electron glass” [1]. Glass behaviors were also observed in later 

experiments. Electron glass is an appropriate system to study glassy effects because it is 

easy to prepare, easy to excite in many ways, such as temperature, gate voltage, electric 

field and electromagnetic radiation, and easy to measure accurately. Also, due to the light 

mass of the electrons, the electron glass is a prototypical example for quantum glass in 

which the relaxation toward equilibrium involves quantum transitions such as tunneling 

[1]. 

Electron glass is a lightly doped semiconductor, and the electrons in materials are 

strongly localized. So the transport effects for electrons are mainly variable range 

hopping. Coulomb interaction between sites can play an important role in calculating 

conductance for a disordered system, so it should be taken into account as well. Besides, 

it will be helpful if we can visualize the structure for the conductance between sites. So 

we are going to adopt Miller-Abrahams network and map the conductance onto a 

network formed by random resistors. By doing electron hops on the random resistor 
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network, we can see how the conductance between sites changes. And by calculating the 

average conductance of different network generated by electron hops, we can check if 

there is a Coulomb gap formed. 
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CHAPTER 2 

 
 

THEORETICAL BACKGROUND 
 
 

2.1 Laudauer formula:  

Laudauer formula provides theoretical support for Miller and Abrahams when 

they are trying to map the hopping conduction on a random network of resistors which 

connects a pair of impurities with a resistance in accordance with the hopping rate 

between them. Laudauer’s assumption, that the system is connected to reservoirs by ideal 

quantum wires which behave as waveguides for the electron waves [14], is the prototype 

for calculating hopping conductance between a pair of sites. 

The ideal quantum wire is a pure narrow channel that separates 2 large electron 

gas reservoirs having the difference δn in electron density. If δn is small, one can assume 

that there is a difference in a chemical potential, 𝛿𝜇 = 𝛿𝑛/𝑔(𝜖𝐹). Suppose the Fermi 

level of non-biased system is the origin for the chemical potentials. Thus the chemical 

potential for the 𝛼-th reservoir will be µμ3. If the channel is long and uniform, then the 

total current carried by the state is characterized  by a transverse mode n and a given 

direction of spin which propagates without scattering. The transverse mode n current is   

𝐽56𝑒
89:
;<ℏ

	
  ?ℇA(9:)
?9:

=	
   ;
;<ℏ

𝑑𝜀 ?ℇA(9:)/?9:
?ℇA(9:)/?9:

	
  DEFGH
DEFGI

= ;
J
𝛿𝜇	
                    (2-1)             
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If electron spin is taken into account and N transverse modes are open, then the 

conductance is given by the expression 𝐺 = ;LM

J
 [14]. This means an ideal quantum wire 

has finite conductance, which is independent of the length of the wire. Fig.2.1 describes a 

system including a barrier connected to reservoirs by ideal quantum wires.  Only a part of 

the current is transmitted if there is some reflection.  

 

Fig.2.1 Schematic diagram of configuration for Landauer formula [14]. The shadows on 

both sides stand for two large electron gas reservoirs. The ideal lead in between stands for 

an ideal quantum wire. T stands for transmission and R stands for reflection. 

 
In this case one can introduce the transmission probability of the mode n, 𝑇5, to obtain 

(including spin degeneracy) 

𝐽 = ;
J
	
  𝛿𝜇 𝑇5	
  O

56P                                               (2-1)     

And the conductance between the two reservoirs is 

𝐺 = ;LM

J
𝑇5O

56P                                                 (2-3)         

The expression above is called two terminal Landauer formula.  
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From Landauer formula we can know that the conductance of a nanoscale 

conductor is given by the sum of all the transmission possibilities (hopping rate) an 

electron has when propagating with an energy equal to the chemical potential [15].  

 

2.2 The Miller-Abrahams network: 

Miller-Abrahams extend the idea of a quantum conductance channel to a network 

of resistors model and is a foundation for the thesis, providing us a very convenient way 

to calculate the conductance between two sites. 

Miller and Abrahams developed a model consisting of two parts, the quantum 

mechanical theory of the wave functions and of the transition rates 𝑊RS from a localized 

state i to a localized state j, and a statistical mechanical theory of transport that employs 

such transition rates. They also showed how their model can be reduced to a random 

resistor network and be used for computing the hopping conductivity of disordered solids 

[8]. 

The derivation of the Miller-Abrahams equation starts from Boltzmann equation 

?TU
?V
= [𝑊SR𝑃S 1 − 𝑃R −𝑊RS𝑃R 1 − 𝑃S ]S                                   (2-4)                                      

𝑃R is the probability that site i is occupied. As mentioned before, W]^ is the transition rates 

from a localized state i to a localized state j. 

𝑃R = 𝑃R_ + ∆𝑃R                                                       (2-5) 

𝑊RS = 𝑊RS
_ + ∆𝑊RS                                                   (2-6) 

Superscript 0 denotes the equilibrium value. ∆	
  is an increment proportional to an applied 

electric field. Here ∆𝑊RS = −∆𝑊SR. 
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Then the linearized version obtained is as following 

?∆TU
?V

+ 𝐴RSS ∆𝑃R − 𝐴SRS ∆𝑃S = 𝐵SR∆𝑊SRS                             (2-7) 

Where 

𝐴RS = 𝑊RS
_ 1 − 𝑃S_ +𝑊SR𝑃S_	
                                             (2-8) 

𝐵RS = 𝑃R_ 1 − 𝑃S_ + 𝑃S_ 1 − 𝑃R_                                       (2-9) 

(2-7) is a set of linear equations for the unknown ∆𝑃R . The equilibrium values 𝑃R_ are 

given by the Fermi distribution 

𝑃R_ =
P

def gU/9hi FP
	
                                                   (2-10) 

𝐸R is he energy of a carrier on site i measured from the Fermi level, 𝑘k is the Boltzmann 

constant, and T is temperature of the system. The equilibrium value 𝑊RS
_ are given by 

𝑊RS
_ = lUm

def	
  [(gmngU)/9hi]oP
	
  	
                                         (2-11) 

with 

𝑢RS = 𝑢SR =
P
qr
exp − ;vUm

w
                                       (2-12) 

In (2-12) P
qr

 is of the order of a phonon frequency, 𝑟RS is the distance between i and 

j, and a is Bohr radius. It is assumed that 𝜏_	
  depends only weakly on 𝑟RS and T.   

Suppose that F is the intensity of the applied electric field, and 𝑟R is the radius 

vector of site i, the applied field changes the energy differences ∆RS between the energies 

of sites i and j [8]. Then for a linearized theory we should have 

∆𝑊RS =
8{Um

8∆Um
𝑒𝑭 ∙ 𝒓R − 𝒓S = L𝑭∙ 𝒓Uo𝒓m

�R5J𝟐
∆Um
�h�

𝑢RS                          (2-13) 
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where e is the charge of an electron. Miller and Abrahams defined the electrical potential 

for site i as V], which means the potential at each site is unique and varies through the 

sample. Then  

𝑃R = 𝑃R_ + ∆𝑃R ≡
P

def
�Un��U
�h�

FP
                                   (2-14) 

so that to first order 

∆𝑃R =
8TU

r

8gU
𝑒𝑉R =

L�U
�9hi#��J𝟐

�U
M�h�

                                    (2-15) 

In the linear regime the variable 𝑉R is proportional to F. We can transform the set of linear 

equations for 𝑃R to another set for 𝑉R. The resulting set of linear equation is then given by 

𝐷R
?�U	
  
?V

= 𝐷SR𝑉S − 𝐷RS𝑉RS + 𝐺RS𝑭 ∙ 𝒓RSS 	
  S 	
                       (2-16) 

where 𝐷R = 𝑃R_(1 − 𝑃R_), 𝐷RS = 𝐷R𝐴RS, and 𝐺RS = 𝐵RS𝑊RS
_𝑊SR_/𝑢RS. 

We can now discuss the construction of a network model for calculating the 

hopping conductivity. First consider the steady state. A temperature dependent 

conductance 𝐺RS is defined by 

9hi�Um
LM

= 𝑃R_ 1 − 𝑃S_ 𝑊RS
_ = 𝑃S_ 1 − 𝑃R_ 𝑊SR_                      (2-17) 

 If one substitute (2-17) into (2-16), then 

𝑉R −
𝑭∙𝒓U {Um

rF{mU
r

lUm
− 𝑉S −

𝑭∙𝒓m {Um
rF{mU

r

lUmS 𝐺RS = 0	
                (2-18) 

where 𝑊RS
_ +𝑊SR_ /𝑢RS=coth	
  ( ∆RS /2𝑘k𝑇). We mainly consider the regime for which 

coth	
  ( ∆RS /2𝑘k𝑇)~1, in which case (2-18) becomes 

𝑉R − 𝑭 ∙ 𝒓R − 𝑉S − 𝑭 ∙ 𝒓S 𝐺RS = 0S                               (2-19) 
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Equation (2-19) represents a network of resistors. We think of 𝑉R − 𝑭 ∙ 𝒓R  as the 

potential at site i. Then, 𝑍RS = 1/𝐺RS is the resistance between sites i and j, and (2-19) is 

simply Kirchhoff’s equation for site j. Miller and Abrahams treated 𝑍RS more generally 

and considered it as an impedance [8].  

For the unsteady state, the time-dependent term of (2-16) does not vanish, and (2-

19) must be rewritten as  

TU
rLM(PoTU

r)
9hi

	
  ?�U
?V
= [ 𝑉R − 𝑭 ∙ 𝒓R − (𝑉S − 𝑭 ∙ 𝒓S)]𝐺RSS                      (2-20) 

To make a more general network for this case, we define a capacitance 𝐶 =

𝑃R_𝑒;(1 − 𝑃R_)/𝑘k𝑇 with a potential 𝑉R across it. We now refer all the potentials to the 

“ground” potential, which is zero. Because 𝑭 ∙ 𝒓R is the applied potential at i, it is 

represented as an output from a generator connected in series with C between the ground 

and site i. There is an impedance 𝑍RS connected between any two junctions i and j. There 

is also a capacitor	
  𝐶R in series with a generator connected to the ground [8]. Using the 

expression for 𝑃R_ and 𝑊RS
_, and restricting our attention to the case where various site 

energies are of the order or larger than 𝑘k𝑇, we obtain 

𝑍RS = 𝑘k𝑇
def	
  [( gU F gm F gUogm )/;9hi]

LMlUm
                               (2-21) 

𝐶R =
LM

9hi
exp − gU

9hi
	
  	
  	
  	
                                         (2-22) 

using (2-12) and (2-22), we can rewrite (2-21) as 

𝑍RS =
9hi
LM
exp gUm

9hi
+	
  ;vUm

w
𝜏_	
  	
  	
  	
  	
  	
  	
                             (2-23)                             

𝐸RS is either the energy difference between site i and j or 𝐸RS= ( 𝐸R + 𝐸S + 𝐸R − 𝐸S )/2. 

The conductance 𝐺RS is 
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𝐺RS =
P
�Um
= LM

9hi
exp − gUm

9hi
− ;vUm

w
P
qr

                               (2-24) 

 

In this thesis, there is no electric field applied to the system. However, there is a 

random site dependent energy drawn from a Gaussian distribution.  And there will be an 

energy difference between site i and site j, which is analogous to the energy difference 

changed between two sites by the applied electric field in Miller-Abraham networks. And 

there is also an interaction energy between sites to mimic the Coulomb correlations 

amongst electrons. Recall that the original work of Miller and Abrahams was restricted to 

nearest neighbor hopping. However, according to Mott’s work both hopping distance and 

energy difference should be taken into account. So we will see there is a trade-off 

between space separation and energy difference in our case. Also, the conductance in the 

network can vary by orders of magnitude because of the exponential dependence on both 

the spatial separation and energy difference, so I choose to use a logarithmic scale when 

trying to visualize the conductance between sites.  
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CHAPTER 3 
 

CONDUCTANCE FOR ELECTRON GLASS 

 

3.1 Introduction for electron glass 

In 1982, J. H. Davies, P. A. Lee, and T. M. Rice published a paper named 

“Electron Glass” [13], and they were the first to name a phenomenon “Electron Glass”. 

The phenomenon is that the combination of disorder and interactions may lead to a glassy 

behavior that would show up as very slow relaxation to equilibrium and memory effects 

[1]. Electron glass is a lightly doped semiconductor, in which the impurity states are 

strongly localized. Transport effects are not due to free carriers in conductance band but 

occur as a result of electron hopping between localized impurity states. The disorder in 

electron glass has two aspects: one is the disorder for the position of sites, which means 

that the sites in electron glass are randomly displaced; the other one is that the energy on 

each site is unique and site dependent, which follows a Gaussian distribution in our case. 

Usually electron glasses are noncrystalline materials, such as amorphous silicon, 

amorphous chalcogenides, amorphous germanium and some other materials like 

amorphous Indium Oxide which is the material that motivated this project. This thesis 

focuses on the conductivity of electron glasses, which is mainly caused by electron hops 

inside the materials. 
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3.2 Variable range hopping 

Mott [4] realized that if the electrons are localized at the Fermi level, the material 

becomes insulating at low temperatures; if they are extended, the system is metallic. 

Hence, a disordered electronic system can undergo a metal-insulator transition as a 

function of concentration or disorder. This transition is called the Anderson transition and 

the insulator is called and Anderson insulator. The conductivity in such an insulator is 

often found to be non-Arrhenius. Mott conceived of the reason for this effect and called it 

variable range hopping [1]. Fig. 1.1 shows that hopping processes depend both on energy 

separation and space separation. Then he gives out that the hopping probability at a given 

temperature depends on two parameters: R, the space separation of the sites, and ∆𝐸, their 

energy separation. The relationship between hopping probability and the two parameters 

is as following 

𝑃~exp	
  [−2𝛼𝑅 − ∆g
9i
]                                              (3-1) 

Here 𝛼oP is the attenuation length for a hydrogen-like localized wave function. 

Later people realized that Coulomb interaction can play a very important role in 

electron glass because Coulomb interaction energies are often at least as large as the 

energy band of the random potential due to disorder [1]. Efros and Shklovskii [12] 

showed that the Coulomb interaction between localized electrons creates a ‘soft’ gap in 

the density of states near the Fermi level. In fact, this ‘soft’ gap is a depletion of the 

single-particle density of states(DOS), which is the distribution of the energy 𝐸R required 

to add or remove an electron to the system in site i holding the rest of the electrons fixed. 

Fig.3.1 describes the configuration for MOSFET used in experiment and the distribution 
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of DOS under different temperatures. From Fig.3.1 (B) we can see there is a gap formed 

as the temperature goes down because of the Coulomb interaction between localized 

impurity states. Also because of Coulomb interaction, the energy in site i, 𝐸R, not only 

includes the random energy due to the disorder of system, also includes the Coulomb 

interaction energy with all other sites. Thus, if an electron is transferred from site i to site 

j, the energy of this one electron hop is  

∆𝐸S,R = 𝐸S − 𝐸R −
LM

�vU,m
                                               (3-2) 

 

 

Fig.3.1 (A) Schematic graph for the equipment used to do experiment about 

electron glass. The main part is a field effect transistor with a conduction channel made 

of amorphous indium oxide. 𝑉� is the gate voltage. (B) shows the 2D density of states for 

the weak disordered system in part (A). 𝑇# is a finite temperature at which one can find a 

replica symmetry breaking glass transition and 𝐸�w� is the mobility edge for conduction 

band [16] [17]. 
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Recall that electron glass has memory effects. A phenomenon called conductance 

memory, which is caused by Coulomb interaction, is going to be introduced. Fig.3.2 

illustrates the two dips experiment. A. Vaknin and his collaborators [18] cool down the 

MOSFET structure to liquid He temperature. By scanning the gate voltage, they find 

there is a dip in conductance  at around 5V. This dip is caused by the suppression of 

density of states and it is a Coulomb gap. At time t=0, they fix the gate voltage at a new 

voltage around -6V, which is equivalent to changing the chemical potential for the 

system. After 0.15h, they scan the gate voltage again. They find there is a memory of the 

old dip at 5V and a new correlation gap appears at the new gate voltage. The memory of 

the old dip slowly goes away and the magnitude of the new correlation gap slowly 

increases. In fact, the slow changes are the glassiness. Also from the top line on the 

graph, we can see if we change the system energy either a little bit larger or a little bit 

smaller by increasing or decreasing the gate voltage around 5V, the conductance of the 

system will go up in both cases. 
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Fig.3.2 An illustration of the TDE (two dips experiment).	
  G is the conductance 

for the MOSFET structure. 𝑉� is the gate voltage. 𝐴Pand 𝐴;are the magnitudes of the two 

dips. The right dip (A1) occurs at the cool-down value of 𝑉�P and decays in time. The left 

dip (A2) occurs at the value to which 𝑉�; is switched at time t=0 and grows with t. 

𝑅�=3.8M𝛺 and T=4.2 K [18]. 

 

3.3 Motivation for computer simulation 

Our aim is to visualize the conductance of the disordered system. Furthermore, we 

want to check if we can see the emergence of the Coulomb gap while we are able to 

visualize the percolating network. In the next chapter, we are going to generate a random 

network with all the bonds standing for the conductance between sites. By doing one 

electron hops, we are going to check if there are some changes for the bonds because of 
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Coulomb interaction. By comparing the average conductance for all one electron hop 

realizations, we can know if a Coulomb gap forms or not. 
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CHAPTER 4 

 
RESULTS  

 
In our simulations of the model, we use 100 sites with random positions and 

random site energies following a Gaussian distribution. The gray scale and linewidth of 

bonds stand for the magnitude of the conductance between sites. Black bonds, with color 

character [0,0,0] and linewidth 2.5, denote relatively large conductance. Grey bonds, with 

color character [0.5,0.5,0.5] and linewidth 2, stand for smaller conductance. The lighter 

grey bonds, with color character [0.8, 0.8, 0.8] and linewidth 1.5, denote yet smaller 

conductance. In all the graphs showing network structures, the solid blue dots are the 

sites occupied by electrons and the open blue circles are the unoccupied sites. Fig.4.1 is a 

random network we generate. 

To study the range of changes in energies associated with changes in the 

configuration, we considered single electron excitations, moving an electron from an 

occupied site to an unoccupied site. We can then see how the energy fluctuations are 

correlated with the structure of the resulting percolating networks. We find all 

realizations for one electron hop, then calculate the total energy for all those realizations. 

By ranking all the total energies we get, we find the realization with the lowest energy for 

one electron hop, which is shown in Fig.4.2. 
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Fig.4.1 A random network generated (Original Realization). 
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Fig.4.2 Network for the realization with lowest total energy after one electron hops from 

original configuration. The red open circle denotes the site that the electron leaves and 

red solid dot denotes the sites that the electron hops to. 

 

By comparing Fig.4.1 and Fig.4.2, we can see at least for this set of 

configurations the electrons tend to be more uniformly distributed at lower total energy, 

which is what one would expect. Besides comparing the original network and the 

network with lowest energy for one electron hops, we still need to see what happens to 

more general networks. Fig.4.3 shows the networks for two different realizations of one 

electron hop. By comparing Fig.4.3(A) and Fig.4.3(B) we can see there are some obvious 

changes to the conductance around the sites which the electrons leave and hop to. When 

an electron hops from site i to an unoccupied site j, the charge on site i changes from e to 

–e and the charge on site j changes from –e to e. Thus, the sign for Coulomb interaction 

energy between site i (j) and the other sites is inverted. As the coulomb interaction energy 
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is usually as large as the energies in this problem, this change for Coulomb interaction 

energy can significantly influence the conductance between sites. We can also see there 

are some changes for the conductance on the bottom left corner and bottom right corner, 

which are the conductance between sites that are relatively far from the according site i 

and site j.  

 

 

Fig.4.3 Two different realizations for one electron hop. 

 

Since we have already calculated the energy for all realizations of one electron 

hop, we can order them from low to high to see the distribution of  the energy changes for 

one electron hops. It is shown in Fig.4.4 (A).  Fig.4.4 (B) is the distribution of total 

energy shown in Fig.4.4 (A). We can see the distribution is close to a Gaussian 

distribution but there is a noticeable fat tail showing up at high energies. 
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Fig.4.4 Statistical calculation for the energy of all realizations for one electron hop. 

 

To check whether the fat tail is an artifact of a small sample size, we calculate the 

distribution of total energy for random networks with site number N=50, 100,150 ,200. 

Half of the sites are occupied by electrons in all of the networks. The result is shown in 

Fig.4.5. From Fig.4.5 we can see the distribution of total energy for one electron hops is 

getting more and more close to a Gaussian distribution and the fat tail disappears as the 

number of sites in the networks increases. 
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Fig.4.5 Distribution of energy for one electron hops. (A) N=50 (B) N=100 (C) N=150 (D) 

N=200. 

 

To check whether there is a Coulomb gap emerging when we excite the random 

network showing in Fig.4.2, we calculate the average conductance for all the realizations 

of one electron hop. The result is shown in Fig.4.6. We can see that in some excited 

networks the average conductance becomes smaller than the network with lowest energy, 

which is the data with the realization number equals one in Fig.4.6. The result does not 

match the tendency of conductance showing in Fig.3.2. This means that the network with 
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lowest energy from one electron hops is not the network with the global minimum 

energy. 

 

Fig 4.6 Average conductance for all realizations of one electron hop based on the 

network showing in Fig.4.1. 
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CHAPTER 5 

 
CONCLUSIONS 

 

By visualizing the conductance network of the disordered system, we can see how 

the individual conductances change between sites when we consider single electron 

changes of the network. Through statistical calculation of total energy and average 

conductance for all realizations of one electron hop, we can know the distribution for 

total energy and whether the system can form a Coulomb gap via one electron hops. The 

conclusions we can obtain are listed as following: 

•   Nearly all the sites are coupled together by the bonds. If we do one electron hops, 

the conductance between two remote sites may change because of coupling effect. 

The network shows strong correlations between occupational configurations and 

conductance. 

•   By finding the network with the least total energy among all possible cases for 

one electron hops, we can see the electrons are more uniformly distributed than 

the original network. 

•   The distribution of total energy for all one electron hops may follow Gaussian 

distribution, within the uncertainty that is inherent in our small network size. 

•   Considering the excitations of the one electron hops relative to lowest energy 

configuration we observed, sometimes the average conductance of the new 
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system does not increase, which may show that the one electron hop lowest 

energy system found is not the global lowest energy system. 

There is still a long way to go for this research. To test whether there is a 

Coulomb gap formed during an excitation process, we need to find the global lowest 

energy network. And to have better knowledge about the disordered system, we may 

need to do more statistical calculations such as calculating the inverse participation ratio 

for the system. 
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APPENDIX  

MATLAB  

For generating the random network and find all realizations for one electron hop 

Main program: 

M=100;               % number of dots 
kb=1;                % Boltzman constant 
T=1;                 % temperature 
xi=1;                 % localization length 
e=1;                 % charge for electron 
kappa=1;             % dielectric permittivity of the lattice 
  
A=zeros((M*M/4+1),8);% save results 
R=zeros(M,M);        % matrix of distance 
R1=zeros(M,M);       % matrix of distance after changing position 
E=zeros(1,M);        % matrix of energy without coulomb interaction 
deltE=zeros(M,M);   % matrix of energy difference 
x=rand(1,M)*10;      % define original position for dots 
y=rand(1,M)*10; 
E=5+sqrt(1.25)*randn(1,M); % for each sites energy distribution is fixed 
% load x 
% load y 
% load E 
energy=zeros(1,M);         % energy for sites including Coulomb interaction 
  
num=1;                     % generate results saving matrix 
for i=1:(M/2) 
    for j=(M/2+1):M 
        num=num+1; 
        A(num,1)=i; 
        A(num,2)=j; 
    end 
end  
  
for i=1:M                  % calculate r(i,j) 
    for j=1:M 
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        if i==j 
            R(i,j)=0; 
        else 
            R(i,j)=sqrt((x(i)-x(j))^2+(y(i)-y(j))^2); 
        end 
    end 
end 
%************Calculate total energy ****** 
charge_sign=zeros(1,M); 
for i=1:(M/2)               % electrons 
    charge_sign(i)=(-1); 
end 
for i=(M/2+1):M             % holes 
    charge_sign(i)=1; 
end 
energy=E; 
for i=1:M 
    for j=1:M 
        if (i~=j) 
            energy(i)=energy(i)+charge_sign(i)*charge_sign(j)*(e^2)/kappa/R(i,j); 
        end 
    end 
end 
energy_total_before=0;     % Calculate total energy 
for i=1:M 
    energy_total_before=energy_total_before+energy(i); 
end 
A(1,3)=energy_total_before; 
  
for j=1:M                   % Conductance 
    for k=1:M 
       deltE(j,k)=abs(energy(j)-energy(k)); 
    end 
end 
    gamma_total=0; 
    gamma_average=0; 
    numb=0; 
%     numb1=0; 
    for j=1:M 
        for k=1:M 
            if j==k 
                gamma(j,k)=0; 
            else  
                gamma(j,k)=exp(-(deltE(j,k)/kb/T)-(2*R(j,k)/xi)); 
            end 
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%             if gamma(j,k)>(10^(-3)) 
            gamma_total=gamma_total+gamma(j,k); 
            numb=numb+1; 
%             end 
        end 
    end 
    gamma_average=gamma_total/(numb); 
    A(1,4)=gamma_average;    
% A(1,4)=numb; 
%******************** draw the graph for resistance ************ 
figure 
% subplot(2,2,1) 
Con_line(M,x,y,energy,R) 
for i=1:(M/2) 
    plot(x(i),y(i),'b.','MarkerSize',25) 
    hold on 
end 
for i=(M/2+1):M 
    plot(x(i),y(i),'bo','MarkerSize',5) 
    hold on 
end 
title(['\fontsize{18}original network']) 
xlabel('x position','FontSize',16) 
ylabel('y position','FontSize',16) 
%******************** change an electron with a hole *********** 
for i=2:(M*M/4+1) 
    x1=x; 
    y1=y; 
    n=A(i,1); 
    N=A(i,2); 
    tempx=x1(n); % just change the storage of positions 
    tempy=y1(n); 
    x1(n)=x1(N); 
    y1(n)=y1(N); 
    x1(N)=tempx; 
    y1(N)=tempy; 
     
    R1=zeros(M,M); % calculate rij  
    for j=1:M 
        for k=1:M 
            if j==k 
                R1(j,k)=0; 
            else 
                R1(j,k)=sqrt((x1(j)-x1(k))^2+(y1(j)-y1(k))^2); 
            end 
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        end 
    end 
  
    charge_sign=zeros(1,M);     %Calculate total energy for each dot 
    for j=1:(M/2)               % electrons 
        charge_sign(j)=(-1); 
    end 
    for j=(M/2+1):M             % holes 
        charge_sign(j)=1; 
    end 
    energy=E; 
    for j=1:M 
        for k=1:M 
            if (j~=k) 
                energy(j)=energy(j)+charge_sign(j)*charge_sign(k)*(e^2)/kappa/R1(j,k); 
            end 
        end 
    end 
  
    changed_total_energy=0;     % Calculate total energy 
    for j=1:M 
        changed_total_energy=changed_total_energy+energy(j); 
    end 
    A(i,3)=changed_total_energy; 
     
    for j=1:M                   % Conductance 
        for k=1:M 
            deltE(j,k)=abs(energy(j)-energy(k)); 
        end 
    end 
    gamma_total=0; 
    gamma_average=0; 
    numb=0; 
%     numb1=0; 
    for j=1:M 
        for k=1:M 
            if j==k 
                gamma(j,k)=0; 
            else  
                gamma(j,k)=exp(-(deltE(j,k)/kb/T)-(2*R1(j,k)/xi)); 
            end 
%             if gamma(j,k)>(10^(-3)) 
            gamma_total=gamma_total+gamma(j,k); 
            numb=numb+1; 
%             end 
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        end 
    end 
    gamma_average=gamma_total/(numb); 
    A(i,4)=gamma_average;    
%   A(i,4)=numb; 
end 
%******************* reorder A *************************** 
for i=1:(M*M/4+1) 
    A(i,5)=A(i,1); 
    A(i,6)=A(i,2); 
    A(i,7)=A(i,3); 
    A(i,8)=A(i,4); 
end 
for i=1:(M*M/4) 
    for j=(i+1):(M*M/4+1) 
        AA1=0; 
        AA2=0; 
        AA3=0; 
        AA4=0; 
        if A(i,7)>A(j,7) 
            AA1=A(j,5); 
            A(j,5)=A(i,5); 
            A(i,5)=AA1; 
             
            AA2=A(j,6); 
            A(j,6)=A(i,6); 
            A(i,6)=AA2; 
             
            AA3=A(j,7); 
            A(j,7)=A(i,7); 
            A(i,7)=AA3; 
             
            AA4=A(j,8); 
            A(j,8)=A(i,8); 
            A(i,8)=AA4; 
        end          
    end 
end 
%*******************************draw the graph after changing ************* 
if (A(1,3)~=A(1,7)) 
    x1=x; 
    y1=y; 
    n=A(1,5); 
    N=A(1,6); 
    tempx=x1(n); % just change the storage of positions 
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    tempy=y1(n); 
    x1(n)=x1(N); 
    y1(n)=y1(N); 
    x1(N)=tempx; 
    y1(N)=tempy; 
     
    R1=zeros(M,M); % calculate rij  
    for j=1:M 
        for k=1:M 
            if j==k 
                R1(j,k)=0; 
            else 
                R1(j,k)=sqrt((x1(j)-x1(k))^2+(y1(j)-y1(k))^2); 
            end 
        end 
    end 
     
    charge_sign=zeros(1,M); 
    for j=1:(M/2)               % electrons 
        charge_sign(j)=(-1); 
    end 
    for j=(M/2+1):M             % holes 
        charge_sign(j)=1; 
    end 
    energy=E; 
    for j=1:M 
        for k=1:M 
            if (j~=k) 
                energy(j)=energy(j)+charge_sign(j)*charge_sign(k)*(e^2)/kappa/R1(j,k); 
            end 
        end 
    end 
%     subplot(2,2,2) 
   figure 
    Con_line(M,x1,y1,energy,R1) 
    for i=1:(M/2) 
        if (i==n) 
            plot(x(i),y(i),'ro','MarkerSize',5) 
            hold on 
        else 
            plot(x(i),y(i),'b.','MarkerSize',25) 
            hold on 
        end 
    end 
    for i=(M/2+1):M 
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        if (i==N) 
            plot(x(i),y(i),'r.','MarkerSize',25) 
            hold on 
        else 
            plot(x(i),y(i),'bo','MarkerSize',5) 
            hold on 
        end 
    end 
   %title(' network with least total energy among all one electron hops', 'Size',16) 
   title(['\fontsize{18}network for a realization of one electron hop']) 
   xlabel('x position','FontSize',16) 
   ylabel('y position','FontSize',16) 
end 
  
figure 
% subplot(2,2,3) 
for i=1:(M*M/4+1) 
    plot(i,A(i,7),'bo') 
    hold on 
end 
title(['\fontsize{18}energy ']) 
xlabel('realization number','FontSize',16) 
ylabel('energy','FontSize',16) 
figure 
% subplot(2,2,4) 
for i=1:(M*M/4+1) 
    plot(i,A(i,8),'b.','MarkerSize',10) 
    hold on 
end 
title(['\fontsize{18}average conductance of all bonds ']) 
xlabel('realization number ranked by energy from low to high','FontSize',16) 
ylabel('average conductance','FontSize',16) 
figure 
for i=1:50 
    plot(i,A(i,8),'b.','MarkerSize',10) 
    hold on 
end 
ylim([1.6*10^(-3) 2.4*10^(-3)]) 
title(['\fontsize{18}average conductance of all bonds ']) 
xlabel('realization number ranked by energy from low to high','FontSize',16) 
ylabel('average conductance','FontSize',16) 
 
 
The function for drawing the bonds which denote conductance between sites 
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function Con_line(M,x,y,E,R) 
kb=1; 
T=1; 
xi=1; 
gamma=zeros(M,M);   % conductance 
sign=zeros(M,M);     
% *******************************calculate deltE 
for i=1:M 
    for j=1:M 
        deltE(i,j)=abs(E(i)-E(j)); 
    end 
end 
%*************************************conductance 
for i=1:M 
    for j=1:M 
        if i==j 
            gamma(i,j)=0; 
        else  
            gamma(i,j)=exp(-(deltE(i,j)/kb/T)-(2*R(i,j)/xi)); 
        end 
    end 
end 
%*********************************************gamma 
for i=1:M 
    for j=1:M 
        if gamma(i,j)==0 
            sign(i,j)=0; 
        elseif gamma(i,j)>(10^(-1)) 
            sign(i,j)=1; 
        elseif ((10^(-1))>=gamma(i,j))&&(gamma(i,j)>(10^(-2))) 
            sign(i,j)=2; 
        elseif ((10^(-2))>=gamma(i,j))&&(gamma(i,j)>(10^(-3))) 
            sign(i,j)=3; 
        elseif ((10^(-3))>=gamma(i,j))&&(gamma(i,j)>(10^(-4))) 
            sign(i,j)=4; 
        elseif ((10^(-4))>=gamma(i,j))&&(gamma(i,j)>(10^(-5))) 
            sign(i,j)=5; 
        elseif ((10^(-5))>=gamma(i,j))&&(gamma(i,j)>(10^(-6))) 
            sign(i,j)=6; 
        elseif ((10^(-6))>=gamma(i,j))&&(gamma(i,j)>(10^(-7))) 
            sign(i,j)=7; 
        elseif ((10^(-7))>=gamma(i,j))&&(gamma(i,j)>(10^(-8))) 
            sign(i,j)=8; 
        elseif ((10^(-8))>=gamma(i,j)) 
            sign(i,j)=9; 
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        end                   
    end 
end 
for i=1:M 
    for j=i:M 
        if sign(i,j)==1 
            line([x(i),x(j)],[y(i),y(j)],'linewidth',2.5,'color',[0,0,0]); % dark black 
            hold on 
        elseif sign(i,j)==2 
            line([x(i),x(j)],[y(i),y(j)],'linewidth',2,'color',[0.5,0.5,0.5]);% lighter black 
            hold on 
        elseif sign(i,j)==3 
            line([x(i),x(j)],[y(i),y(j)],'linewidth',1.5,'color',[0.8,0.8,0.8]); % light black 
            hold on 
%         elseif sign(i,j)==4 
%             line([x(i),x(j)],[y(i),y(j)],'linewidth',4.5,'color','k');%black 
%             hold on 
%         elseif sign(i,j)==5 
%             line([x(i),x(j)],[y(i),y(j)],'linewidth',4,'color','r');%red 
%             hold on 
%         elseif sign(i,j)==6 
%             line([x(i),x(j)],[y(i),y(j)],'linewidth',3.5,'color','y');% yellow 
%             hold on 
%         elseif sign(i,j)==7 
%             line([x(i),x(j)],[y(i),y(j)],'linewidth',3,'color',[0.5 0.5 0.5]); 
%             hold on 
%         elseif sign(i,j)==8 
%             line([x(i),x(j)],[y(i),y(j)],'linewidth',2.5,'color',[0.1 0.1 0.1]); 
%             hold on 
%         elseif sign(i,j)==9 
%             line([x(i),x(j)],[y(i),y(j)],'linewidth',2,'color',[0.7 0.7 0.7]); 
%             hold on 
        end 
    end 
end 
end 
 
 
Code for finding the distribution of total energy of all realization for one electron hops 
 
load A_1.mat 
num=zeros(42,1); 
for i=1:2501 
    for j=1:42 
        if ((370+5+j*5)>A(i,7))&(A(i,7)>(370+j*5)) 
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            num(j)=num(j)+1; 
        end 
    end 
end 
for k=1:42 
    plot((370+k*5),num(k)/2501*100,'b.','MarkerSize',25) 
    hold on 
end 
% title(['\fontsize{18}distribution of total energy']) 
xlabel('total energy','FontSize',16) 
ylabel('probability (%)','FontSize',16) 
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