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ABSTRACT

APPLICATION OF GRAPHICAL MODELS IN PROTEIN-PROTEIN

INTERACTIONS AND DYNAMICS

December 2018

Amir Vajdi Hoojghan,
B.S., Amirkabir University of Technology, Tehran, Iran

Ph.D., University of Massachusetts Boston

Directed by Associate Professor Nurit Haspel

Every organism contains a few hundred to thousands of proteins. A protein is made

of a sequence of molecular building blocks named amino acids. Amino acids will be

referred to as residues. Every protein performs one or more functions in the cell. In

order for a protein to do its job, it requires to bind properly to other partner proteins.

Many genetic diseases such as cancer are caused by mutations (changes) of specific

residues which cause disturbances in the functions of those proteins.

The problem of prediction of protein binding site is a crucial topic in computational

biology. A protein is usually made up of 50 to a few thousand residues. A contact

site can occur within a protein or with other proteins. By having a robust and accu-

rate model for identifying residues that are involved in the binding site, the scientists

can investigate the impact of critical mutations and residues that can cause genetic

diseases.

The main focus of this thesis is to propose a machine learning model for predicting the

binding site between two proteins. By extracting structural information from a pro-

tein, we can have additional knowledge of binding sites. This structural information
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can be converted into a penalty matrix for a graphical model to be learned from the

protein sequence. The second part of this thesis is mostly focused on motion planning

algorithms for proteins and simulation of the protein pathway changes using a Monte

Carlo based method. Later, by applying a novel geometry based scoring function, we

cluster the intermediate conformations into corresponding subsets that may indicate

interesting intermediate states.
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Chapter 1

INTRODUCTION

Machine learning has become a fundamental approach for big data analysis in the

recent years. Applications of machine learning can be found everywhere, including

biomedical research, text to speech, image processing, and so on. Recently there has

been a big development in our understanding of data analysis due to the increasing

availability of medical and biological data on one hand, and the development of

machine learning methods on the other hand. The focus of this chapter is to give

a brief background on protein structure. After that, we provide a review of some

machine learning methods related to chapter two and three.

Finally, we present the research problems that we worked on in this dissertation

along with a brief background. Lastly, we provide some of the important terminologies

used in the dissertation to make the next chapters of the dissertation easier to follow.

1.1 Central Dogma of Molecular Biology

Genetic information of every species is stored and carried in a double helix molecule

which is called Deoxyribonucleic Acid (DNA). The DNA is located inside the nucleus

of a cell and is made of four different molecular building block, nucleic acids, named

cytosine (C), guanine (G), adenine (A) or thymine (T). The whole DNA of a species

is also called genome. On average, a human genome has around 3 billion base pairs.

A DNA under a transcription and translation processes tuned into its final product

which is a protein. Based on the central dogma of molecular biology, the information

1



Figure 1.1: An overview of the central dogma of molecular biology. Figure from [18]

of a particular gene in the DNA is being transcribed (copied) to RNA, specifically

messenger RNA, and the information in the messenger RNA is translated into pro-

ducing a protein. In the next two subsections, these two processes are being explained

in detail.

One can think of the DNA as a book written in a four-letter alphabet correspond-

ing to each of the four different bases (A, T, C, G). So, any arbitrary combination

of the alphabet with any length will give us a new word, but not all words are valid.

Only some combinations of words are valid. Finally, a collection of some meaningful

words gives sentences.

1.1.1 DNA and Transcription

Every DNA is made up of multiple segments called introns or exons. An exon is also

called coding region which, under some regulation and processes, is being transcribed

into RNA (messenger RNA). An intron corresponds to the non-coding region and the

function of these fragments are to help control the expression of the coding regions.

During transcription, a DNA sequence is read by an RNA polymerase, which produces

a complementary, antiparallel RNA strand called a primary transcript. RNA is very

2



Figure 1.2: RNA decoded into amino acid. Figure from [20]

similar to the DNA and the only difference is about the transcription of Thymine (T)

to Uracil (U).

1.1.2 RNA and Translation

During translation, the messenger RNA (mRNA) representing a gene is decoded into

amino acids. Every three consecutive mRNAs, which are also called codons, are

being decoded to one amino acid. There are start and end codons which correspond

to the starting site of translation and end site of translation, respectively. There are

20 different amino acids. Table 1 represents the RNA codon table. As it has been

shown, some amino acids can be made from more than one codon such as Proline.

Translation is divided into 3 main steps. The first step is called initiation. In this step,

the ribosome assembles around the target mRNA and the first tRNA is attached at

the start codon and decoding is started. In the elongation step, the tRNA transfers

an amino acid to the tRNA corresponding to the next codon. The ribosome then

moves to the next mRNA codon to continue the process, creating an amino acid

chain. Finally, in termination, when a stop codon is reached, the ribosome releases

the polypeptide. Every chain of amino acids is decoded into one specific protein.

Figure 2 shows these steps in more detail.
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1.2 Proteins

This section is focused on the proteins characteristics. It explains the structure of a

protein in detail and after that, it elucidates the motion of a protein and its impact

on its function. Finally, we discuss how a protein does its job by binding to other

proteins.

1.2.1 Amino Acids and Structure of a Protein

In the previous section, the procedure of getting amino acids from DNA was discussed.

Each protein contains a sequence of 20 different amino acids. What makes different

proteins depends on the combination of these amino acids. Here we explain the

difference between each amino acid. Each amino acid is a molecule carrying amine

(-NH2) and carboxyl (-COOH) functional groups, along with a side chain (R group)

specific to each amino acid. Figure 3 shows the structure of an amino acid. All the

amino acids have both amine and carboxyl groups and the only thing that is different

between all amino acids are their side chain. There are multiple perspectives to

classify these amino acids such as functional groups, biochemistry, Polarity, and so

on. In section two and three we explain the corresponding representation of a protein

in more detail.

The structure and function of a protein depends on its amino acid sequence. There

are four main resolutions to represent a protein structure. Figure 4 depicts these four

representations. The primary structure of a protein is its amino acid sequence. From

the sequence we can extract information about the type of amino acids, and the order

of residues, and the propensity of amino acid to bind to other types. The Protein

secondary structure is the three-dimensional form of local segments of a protein.

Secondary structures include α−Helix, β−Sheets, beta turns, and omega loops. The

Tertiary structure is the three-dimensional structure of a protein. Every protein is

4



Table 1.1: RNA Codon Table and Corresponding Amino Acids
1st

base

2nd base 3rd
baseU C A G

U

UUU
(Phe/F) Phenylalanine

UCU

(Ser/S) Serine

UAU
(Tyr/Y) Tyrosine

UGU
(Cys/C) Cysteine

U
UUC UCC UAC UGC C
UUA

(Leu/L) Leucine

UCA UAA Stop (Ochre) UGA Stop (Opal) A
UUG UCG UAG Stop (Amber) (Ochre (Trp/W) Tryptophan G

C

CUU CCU

(Pro/P) Proline

CAU
(His/H) Histidine

CGU

(Arg/R) Arginine

U
CUC CCC CAC CGC C
CUA CCA CAA

(Gln/Q) Glutamine
CGA A

CUG CCG CAG CGG G

A

AUU
(Ile/I) Isoleucine

ACU

(Thr/T) Threonine

AAU
(Asn/N) Asparagine

AGU
(Ser/S) Serine

U
AUC ACC AAC AGC C
AUA ACA AAA

(Lys/K) Lysine
AGA

(Arg/R) Arginine
A

AUG (Met/M) Methionine ACG AAG AGG G

G

GUU

(Val/V) Valine

GCU

(Ala/A) Alanine

GAU
(Asp/D) Aspartic acid

GGU

(Gly/G) Glycine

U
GUC GCC GAC GGC C
GUA GCA GAA

(Glu/E) Glutamic acid
GGA A

GUG GCG GAG GGG G

Figure 1.3: Structure of an amino acid. Figure from [19]
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usually folded into a characteristic three-dimensional (3D) structure. Finally, there is

the quaternary structure which is a complex, or an association, of two or more chains

of a protein to form one functional unit.

Each of these representations can be used for different problems in bioinformatics.

In this thesis, we use all the four representations to extract information for our model.

1.2.2 Proteins Function

In order to perform its function, a protein has to fold into its functional tertiary

structure, called the native structure. A conformation of a protein is a possible 3D

shape a protein can assume. Some proteins have two or more stable conformations

(native structures) which have different functions, usually aided by binding to other

molecules. The focus of the third chapter is to simulate the pathway that a protein

traverses between these two conformations. Once a protein has folded into its correct

form, it can perform its function by binding to other proteins, usually on a specific

region on its structure. A protein performs its function if and only if it binds to its

partner correctly.

1.3 Machine Learning

In recent years, the emergence of machine learning methods has greatly impacted

research in data science. A sophisticated machine learning algorithm is built from a

statistical model which can be applied to data to learn important features that con-

tribute to its behavior. A good machine learning method can automate the process of

gathering data, preprocessing, extracting features , evaluating, and making decisions.

In this thesis, we discuss some computational methods that can help us to under-

stand and predict the motion of a protein between open and closed conformations and

6



Figure 1.4: 4 main representations of a protein. Figure from [21]
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clustering the resulting trajectories into intermediate conformations. Also, we develop

probabilistic models to predict binding interfaces between two interacting proteins.

Before we discuss these models, in the next subsections, we review the mathematical

foundations.

1.3.1 Clustering High Dimensional Data

Clustering is the process of grouping a data set into subgroups such that the elements

in the same subgroup are similar to each other with respect to some scoring function

or metric. Clustering is an unsupervised method in machine learning. It means that

we do not have any class labels. The most popular methods for clustering are hierar-

chical clustering, K-means, and Gaussian Mixture Models. Clustering can also have

heuristic scoring functions or algorithms.

There are some challenges in clustering such as the nature of the task which is un-

supervised, which makes building and evaluating a model particularly hard. Also,

as in every machine learning method, feature selection plays a crucial role in the

performance of a model. This problem becomes harder when the number of features

increases. In the case of high dimensional space, there are some dimensionality re-

duction techniques that can help us to reduce the feature space greatly.

For example, consider clustering of proteins based on folding pattern of a protein.

In order to perform this task, we need to represent each protein with a feature vec-

tor. This vector contains information about a protein’s sequence of amino acids (an

average protein has several hundreds of amino acids). However, this is not always suf-

ficient to learn a protein function, and we need to add more features such as secondary

structure elements, species and so on. As we add features the model will improve,

but the computational cost will also increase. A good estimation of dimensionality

reduction can be applied in this example by replacing each amino acid with 4-mers

8



(4 consecutive amino acids) which can reduce the feature dimension to 4 and still

classify proteins. This one an example of dimensional reduction in complex space.

Principle component analysis (PCA) is another example of dimensionality reduction.

1.3.2 Stochastic Simulation and Monte Carlo

Monte Carlo is a class of methods that relies on repeated random sampling to obtain

numerical results. This randomness may help to solve the problem which may be

deterministic in reality but it is hard to model. One category of Monte Carlo methods

is called Monte Carlo tree search. The focus of Monte Carlo tree search is on the

analysis of the best move, expanding the search tree based on random sampling of the

search space. The idea is to start from root node and expand it randomly or based

on probability distribution. This method consists of 4 main steps which represented

in the the figure 1.5 also in the following:

• Selection: Start from root R select successive child nodes until a leaf node L is

reached. L must be node that no simulation has yet been initiated from it.

• Expansion: If L is not terminal node, create one (or more) child nodes and

choose node C from one of them. This needs to be valid move from L to C.

• Simulation: Expand node C until reach to terminal node T .

• Backpropagation: Use path R to T and update the information for next move.

These steps are base of our method for simulating conformational changes in a

protein.

9



Figure 1.5: 4 main steps of Monte Carlo tree search method.

1.3.3 Undirected Graphical Modeling

Markov Random Field

One of the most powerful methods in machine learning is probabilistic graphical mod-

els (PGM) which models the relationship between variables as a directed or undirected

graph and represents the potential of dependency between two or more variables over

a multi-dimensional space. The graph is either compact or factorized representation

of a set of independencies that hold in the specific distribution. PGMs can be di-

vided into two main categories: if the graph is directed the model such as Bayesian

graphical model. An exmple of undirected graphical model is Markov Random Field

(MRF). In MRF, the probability distribution of a given variable X with length of L

can be presented as:

P (X) =
1

Z
exp

(∑L
i=1

[
Vi(xi) +

∑L
j>iWi,j(xi, xj)

])
(1.1)

The above equation tries to model the relationship between every i, j ∈ [1, L] as a

graph. Here, Vi and Wi,j are the potential functions, also called field and coupling,

respectively in statistical physics, which is modeled as a probability function here. Z

is called the partition function, to turn the score into probabilities.

10



Gaussian Graphical Model

Gaussian Graphical Models (GGM) are a subclass of MRF which restricts the random

variables to have a normal distribution while GGM explicitly capture the statistical

relationship between the variables of interest in the form of a graph [79]. This model

can be applied in a lot of domains such as natural language processing, finance,

and bioinformatics. Identifying the dependency of the variables is very important

in more complex spaces, especially in network-based inference. A good example of

application of GGM is Kramer’s work which applied Gaussian Graphical Models to

gene expression data to construct a network of gene-gene interactions[50].

In this subsection, we discuss some of the fundamental concepts that will be used in

the next chapters. The full tutorial and details of the proofs can be found in Uhler’s

article about GGM [79]. The goal of graphical models is to capture the pairwise

relationship between two nodes of a graph as a probability model. Equation 1.2

represents the density function of a GGM. It models a random variable X ∈ RL

which has a normal distribution with mean (µ) and a covariance matrix of
∑

. θ is

the inverse of the covariance matrix (precision).

fµ,
∑(x) = (2π)

−L
2 (det

∑
)
−1
2 exp

{
−1

2
(x− µ)T (

∑
)−1(x− µ)

}
, x ∈ RL (1.2)

Equation 1.2 can be rewritten with respect to θ by applying the trace inner product

on RL as:

fµ,
∑(x) = exp

{
µT θx−

〈
θ,

1

2
xxT

〉
− L

2
log(2π) +

1

2
log(det(θ))− 1

2
µT θµ

}
(1.3)

A graphical model which satisfies equation 1.3 is defined as G = (V,E) such that G

is an undirected graph with |V | = L is the set of vertices and E is the set of edges
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which satisfy the following condition:

∀(i, j) ∈ E, (
∑

)−1
i,j 6= 0 (1.4)

From equation 1.4, we can infer two properties: the sparsity pattern of G and the

conditional independence of missing edges in G.

There are two perspective over Maximum Likelihood estimation (ML or MLE) prob-

lem in GGM. The first one allows the estimation of the edge weights given the graph

structure. The Second allows learning the structure of the graph. In order to perform

these two tasks, we will use the following lemma which is proved in [79].

Lemma 1.1- For X ∈ RL which is normally distributed with center of µ and

covariance matrix of
∑

and

∀i, j ∈ [1, L] which i 6= j and K ⊆ [L] − {i, j} then the following statements are

equivalent

a) xi |= xj|xK ;

b) det((
∑

)iK,jK) = 0, where iK = {i} ∪K;

c) det(θiR,jR = 0) where R = [L]\{K ∪ {i, j}}(1.5)

For ML estimation of a GGM, assume n observations X(1)...X(n) from N (µ,
∑

)

are given. The empirical covariance matrix is determined from

S =
1

n

n∑
i=1

(X(i) − X̄)(X(i) − X̄)T where X̄ =
1

n

n∑
i=1

X(i) (1.6)

Then the Gaussian log likelihood can be expressed as:

`L(µ,
∑

) ∝ − n

2
log(det(

∑
))− n

2
tr(S(

∑
)−1)− n

2
(X̄ − µ)T (

∑
)−1(X̄ − µ) (1.7)
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In order to reduce the complexity of the Maximum Likelihood (ML) estimation,

we assume that the mean µ = X̄, then we estimate the ML using following objective

function in a form of precision matrix:

max
θ̂

logdet(θ̂)− tr(Sθ̂) (1.8)

Subject to θ̂ ∈ θG which θG corresponds to Gaussian graph G = (V,E) with following

definition:

θG ≡ {θ̂ ∈ RL
>0|θ̂ij = 0 ∀i, j, i 6= j, with (i, j) /∈ E} (1.9)

It can be shown that the objective function in equation 1.6 is concave over the

entirety of its domain[11]. Since the MLE may not exist if the likelihood is different

from the global maximum, adding new constraints to change the objective function

into a convex space is a common technique. Based on Lemma 1.3.3, in order to solve

the objective function in 1.6, finding a feasible point is required. The identity matrix

is a strong feasible point. So, we expand the set of edges to include all the self-loop

edges such that, Ê = E ∪ {(i, i)|i ∈ V }.

Lemma 1.3.3- The MLE of an objective function does not exist if and only if

there exist no feasible point for the dual optimization problem [2].

Given these conditions, the covariance matrix is positive definite which implies

that the objective function 1.6 is a convex optimization problem. We are interested

in a sparse model by solving the GGM which corresponds to a sparse underlying

graph. In this case, we can use the L1 norm penalty as a sum of the absolute values

of the elements of precision matrix. So, the new objective function is given in 2.4
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where θ is the precision matrix, S is the emperical matrix, and Λ is the penalty

matrix.

max
θ
log(detθ)− tr(Sθ)− Λ||θ||1 (1.10)

For solving 2.4, Meinshausen proposed an estimation-based method by fitting a Lasso

model to each variable, using other predictors [58]. Applying interior-point method

in optimization is another solution for exact maximization which was proposed in

[88, 6]. In our work we used the blockwise coordinate descent method which originally

developed by [6] and later modified and speed up by Friedman as a graphical lasso

and its implementation in R which is called Glasso [34].

In the last part of this section, we explain the method that was used in Glasso

[34]. The idea is the instead of estimating θ, estimate the covariance matrix based on

empirical covariance(S). Let ω be the estimated covariance. By applying permutation

on rows and columns on ω ∈ RL×L and S ∈ RL×L , they partition these matrices as:

ω =

ω11 ω̂12

ω̂T12 ω22

 , S =

S11 ŝ12

ŝT12 s22

 (1.11)

Where ω11, S11 ∈ R(L−1)×(L−1), ω̂12, ŝ12 are vectors of size L−1, and ω22, s22 are scalars.

Basically, the goal is to estimate ω̂12 using ω11 values. Interestingly, the solution to

ω̂12, satisfies the 1.12 optimization problem and updates ω with new estimation of

ω̂12 until its convergence.

ω̂12 = min
y
{yTω−1

11 y : ||y − ŝ12||∞ ≤ Λ} (1.12)

Also, the solution of β in 1.13 optimization problem is the same as 1.12 since

ω̂12 = ω11β.

min
β
{1

2
||ω

1
2
11β − b||2 + Λ||β||1}, where b = ω

−1
2

11 ŝ12 (1.13)
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With the new setting, solving equation 1.13 can give the underlying graph of esti-

mated covariance. Since the assumption is that ω is an estimation population of the

covairance matrix, then ωθ = I which is the same as:

ω11 ω̂12

ω̂T12 ω22

×
θ11 θ12

θT12 θ22

 =

I 0

0 1

 (1.14)

The 2.4 function is not differentiable over its entire domain, so by taking a sub-

derivative we have ω − S − Λη = 0 where, η is defined in 1.15 and writing it for

each partition in 1.14, we end it up withθ12 = −θ22ω
−1
11 ω̂12 (for more detail see [34])

therefore the solution to β in 1.13 implies θ12 = −θ22β.

ηij =

 sign(θij) θij 6= 0

[−1, 1] θij = 0
(1.15)

Algorithm 1 represents how Glasso estimates the actual covariance with respect

to S and Λ. In chapter two we explain a learning model based on this algorithm. In

this algorithm, t is a soft-threshold function and cutoff is a fixed user defined variable.

Algorithm 1 Glasso(S,Λ)

1: ω = S + λI; //Do not change for diagonal elements in ω
2: for j = 1..., L, 1, ..., L do
3: current.ω = ω11, current.s = s12

4: solve function 1.13 with respect to current.ω11 and current.s12

5: β̂j =
t(current.sj−

∑
k 6=j current.ωkj β̂k,Λ)

currentωjj

6: if |ω − CutOff ×Average(S−diagonal)| < 0.001 then
7: Break
8: end if
9: end for

Once this algorithm converges, we can calculate the precision matrix using 1.16

formula.
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θij = (−1)i+j
det(

∑
[L]\{i},[L]\{j})

det(
∑

)
(1.16)

1.4 LSIP-PSICOV: Structural Information as Penalty

Helps Gaussian Graphical Models to Predict

Protein- Protein Interface Better

1.4.1 Research Problem

A protein performs its function by binding to other proteins (molecules) on a specific

location on its surface which is called a binding site (interface). Identifying interfaces

is a challenging problem in reality due to a search space size. On average proteins

have hundreds to thousands residues. All the possibilities of binding sites between two

arbitrary proteins are between 104 and 1.56 pairs on average among two proteins. Only

5 to 400 pairs of these residues are actually binding sites. Also, every protein family

can have a totally different pattern of binding which makes for a computationally

hard problem. In the second chapter, we discuss the most important structural,

physical, and chemical features that can impact the pattern of binding site between

two proteins. Later we elucidate how to turn this knowledge into a penalty term

in a Gaussian Graphical model and improve the task of protein-protein binding site

prediction. Identifying the exact binding site can be used in a lot of domains such as

identifying critical residues (hotspots) in a protein, identifying pathogenic mutations,

and predicting protein folding, docking, and structure predictions.
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Figure 1.6: (a) CaM closed conformation (PDB: 1CTR); (c) CaM open conformation
(PDB:1CFD); (b) AdK closed conformation (PDB:1AKE); (e) AdK open conforma-
tion (PDB:4AKE); (c) GroEL closed conformation (PDB:1SS8); (f ) GroEL open
conformation (PDB: 1SX4)

1.5 Identifying Clusters of Intermediate States in

Conformational Changes

1.5.1 Research Problem

Many proteins change their structures from in-active to active state or bound to

unbound in order to perform their function[35].

Figure 5 represents an example of open and closed conformation of three proteins.

The conformational changes are usually a continuous and transient process making

intermediate structures hard to be determined experimentally[53]. Understanding

these intermediate conformations can improve protein binding models and also design

a more accurate drug targeting methods. Due to the conformational search space

(which could be proportional to the number of residues in a protein), it is not easy
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to simulate these changes. In this work we apply a Monto Carlo based simulation

method to model this conformational change between the open and closed forms of a

protein.

1.6 Thesis Organization

This thesis is organized as follows. Chapter 2 describes the first research problem in

detail by presenting GMM model that we used to accurately predict protein-protein

binding sites. Additionally, this chapter provides several references to the literature

related to the elements of the problem in question and concludes by presenting com-

parisons between the proposed method and a number of available methods in the

community. Chapter 3 presents the second research problem, which is a stochas-

tic method for simulation of protein conformational changes along with a geometric

method for clustering the intermediate conformations. Lastly, Chapter 4 sums up the

thesis contributions and concludes this dissertation.
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Chapter 2

LSIP-PSICOV: STRUCTURAL INFORMATION

AS PENALTY HELPS GAUSSIAN GRAPHICAL

MODELS TO PREDICT PROTEIN- PROTEIN

INTERFACE BETTER

2.1 Introduction

Experimental approaches for identifying binding sites between two interacting pro-

teins include methods such as X-ray crystallography and mutagenesis, which are time

consuming and expensive. Hence, there has been a rapid increase in computational

methods that try to address this problem. Proteins are complex molecules and their

binding depends on multiple factors. Identifying these characteristics of each protein

family and later classifying them based on these features has been studied extensively.

This chapter focused on reviewing some of these works and analyzing significant fea-

tures. Then by extracting these features from the structure and sequence of two

proteins and turn that information based on the protein family into a penalty matrix

for GGM model. This penalty matrix works as a prior to our probabilistic model.

In order to learn a penalty matrix appropriately, we need to understand the features

that help to predict binding sites correctly otherwise this penalty will mislead the

prediction. The main features can be divided into two categories. First, features that

are related to the stability of a protein which are listed as:
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• Distinguishing between surface and interior residues

• The distribution of the conformational substates

• Identifying the location of conformational changes

These features are mostly hard to quantify or measure which makes this task

still challenging. The second group is less complex to measure, but the relationship

between these features are complex and hard to model.

2.1.1 Common Interface Features Across Most Proteins

A practical approach to predict the function of a protein can be studied through pre-

dicting intra or inter protein contact regions, therefore, it is helpful to find the folding

pattern and eventually how a protein functions. Application of Protein-Protein in-

teraction can be found in a lot of domains such as drug discovery, protein dynamics,

identifying hotspots residues and consequently mutational effect on those residues

and so on [29, 28, 72].

From the Physical-Chemical point of view, any two proteins can interact [45] which

is not the case in reality. Hence, the main question is about, is there any model that

can capture this relationship accurately? Most studies showed that the most predic-

tive features are Hydrophobic interactions, Hydrogen bonds, electrostatic interaction,

conservation, solvent accessible surface area (SASA), propensity, and covalent bonds,

but these features are general and their significance can vary in different protein fam-

ilies [27, 45]. Esmaielbeiki and others [27] reviewed these methods comprehensively.

As a result, they compared more than 70 methods across multiple datasets and the

conclusion was that the above features are crucial but also general in order to have

a robust model with high performance where is not dependent on a dataset or pro-

tein family. A good model should identify binding site of a protein with respect to
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its partner. Figure 2.1 represents an overview of these methods. In another work,

Keskin and others [45] reviewed this problem from multiple perspectives. Some of

the important features and conditions that every model needs to consider in order to

have a reliable prediction will be discussted herel.

Protein complexes can be divided into two main categories as obligatory com-

plexes, which are the proteins that perform their functions just inside a complex with

partners belong to complex, and transient complexes proteins that depend on func-

tional state of the partner [66, 45]. Additionally, each complex is either Homodimers

or Heterodimers. In the context of protein binding sites, these two classes need to

be studied separately since they have different properties. For example, most Ho-

modimeric interfaces are hydrophobic, large, with a high value of a nonpolar buried

surface area, and have a fitter complementarity geometry between two chains while

that is not the case in Heterodimeric complexes[45]. Studies show obligatory com-

plexes are very compact with stronger hydrophobic effect while transients are mostly

polar/charge and the surfaces of the interface are not optimized[41]. All Homodimers

and some of the Heterodimers belong to the obligatory class and an example of the

transient complexes is the interaction between enzyme and inhibitor.

One main difference between these two classes of proteins that influence any methods

is the rate of evolution. Interfaces of the obligatory complexes turn to evolve at a

slower rate which increases co-evolving rate between a protein and its partner, on the

contrary, transient complexes have a high rate of evolution and as a result, the score

of co-evolving is low between two partners[59]. This difference is crucial for us since

our proposed method is based on the co-evolution score.

Identify protein surfaces

Interfaces are mostly located in the surfaces of a protein. Therefore, the first step

toward identifying the interface between two proteins, is to distinguish the surfaces
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Figure 2.1: which are divided into 7 groups. Figure is from [27].
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and interior residues among them. A common technique to determine surface residues

is to calculate solvent accessible surface area (SASA) for each residue [51]. After

measuring SASA, we cannot treat that as an absolute metric in the binding sites

context, and it requires to correct for bias effect between the interface and non-

interface surfaces, and it is unknown the difference between these two is because of

either SASA or function [23]. QIPI quantify this difference by dividing surfaces into 2

types of interface and non-interface. A residue is in the surface if its SASA is greater

than 1 Å2. The interface is made by spatially neighboring residues whose SASA were

changed more than 1 Å2 between single domain and complex.

Hydrophobic effects

Table 2.1.1 associate each amino acid to corresponding side chain charge class. 20

amino acids based on the propensity of the side chain to be in contact with a polar

solvent like water, can be divided as:

• hydrophobic (low propensity to be in contact with water)

• polar (usually participate in hydrogen bonds as proton donors or acceptors)

• charged (side chains often make salt bridges)

In an interesting study, Jones and others [44] tried to measure the correlation be-

tween interface residue and its side chain propensity. They found that a large portion

of interface residues in Heterodimer complexes are hydrophobic or uncharges further

they performed patch analysis and realized that the interface paths are more planar

with considerably large SASA. Moreover, conservation across MSA is another impor-

tant feature that had been reported by some people [65, 10]. Also, center residue in

each patch turn to be more conserved than its neighbors and it is been suggested to

divide the interface to its core and surrounding[3]. Nevertheless, side chain propen-

sity is not enough for distinguishing between the interface and non-interface residues.
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Table 2.1: Amino acids with corresponding side chain propensity.
Amino Acid Properties
Alanine-Ala-A Hydrophobic
Arginine-Arg-R Positively Charged

Asparagine-Asn-N Polar
Aspartate-Asp-D Negatively Charged and Polar
Cysteine-Cys-C No Charge, Non-polar, Hydrophilic

Glutamate-Glu-E Negatively Charged and Polar
Glutamine-Gln-Q Polar

Glycine-Gly-G No Charge, Non-polar, Hydrophilic
Histidine-His-H Positively Charged and Polar
Isoleucine-Ile-I Hydrophobic
Leucine-Leu-L Hydrophobic
Lysine-Lys-K Positively Charged and Polar

Methionine-Met-M Hydrophobic
Phenylalanine-Phe-F Hydrophobic

Proline-Pro-P Hydrophobic
Serine-Ser-S Polar

Threonine-Thr-T Polar
Tryptophan-Trp-W Hydrophobic

Tyrosine-Tyr-Y Polar
Valine-Val-V Hydrophobic
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Module, Hotspots and Protein Stability

A module is defined as those residues within a distance of 10 Å. Residues belong

to one module maybe cooperative, while residues located in different modules are

additive [73]. It has been shown that for all proteins, not only the energy distribution

is not uniform across a given interface of two interacting proteins, also a small sub-

set of residues will have a higher contribution to the binding free energy than other

residues[46]. Ma and others discovered the enrichment of polar residue hot spots in

protein-protein binding sites, and also hotspots are what distinguishes binding sites

from the remainder of the surface. They further show a conformity between energy

hot spots and structurally conserved residues. The number of structurally conserved

residues, especially high ranking energy hot spots, increases with the binding site

contact size [55]. Therefore, conservation can help to identify hotspots. There is a

direct relationship between protein stability and hotspot residues. Although identi-

fying hotspot residues are very expensive and challenging, this has been investigated

by some groups [22, 16], hence applying computational methods to estimate protein

stability based on hotspot residues is not recommended due to the existence of a lot

of exceptions [45].

Secondary Structure Elements

Protein-Protein interfaces have preferred architecture. Due to the fact that the

number of secondary structures is limited and also the association between secondary

structure and degree of freedom [31], it is important to consider its contribution in

PPI problem. As a result, we consider four different secondary structure states as it

is mentioned in table 2.2.1.
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Figure 2.2: . Colour gradation: white- No interaction; Cyan to black- increasing
gradation of interaction with normalized frequency varying between 014 in discrete
steps. Figure from [24].

Hub and Lonely Proteins

In a study conducted by [45], the authors took protein-protein interfaces from

PDB [68] and divided all the 103 clusters of interfaces into three categories.

• Interfaces that belong to proteins that have a global fold of parent between two

chains and similar function.

• Proteins that are not similar in function and structure.

• These proteins have a similar binding site in one protein in front of many other

partners.

They found the proteins in type three which sharing one interface across multiple

interactions turns to interact on average 13 times while the average of other proteins

was 5 times [68, 37]. Interestingly, those hub proteins have a smaller interface with

enrichment in α-Helices in the interfaces.
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2.1.2 Building Multiple Sequence Alignment for a Pair of

Interacting Proteins

The first step toward measuring co-evolution in proteins residue is to build a multiple

sequence alignment (MSA) of the ortholog proteins of the query protein. This is

an important step which has an impact on a performance of the model. Let us

assume we are interested in finding the binding sites between two proteins p and q

in a species D. Building MSA for one protein is pretty straightforward. It can be

done by performing ortholog search of the query protein against the same protein in

different organisms, and then perform an alignment. In the case of a pair of proteins,

it is a little bit tricky due to the fact that it may exist more than one copy of the

protein in a genome (paralog), further we need to concatenate those pairs so that

every protein p in a species is followed by protein q in the same species. This step

is being studied extensively by some groups. Ovchinnikov et al, [70] showed that in

order to extract less bias and more accurate information form the MSA, we need to

have more sequences than the total number of residues in the MSA. In his method,

first, they perform ortholog search with respect to two interacting proteins across

other organisms folowed by taking those pairs that are at most 20 genes away in

the genome to make sure they belong to the same operon. Basically, those genes

that belong to the same Operon (co-located) are also co-regulated. HH∆ is used

to measure similarity between two MSAs. Finally, eliminating those sequences that

which are identical more than 90% or have a more than 75% gap in that position in the

MSA. They do the alignment task using clustal omega. Hopf et al, [40], also provided

a similar procedure for building MSAs, with more sequences in each MSA, but a

little bit different in the tools that they applied. Our results and other methods show

that the way Ovchinnikov used to build MSA is more appropriate for co-evolution

methods.
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2.1.3 Statistical Approaches for Measuring Co-Evolution in

Proteins

In this subsection, review of other methods for inferring co-evolution from MSA is

investigated. This technique is called Direct Coupling Analysis (DCA) and it may

have different names in other fields. In the field of statistical mechanics (physics),

it is called Inverse potts (Ising) model or Boltzmann Machine and in statistics or

computer science, it is called Markov Random Field. Lapedes et al [8] proposed to

estimate the maximum entropy from the covariation in the MSA and use this for a

Boltzmann Machine by considering Monte Carlo based learning method. Due to the

small number of sequences and to the computational runtime, this method did not

become very popular.

Let us state the problem. Assume we want to model the distribution of the residues

belong to a protein with sequence of length L by P (X), where X = (x1, ..., xL) and

xi ∈ {20AminoAcids,Gap}. Pi(ak), denotes the marginal probability of a single

amino acids ak in position ith which can be determined as a frequency of that amino

acids in position ith of the MSA. Similarly, Pij(ak, ar) corresponds to frequency of pair

of amino acids (ak, ar) in positions i, j, respectively. The distribution of maximum

entropy PME of an MSA is given as:

PME(X|h, j) = max
p(x)

[−
∑
x

p(x) log p(x)+λ(
∑
x

p(x)−1)+
∑
i

[hi(
∑
x

p(x)δxiak−pi(ak))]+

∑
i

∑
j>i[Jij(ak, ar)(

∑
x p(x)δxiakδxjar ]− Pij(akar)] = 1

Z
e−Hpotts(X|h,j)(2.1)

where, δxiak is Kronecker delta, λ is the Lagrange multipliers and h and J are

potentials which are also called fields and coupling, respectively. Pij(ak, ar) can cap-

ture both direct and undirect correlation between amino acids while Jij(ak, ar) carries

causative correlation only [62].
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Figure 2.3: (left) with a graphical model in right figure and learn the parameters [4].

The main problem with equation 2.1 was the calculating the partition function Z,

which corresponds to all sequences with length L that exist with 20 amino acids, L20.

With considering the average length of protein which is 500 residues, it is untrace-

able. A few years later Weight et al [84] applied message passing algorithm to learn

the MRF. Unfortunately, it was not guaranteed to converge and was still expensive

for large proteins. Two years later Balakrishnan et al [4], proposed the GREMLIN

method to estimate the partition function Z which is called pseudo-likelihood. and

instead of calculating the global Z, they used equation 1.1 to calculate the local Z by

changing one position at a time and assume the rest of the residues in the sequence

are fixed. GREMLIN models the pseudo-likelihood of θ, given an MSA X made up

N sequences of length L as:

pll(θ|X) =
N∑
n=1

L∑
i=1

log(

exp

(
Vi(x

n
i ) +

∑L
j 6=i,j=1Wi,j(x

n
i , x

n
j )

)
∑21

c=1 exp

(
vi(c) +

∑L
j 6=i,j=1Wi,j(c, xnj )

) −R(θ) (2.2)
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Equation 2.1 and 2.2 are very similar in a way that (V ,h) and (W ,J) are trying

to capture the same thing. R is the L2 based norm regularization term which tries

to encourage to sparsity of the network. In the MRF based model, the influence of

regularization term decreases as number of sequences increase [69]. Once this ob-

jective function has converged, by calculating L2 norm of Wij, the energy that is

distributed between i and j position can be captured. Later, in order to overcome

to some phylogenetic biases and entropy effects, applying average product correlation

[25] is recommended. plmDCA, GREMLIN and EVCouplings are all based on this

idea with small modifications. They all were employed to predict protein structures

based on sequences. CCMPred is a parallelized implementation of GREMLIN to

measure co-evolving scores [26, 70, 40].

After GREMLIN, PSICOV applied the idea of estimating the inverse covariance

matrix to measure co-evolution score by employing the L1 penalty [42]. At the same

time, mfDCA used mean-field approximation to perform the exact same task. PSI-

COV and mfDCA are very similar to each other [64]. Our methods just like PSICOV,

convert a MSA to binary representation of it. For example, every position is replaced

by a binary vector of size 21 (20 amino acids and gap) followed by calculating the

covariance of the binary matrix. Finally, Graphical Lasso is used to solve it with fixed

scalar L1 penalty. On the estimated precision matrix, they follow the same post pro-

cessing as GREMLIN by calculating the energy that distributed between each 20×20

submatrix of the precision matrix and using average product correlation for correction.

At the end, they fit into the logistic curve to get strong correlations. Ovchinnikov

benchmarked PSICOV with GREMLIN and he showed that moving from maximum

entropy to PSICOV, improves the accuracy by 10% while by employing GREMLIN

the accuracy improves 10% than PSICOV even though the speed of PSICOV is better.
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An alternative to pseudo-likelihood was proposed by some groups [7, 17] as Adaptive

Cluster Expansion (ACE) based on minimizing cross entropy for each cluster of sites

and later it implies Boltzmann Machine to correct h, J in equation 2.1. The result

shows that it can outperform plmDCA by a little bit.

All these DCA based methods have MSA biases, phylogenetics dependencies biases

between different species, and indirect couplings which are captured as covariations

may mislead the prediction. Sukowska et al [77] showed that not all the covariations

that can be measured from MSA which also belong to the different branch of the

phylogenetic tree, corresponding to co-evolution. Miyazawa proposed a method to

remove phylogenetic biases and showed that the result will improve if we correct for

these biases by determining partial correlation [61].

In 2015, multiple groups started to combine some prior knowledge into both

pseudo-alignment and PSICOV either using machine learning approaches such as

neural network, deep learning, random forest or as a new penalty. PconsC combines

PSICOV and plmDCA into a random forest and in the second release they replace

random forest with 5-layer neural network [76]. Meta-Psicov which was developed

by the same group who developed PSICOV, considered 2 stages of a neural network.

In the first stage, it combines PSICOV, mfDCA, and CCMPred to predict contact

sites, later in the 2nd stage filters the result based on other features such as amino

acid propensity, hydrogen bonds, and secondary structure [43]. Meta-PSICOV was

the state of the art for predicting contact site between and within a protein until

RaptorX was developed. They developed CoinDCA [56] at the first, by adding new

group lasso penalty to the original PSICOV and also learned some supervised prior

which came from protein propensity, sequence profile, mutual information and so on.

This new prior information could outperform plmDCA. After coinDCA in 2017, same
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group applied convolutional neural network along with CCMPred, as a result, it per-

forms better than all other methods [83].

The main drawback of all these methods is that they are dependent on the quality

of an MSA, and if a protein is conserved across multiple families, there is no signal

for co-evolution to be captured. As a result, learning prior which came from other

non-MSA based method can significantly improve these methods.

2.2 Method

A first step toward learning correct prior information is to extract some related fea-

tures from both sequence and structure. This prior matrix made of 3 different methods

and at the end, we apply a weighted ensemble (WE) learning to tune the coefficient

for each model. At the same time we use binary matrix of msa to build covariance to

pass along with penlaty to garphical lasso.

2.2.1 Extracting Potential Interfaces in a Protein Using Int-

pred

This model is based on a combination of sequence features and structural features.

There are a lot of methods that try to do this task. After an extensive literature review

and based on the features that contribute to the protein binding site, we decided to

use Intpred method [67]. The input for Intpred is a PDB ID and corresponding chain

ID and it extracts information from PDB file and applies a random forest to predict

potential interface residues. Here we explain some of the key steps that Intpred

considered to extract features.

The algorithm starts based on the following terms as defined in original work:

32



• Patch centre atom is the central atom that around the patch is built.

• Patch radius is the threshold distance from the patch centre atom used to

select candidate residues for inclusion within the final patch.

• Contact radius is defined for a pair of atoms as the sum of their van der

Waals radii, plus a tolerance (here set to 0.2 Å). Two atoms are in contact if

the distance between their centres is less than the contact radius.

Interestingly, these features can be used to approximately characterize the surface

residues from non-surface residues.

The algorithm starts with identifying patch center atoms. Residues with relative

SASA greater than 0.25 corresponds to patch center residues and among all atoms

of that residue, the atom with largest SASA represents patch center atom. Then for

each patch center atom c, and contact radius R (set to 14Å) algorithm 2.2.1 builds

patches. The output is set of all the patches P, with respect to patch centers.

Algorithm 2 Building-Patch(PDB,c,R)

1: P = {c}; // c is patch center atom
2: Find N from PDB // N is all the residues that have at least one atom within patch

residue from c (Neighbour of c)
3: newP = P
4: while newP 6= {} do
5: newP = {}
6: for i ∈ P do
7: for j ∈ N do
8: if Distance(i, j) < R and SolventAngle(i, j) < 120◦ then
9: newP=P∪{j}
10: N = N − {j}
11: P = newP
12: end if
13: end for
14: end for
15: end while
16: return P
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Table 2.2: Features that are being used in Intpred method

Feature Description Source
Hydrophobicity Kyte and Doolittle hydrophobicity scale Sequence

Homology Homology Conservation Score Based on Valader01 Score Sequence
Conservation FEP Score for finding functionally equivalent orthologues Sequence
Propensity Residue Propensity based on position and type Sequence and Structure

Disulfide Bonds Disulfide Bridge with in 2.2 Å Distance + 10% tolerance Structure
Hydrogen Bonds Binary Score if exist any H Bonds Structure

α-Helix if percentages of α-Helix >0.2 and β-Sheet≤0.2 Structure
β-Sheet if percentages of α-Helix ≤ 0.2 and β-Sheet>0.2 Structure

mix if percentages of α-Helix >0.2 and β-Sheet>0.2 Structure
Coil if percentages of α-Helix ≤ 0.2 and β-Sheet ≤0.2 Structure

Planarity RMSD of all atoms in a patch from best fitted Plane Structure

Then every residue that has at least one atom of it in P , belong to patch P . A

residue is called interface if the difference between relative solvent accessible surface

area (RSASA) of the residue and relative solvent accessible surface area with respect

to all the residues in the patch is greater than 0.1. Then, the interface fraction for

a patch P is calculated as sum over all RSASA of the interface residues in patch P

over RSASA of all the residues in P . Then a label is assigned for each patch P as

follows:

• I (interface), if fraction is larger than 0.5.

• S (surface), if fraction is equal to 0.

• U (unlabeled), otherwise.

Patches with U label are excluded from training in order to keep the problem

as binary classification. Table 2.2.1 describes all the features that contributed as

the predictors to random forest with considering the class labels (I and S) as the

responses. lastly for those patches that predicted as I class are selected and the

patch center residue (RSASA > 0.25) represents the binding site. The features that

contributed in Intpred are highly compatible with our literature review. However, the
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drawback of this method is that it relies on the class labels. Although the method that

is being used to determine the class labels is a necessary condition for being a patch

to be an interface, it is not enough. In other words, if a protein has multiple interfaces

with respect to other partners, the prediction of Intpred returns all of them. But,

with high confidence, we can say usually the actual interface is a subset of whatever

it predicts as an interface. Finally we use the probabilities obtained by Intpred and

build a matrix of joint probability for every two residues between protein A and B.

The joint probability matrix is M1 ∈ Rn×m where n and m are number of residues in

protein A and B, respectively. Then the Pi,j element is constructed as Pi,j = Pi × Pj

where Pi is the probability of ith residue is interface for protein A. Pj is corresponding

value for protein B in jth residue.

2.2.2 Extracting Potential Interfaces From Docking Pattern

Docking algorithms are divided into two main categories: direct and template-based

methods [49]. We used the ClusPro webserver [49] to get docking models of two

proteins. ClusPro is a direct search based method which relies on thermodynamic

constraints. As it is shown in figure 2.4, it is a three step hierarchical method which

returns 10 clusters with the best scores. ClusPro has 6 energy functions that de-

pend on the type of the complex which is another reason that we used this method.

The first step is rigid body docking by simulating multiple random conformations.

Next, clustering the top 1000 lowest energy complexes using an RMSD-based scoring

function, and finally, filtering the structures based on energy minimization. In the

following we explain each step briefly:

• Rigid Body Docking: this step relies on PIPER [48] method which is based

on Fast Fourier Transform (FFT) correlation approach. It places protein A

at a origin of the coordinate system on a fixed grid, and perturbs the second
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Figure 2.4: Overall view of ClusPro method [49].

protein on a moveable grid. Then the docking energy is calculated based on FFT

correlation function. The correlation function made up electorstatic interaction

and desolvation contribution. Considering a shape complementary is another

advantage of ClusPro. As a result, it returns the 1000 lowest energy structures

which are within 10 Å from the native structure as the candidates of docking.

• Clustering of Highly Populated Conformations: The goal of this step is

to cluster the 1000 complexes that are generated in the previous step based on

pairwise interface root mean square deviation (IRMSD) scoring function. Can-

didate complexes are divided into different clusters by calculating the pairwise

IRMSD between every two structures. Then the structure with the largest num-

ber of neighbour structures that are within 9 Å IRMSD is denoted the center

of the first cluster. All the structures that are within 9Å IRMSD from it are

assigned to the first cluster. Then the first cluster is removed from the process
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and the same procedure is applied to build the second cluster and so on. As a

result, the top 30 clusters are returned in this step.

• Refinement by energy Minimization: Finally for each cluster, the Van der

Waals energy is minimized using the Charmm potential function for up to 300

steps with a fixed backbone to remove small steric clashes. Finally, the top 10

populated cluster centers with cluster members are returned.

For each two given proteins, ClusPro returns the top potential docking models (on

average 50 to 150 structures in top 10 clusters). We get these structures and perform

voting count for every two residues between two proteins and normalize it. The

residue pairs are scored according to the number of times they appear on the interface

of the docked complexes. In other words, the residues are scored according to their

probability of being placed on the interface by the docking program. We build the

joint probability matrix M2 ∈ Rn×m where n,m are the number of residues for

proteins A and B, respectively. Initially all the elements are set to 0. Then for

all the predicted docking complexes we measure the distance between every pair of

residues (i, j) where i ∈ [1, n] and j ∈ [1,m]. corresponds to the distance between two

residues in a complex. If the distance is less than 8 Å, we increment M2
i,j by one. By

doing this calculation for all the predicted complexes of two input proteins, the matrix

M2 is determined where a large number for a position represents high probability of

being on a binding site. In order to overcome uncertainly and to correct for noises,

we apply a Gaussian smoothing filter on the M2 matrix with a kernel size of 3, µ = 1,

and σ = 0.5, followed by dividing the smooth matrix by the maximum value in the

matrix in order to turn these values into probabilities.
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Figure 2.5: which was performed on the training data.

2.2.3 Measuring Amino Acid Contact Propensity

As discussed above, not all the amino acids have an equal tendency to interact with

other amino acids. In order to measure this tendency more precisely, we used the

training data to measure this correlation. Figure 2.5 represents the frequency of

every two amino acids to be in contact (if the distance between two residues is < 12Å)

among the 58 pairs of interacting proteins in our set. We then normalized the counting

matrix by dividing all the values by the maximum element in the matrix to turn the

numbers into probabilities. The M3 matrix was built based on the normalized amino

acid propensities where element M3
i,j is directly updated from propensity matrix based

on type of amino acids in i and j and corresponding in the propensity matrix.
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2.2.4 Data set and Simulated Data

Two benchmark data sets are used that provided by EVCoupling and GREMLIN

[40, 70] papers which contains set of 58 and 28 homodimers from Escherichia coli (ab-

breviated as E. coli) bacteria, respectively. We used set of 58 proteins as a training set

and learned the coefficient of each model and tested on the set of 28 proteins. We have

also simulated some MSAs to test our hypothesis and measure the learning model

which will be discuss later. The goal of simulation data is to have a set of MSAs with

low co-evolution signal up to high co-evolution signal. This leads us to use both 1st

and 2nd order Hidden Markov Model (HMM). The signal of co-evolving is controlled

by three parameters: α, conservation, and bias which control the co-evolving, con-

servation of a co-evolving residue, and the changes in mutation, respectively. These

MSAs were built based on PAM, blosum62, and also the distribution of amino acids

in all the PDB structures. We tried to build an MSA of size 1000 × 200 based on

this information. After that, we set 6 pairs of columns as a co-evolving pair. We

modified the distribution of co-evolving columns by 3 parameters that mentioned in

above. α is a score between 0 and 1 which controls the transition probability of a 212

states HMM. 0 means no co-evolution and 1 represents the full co-evolution. Another

parameter is conservation which regulates the rate of amino acid changes from one

type to another. 0 conservation means that we expect to see no conservation and 1

represents that co-evolving occurs between 2 amino acid types. Finally, bias controls

the PAM matrix. We have a fair bias which represents an original PAM matrix. The

motivation of this simulation is to investigate whether perturbation of the penalty

matrix in poor MSA (small α) increases the co-evolution score in specific positions

or not. For example by putting low penalty on co-evolving pairs and high on the rest

of the matrix for a MSA with small α, we expect to see those co-evolving pair with

low penalty on the contact pairs.
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Figure 2.6: with respect to actual contact for result of docking (ClusPro) and Intpred
on the test set of 38 proteins

2.2.5 Train Coefficient in Weighted Ensemble Model

So far, we build 3 independent models: M1 based on structural and sequence features,

M2 based on docking models, and M3 based on amino acid propensity. Each of these

models can capture the probability that two residues are contacting in two proteins. In

order to improve the accuracy and also measure the impact of each model separately,

we used precision or Postive Predicted Value (PPV) score ( TP
TP+FP

) due to the fact

that this is an unbalanced problem there the positive (interacting) residues are highly

outnumbered by the negative (non-interacting) residues. Basically, the true negatives

constitute the vast majority of the data, which could skew the results. Figure 2.6

represents the precision of training set associated with each model. The average

precision score for Docking and Intpred were 18% and 10%, respectively in training

set. This shows that the impact of Docking model is two times of Intpred, so we give

the Docking model twice the weight of Intpred.
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2.2.6 Learning Penalty Matrix and Turn Prior Information

into a Penalty Matrix

After determining all the 3 models (M (1,2,3)), the final probability is calculated as a

linear combination of all the models which are given in equation 2.3. M is a n ×m

matrix where every element Mi,j is corresponding to the probability of interaction

between ith residue from protein A to ith residue from protein B given all the three

models. W1,2,3 is learned from training data.

M =
w1 ×M1 + w2 ×M2 + w3 ×M3

w1 + w2 + w3

(2.3)

The idea behind learning the probability model M is to impose this information as

an L1 penalty in estimating the precision matrix, θ such that those pairs with high

probability of contacting are penalize less while pairs with low probability are pe-

nalized more, with the hope that this learned penalty would help co-evolving pairs

with low evolution score to have a large value in the precision matrix. Converting the

probability matrix M into a compatible penalty form for estimating a sparse precision

matrix is a challenging part because of algorithm for learning the penalty which has

a direct effect on the performance of the model, therefore, the connectivity of the

underlying graph. Accordingly, having a way to learn the correct range for a penalty

matrix is mandatory for what we are proposing.

As we explained in the introduction chapter, the graphical lasso algorithm enables

us to estimate a sparse precision matrix based on the given empirical covariance

matrix S and penalty matrix Λ. Λ controls the sparsity of a network, so having, an

upper bound for Λ can improve the learning algorithm. An upper bound is defined

as a max which is minimum value greater than 0 that can return a fully disconnected
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graph, which means all the elements in the precision matrix (except for the diagonal

elements) are zero.

max
θ
log(detθ)− tr(Sθ)− Λ||θ||1 (2.4)

As shown in the introduction, the objective function of the graphical lasso problem

is given in 2.4, where θ, S, and Λ are the precision, empirical covariance, and penalty

matrices, respectively. Algorithm 1.3.3 can solve this optimization problem iteratively.

By taking a closer look at the algorithm, especially in the updating formula, we can

find λmax in Λ matrix. Equation 2.5 represents updating statement for coefficients of

each variable. λmax can set β̂j = 0. As a result, the precision matrix would have a

zero value for the corresponding element.

β̂j =
t(current.sj −

∑
k 6=j current.ωkjβ̂k,Λ)

currentωjj
(2.5)

t is a soft-threshold function in equation 2.5 which is defined as:

t(x, σ) =

 0 |x| ≤ σ

x x > σ
(2.6)

Based on equation 2.6, λmax needs to be larger than |current.sj−
∑

k 6=j current.ωkjβ̂k|.

Using proposition 2.1, an estimation of λmax can be calculated from empirical covari-

ance matrix S.

proposition 2.1- β̂j is equal to zero in equation 2.5, if Λj ≥ ||S||∞.

proposition 2.1 claims that if we set a penalty value for Λi,j element as λmax ≥

||S||∞ then the value of corresponding position in precision matrix is equal to zero.
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This can be proof by tracing the algorithm 1.3.3. This can use this idea in order to

set penalty for those pairs that have a low probability in M or pairs within a protein,

close to λmax. As a result, the correlation score for these pairs are 0.

Once λmax is determined, matrix Λ is built which is a same size as S updated

based on the matrix M as follows:

• Λj,i = Λi,j = λmax, where i, j belong to only one protein

• Λj,i = Λi,j = λmin+C×λmin(1− Mi,j−min(M)

max(M)−min(M)
), where, i and j belong to protein

A and B, respectively. C = λmax

λmin
is constant that obtained from training set.

λmin and C are equal to 0.0001 and 30, therefore those pairs with high probability

of interaction based on M , have a penalty close to 0.0004, while the pairs with low

probability get a penalty close to 0.003. The penalty for the remaining pairs is

distributed linearly in this range with respect to corresponding value in M . After

Λ is constructed, the algorithm 1.3.3 is called by passing S and Λ. The output of

this algorithm is the estimated precision matrix. These conditions help to measure

only the co-evolution score between two residues that are coming from two different

proteins by blocking the contribution of co-evolution within a protein. This does not

change anything in this problem due to independence of variables assumption.

In practice, setting a penalty to λmax for a specific pair of residues Λi,j is not a

good idea specially in this context. Since it may eliminate the correlation score that

either ith or jth may have had with other residues within a protein and consequently,

it may affect the final precision matrix. This matter is investigated by normalizing

using Average Product Correction (APC ) which was introduced in 2008 by [25] for

correction and normalization of phylogenetic tree biases.
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2.2.7 Post Processing of the Precision Matrix

A precision matrix θ, which is the output of the graphical model, needs to be converted

into a ranking based score with respect to the correlation score. This normalization

is being performed in two steps just like PSICOV and CCMPred . Qij is defined as

correlation energy that is being captured between position i and j in the MSA, which

is determined by taking L2 norm of all the 20 × 20 submatrices from θ (excluding

correlation score for the column).

Then, the average product correction is applied as follows in order to remove

phylogenetic biases:

Q̂ij = Qij −
Qi. ×Q.j

Q..

(2.7)

Where, Qi. is sum over all the columns in the ith row. Q.j is similary defined with

respect to all the rows in ith column. Q.. is a sum over all the Qs. Finally, we fit Q̂ij

into a logistic curve to avoid any extreme values.

2.2.8 Combining the Results with PSICOV

We also run PSICOV method with fixed penalty to measure the co-evolving score,

since we can get highly co-evolving pairs between proteins A and B by taking into

account those Qij where {i, j} belong to one protein in the APC normalization step

which are eliminated from our method. Finally, by taking the union between the

results of Graphical Lasso with the learned penalty and PSICOV output, further

sorting them by Q̂ij, the top L pairs correspond to the potential interfaces between

the two proteins .
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Figure 2.7: , the score of correlation increases among top 6 pairs as well
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2.3 Results

2.3.1 Simulated Data Performance

In total, 21 MSAs generated with size of 1000 × 200, as it was described in data

section. The motivation of this analysis is to see if we can design a penalty matrix

that can help those MSAs with a low rate of correlation among pairs, get improved

and stand out on the top ranked. These MSAs ranged from low co-evolution (α = 0)

up to high co-evolution (α = 1). Figure 2.7 depict values of top Q̂ij in y axis. x axis

is representing 21 different MSAs. This curve represents that GREMLIN can capture

the evolution score as α increases. Seeing improvement in the ranking of co-evolving

pairs, is expected by penalizing low and high scores for co-evolving other pairs in Λ.

This analysis showed by designing an appropriate penalty for each MSA. As a result

we could get the co-evolving pairs on the top ranked pairs for MSAs with α > 0.3

while we could not see those pairs with a fixed penalty.

2.3.2 Result of Test Data

Multiple models evaluated by eliminating each model at a time. Also, 3 different

distances are considered as 8, 10, and 12 Å. Finally, we measure PPV among top L,

L/2, L/5, and L/10 ranked pairs where L is the number of residues in the smaller

protein between two proteins. Figure 2.9 compares the performance of our algorithm

in compare with GREMLIN and PSICOV methods.

16 out of 19 complexes, we performed better than PSICOV with average of relative

improvement of 40 %. As it is been shown on other works, GREMLIN performs better

than PSICOV. The relative improvement between our method and GRELMIN was

20 %, also, GREMLIN out performed better than us just in 6 complexes out of 19.
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Figure 2.9: We outperformed all other method in more than 12 complexes out of 19.

Figure 2.8 compares the top L/2 ranked pairs against the actual distance in 3OAA

between H and G chains in comapre with 2 other methods. As a result, our proposed

method performed significantly better result in this case with less stringent condition

(contact distance is 12Å).

Figure ?? represented this comparison between performance of other state-of-the-

art methods for each complex. Relative comparison helps to understand how good

we predict in compare with the performance of PSICOV and GREMLIN. From this

figure, the impact of a prior knowledge in terms of penalty matrix improved the over

performance of the model and helped poorly correlated residues in MSA stood out

on the top ranked pairs.
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Figure 2.10: on average is 20 and 40 presents over GREMLIN and PSICOV methods,
respectively.

2.3.3 Computational Run Time Compression

In general solving GGM is much faster problem than MRF which is used in PSICOV.

We used PSICOV settings by applying Cholesky decomposition on covariance matrix

to perturb it into a positive definite matrix. On the top of that, by setting a high

penalty for within protein residues, the total number of iteration is decreased signifi-

cantly. So the total run time is equal to one run of the PSICOV with fix penalty. We

also can run the ClusPro part simultaneously with PSICOV.
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2.4 Future Work

2.4.1 Rigidity Analysis of a Protein

Proteins in terms of dynamics are either flexible or rigid. As we discussed before, a

protein in order to perform its function requires to conformational change between

inactive and active. It is shown that the conformational changes are associated with

protein function therefore, we applied rigidity analysis to investigate the association

between rigid-flexible clusters and binding site clusters. Rigidity analysis can predict

the cluster of residues that are likely to move together [32]. For this purpose, we

choose Kinari algorithms. Figure 2.2 shows an overview of the method. From a

molecule, it models as a mechanical structure called a body-bar-hinge where each

the covalent bar represented as hings, and other elements such as hydrogen bonds

and hydrophobic interactions are bar. Then an internal special multi-graph is built

where each body represents a vertex and each hing corresponds to an edge. A pebble

game algorithm calculates components in the multi-graph and rigid clusters are being

measures. The output of Kinari is some clusters where all residues that belong to one

cluster are more likely to move together.

2.4.2 Patch Building and Graph Analysis

Another idea is to build patches using Intpred on the top L/10 ranked pairs. After

we have the patches, then they can be mapped into a graph using similarity by the

Jaccard distance between two nodes (residues belong to patches) and finding the best

patches which corresponds to interfaces.
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Table 2.3: where contact distance is 8Å among top L pairs. It also represents total
number of residues in two proteins.

PPV of top L pairs within 8Å
Complex GGM Penalty GGM Binary CCMPred PSICOV Combined Complex Length
1B70 A B 0.2 0.21 0.2 0.2 0.23 1032
1EFP A B 0.37 0.29 0.32 0.27 0.37 554
1EP3 A B 0.08 0.08 0.08 0.07 0.09 573
1QOP A B 0.04 0.09 0.11 0.09 0.07 699
1RM6 A C 0.15 0.2 0.19 0.19 0.25 919
1RM6 B C 0.25 0.27 0.29 0.27 0.25 481
1TYG B A 0.32 0.26 0.23 0.25 0.34 308
2NU9 A B 0.17 0.08 0.09 0.08 0.17 671
2ONK A C 0.11 0.12 0.13 0.1 0.13 593
2VPZ A B 0.07 0.06 0.05 0.04 0.07 928
2WDQ C D 0.01 0.07 0.13 0.09 0.05 237
2Y69 A B 0.03 0.2 0.19 0.15 0.14 487
2Y69 A C 0.02 0.07 0.09 0.07 0.07 773
3IP4 A B 0.02 0.02 0.02 0.02 0.04 968
3IP4 B C 0.13 0.23 0.29 0.22 0.14 575

3MML A B 0.12 0.21 0.21 0.19 0.22 493
3OAA H G 0.33 0.08 0.12 0.08 0.33 423
3PNL A B 0.2 0.13 0.09 0.1 0.22 868
3RRL A B 0.06 0.17 0.28 0.15 0.09 425

Average of All Complexes 0.14 0.15 0.16 0.14 0.18

2.5 Conclusions

In this chapter we proposed a new method for improving the prediction of binding

site between two interacting proteins. We show that by inferring structural informa-

tion from each protein we can impose this information as a penalty to a graphical

lasso made from a multiple sequence alignment of the protein families. Further, we

compared our method with two other state-of-the-art methods. The overall results

show significant improvement in positive predicted value. Our method also performed

better in large complexes where all other methods that rely on sequence alone cannot

perform well. Table 2.3 represents this comparison for the most stringent condition

where contact distance is 8Å and we took top L ranked pairs. The average precision

in the most least stringent condition is 58 % for our method where contact distance

is 12Å and top L/10 ranked pairs.
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Chapter 3

CLUSTERING PROTEIN CONFORMATIONS

USING A DYNAMIC PROGRAMMING BASED

SIMILARITY MEASUREMENT

3.1 Introduction

Understanding the structure and dynamics of proteins is essential in order to un-

derstand their function. In particular, it is important to detect clusters of highly

populated regions which could correspond to intermediate structures or local min-

ima. The conformational space of proteins is complex and high dimensional, which

makes its analysis a highly challenging task. We present a Dynamic Programming

(DP) method for clustering and classification of protein conformations, based on their

lower-dimensional representation. Previously, we used the similarity method to iden-

tify pairs of co-regulated genes based on their microarray expression data. In this

chapter we demonstrate our method on trajectories obtained by a coarse grained

protein conformational search of three different proteins. Our clustering method was

extremely fast, and was able to produce compact, well separated clusters for all the

tested examples, showing that both the DP-based method and the dimensionality

reduction technique were able to preserve the inter-molecular distances and provide

clusters that correspond to experimentally determined intermediates when such are

available.
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3.2 Background

Characterizing the conformational space of proteins is crucial for understanding the

way they perform their function. Understanding the connection between protein

structure, dynamics and function can contribute substantially to our understanding

of cellular processes involving proteins. The question of how the structure and dy-

namics of proteins relate to their function has challenged scientists for several decades

but still remains open. Conformational exploration methods aim to characterize the

conformational space of proteins in order to find minimum energy regions correspond-

ing to highly populated structures [60, 52, 38]. These intermediate states are transient

and therefore hard to detect experimentally. However, they may be crucial to under-

standing dynamic events such as folding, docking, binding and conformational change

processes. The potential energy landscape of a protein is often rugged and has a large

number of local minima [12]. This makes it difficult to navigate. The problem be-

comes even more challenging due to the fact that a typical protein can contain several

hundreds of amino acids or several thousands of atoms. Therefore, the search space

made out of all possible conformations that a protein can assume is large and its enu-

meration is practically impossible. Existing physics-based computational methods

that sample the conformational space of proteins include Molecular Dynamics (MD)

[14], Monte Carlo (MC) [47] and their variants, as well as approximate methods based

on geometric sampling [38, 71, 75, 1, 36], Elastic Network Modeling [86], normal mode

analysis [33], morphing [85] and others.

Even after the conformational space is sampled, it should be filtered and clustered

to extract meaningful information. Several clustering methods have been designed for

protein conformational space [71, 82, 15]. Today, the majority of clustering methods

for multi-dimensional data incorporate metric functions that evaluate the distance be-

tween objects in the dataset, or a lower-dimensional representation of these objects.
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In this scenario, multiple dimensions are combined and are simultaneously considered

according to a metric function in order to create a set of clusters. Due to the com-

plexity and high dimensionality of protein structures and of events such as protein

folding and binding, finding local and global energy minima becomes a problem of

navigating and analyzing a complex, high dimensional space. In particular, we need:

• (a) A way to measure the similarity between two structures. This is not a

trivial task. Standard methods such as Root Mean Square Deviation (RMSD)

require a correspondence list between atoms of the two molecules, which may be

a problem if comparing two instances of different molecules. RMSD also tends

to average out localized changes. Other similarity measurements exist [5, 71],

varying in their robustness and applicability to various types of molecules.

• (b) The conformational space of protein structures is very high dimensional.

Most search and clustering methods do not scale up to hundreds or thousands

of dimensions and therefore use a lower-dimensional projection of the search

space, justified by the fact that the intrinsic dimensionality of protein structures

is much lower due to the constraints between different parts of the protein. Di-

mensionality reduction methods aim to find a small set of collective coordinates

that capture the main variability in the data. Such techniques include Principal

Component Analysis (PCA) [9], Isomap [78] and more. These methods project

the protein structure spaces onto a low-dimension space which captures desired

properties in the structure. This topic is further discussed below.

• (c) The detection of outliers and determining the number of clusters, and in

general measuring the quality of the clustering method. Some common clus-

tering methods such as k-means [57] do not have outliers, and the number of

clusters has to be defined in advance.
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Hierarchical clustering methods result in a multi-scale view of the conformational

space and enable us to view the hierarchical relationship between the local minima

produced by the conformational search.

3.3 Method

3.3.1 Protein Conformational Search

Table (3.1) shows the proteins used in this work. Each conformational pathway

was modeled in both directions, using a Monte-Carlo (MC) based search described

below. Due to the size of the proteins a fully atomic representation of the structure

is computationally costly. Therefore, the proteins were represented using their C-α

atoms and the energy was estimated using a C-α based energy function [87]. During

the search each intermediate conformation is projected onto a lower-dimension feature

space for efficiency and each conformation is represented using an M -dimensional

feature vector where M << N (N is the number of amino acids in the protein. M

is usually around 8-15 (See [38] and Section 3.3.2 for more details). The distance

between a given conformation’s feature vector and that of the goal structure is used

as a score to measure the progress of the search. The lower the score, the closer a given

conformation is to the goal structure. The search was run for a maximum of 10000

iterations and at every iteration a rotatable bond between two C-α atoms is selected.

The bond to rotate is selected with a probability linearly proportional to the difference

between this angle and its counterpart in the goal conformation, which serves as a

bias of the search and a flexibility detection method. The selected angle was rotated

by a random value between -5 and 5 degrees. The new conformation is validated

by the potential energy function and considered further only if its energy is below a

threshold. The feature vector score of the new conformation, FVnew is calculated and
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Table 3.1: The tested conformational pathways. The PDB codes denote the end-
points.

Name RMSD Residues PDB Conformations no. clusters

AdK 6.95 214
1AKE→4AKE 5,235 20
4AKE→1AKE 6,588 20

Calmodulin 14.72 144
1CLL→1CTR 11,483 47
1CTR→1CLL 3,232 49

GroEL 12.21 525
1SS8→1SX4 1,689 41
1SX4→1SS8 1,528 44

compared to that of current conformation, FVcur. The new conformation is accepted

according to the Metropolis criterion, if either of the following occurs:

1. |FVnew| < |FVcur|

2. r < e(−(|FVnew|−|FVcur|)/(|FVnew|∗a))

The result is a pathway leading from the start conformation to the goal conformation.

3.3.2 Feature Vector Representation

For the search, we project the conformations onto a lower-dimensional space that

preserves much of the variance in the data. Inter-atomic interactions apply many

constraints on protein motion, so the essential modes of motion can be captured using

a small number of variables. The lower-dimensional projection was introduced by us

in the past [38]. It is based on the distances and angles of the secondary structures

with respect to one another and does not require the structures to be aligned. Given

a conformation C, we first define a score for each manipulated secondary structure

element i in C:

score(Ci) =
∑
j∈K

(
|αij − α′ij| × wi + |dij − d′ij| × w′i

)
. (3.1)
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The summation is over the set K of manipulated secondary structures in C excluding

i, αij is the angle and dij is the distance between secondary structure element i and

secondary structure element j in C, α
′
ij is the angle and d′ij is the distance between

the corresponding secondary structure elements in the goal structure, and wi and w′i

are weight factors proportional to the size of secondary structure element i, such that

the angle and distance components will be brought to the same order of magnitude.

We used 1 for wi and 5 for w′i, which seem to give the best results. An angle between

two secondary structure elements is defined as the angle between the two vectors

representing them. A vector representing a helix is the least square straight line that

passes through the helix atoms, and a vector representing a sheet is the normal to the

surface best representing the sheet. The distance between two secondary structure

elements is defined as the distance between their centers of masses. We then compute

for a conformation C a feature vector:

vC = 〈score(C1), score(C2), . . . , score(Ck)〉 (3.2)

where the components of the vector are the scores of the K manipulated secondary

structure elements of the conformation. The distance between two conformations,

C1 and C2 is defined as the Euclidean distance between their feature vectors, i.e.,

‖vC1 − vC2‖2. By definition, when C2 is the goal structure, the score of C1 is the

magnitude of its vector representation. The lower the score for a given conformation,

the more similar it is to the goal structure. It should be noted that a secondary-

structure based representation restricts this measurement to conformational changes

where secondary structure elements do not drastically change. See [38] for more

details.

57



Figure 3.1: Each feature is located at a consecutive i value, and the magnitude of
the feature is its y value. For segment i we measure (Li, Ai), which is its length and
angle with the x axis respectively. In this example (Li, Ai) = (8.03, 45)

3.3.3 Similarity Measure

Recently, we developed a method to measure the distance between pairs of co-

regulated genes based on the geometric characteristics of their gene expression data

[80, 81]. In this work we apply this method to estimate the similarity of two fea-

ture vectors representing protein conformations. Each feature vector is represented

as a polygon in a two-dimensional space as demonstrated in Figure 3.1. The features

are represented consecutively on the x axis, and the y value represents the value of

the feature in the feature vector. A line connects two consecutive points. We can

represent each polygon by two attributes:

1. The length of the line i, denoted Li, and

2. The angle of the line i with respect to x axis which represent as Ai.

This way, each conformation C is represented as follows:

C :< (L1, A1), (L2, A2), ..., (Ln, An) >

where n is the number of features. The similarity score compares two conformation

based on the similarity of their representing polygons. Since the polygons are much

58



smaller than the number of atoms in a molecule, it is more efficient than RMSD, does

not require the proteins to be aligned and is highly correlated with the RMSD (see

Results below). Given two conformations C and D represented as polygons. In order

to measure the similarity between line i of polygon C and line j of polygon D, the

function S(i, j) is defined as follows:

S(i, j) = ωlength × ( 1− |L(i)− L(j)| )

+ ωangle × ( 1/(θ + |A(i)− A(j)| )

ωlength and ωangle represent weight factors for the length and angle, respectively. The

value of θ is determined by the slope of the lines based on different cases. The weight

is determined by liner regression with respect to the input data. It can change based

on data set and type of the problem. The main goal of the scoring function is to

return an appropriate measure of similarity of the two lines.

By applying this scoring function to all the pairs of conformations, we build a

matrix M which each cell M(i, j) represent the similarity score of conformation i

and conformation j. The similarity between two conformations is measured using

the Needleman-Wunsch DP algorithm [74]. The gap penalty is determined as the

minimum similarity of two lines for the Needleman- Wunsch algorithm. An example

is shown in Figure 3.2.

Algorithm 1 describes the similarity score. The input are two polygons represent-

ing conformations P and Q. The output of the algorithm is the score representing

their similarity. The values of the parameters were determined experimentally. In

this work we also did not use a gap penalty, but it can be used if needed.

It should be noticed that during the search we used the Euclidean distance between

feature vectors to estimate their similarity since we used data produced in previous

work (see above).
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Algorithm 3 Score (P,Q)
1: for i = 1...m do
2: for j = 1..n do
3: if P [i], Q[j] are on the same side then
4: if |P [i].angle−Q[i].angle| < 25 then
5: ωangle = 90; θ = 5
6: else
7: ωangle = 100; θ = 30
8: end if
9: else
10: ωangle = 10; θ = 1
11: end if
12: score[i, j] = 30 ∗ (1 − P [i].length − Q[j].length] + ωangle ∗ ( 1/(θ + angle(pi) −

angle(qj)| )
13: end for
14: end for

Figure 3.2: In cases that the similarity of two lines is less than the gap score, the
method select gap score for their similarity.
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In the next section we describe the clustering methods applied to the feature

vectors.

3.3.4 Clustering Methods

We applied K-means clustering. Our input was the similarity scores representing all

the conformations generated for a given protein. It should be mentioned that the

input to the clustering method is the DP-based similarity score. In other words, we

are clustering one-dimensional data. This makes the clustering process extremely fast.

Indeed some information is bound to get lost during the dimensionality reduction and

similarity measurement process, but as we will see below, the results show that the

clusters were still able to preserve most of the original properties of the structures.

Additionally, the Pearson correlation coefficient between the RMSD and the similarity

measure is very high, between -0.7 and -0.9 for all cases. It should be noted that the

correlation is negative since RMSD is a distance measure and our method determines

similarity.

Determining the number of clusters in K-means still is a big challenge in unsu-

pervised learning. There exist many implementation of K-means algorithm for deter-

mining number of clusters and clustering. We used heuristic k-means algorithm [57].

Ckmeans.1d.dp is an R package tool for one dimension data which runs in O(n2k).

In order to estimate the number of clusters, we used the Calinski-Harabasz criterion

[13]. It creates several clusters for different values of k, and the number of clusters is

estimating by the variance ratio criterion (VRC):

V RC =
BGSS

k − 1
/
WGSS

n− k
, (3.3)

where BGSS is the between-cluster sum of squares, WGSS is the within-cluster

sum-of-squares, and n is the number of samples.
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3.4 Results and Discussion

3.4.1 Cluster Properties

For AdK we produced 20 clusters using K-means to compare with our previous work

[82]. For Calmodulin and GroEL we used the Calinski-Harabasz criterion mentioned

above [13] to determine the ideal number of clusters. The number of clusters for each

example is shown in Table 3.1 and is generally around 45-50.

Figure 3.3 shows the RMSD of the cluster centers with respect to the endpoints

for two of our systems – AdK (4AKE→1AKE) and GroEL (1SX4→1SS8). Since K-

means clustering assigns the cluster numbers arbitrarily, the clusters in the figure are

re-numbered according to their RMSD from the respective endpoints. As seen, the

clusters span the vast majority of the conformational space even when we measure

the RMSD in the protein coordinate space, whereas the clustering was done in the

one-dimensional similarity score space.

Figure 3.4 shows the cluster size distribution in three tested systems. Notice that

due to the different number of conformations in each trajectory, the distribution of

the number of conformations per cluster is different. The clusters vary in size, as

expected, but the distances between the cluster centers are rather similar, and the

cluster centers span the values of the similarity measurement described above rather

uniformly. The variation in cluster sizes may be attributed to the sampling method,

or to the fact that several intermediate conformations are more highly popular due

to their low energy. This is the subject of on-going work.

3.4.2 Comparison with Known Intermediates

Experimental information about known intermediates is not always available due to

lack of experimental knowledge about intermediate structures. However, AdK has

several known mutants and intermediate structures [30]. We tested whether our clus-
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Figure 3.3: with respect to the two endpoints for AdK (top) and GroEL (bottom).
The clusters are numbered according to their RMSD with the respective endpoint.
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tering method can produce clusters similar to intermediate structures. Inspired by

that study, we performed a similar test on our results. We focused on the following

known intermediates: chains A, B and C of the hetero-trimer Adenylate Kinase from

Aquifex Aeolicus (PDB accession code 2RH5), which are conformational change in-

termediates of the ligand free AdK [39], 1E4Y, which is an AdK mutant having 99%

sequence identity with 4AKE and 1AKE and is a closed form of AdK binding with

AP5A, and a mutant bound to an analog which shows domain closure over ATP (PDB

code 1DVR). These intermediates were used successfully to validate conformational

pathways for AdK [38, 1, 63]. We recorded for each path the closest conformation to

any of our intermediates. The results are shown in Table ??. For each intermediate,

the table shows the average RMSD from the closest cluster, which is determined by

center of clusters. Our results are in good agreement with previous work [30], as well

as our earlier studies [54], which predicted 2RH5A-C to be close to the open con-

formation and 1E4Y to be closest to the closed conformation. Other structures are

closer to intermediate conformations. In these cases we were able to find intermediate

structures close to five intermediates (within about 3Å or less). The calculations were

done with the UCSF Chimera software. Three of the intermediates and their closest

cluster representatives are shown in Figure 3.5.

3.5 Conclusion

In this chapter we presented a DP-based method to measure the similarity between the

lower-dimensional representation of protein conformations. We used the method to

cluster trajectories of proteins which undergo large-scale conformational transitions.

The clustering is extremely fast, since it is done in a one-dimensional space gen-

erated by applying our similarity score on a lower-dimensional projection of the con-
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(a)

(b)

(c)

Figure 3.5: on their closest cluster center (blue) (a) 1E4Y (b) 1DVR (c) 2RH5 (chain
C).
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formations. Yet, it is able to preserve a lot of the variance of the original data, since

our similarity score correlates very well with the RMSD.

Current and future work includes optimizing the similarity measurement to im-

prove clustering quality, comparison with other clustering methods such as hierarchi-

cal clustering which allows us to detect outliers, and testing more systems.

67



Chapter 4

CONCLUDING REMARKS

Understanding proteins function is still an open problem in computational biology.

Proteins function is associated with conformational changes and binding partners. On

the other hand, quantifying conformational changes is not an easy task. In this thesis,

we investigate computational approaches for a better modeling of protein dynamics

and function.

The main focus of this thesis was to propose a combination of machine learning

methods to improve simulation of proteins dynamic along with utilizing statistical

learning for predicting the binding site between two interacting proteins. In the second

chapter, by extracting structural information from a protein, it turns into a likelihood

matrix of binding for every two residues between two interacting proteins. This

structural information converted into a penalty matrix for a graphical model to be

learned from the protein sequence. By applying this prior to Direct Coupling Analysis

method, a new set of co-evolving pairs stood out, therefore, the result improved

significantly in comparison with current state-of-the-art. Furthermore, applying post-

processing on the data has been proposed. In this way, every pair is converted into

a node along with building patches round corresponding residues. The similarity

between two nodes is calculated as an edge weight. Further graph diffusion can be

applied to improve the prediction.

In chapter three, the goal was to identify the intermediate clusters between two

conformations of a protein. This has been done in three steps. First, by utilizing
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Monte Carlo tree search method, the pool of conformational changes between two

proteins have been generated. Next, the pathways between the two conformations

represented in smaller dimensions. This will help to reduce the complexity of the data.

Finally, we proposed a novel clustering method for the coarse-grained model based

on extracting geometry features and calculating scores. By applying this method to

two conformations of a protein, up to the number of clusters conformations can be

extracted and studied. These intermediate conformations can be used later as an

information for the problem of binding site prediction.
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