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ABSTRACT

A NEW CLASS OF INTEGRABLE TWO-MASS MIXTURES IN ONE-DIMENSION

December 2016

Zaijong Hwang, B.S., University of Massachusetts Boston
M.S., University of Massachusetts Boston

Directed by Professor Maxim Olshanii

Among systems with many hard-core point particles that only interact by elastic collisions

in one-dimension, it has long been thought that only those with equal mass particles were

completely integrable, where the final state of the system through time evolution could

be easily predicted from its initial state due to the existence of a maximal number of

conserved quantities. In this thesis, we introduce a new class of integrable three-particle

systems that contain two unequal masses. These integrable triplets can affect the rate of

thermalization in a much larger system composed of particles with two unequal masses,

the effect of which is demonstrated with a numerical simulation.
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CHAPTER 1

INTRODUCTION

Systems of many hard-core point particles that only interact by elastic collisions in

one-dimension are common models for confined cold atoms and classical heat transport.

The analysis of such systems is greatly simplified when they are integrable, where the

existence of a maximal set of conserved quantities makes it possible to write down

relatively simple expressions for the final state of the system in terms of its initial state.

Such integrable systems are rare in nature and they can serve as important benchmarks for

physical theories and analytical techniques.

In the case of hard-core point particles interacting by elastic collisions in one-

dimension, either on an open line or with periodic boundary conditions, the only known

integrable model required that all particles be identical and have equal mass [1]. When

particles collide with each other under such conditions, they act as if they simply pass

through each other, which makes it far easier to predict the behavior of very large number

of particles.

This thesis will introduce a new class of integrable hard-core point particles interact-

ing by elastic collisions in one-dimension. These new systems are only integrable with

three-particles that possess two unequal masses at specific ratios, must be spatially or-

dered in a sequence of heavy-light-heavy, and have velocities that will allow the particles

to undergo a particular cascade of collisions. This integrability cannot be extended to the
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N-body systems that are treatable with equal mass particles. Despite these limitations, the

ability to deal with unequal mass particles is nevertheless a significant advancement.

The existence of an integrable triplet with two unequal masses is not merely a

mathematical novelty either. Many-body unequal mass systems are fundamentally

ergotic [2], making them difficult to treat analytically. The presence of an unequal mass

integrable system however, even at the three-particle level, can materially affect the

behavior of a much larger system in which the integrable triplets are embedded in. We

demonstrate this effect with a numerical simulation of a large mixture of light and heavy

particles. The rate at which this large system comes to thermal equilibrium is affected by

the mass ratio between the light and heavy particles, and there is a noticeable delay in

thermalization when the mass ratio allows locally integrable heavy-light-heavy triplets to

arise.
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CHAPTER 2

GENERALIZED NEWTON’S CRADLES

Newton’s cradle is usually encountered as a simple device used to demonstrate the

conservation of energy and momentum. The typical cradle consists of a line of identical

pendulums. When a pendulum on one end is lifted and released, it will fall and strike the

other stationary pendulums with some velocity. After a cascade of two-body collisions,

the pendulum on the other end will be ejected with that same velocity, while all other

pendulums are now stationary. There are numerous variations to this basic process, such

as imparting multiple pendulums with an initial velocity before the cascade. Although

there are many subtleties underlying the operation of the physical Newton’s cradle [3],

we will overlook these and only focus on one particular phenomenon: if equal mass

particles are indistinguishable, then the set of mass-velocity pairs before and after a

cascade of collisions should be identical in a Newton’s cradle. Taking this as the defining

characteristic to preserve for Newton’s cradles, we can find a set of generalized Newton’s

cradles that admit unequal masses while still conserving mass-velocity pairs over a

cascade of collisions.

2.1 Equal Mass Newton’s Cradles

The task ahead will utilize an obscure coordinate transformation, which we will

motivate with an example using a normal equal mass Newton’s cradle. Consider for now

3



Figure 2.1: Coordinate space of three equal mass particles on an open line. A depiction
of the allowed space for particles within the [0, 1] interval is shown in the top left, with
a view from the first octant towards the origin in the back corner. The blue, red, and
green planes correspond to the contact planes where x1 = x2, x2 = x3, and x1 = x3
respectively. The two other images are identical except their view is rotated towards the
line connecting the origin to (1, 1, 1). A two-dimensional view of the system along this
line essentially projects the space onto a plane representing the relative motion of the
particles and eliminates the center of mass motion. This plane will be partitioned by three
contact lines through the origin. The angle between these contact lines will shift if the
masses were made unequal, and is what leads to the system seen in Fig. 2.2.
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a system of three equal mass hard-core particles on an open line, and let the three particle

positions be x1, x2, x3. This system of three equal mass particles on a line with distinct

positions can be represented as a single particle in a three-dimensional space using x1,

x2, x3 as the new coordinates. The resulting transformation is depicted in Fig. 2.1, which

also shows the contact planes between the particles. In this coordinate space, the motion

of a point at any location along the x1 = x2 = x3 direction corresponds to the center

of mass motion of the original three equal mass particles on the open line. By rotating

our viewpoint to align with this direction, we can effectively eliminate the motion of the

center of mass.

The final two-dimensional view of the system encodes only the relative motion of

the original three equal mass particles on the open line. The two-dimensional plane is

naturally partitioned into six sectors, separated by three contact lines through the origin

that are the remnants of the three contact planes in the initial three-dimensional coordinate

space. The advantage of using this final two-dimensional view is that the evolution of the

system from any initial condition will simply trace out a straight line segment between

two points on the plane. The intersection between this straight trajectory and the contact

lines then represent collisions between the physical particles. Whenever such a trajectory

is able to intersect all three contact lines, it will have undergone a cascade of three two-

body collisions, and will have the same set of mass-velocity pairs in its final and initial

state.

2.2 Unequal Mass Newton’s Cradles

The analysis of the equal mass Newton’s cradle can be extended to include unequal

mass particles by an appropriate rescaling of the x1, x2, x3 coordinates. Such a rescaling
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changes the angle between the contact lines in the final two-dimensional view in order to

preserve the representation of the time evolution of the system as a straight line trajectory.

Let us now formally consider a system of three hard-core particles on an open line

with arbitrary masses m1, m2, m3 and positions x1, x2, x3. The Lagrangian of this system

may be written as

L =
1

2

3∑
i=1

miẋ
2
i − V (x1, x2, x3). (2.1)

Without loss of generality, we may choose x1 ≤ x2 ≤ x3, which will fix the potential as

V (x1, x2, x3) =


0 if x1 ≤ x2 ≤ x3

∞ otherwise
. (2.2)

Using a set of coordinates that produces a scalar mass for the kinetic energy of the

relative motion of three particles [4, 5]

x =

√
m1m2

m1 +m2

(x1 − x2) , (2.3)

y =

√
m3 (m1 +m2)

m1 +m2 +m3

(
m1x1 +m2x2
m1 +m2

− x3
)
, (2.4)

z =
1√

m1 +m2 +m3

(m1x1 +m2x2 +m3x3) , (2.5)

the Lagrangian can be transformed into

L =
1

2

(
ẋ2 + ẏ2 + ż2

)
+ V (x, y, z), (2.6)
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with a potential of

V (x, y, z) =


0 if x ≤ 0 and y ≤

(
m1m3

m2 (m1 +m2 +m3)

) 1
2

x

∞ otherwise

. (2.7)

This coordinate transformation is the same rotation and projection used to treat the equal

mass Newton’s cradle, where the z direction corresponds to the motion of the center

of mass, and some additional factors to account for the unequal masses. These new

coordinates are very similar to the standard Jacobi coordinates that are frequently used

in solving many-body problems, but the prefactors are substantially different here. The

transformation above will always produce a scalar mass, whereas Jacobi coordinates can

only guarantee a diagonal mass matrix. The importance of this distinction will become

evident shortly.

The new z coordinate is proportional to the center of mass coordinate of the three

particles. Since the time evolution of the center of mass is decoupled from the collision

dynamics of the particles, we may eliminate the z coordinate from our analysis. The

motion of three particles in one dimension can thus be mapped into the motion of one

particle of unit mass in two dimensions as seen in Fig. 2.2.

On this two-dimensional plane, the relative positions of the three particles are encoded

within the x and y coordinates. The trajectory of the three particles is represented by a

ray, the orientation of which determines the relative velocities of the three particles up to

a rescaling of time. As a consequence of choosing x1 ≤ x2 ≤ x3, the single point that

now represents the relative motion of three particles will be constrained to move within a

wedged region bounded by two hard walls.
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x

y

x1 = x2

x2 = x3

x1 = x3

x1 = x3

x1 = x2
x2 = x3

x1 ≤ x2 ≤ x3

Figure 2.2: Relative motion of three particles on a line. The x and y transformed
coordinates above correspond to the the relative motion of three particles on a line. The
system is confined to the x1 ≤ x2 ≤ x3 shaded domain by choice. There are six wedged
regions that correspond to the possible permutations of three particles on a line. In this
figure, we have set m1 = m3 =M and m2 = m with m/M =

√
5−2. The angle between

the x1 = x2 and x2 = x3 contact line here is π/5. The view here is essentially the same as
that of Fig. 2.1, except the contact lines are at slightly different angles to account for the
unequal masses.
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The scalar mass of this point now becomes important as specular reflection is guaran-

teed to occur whenever the point impacts these walls. The overall setup here resembles

that of a dynamical billiard, except for the open boundaries. A proper triangular billiard in

this two-dimensional plane with closed boundaries would correspond to a system of two

particles in one dimension bounded by two hard walls [6–8].

The presence of specular reflection allows our transformed system to be studied with

the method of images as in Fig. 2.3. Consider the case where the x1 = x2 and x2 = x3

boundaries cross at an angle of θ = π/n where n is an integer. This allows the wedged

region in which the system is confined within to tile the x-y plane through reflections

across lines of contact between the particles.

This tiling is significant because it ensures that a given set of initial velocities v1,

v2, v3 for three particles will always produce a unique set of final velocities v′1, v
′
2, v
′
3

regardless of the order of collisions between the particles. In terms of the rays that

represent the trajectory of the system, tiling allows a set of parallel incoming rays to

remain parallel with each other after they undergo a cascade of reflections, no matter

which wall the rays first connect with. This property can be deduced from Fig. 2.3

by tracing the trajectory of the green line in reverse: such a path will reveal the set of

reflections that would occur should the incoming ray have connected with the x2 = x3

boundary first.

There is a rich mathematical background underlying the system depicted in Fig. 2.3,

and we shall make a short digression to introduce some relevant concepts. The shaded

region in the figure is the fundamental chamber where the physical system actually

resides. The two boundaries enclosing the fundamental chamber can be treated as mirrors,

and together they form a kaleidoscope. The normal vector of a mirror is called a root

vector, and the two root vectors of a kaleidoscope can be used to generate a collection of
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x

y

x1 = x2

x2 = x3

x2 = x3
x1 = x2

x1 = x2 x1 = x2

x1 = x2

x2 = x3

x2 = x3

x2 = x3

Figure 2.3: Determining cascade outcome with method of images. The time evolution of
a system when the light-to-heavy mass ratio is m/M =

√
5 − 2 with θ = π/5 is shown

above. As this corresponds to an odd kaleidoscope, the incoming rays will not in general
be parallel to the outgoing rays as in the case of even kaleidoscopes. Shaded region is
the x1 ≤ x2 ≤ x3 domain as seen in Fig. 2.2 and now acts as a fundamental chamber of
the corresponding reflection group. The actual trajectory of the system as it undergoes
specular reflection along the contact lines is shown in red. This trajectory can be obtained
from the straight green line by reflecting image chambers repeatedly across contact lines
until they overlap with the fundamental chamber.
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root vectors that is closed under reflections by the corresponding mirrors. This collection

of root vectors forms a root system, which is in turn associated with a reflection group1.

The kaleidoscope in Fig. 2.3 corresponds to the root system I2(5) and is associated

with the dihedral group of the decagon. In general, two-dimensional kaleidoscopes

with mirrors at an angle of θ = π/n will correspond to the I2(n) root systems and be

associated with the symmetries of the regular 2n-gon [9].

Returning to the two-mass mixture that is the subject of this study, we shall set

m1 = m3 = M to be the heavy mass and m2 = m to be the light mass. The mass ratio

can then be related to the angle θ = π/n as

m

M
=

1− cos (π/n)

cos (π/n)
. (2.8)

If n is odd, a system point which has not experienced any previous collisions will

undergo a cascade of n collisions with the walls. The angle between the incoming ray and

the first wall will also be equal to that between the outgoing ray and the last wall. In the

center of mass frame, this results in the exchange of velocities between the left and right

heavy particles while the middle light particle retains its velocity. The mass-velocity pairs

will be conserved even if the center of mass velocity is not zero, and such a triplet will

therefore constitutes a generalized Newton’s cradle. The actual outcome of a cascade at

1We are omitting some details regarding the length of root vectors, which can influence whether the
relevant kaleidoscope corresponds to a physical system of particles that are on a line, ring, or confined to an
interval.
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odd n is


v1

v2

v3


n collisions−−−−−−→
odd cascade


v3

v2

v1


. (2.9)

Imagine now that three particles with odd n are embedded within a gas of some

other particles. Most of the time, this triplet will not manifest the behavior of a Newton’s

cradle, because the necessary cascade of n two-body collisions are likely to be interrupted

by collisions with neighboring particles of the host gas. With finite probability however,

the three particles may find themselves in such close proximity that they can complete

a cascade of n two-body collisions uninterrupted. Given such a complete revival of the

local velocity distribution, one would expect a slowdown in the relaxation rate of the

many-body system as a whole. This effect will be our focus in the next section.

If n is even, a system point which has not experienced any previous collisions will

also undergo a cascade n collisions with the walls, but the incoming and outgoing rays

will now remain parallel to each other. In the center of mass frame, this corresponds to a

complete reversal of all particle velocities after such a cascade of collisions. The resulting

change in velocity distribution is


v1

v2

v3


n collisions−−−−−−→
even cascade


VCM − (v1 − VCM)

VCM − (v2 − VCM)

VCM − (v3 − VCM)


, (2.10)

where VCM is the center of mass velocity. In principle, such a process is not expected

to change the relaxation rate of the many-body system as a whole, although there exist

12



conditions in which it will come into effect. These circumstances will be relevant in the

next chapter as well.
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CHAPTER 3

NUMERICAL SIMULATION OF A TWO-MASS MIXTURE

The slowdown in the relaxation rate for a large system due to the presence of

heavy-light-heavy triplets that form a generalized Newton’s cradle is demonstrated by

a numerical simulation with the results shown in Fig. 3.1. The initial condition consists

of 100 light and 200 heavy particles randomly positioned within the [0, 1] interval

with periodic boundary conditions. We set M = 1 and adjust m to achieve different

mass ratios. All light particles are initially stationary, while half the heavy particles are

randomly chosen to have initial momentum +1, and the other half −1.

In order to determine the rate of thermalization, we need a suitable measure that will

place light and heavy particles on an equal footing. The distribution of kinetic energies

should then be a good indicator of thermalization due to the eventual equipartition

between light and heavy particles. To measure how fast the kinetic energy approaches the

Boltzmann distribution, we choose to examine the first non-trivial moment of the kinetic

energy distribution, standardized by the mean kinetic energy, as follows

χ ≡ 〈E
2
i 〉

〈Ei〉2
, (3.1)

where the averages are taken over all i = 1 . . . 300 particles. It will have a value of 1.5

under our initial conditions and is expected to rise to 3 if the system is fully thermalized

to a Boltzmann distribution. Since equal mass collisions do not contribute to relaxation,

14



the simulation is carried out over a fixed length of 10,000 light-heavy collisions. At each

mass ratio, the simulation is repeated 5,000 times and the average value of χ as a function

of the number of light-heavy collisions over these realizations is fit to an exponential

curve to extract a time constant.

We choose to use the mean initial frequency of light-heavy collisions as a unit

of measurement for the rate of thermalization, because light-heavy collisions are the

fundamental interactions that drive thermalization: we expect them to be involved in

any universal results that might emerge in the relaxation of a two-mass mixture. One

prominent universal result in this vein [10, 11] is that the kinetic energy of hard-core

spheres in three dimensions will thermalize across dimensions in 2.7 collisions per

particle over a broad range of initial conditions.

Figure 3.1 demonstrates that there are clear peaks in the relaxation time at the

expected mass ratios where π/θ is an integer. The background curve also exhibits two

expected features. As m/M → 1 on the right, the relaxation time should diverge as the

system is approaching the exactly integrable equal mass configuration. When m/M → 0

on the left, the relaxation time should also diverge since it will take infinitely many

light-heavy collisions to change the velocity of the heavy particles.

Notice that the peaks are present at both odd and even values of n. As discussed in the

previous section, peaks in relaxation time are expected around odd values of n as a result

of local triplets forming a generalized Newton’s cradle. For even values of n, a complete

uninterrupted cascade of two-body collisions merely reverses all velocities in the center

of mass frame, and there is no a priori expectation that this will result in a slowdown

in the overall rate of relaxation for the many-body system as a whole. Two effects may

contribute to these peaks at even n:

15



Figure 3.1: Relaxation time as a function of mass ratio. Data points are in blue, and
joined by red lines to aid visualization. The vertical axis is the relaxation time χ ≡
〈E2

i 〉 / 〈Ei〉2 (see main text for full definition) in units of 1/ (ρlvh), where ρl is the number
density of the light particles, and vh is the initial speed of the heavy particles. This unit of
measurement is an order-of-magnitude estimate for a given heavy particle’s initial mean
free time between collisions with light particles. Vertical dotted lines correspond to mass
ratios where θ = π/n for integer n (see equation 2.8) and peaks are expected to occur.
These lines are labeled by the associated I2(n) root system, starting from θ = π/10 on the
left and progressing to θ = π/4 on the right. The rising background likely contributes to
the slight displacement of the peaks from their expected positions.
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1. The tiling property for all kaleidoscopes guarantees that any set of initial velocities

will always produce a unique set of final velocities after a complete cascade of

collisions. The uncertainty in the final velocity distribution is therefore lower at

these kaleidoscopic mass ratios when compared to a generic sequence of collisions,

for both even and odd n.

2. With our initial velocity distribution, any heavy-light-heavy triplet that is ready

to undergo a complete cascade will consist of two heavy particles approaching

each other with opposite velocities, and light particle at rest in between them.

For this initial condition, the reflection of all velocities about the center of mass

velocity after a complete cascade is equivalent to a revival of the initial velocity

distribution. As the many-body system continues to relax however, memory of the

initial distribution should also erode and weaken this effect.

Neither effects above have been quantified in detail, and a complete explanation for

the increase in relaxation time at mass ratios with even n is still required.

17



CHAPTER 4

PARTICLE TRAJECTORIES OVER COLLISION CASCADES

The cascade of two-body collisions between three particles that results in the revival

of the initial velocity distribution can be elegantly described in terms of the geometry

of a set of mirrors forming a kaleidoscope, but it can be difficult to visualize how the

underlying particles are actually moving in physical space. Here we will present a series

of particle trajectories in physical space that illustrates the dynamics of a heavy-light-

heavy triplet of particles undergoing a cascade of collisions in one-dimension.

18



Figure 4.1: Heavy-light-heavy triplet trajectories through a cascade of collisions. The
series of graphs below depict the trajectories that result from cascades of two-body
collisions between a heavy-light-heavy triplet. Heavy particle trajectories are in blue,
while light particle trajectories are in red. All graphs have the same initial condition
consisting of a stationary light particle at position 0.6, and two heavy particles moving
towards the light particle with a speed of 1, one starting from position 0.3 and the other
from position 0.7.

Each graph of position versus time is labeled with the m/M mass ratio of the involved
particles. The first graph below consists of three heavy particles of equal masses. This
equal mass trajectory is traced out with dashed lines in all ensuing graphs as a reference
trajectory.

The integrable mass ratios are further marked with the corresponding I2(n) root system.
Notice how the initial velocity distribution is revived after a cascade of n two-body
collisions for these mass ratios, and that the cascades all occur within a fixed time
interval. The distinction between odd and even mass ratios is also clear here, as odd mass
ratio systems will return to follow the equal mass trajectory, whereas even mass ratio
systems do not.
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CHAPTER 5

CONCLUSION AND OUTLOOK

Using simple geometric arguments, we showed that a triplet of heavy-light-heavy

hard-core particles in one dimension can form a generalized Newton’s cradle at particular

light-to-heavy mass ratios. This generalized Newton’s cradle will preserve the velocity

distribution of its constituent particles as they undergo a cascade of collisions: a series

of two-body collisions that begins with the triplets not having any prior collisions, and

ends with them moving away from each other and never colliding again. We provided

numerical evidence that the presence of this generalized Newton’s cradle at the three-

body level manifests itself in a larger many-body system as peaks in the relaxation time at

particular mass ratios.

The expected experimental realization of our model would involve a mixture of two

internal states of a single atomic species in an optical lattices, where the ratio between

the lattice induced effective masses can be controlled at will. Previous experiments have

already produced a mixture of two superfluids of comparable controllable masses [12],

and a mixture where one internal state has effectively infinite mass [13].

The present work is a natural continuation of the quest initiated by Michel Gaudin

[14, 15] to connect exactly solvable particle problems with kaleidoscopes and root

systems. Gaudin originally suggested that only two types of root systems would be

relevant to particle problems: AN−1 for N equal mass particles on a ring, and CN for
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N equal mass particles between two hard walls on a line. He further demonstrated that

any particle problem treatable as a kaleidoscope could be quantized and solved by Bethe

Ansatz [14, 16–18].

By considering unequal mass particles, we extend the set of root systems that are

relevant to particle problems to include I2(n) for three unequal mass particles on a

line with mass ratios prescribed by equation (2.8). We expect quantized three particle

problems with kaleidoscopic mass ratios will also be solvable by Bethe Ansatz. A more

general theory for the connection between particle problems and root systems—including

an exactly solvable 4-body problem in a box associated with the F4 root system—will be

provided elsewhere [19].

There are several questions that remain open for study. Both the peak-to-background

ratio and overall background in Fig. 3.1 require a quantitative theoretical foundation. A

better explanation for the peaks in relaxation time at even n is also needed. An interesting

possibility for future research is to further extend the set of exactly solvable particle

problems by linking previously unexplored root systems to novel particle problems,

including those with unequal masses [19].
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