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ABSTRACT

BUILDING EFFICIENT LARGE-SCALE BIG DATA PROCESSING
PLATFORMS

MAY 2017

JIAYIN WANG

B.S., XIDIAN UNIVERSITY, XI’AN, CHINA

M.S., UNIVERSITY OF MASSACHUSETTS BOSTON

Ph.D., UNIVERSITY OF MASSACHUSETTS BOSTON

Directed by: Professor Bo Sheng, Associate Professor

In the era of big data, many cluster platforms and resource management schemes

are created to satisfy the increasing demands on processing a large volume of data.

A general setting of big data processing jobs consists of multiple stages, and each

stage represents a generally defined data operation such as filtering and sorting. To

parallelize the job execution in a cluster, each stage includes a number of identical

tasks that can be concurrently launched at multiple servers. Practical clusters often

involve hundreds or thousands of servers processing a large batch of jobs. Resource

management, that manages cluster resource allocation and job execution, is extremely

critical for the system performance.

Generally speaking, there are three main challenges in resource management of the

new big data processing systems. First, while there are various pending tasks from

different jobs and stages, it is difficult to determine which ones deserve the priority
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to obtain the resources for execution, considering the tasks’ different characteristics

such as resource demand and execution time. Second, there exists dependency among

the tasks that can be concurrently running. For any two consecutive stages of a

job, the output data of the former stage is the input data of the later one. The

resource management has to comply with such dependency. The third challenge is

the inconsistent performance of the cluster nodes. In practice, run-time performance

of every server is varying. The resource management needs to dynamically adjust the

resource allocation according to the performance change of each server.

The resource management in the existing platforms and prior work often rely

on fixed user-specific configurations, and assumes consistent performance in each

node. The performance, however, is not satisfactory under various workloads. This

dissertation aims to explore new approaches to improving the efficiency of large-

scale big data processing platforms. In particular, the run-time dynamic factors are

carefully considered when the system allocates the resources. New algorithms are

developed to collect run-time data and predict the characteristics of jobs and the

cluster. We further develop resource management schemes that dynamically tune the

resource allocation for each stage of every running job in the cluster. New findings and

techniques in this dissertation will certainly provide valuable and inspiring insights

to other similar problems in the research community.
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CHAPTER 1

INTRODUCTION

The past decades have witnessed a major change in data processing platforms, as

the rapid growth of big data requires more and more applications to scale out to large

clusters. From the statistics of IDC reports [1], there are 4.4 zettabytes (4.4 billion

terabytes) of data exist in the digital universe and this number will be increased to 44

zettabytes by 2020. Besides structured data in database, unstructured data sets are

generated in both academia and industry by various of modern technologies such as

gene sequencers, wearable sensors, social networks (e.g., Facebook and Twitter), radio

frequency ID (RFID), Internet of things (IoTs), and smartphones. Meanwhile, big

data analytics is well used in almost everywhere of our daily life, such as healthcare,

business, finance, traffic control, manufacturing, and retail. Powerful and efficient

computer systems are required to process big data in a timely fashion. However,

the traditional database system deployed in a single server is inadequate to deal

with big data because of its increasing of volume, variety, velocity, and veracity.

Therefore, many cluster-based scalable platforms have been developed to serve the

growing demands for processing big data in parallel. Fig. 1.1 shows the family of

approaches and mechanisms of emerging large-scale data processing systems. In a

cluster, the input and output data are stored in a distributed file system such as

HDFS (Hadoop Distributed File System). Upon the storage layer are deployed by

different large-scale data computing systems such as MapReduce/Hadoop [2], Hadoop

YARN [3], Mesos [4], Tez [5], and Spark [6]. A series of eco-systems are built upon
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them to process multiple types of data and applications such as Hive [7], Pig [8],

Shark [9], Storm [10], and Mahout [11].

Spark

HDFS 
Hadoop Distributed File System

Hadoop YARN
Hadoop MapReduce

Mesos
Tez

Hive Pig Shark Storm Mahout

Figure 1.1: Typical deployment of large-scale big data computing systems

A general setting of big data jobs consists of a sequence of processing stages, and

each stage represents a generally defined data operation such as filtering, merging,

sorting, and mapping. To parallelize the job execution in a large-scale cluster, each

stage includes a number of identical tasks that can be concurrently launched at multi-

ple servers. This general setting of multi-stage data processing includes a wide range

of data analysis products in practice. For example, MapReduce/Hadoop represents

a typical two-stage process. Other representative applications with multi-stage data

processing include chained MapReduce jobs for SQL-on-Hadoop queries, iterative ma-

chine learning algorithms (e.g., pagerank, logistic regression, k-mean, and others in

Mahout library), and scientific computation (e.g., data assimilation in GFS weather

forecasting and hydrology, and partial differential equation based simulation).

In a large-scale cluster, resource management is extremely critical for the per-

formance. It has been frequently reported that the resource utilization in big data

processing systems is unexpectedly low. For example, a production cluster with

thousands of servers at Twitter managed by Mesos has reported its aggregated CPU

utilization lower than 20% even though 80% resource capacities of the cluster are

reserved.
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This dissertation aims to build efficient large-scale big data processing systems by

exploring new resource management schemes to dynamically tune the resource allo-

cation based on the characteristics of the data processing systems and job properties.

1.1 Research Challenges

In this section, we discuss the common characteristics of the current big data

computing systems, and the main research challenges in resource management based

on these characteristics. Our work is motivated by the following challenges.

1. Various workloads. Big data processing systems usually serve numerous kinds

of applications submitted by various users concurrently. Every job consists of multiple

stages and one unique operation is provided in each stage. Tasks from different stages

of different jobs require dissimilar resource demands and yield varying execution time.

For example, a typical MapReduce job contains two stages: map and reduce. The

map stage focuses on disk I/O processing and the reduce stage is responsible for data

analysis. Therefore, tasks in the map stage usually rely more on the disk I/O and the

ones in the reduce stage require more resources on memory and CPU. Even in the

reduce stage, different operations rely on different amounts of resources. For instance,

in the text processing, sorting usually requests more memory resource than word

counting. With different demands of resources, it is challenging to assign appropriate

resources to numerous types of applications with multiple stages in order to give

consideration to the execution times of all jobs and also fair resource sharing for each

job.

2. Dependency of stages. Dependency usually exists between stages of every

application in big data processing systems. For any two consecutive stages of a job,

the output data of the former stage is the input data of the later one. On the one

hand, the later stage cannot finish before its former stage. The resource management

in the cluster needs to comply with such dependency. On the other hand, the later
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one can start earlier before the completion of the former one. The first component

in each stage (except the first stage in a job) is called shuffling. It is responsible for

transferring the output data generated from the former stage to itself. Starting the

shuffling phase earlier can help improve the performance by overlapping the shuffling

phase and the finish of the previous stage. We find that this unique period plays an

important role on the resource management. Appropriately determining the finish

time of one stage and the start time of the next stage can avoid idle resources or

accumulated data waiting for processing. However, different stages of various jobs

generate varying sizes of data and the data transferring rate is changing all the time

according to the system bandwidth and interference by the shuffling operations from

other jobs. Therefore, it is challenging for the resource management to determine the

best timing to start the later stages for different jobs.

3. Inconsistent performance of the cluster nodes. During the execution of any

cluster in practice, the run-time performance of every node is varying. Many factors

can impact the system performance of a server in the cluster, such as the number of

processes the server is running at the same time, the memory occupation percent-

age, and the competition of reading/writing operations to the disk. It requires the

scheduler to adjust the resource allocation in real time according to the performance

change of each server.

4. Node failures in the cluster. In a large-scale cluster, node failures and strag-

glers (slow servers) are normality in practical. Fault tolerance is usually executed

in the computing systems to handle this kind of issues. Speculation mechanism is a

common solution to mitigate the impact of such failures. Basically, when a straggler

is detected, a copy of its tasks (speculative tasks) will be created and assigned to

another server to finish faster so that a job would not be as slow as the misbehaving

tasks. Three requests should be taken into consideration for an effective and effi-

cient speculative mechanism. First, it should be able to accurately identify stragglers
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from normal slow nodes when every node in the cluster has different performance

(i.e., a speculation mechanism should work well in a heterogeneous cluster). Second,

when a node becomes abnormally slow, the speculation mechanism should detect this

straggler rapidly. Finally, once a straggler is identified, its duplicated tasks should be

assigned to appropriate nodes with good performance, since assigning duplicated tasks

back to the stragglers or even slower nodes cannot improve the system performance

or reduce the job execution time. However, we find that the existing speculative

mechanisms cannot satisfy these three demands. In chapter 5, we will introduce our

efficient speculative mechanism.

Above all, these characteristics provides both challenges and opportunities for

the resource management schemes for the large-scale big data processing system.

However, the existing ones have not thoroughly addressed these issues. In the disser-

tation, we will introduce our new scheduling and resource management approaches

to improving the efficiency, e.g., reducing the execution times of a batch of jobs (i.e.,

makespan) and increasing the system resource utilization, in the large-scale cluster

computing systems.

1.2 Dissertation Contributions

The main contributions of this dissertation on building efficient large-scale big

data processing platforms contain the following components.

1. We develop a new approach, named FRESH [12], to achieve fair and efficient

resource allocation and scheduling for the computing clusters with various work-

loads. The main intuition is to allocate resources for each stage first, and then

further split the resource across multiple jobs that have active tasks in that

stage. The targets of our approach include minimizing the makespan as the

major objective and meanwhile improving the fairness without degrading the

makespan. As shown in Fig. 1.2, FRESH is a workload-based resource alloca-
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Figure 1.2: General mechanism of FRESH

tion scheme which contains two major techniques. First, a real-time monitor in

FRESH records the workload of every stage in each running job. Every time

there are idle resources in the cluster, based on the accumulated workload of

each stage, the idle resources will be assigned to an appropriate stage, repre-

sented as stage i. Second, an overall fairness mechanism detects the fairness

deficiency of every job with the active stage i. Then the idle resource will be

allocated to the tasks in stage i of the job with the least fairness.

2. We develop a new strategy, OMO [13] to improve the makespan of batch jobs

by optimizing the overlap between two active consecutive stages. The basic

approach is to let multiple jobs fairly share the system resource, and then focus

on the resource allocation for consecutive stages in each job. OMO considers

dynamic factors at the run time and allocates the resources based on the depen-

dency of stages in every job. Fig. 1.3 shows the general mechanism of OMO.

For any two active consecutive stages of a job, a novel prediction module in

OMO estimates the resource availability in the future and further predicts the

remaining execution time of the former stage and the shuffling time of the later
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stage. Based on this estimation, with idle resources available in the cluster,

OMO checks whether there exists a job that should start its later stage so that

there is sufficient time for the later stage to shuffle data from the previous one.

If such job exists, the idle resources will be assigned to the later stage. Other-

wise, a job with most fairness deficiency will be chosen to execute the tasks in

its former stage.

3. We present eSplash [14], an efficient resource allocation scheme to mitigate the

impact of node failures or stragglers on the system performances. As a new spec-

ulative mechanism, eSplash contains the following major components (shown

in Fig. 1.4). First, to identify stragglers from nodes with various performance,

we cluster all the nodes into different levels according to their computing per-

formance. In this case, nodes in the same cluster perform similar computing

abilities. Second, eSplash identifies stragglers by monitoring the task’s execu-

tion time and progress rate. Within the statistics of the task progress rate, a

straggler can be quickly detected in the beginning execution period of a task.

Finally, eSplash monitors the performance of every node in the cluster and

assign duplicated tasks to the most appropriate nodes.

…

Stage 1 …

(2) Otherwise, assign 
resource to the former 
stage of a job with the 

least fairness

(1) Assign resource to the later stage if 
existing a job which can completely 
overlap the finish of the former stage 
and the shuffing of the later stage

Stage 2

remaining time shuffling timeJob 1
difference between remaining 

time and shuffling time

remaining time shuffling timeJob 2
difference between remaining 

time and shuffling time

remaining time shuffling timeJob 3
difference between remaining 

time and shuffling time

fairness deficiency

fairness deficiency

fairness deficiency

Figure 1.3: General mechanism of OMO
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performanceNode 5

fast cluster 
performance

…

Figure 1.4: General mechanism of eSplash

Since MapReduce/Hadoop [2] and its next generation Hadoop YARN [3] are well

used in both academia and industry, we consider them as representatives computing

platforms. Our implementations and experiments are conducted on these two plat-

forms. In FRESH and OMO, 10 new components are developed with about 1400

lines of code in each work. 11 modules of Hadoop YARN v2.7.1 are modified in eS-

plash with 1500 lines of code. We have evaluated the efficiency and effectiveness of

these new schemes on large clusters in cloud computing platforms, including Amazon

EC2 and NSF CloudLab. The results show significant performance improvements.

FRESH and OMO can decrease averagely 16% to 38% of makespan compared to

default schedulers in Hadoop. With a node failed in the cluster, on average, the in-

creased makespan under eSplash is 67% less than the ones under default schemes

in Hadoop YARN.

1.3 Dissertation Organization

The dissertation is organized as follows. Chapter 2 introduces the overview of the

representative computing platforms, including MapReduce programming paradigm,
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the architecture of two cluster computing systems: Hadoop and Hadoop YARN, and

the default scheduling policies in these platforms. In Chapter 3, we present our first

approach FRESH that allocate resources for each stage based on the estimation of the

workload. It aims to reduce the makespan of jobs and also consider the fairness of each

job. Chapter 4 introduces another solution OMO that is focused on the dependency of

consecutive stages in a job. Chapter 5 presents our new speculation scheme eSplash

which improves the system performance by efficiently allocate resources for redundant

task execution. Finally, we summarize our work and conclude the dissertation in

Chapter 6.
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CHAPTER 2

BACKGROUND

In this chapter, we introduce some basic concepts and knowledge of the represen-

tative computing platforms. Four main aspects will be illustrated. First, we introduce

the MapReduce programming model, especially the work flow of the two stages in a

MapReduce application. Second, the structures of both Hadoop and Hadoop YARN

platforms are be elaborated. Our work is implemented as plug-in components in these

platforms. Finally, tree typical scheduling policies, FIFO, Fair, and Capacity are in-

troduced in this chapter. They are all default schedulers in most big data computing

systems and can be set in the system configuration file. We consider them as the

baseline to compare with in our performance evaluation.

2.1 MapReduce

MapReduce is a programming model introduced by Google for processing large

data sets on clusters of computers. Fig. 2.1 shows the parallel data processing scheme

of MapReduce. A typical MapReduce job contains two stages: map and reduce. Each

stage consists of multiple identical tasks. A map task (mapper) processes one block

of the raw data which is stored in a shared distributed file system and generates

intermediate data in a form of <key, value>. There are three components in the

reduce stage: shuffling, copy and reducer. Shuffling is responsible for copying inter-

mediate data from the map phase to the reduce phase. Once shuffling finishes all the

intermediate data transfer, copy component collects data and the reducer component

processes the intermediate data and produces the final results.
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Figure 2.1: MapReduce data processing scheme.

2.2 Hadoop MapReduce

The Apache Hadoop MapReduce is an open source implementation of MapReduce.

The structure of Hadoop is shown in Fig. 2.2. In a Hadoop cluster, there is one

centralized master node and several distributed slave nodes. Two major components

are contained in Hadoop: Hadoop distributed file system (HDFS) and MapReduce

job execution system. The local disks from slave nodes are combined together as the

distributed file system. All input and output data are split into multiple data blocks

and saved separately in it. Each data block can have multiple redundant copies for

fault tolerance and data locality. A centralized NameNode deployed in the master

node is responsible for the management of HDFS. It stores metadata, file names and

block locations. In each slave node, a DataNode module manages the stored data.

In the job execution, users submit applications to the master node. All jobs are

scheduled and managed by the JobTracker in the master node. One job consists of

multiple map/reduce tasks. The scheduler in the JobTracker is in charge of assigning

tasks to the TaskTracker of the appropriate slave nodes, and each TaskTracker is

responsible for executing tasks. In each slave node, resources are represented as task

slots. TaskTracker manages a number of map/reduce slots that can be used to run

either map tasks or reduce tasks. One task slot can execute one task at a time.
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Figure 2.2: Structure of Apache Hadoop.

Map (resp. reduce) tasks can only run on map (resp. reduce) slots. The number

of map/reduce slots in each TaskTracker can be set in the system configuration file.

Once the Hadoop cluster is set up, such configuration cannot be changed.

2.3 Hadoop YARN

Hadoop YARN is the next generation of Hadoop. Similar to Hadoop MapReduce,

in Hadoop YARN, there is a centralized master node running ResourceManager and

several distributed slave nodes deployed by NodeManager on each slave. However,

Hadoop YARN has two main differences from the first generation of Hadoop. First,

YARN supports fine-grained resource management. Each slave node specifies resource

capacity in the format of CPU cores and memory. Each task specifies a resource

demand while submitted and ResourceManager responds the resource demand by

granting a resource container in a slave node. The second difference is that the

resource management and job coordination are separated in YARN. A new component

ApplicationMaster takes care of the job coordination. And the ResourceManager is

just responsible for scheduling. In this case, YARN can support different frameworks

on the same cluster, such as MapReduce and Spark.
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Shown in Fig. 2.3 is the execution of a job in Hadoop YARN. When users submit

a job to the ResourceManager, an ApplicationMaster will be launched in a NodeM-

anager. Then the ApplicationMaster requests resource for the tasks of the job to the

ResourceManager. ResourceManager responses it multiple tokens to the containers.

Each token describes the resource a task can get. Within the tokens, Application-

Master will launch containers in the NodeManager and assign tasks for execution.

ResourceManager
Scheduler

……

NodeManager

Task
Container

Task
Container

……

Client
1) Submit a job

2) Launch ApplicationMaster

NodeManager

ApplicationMaster
Container

……

3) Submit 
Resource 
Requests

4) Assign 
Resource

5) Launch and 
Coordinate 
Tasks

Figure 2.3: Job execution in Hadoop YARN

2.4 Typical Scheduling Policies

With a large volume of jobs submitted in a batch by multiple users, resource

management and scheduling play an important role on the performance of every job

and the overall system. Researchers have put tremendous efforts on job scheduling,

resource management, program design, and Hadoop applications [15, 16, 17, 18, 19,

20, 21, 22, 23]. Among them, FIFO, Fair, and Capacity are typical ones that are

provided by most of the big data computing systems.

In FIFO scheduling, all jobs are placed in a queue in the order of the submission

time. The job submitted first is served first. Once its tasks have been all allocated

for execution, the next job in the queue is run. Fair Scheduling aims to allocate fair

resource sharing across jobs over time. Priorities and weights may be configured for
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different jobs in resource allocation. Capacity scheduling offers similar functionality

as the Fair scheduling. Under Capacity, multiple job queues are defined for different

users. The scheduler offers equal resource for each queue while FIFO scheduling is

provided for the jobs in the same queue.

Above scheduling policies are default settings in most computing systems such as

Hadoop MapReduce, Hadoop YARN and Spark. However, they do not consider the

efficiency of resource utilization of the system. In the following chapters, we introduce

our resource management schemes and compare the system performance under our

approaches with the one under default scheduling policies.
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CHAPTER 3

WORKLOAD-BASED RESOURCE ALLOCATION

In this chapter, we focus on the scheduling problems on resource allocation for

different stages of jobs based on their workloads. We proposes a new resource manage-

ment scheme called FRESH. In FRESH, we develop a new monitoring component to

detect the run-time workloads of each stage in the cluster. Based on the monitoring

results, FRESH dynamically adjusts the resource allocation for different stages in

order to improve the system resource utilization and reduce the makespan of batch

jobs. In addition, an improved fairness mechanism in FRESH guarantees that equal

resources are assigned to each running job in the cluster. FRESH is implemented

in Hadoop MapReduce platform but its general mechanism can be easily utilized in

other computing systems. The following parts of this chapter indicate the details

of FRESH, including motivation, solution, and the evaluation of FRESH. We also

evaluate the performance of default scheduling policies to show the improvement of

FRESH in both system performance and fairness of applications.

3.1 Background and Motivation

One big challenge for Hadoop users is how to appropriately configure their sys-

tems. As a complex system, Hadoop is built with a large set of system parameters.

While it provides the flexibility to customize a Hadoop cluster for various applica-

tions, it is often difficult for the user to understand those system parameters and

set the optimal values for them. In this work, we target on an extremely important

Hadoop parameter, slot configuration, and develop a suite of solutions to improve the
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performance, with respect to the makespan of a batch of jobs and the fairness among

them.

In a classic Hadoop cluster, each job consists of multiple map and reduce tasks.

The concept of “slot” is used to indicate the capacity of accommodating tasks on

each node in the cluster. Each node usually has a predefined number of slots and a

slot could be configured as either a map slot or a reduce slot. The slot type indicates

which type of tasks (map or reduce) it can serve. At any given time, only one task

can be running per slot. While the slot configuration is critical for the performance,

Hadoop by default uses fixed numbers of map slots and reduce slots at each node

throughout the lifetime of a cluster. The values are usually set with heuristic numbers

without considering job characteristics. Such static settings certainly cannot yield the

optimal performance for varying workloads. Therefore, our main target is to address

this issue and improve the makespan performance. Besides the makespan, fairness

is another performance metric we consider. Fairness is critical when multiple jobs

are allowed to be concurrently executed in a cluster. With different characteristics,

each job may consume different amount of system resources. Without a careful plan

and management, some jobs may starve while other take advantages and finish the

execution much faster. Prior work has studied this issue and proposed some solutions.

But we found that the previous work did not accurately define the fairness for this

two-phase MapReduce process. In this work, we present a novel fairness definition

that captures the overall resource consumption. Our solution also aims to achieve a

good fairness among all the jobs.

Specifically, we propose a new approach, “FRESH”, to achieving fair and efficient

slot configuration and scheduling for Hadoop clusters. Our solution attempts to ac-

complish two major tasks: (1) decide the slot configuration, i.e., how many map/reduce

slots are appropriate; and (2) assign map/reduce tasks to available slots. The targets

of our approach include minimizing the makespan as the major objective and mean-
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while improving the fairness without degrading the makespan. FRESH includes two

models, static slot configuration and dynamic slot configuration. In the first model,

FRESH derives the slot configuration before launching the Hadoop cluster and uses

the same setting during the execution just like the conventional Hadoop. In the sec-

ond model, FRESH allows a slot to change its type after the cluster has been started.

When a slot finishes its task, our solution dynamically configures the slot and assigns

it the next task. Our experimental results show that FRESH significantly improves

the performance in terms of makespan and fairness in the system.

3.2 Problem Formulation

We consider that a user submits a batch of n jobs, J = {J1, J2, . . . , Jn}, to a

Hadoop cluster with S slots in total. Each job Ji contains nm(i) map tasks and nr(i)

reduce tasks. Let sm and sr be the total numbers of map slots and reduce slots in the

cluster, i.e., S = sm+sr. We assume that an admission control mechanism is in effect

in the cluster such that there is an upper bound limit on the number of jobs that can

run concurrently. Specifically, we assume in this work that at any time, there are at

most k jobs running in map phase and at most k jobs running in reduce phase. Thus,

the maximum number of active jobs in the cluster is 2k. Here, k is a user-specified

parameter for balancing the trade-off between fairness and makespan. Our objective

is to minimize the makespan (i.e., the total completion length) of the job set J while

achieving the fairness among these jobs as well.

To solve the problem, we develop a new scheduling solution FRESH for allocating

slots to Hadoop tasks. Essentially, we need to address two issues. First, given the total

number of slots, how to allocate them for map and reduce, i.e, how many map slots

and reduce slots are appropriate. Second, when a slot is available, which task should

be assigned to it. FRESH considers two models, i.e., static slot configuration (see

Fig. 3.1) and dynamic slot configuration (see Fig. 3.2). In the first model, the numbers
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of map and reduce slots are decided before launching the cluster, similar to the

conventional Hadoop system. In this model, we assume that job profiles are available

as prior knowledge. Our goal is to derive the best slot setting, thus addressing the

first issue. During the execution, Fair scheduler is used to assign tasks to available

slots. In the second model of dynamic slot configuration, FRESH allows a slot to

change its type in an online manner and thus dynamically controls the allocation of

map and reduce slots. In addition, FRESH includes an algorithm that assigns tasks

to available slots.

Jobs

Total Slots

Fair SchedulerFRESH

map slots reduce slots

Before execution During execution

Assign tasks to slots

Configure

slots

Figure 3.1: Static slot configuration.

Jobs

Total Slots

FRESH

map slots reduce slots

Before execution During execution

Assign tasks to slots

Configure

slots

Figure 3.2: Dynamic slot configuration.
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3.3 Our Solution: FRESH

In this section, we present our algorithm in FRESH. It contains two components:

static slot configuration and dynamic slot configuration.

3.3.1 Static Slot Configuration

First, we present our algorithm in FRESH for static slot configuration, where

the assignments of map and reduce slots are preset in configuration files and loaded

when the Hadoop cluster is launched. Our objective is to derive the optimal slot

configuration given the workload profiles of a set of Hadoop jobs.

We assume that the workload of each job is available as prior knowledge. This

information can be obtained from historical execution records or empirical estimation.

Let t̄m(i) and t̄r(i) be the average execution time of a map task and a reduce task of

job Ji. We define wm(i) and wr(i) as the workloads of map tasks and reduce tasks of

Ji, which represent the summation of the execution time of all map tasks and reduce

tasks of Ji. Therefore, wm(i) and wr(i) can be defined as:

wm(i) = nm(i)· t̄m(i), wr(i) = nr(i)· t̄r(i).

Let cm and cr represent the number of slots that a job can occupy to run its map

and reduce tasks. Recall that Fair scheduler is used to assign tasks and each

active job is evenly allocated slots for its tasks. In addition, under our admission

control policy, a busy cluster has k jobs concurrently running in map phase and k

jobs concurrently running in reduce phase. Therefore, we have cm and cr defined as

follows:

cm =
sm
k
, cr =

sr
k
.

We develop a new algorithm (see Algorithm 3.3.1) to derive the optimal static

slot configuration. Our basic idea is to enumerate all possible settings of sm and

sr, and calculate the makespan for any given pair (sm, sr). We use M and R to
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represent the sets of jobs that are currently running in their map phase and reduce

phase, respectively. Each element in M and R is the job index of the corresponding

running job. Initially,M = {1, 2, . . . , k} and R = {}. According to their definitions,

when job Ji finishes its map phase, the index i will be moved from M to R. The

sizes of M and R are upper-bounded by the parameter k. Additionally, we use Wi

to represent the remaining workload of Ji in the current phase (either map or reduce

phase). Before Ji enters the map phase, Wi is set to its workload of the map phase

wm(i), i.e., Wi = wm(i). During the execution in the map phase, Wi will be updated

according to the progress. When job Ji finishes its map phase, Wi will be set to its

workload of the reduce phase, i.e., Wi = wr(i).

Algorithm 3.3.1 presents the details of our solution. The outer loop enumerates

all possible slot configurations (i.e., sm and sr). For each particular configuration,

we first calculate the workloads of each job’s map and reduce phases, i.e., wm(i) and

wr(i), and set the initial value of Wi (see lines 3–5). In line 6, we initialize some

important variables, where M and R are as defined above, R′ represents an ordered

list of pending jobs that have finished their map phase, but have not entered their

reduce phase yet, and T , initialized as zero, records the makespan of this set of jobs.

The core component of the algorithm is the while loop (see lines 7–22) that calculates

the makespan and terminates when both M and R are empty. In this loop, our

algorithm mimics the execution order of all the jobs. Both M and R keep intact

until one of the running jobs finishes its current map (or reduce) phase. In each

round of execution in the while loop, our algorithm finds the first job that changes

the status and then updates the job sets accordingly. This target job could be in

either map or reduce phase depending on its remaining workload and the number

of slots assigned to each job. In Algorithm 3.3.1, lines 8–9 find two jobs (Ju and

Jv) which have the minimum remaining workloads in M and R, respectively. These

two jobs are the candidates to first finish their current phases. Variables cm and
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cr represent the number of slots assigned to each of them under Fair scheduler

scheduling policy. Thus, the remaining execution times for Ju and Jv to complete

their phases are Wu

cm
and Wv

cr
, respectively.

If Ju finishes its map phase first (the case in lines 10–16), then we remove u

from M, update the current makespan, and set the remaining workload of Ju to the

workload of its reduce phase (line 11). We also update the remaining workloads of

all other active jobs in M and R (lines 12–13). In addition, the algorithm picks a

new job to enter its map phase in line 14. Finally, we add u to R to start its reduce

phase if the capacity limit of R is not reached. Otherwise, u is added to the tail of

the pending list R′ (lines 15–16).

The function DeductWorkload is called to update the remaining workloads for

active jobs inM or R. As shown below, the inputs of this function include a job set

A (e.g., M, R) and the value of the completed workload w. The remaing workload

of each job i in A is then updated by deducting w.

function DeductWorkload(A, w){

/*A: a set of job IDs, w: a workload value */

for i ∈ A do Wi ← Wi − w end }

Once job Jv finishes its reduce phase (see the other case in lines 17–21), we update

the current makespan as well as the remaining workloads of all other active jobs in

M and R. Similarly, index v is removed from R. If R′ is now not empty, then

the first job in R′ will be moved to R. At the end, in lines 22–23, the algorithm

compares the present makespan T to the variable Opt MS which keeps track of the

minimum makespan, and updates Opt MS if needed. Another auxiliary variable

Opt SM is used to record the corresponding slot configuration. The time complexity

of Algorithm 3.3.1 is O(S · N2
T ), where NT =

∑
i(nm(i) + nr(i)) is the total number

of tasks of all the jobs. In practice, the computation overhead of Algorithm 3.3.1
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is quite small. For example, with 500 slots and 100 jobs each having 400 tasks, the

computation overhead is 0.578 seconds on a desktop server with 2.4GHz CPU.

Algorithm 3.3.1: Static Slot Configuration

1: for sm = 1 to S do
2: sr = S − sm
3: for i = 1 to n do
4: wm(i) = nm(i)· t̄m(i), wr(i) = nr(i)· t̄r(i)
5: Wi = wm(i)
6: end for
7: M = {1, 2, . . . , k},R = {},R′ = {}, T = 0
8: whileM

⋃
R 6= φ do

9: u = arg mini∈MWi, cm = sm
|M|

10: v = arg mini∈RWi, cr = sr
|R|

11: if Wu

cm
< Wv

cr
then

12: M←M− u, T = T + Wu

cm
, Wu = wr(u)

13: DeductWorkload(M, wm(u))

14: DeductWorkload(R, wm(u)
cm
· cr)

15: pick a new job from J and add its index to M
16: if |R| < k then R ← R+ u
17: else add u to the tail of R′
18: else
19: R ← R− v, T = T + Wv

cr
20: DeductWorkload(R,Wv)
21: DeductWorkload(M, Wv

cr
· cm)

22: if |R′| > 0 then move R′[0] to R
23: end if
24: end while
25: if T < Opt MS then Opt MS = T,Opt SM = sm
26: end for
27: return Opt SM and Opt MS

3.3.2 Dynamic Slot Configuration

Then we turn to discuss the model in FRESH for dynamic slot configuration.

The critical target of this model is to enable a slot to change its type (i.e., map or

reduce) after the cluster is launched. To accomplish it, we develop solutions for both

configuring slots and assigning tasks to slots. In addition, we redefine the fairness of

resource consumption among jobs. Therefore, our goal is to minimize the makespan of
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jobs while achieving the best fairness without degrading the makespan performance.

The rest of this section is organized as follows. We first introduce the new overall

fairness metric. Then we present the algorithm for dynamically configuring map

and reduce slots. Finally, we describe how FRESH assigns tasks to the slots in the

cluster.

3.3.2.1 Overall Fairness Measurement

Fairness is an important performance metric for our algorithm design. However,

the traditional fairness definition does not accurately reflect the total resource con-

sumptions of jobs. In this subsection, we present a new approach to quantify fairness

measurement, where we define the resource usage in MapReduce process and use

Jain’s index [24] to represent the level of fairness.

In a conventional Hadoop system, Fair scheduler evenly allocates the map

(resp. reduce) slots to active jobs in their map (resp. reduce) phases. Although the

fairness is achieved in map and reduce phases separately, it does not guarantee the

fairness among all jobs when we combine the resources (slots) consumed in both map

and reduce phases. For example, assume a cluster has 4 map slots and 4 reduce slots

running the following 3 jobs: J1 (2 map tasks and 9 reduce tasks), J2 (3 map tasks

and 4 reduce tasks), and J3 (7 map tasks and 3 reduce tasks). Assume every task

can be finished in a unit time. The following table shows the slot assignment with

Fair scheduler at the beginning of each time point (‘M’ and ‘R’ indicate the type

of slots allocated for the jobs). Eventually, all three jobs are finished in 5 time units.

However, they occupy 11, 7, and 10 slots respectively.

0 1 2 3 4
J1 2(M) 4(R) 2(R) 1(R) 2(R)
J2 1(M) 2(M) 2(R) 1(R) 1(R)
J3 1(M) 2(M) 4(M) 2(R) 1(R)

23



In this work, we define a new fairness metric, named overall fairness, as follows.

At any time point T , let J ′ represents the set of currently active jobs in the system,

and Ti represents the starting time of job Ji in J ′. We use two matrices tm[i, j] and

tr[i, j] to represent the execution times of job Ji’s j-th map task and j-th reduce task,

respectively. Note that these two matrices include the unfinished tasks. Therefore,

the resources consumed by job Ji by time T can be expressed as

ri(T ) =

∑
j tm[i, j] +

∑
j tr[i, j]

T − Ti
. (3.1)

where the above formula represents the effective resources Ji has consumed during

the period of T −Ti. The bigger ri(T ) is, the more resources Ji has been assigned to.

In addition, we use Jain’s index on ri to indicate the overall fairness (F (T )) at the

time point T , i.e.,

F (T ) =
(
∑

i ri(T ))2

|J ′|
∑

i r
2
i (T )

,

where F (T ) ∈ [ 1
|J ′| , 1] and a larger value indicates better fairness.

3.3.2.2 Configure Slots

The function of configuring slots is to decide how many slots should serve map/reduce

tasks based on the current situation. Specifically, when a task is finished and a slot is

freed, our system needs to determine the type of this available slot in order to serve

other tasks. In this subsection, we present the algorithm in FRESH that appropri-

ately configures map and reduce slots.

First of all, our solution makes use of the statistical information of the finished

tasks from each job. This information is available in Hadoop system variables and

log files. Let t̄m(i) and t̄r(i) be the average execution times of job Ji’s map task

and reduce task, respectively. Once a task completes, we can access its execution

time and then update t̄m(i) or t̄r(i) for job Ji which that particular task belongs
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to. In addition, we use n′m(i) and n′r(i) to indicate the number of remaining map

tasks and reduce tasks, respectively, in job Ji. The remaining workload of a job Ji is

then defined as follows: w′m(i) = n′m(i)· t̄m(i), w′r(i) = n′r(i)· t̄r(i), where w′m(i) is Ji’s

remaining map workload and w′r(i) is the remaining reduce workload of Ji. Finally,

we estimate the total remaining workloads of all the pending map and reduce tasks.

Let RWm represents the summation of all the remaining map workloads of jobs inM

while RWr represents the summation of all the remaining reduce workloads for jobs

in R and R′. RWm and RWr can be calculated as:

RWm =
∑
i∈M

w′m(i), RWr =
∑

i∈R
⋃
R′

w′r(i).

Note that RWm includes the jobs running in their map phases (in M) while RWr

includes the jobs running in their reduce phases (in R) as well as the jobs that have

finished their map phases but wait for running their reduce phase (in R′).

The intuition of the algorithm in FRESH is to keep jobs in their map and reduce

phases in a consistent progress so that all jobs can be properly pipelined to avoid

waiting for slots or having idle slots. Therefore, the numbers of map and reduce

slots should be proportional to the total remaining workloads RWm and RWr, i.e.,

the heavier loaded phase gets more slots to serve its tasks. However, this idea may

not work well in the map-reduce process because there could be a sudden change on

the remaining workloads. The problem arises when a job finishes its map phase and

enters the reduce phase. Based on the definition of RWm and RWr, this job will

bring its reduce workload to RWr and a new job which starts its map phase then

add its new map workload to RWm. Such workload updates, however, could greatly

change the weights of RWm and RWr. For example, if RWm >> RWr, most of slots

are map slots. Assume a reduce-intensive job just finishes its map phase and incurs

a lot of reduce workload, the system has no sufficient reduce slots to serve the new

reduce tasks. It takes some time for the cluster to adjust to this sudden workload

25



change as it has to wait for the completions of many map tasks before configuring

those released slots to be reduce slots.

We develop Algorithm 3.3.2 to derive the optimal slot configuration in an online

mode. We follow the basic design principal with a threshold-based control to mitigate

the negative effects from those sudden changes in map/reduce workloads. When

a map/reduce task is finished, the algorithm collects the task execution time and

updates a set of statistical information including the average task execution time,

the number of remaining tasks, the remaining workload of job Ji, and the total

remaining workloads (see lines 1–4). Following that, the algorithm calls a function,

called CalExpSm, to calculate the expected number of map slots (expSm) based on the

current statistical information. If the expectation is more than the current number

of map slots (sm), this free slot will become a map slot. Otherwise, we set it to be a

reduce slot.

Algorithm 3.3.2: Configure a Free Slot

1: if a map task of job Ji is finished then
2: update t̄m(i), n′m(i), w′m(i) and RWm

3: end if
4: if a reduce task of job Ji is finished then
5: update t̄r(i), n

′
r(i), w

′
r(i) and RWr

6: end if
7: expSm =CalExpSm()

8: if expSm > sm then set the slot to be a map slot
9: else set the slot to be a reduce slot

The details of the function CalExpSm are presented in Algorithm 3.3.3. We use θcur

to represent the expected ratio of map slots based on the current remaining workload.

In line 2, we choose an active job Ja which has the minimum map workload, i.e., job

Ja is supposed to first finish its map phase. If Ja is still far from the completion of its

map phase, then the risk of having a sudden workload change is low and the function

just returns θcur ·S as the expected number of map slots. We set a parameter τ1 as the

progress threshold. When job Ja is close to the end of its map phase, i.e., the progress
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exceeds τ1, the function will consider the potential issue with the sudden change of the

workload (lines 6–13). Essentially, the function tries to estimate the map and reduce

workloads when Ja enters its reduce phase, and calculate the expected ratio of map

slots θexp at that point. A sudden change of the workload happens when θexp is quite

different from the ratio of map slots θcur we get based on the current configuration. In

the case that a sudden change is predicted, we will use θexp ·S instead as the guideline

for new slot configuration. Otherwise, the function still returns θcur · S.

Specifically in Algorithm 3.3.3, when Ja finishes its remaining map workload

w′m(a), we assume the other jobs in M have made roughly the same progress. Thus

the total map workload will be reduced by w′m(a) ·k. Then a new job will join the set

M, let it be job Jb, and wm(b) will be added to the total remaining workload RWm

(line 7). Meanwhile, Ja will belong to either set R or R′ and its reduce workload

wr(i) will be added to the total remaining reduce workload RWr (line 8). Variable

θexp in line 9 denotes the expected ratio of map slots at that point. Next, the func-

tion estimates the number of map slots following the configuration ratio θcur when Ja

finishes its map phase. It involves the number of slots freed from the current point.

It is apparent that there is no other map slot released based on the definition of Ja,

thus we just need to estimate the number of available reduce slots during this period.

In Algorithm 3.3.3, we use η to represent this number and estimate its value based

on the following Theorem 3.3.1. In line 11, we predict the number of map slots s′m

using the current configuration ratio, i.e., η · θcur slots will become map slots. Even-

tually, the function compares the estimated ratio to the expected ratio in line 12. If

the difference is over a threshold τ2, we will consider the future expected ratio θexp.

Otherwise, we will continue to use the current configuration ratio θcur.

Theorem 3.3.1 Assume reduce tasks are finished at a rate of one per r time units,

the number (η) of available reduce slots when Ja finishes its remaining map workload

is equal to:
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Algorithm 3.3.3: Function CalExpSm()

1: θcur = RWm

RWm+RWr

2: a = arg mini∈Mw′m(i)
3: if the progress of job Ja < τ1 then
4: return θcur · S
5: else
6: Let job Jb be the next that will start its map phase
7: RW ′

m = RWm − w′m(a)· k + wm(b)
8: RW ′

r = RWr + wr(a)
9: θexp = RW ′

m/(RW
′
r +RW ′

m)
10: calculate η using Theorem 3.3.1
11: s′m = sm + θcur · η

12: if
| s

′
m
S
−θexp|
θexp

> τ2 then return θexp · S
13: else return θcur · S
14: end if

η =

√
m2
a + 4 · c · w′m(a)−ma

2 · c · r
.

where c = θcur
2·r·k , w′m(a) indicates the remaining map workload of Ja, and ma is the

number of map slots assigned to Ja.

Proof Assume job Ja will finish its remaining map workload w′m(a) in x time units.

According to our assumption, a reduce task will be finished every r time units. There-

fore, when Ja finishes its map phase, there will be η = x
r

reduce slots released as well.

Assume that we use θcur to allocate slots and k jobs inM are evenly assigned newly

released slots. Job Ja will continuously obtain x·θcur
r·k new map slots. It is equivalent

to having half of them x·θcur
2·r·k from the beginning. Therefore, the remaining time for

Ja to finish the map phase can be estimated as

x = w′m(a)/(
x · θcur
2 · r · k

+ma),

where ma is the number of map slots currently assigned to Ja. By solving the above

equation, we have

x =

√
m2
a + 4 · c · w′m(a)−ma

2 · c
.
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Thus:

η =

√
m2
a + 4 · c · w′m(a)−ma

2 · c · r
.

3.3.2.3 Assign Tasks to Slots

Once the type of the released slot is determined, FRESH will assign a task to

that slot. Basically, we need to select an active job and let the available map/reduce

slot serve a map/reduce task from that job. In FRESH, we follow the basic idea

in Fair scheduler but use the new overall fairness metric instead: calculate the

resource consumption for each job based on Eq.(3.1) and choose the job with the

most deficiency of overall fairness.

Algorithm 3.3.4: Assign a Task to a Slot

1: Initial: C = {}, now ← current time in system
2: if the slot is configured for map tasks then C ←M
3: else C ← R
4: for each job Ji ∈ C do
5: totali = 0
6: for each task j in job Ji do
7: if task j is finished then ej ← fj − sj
8: else if task j is running then ej ← now − sj
9: else ej ← 0

10: totali = totali + ej
11: end for
12: ri = totali

now−Ti
13: end for
14: s = arg mini∈A ri
15: assign a task of job Js to the slot

Algorithm 3.3.4 illustrates our solution in FRESH for assigning a task to an

available slot. We use C to indicate a set of candidate jobs. Initially, C is empty and

we use variable now to indicate the current time. When a slot is configured to serve

map tasks (using Algorithm 3.3.2), C is a copy of M. Otherwise, C is a copy of R

(lines 2–3). The outer loop (lines 4–11) then calculates the resource consumption for

each job in C at the current time. Variable totali, initialized as 0 in line 5, is used
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to record the total execution time for all finished and running tasks in job Ji (lines

6–10). We use ej to denote the execution time of task j. If task j has been finished,

its execution time ej is the difference between its finish time fj and its start time sj

(line 7). If task j is still running, then ej is equal to the current time now deducted

by its start time sj (line 8). Once the total execution time for job Ji is obtained,

we get the resources consumption ri by normalizing the total execution time totali

by the duration between the current time and the start time of job Ji (Ti), as shown

in line 11. Finally, the job with the minimum resource consumption is chosen to be

served by the available slot.

3.4 Performance Evaluation

In this section, we evaluate the performance of FRESH and compare it with other

alternative schemes. We use FRESH-static and FRESH-dynamic to represent our

static slot configuration and dynamic slot configuration respectively.

3.4.1 Experimental Setup and Workloads

First, we introduce our implementation details, the cluster setting and the work-

load for the evaluation.

Implementation

We have implemented FRESH on Hadoop version 0.20.2. For FRESH-static,

we develop an external program to derive the best slot setting and apply it to the

Hadoop configuration file. The Hadoop system itself is not modified for FRESH-

static. To implement FRESH-dynamic, we have added a few new components to

Hadoop. First, we implement the admission control policy with the parameter k, i.e.,

at most k jobs are allowed to be concurrently running in map phase or in reduce

phase. Second, we create two new modules in JobTracker. One module updates the

statistical information such as the average execution time of a task, and estimates
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the remaining workload of each active job. The other module is designed to configure

a free slot to be a map slot or a reduce slot and assign a task to it according to the

algorithms in section 3.3.2. The two threshold parameters in Algorithm 3.3.3 are set

as τ1 = 0.8 and τ2 = 0.6. We have tested with different values and found that the

performance is close when τ1 ∈ [0.7, 0.9] and τ2 ∈ [0.5, 0.7]. Due to the page limit,

we omit the discussion about these two heuristic values. In addition, job profiles

(execution time of tasks) are generated based on the experimental results when a job

is individually executed. However, we randomly introduce ±30% bias to the measured

execution time and use them as the job profiles representing rough estimates.

3.4.1.1 Hadoop Cluster

All the experiments are conducted on Amazon AWS cloud computing platform.

We create a Hadoop clusters consisting of 11 m1.xlarge Amazon EC2 instances [25],

one master node and 10 slave nodes. Each node is set to have 4 slots since an m1.xlarge

instance at Amazon EC2 has 4 virtual cores. Totally, there are S = 40 slots in the

cluster. In addition, to represent the scalability of FRESH, Fig. 3.10 shows a set of

experiments in a larger cluster which doubles the slave nodes, i.e., one master node

and 20 slave nodes with S = 80 slots totally.

3.4.1.2 Workloads

Our workloads for evaluation consider general Hadoop benchmarks with large

datasets as the input. In particular, four datasets are used in our experiments includ-

ing 4GB/8GB wiki category links data, and 4GB/8GB movie rating data. The wiki

data includes the information about wiki page categories and the movie rating data

is the user rating information. We choose the following six Hadoop benchmarks from

Purdue MapReduce Benchmarks Suite [26] to evaluate the performance.

• Classification: Take the movie rating data as input and classify the movies

based on their ratings.
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• Invertedindex: Take a list of Wikipedia documents as input and generate word

to document indexing.

• Wordcount: Take a list of Wikipedia documents as input and count the occur-

rences of each word.

• Grep: Take a list of Wikipedia documents as input and search for a pattern in

the files.

• Histogram Rating: Generate a histogram of the movie rating data (with 5

bins).

• Histogram Movies: Generate a histogram of the movie rating data (with 8

bins).

3.4.2 Performance Evaluation

In this subsection, we present the performance of FRESH and compare to other

solutions. Given a batch of MapReduce jobs, our major performance metrics are

makespan, i.e., the finish time of the last job, and fairness among all jobs. We mainly

compare to the conventional Hadoop system with the Fair scheduler and static

slot configuration. In our setting, each slave has 4 slots, thus there are three possible

static settings in conventional Hadoop, 1 map slot/3 reduce slots, 2 map slots/2

reduce slots, and 3 map slots/1 reduce slot. We use Fair-1:3, Fair-2:2, and Fair-3:1

to represent these three settings respectively.

We have conducted two categories of tests with different job workloads, simple

workloads consist of the same type of jobs (selected from the six MapReduce bench-

marks), and mixed workloads represent a set of hybrid jobs. In the reset of this

subsection, we separately present the evaluation results with these two categories of

workloads.
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3.4.2.1 Performance with Simple Workloads

For testing simple workloads, we generate 10 Hadoop jobs for each of the above

6 benchmarks. Every set of 10 jobs share the same input data set and they are

consecutively submitted to the Hadoop cluster with an interval of 2 seconds. In

addition, we have tested different values of k to show the effect of the admission

control policy, particularly k = 1, 3, 5, 10.

Fig. 3.3 shows the performance of the makespan. First, we observe that in conven-

tional Hadoop, the best performance is achieved mostly when k = 1, i.e., only one job

in map and reduce phase which is equivalent to FIFO(First-In-First-Out) scheduler.

It indicates that while improving the fairness, the Fair scheduler sacrifices the

makespan of a set of jobs. The major cause is the resource contention among jobs

which prolongs the execution of each task. Our solution, FRESH-static performs no

worse than the best setting with Fair scheduler. In some workload such as “Clas-

sification”, the improvement is adequate. In addition, FRESH-dynamic always yields

a significant improvement in all the tested settings. For example, FRESH-Dynamic

improves in average about 32.75% in makespan compared to the Fair scheduler

with slot ratio 2:2. In addition, our dynamic slot configuration mitigates the effect of

different values of k, thus holding a relatively flat curve in Fig. 3.3.

Fig. 3.4 shows the overall fairness designed in section. 3.2 during the same ex-

periments. In most of the cases, the fairness value is a increasing function on k.

Especially when k = 10, where all jobs are allowed to be concurrently executed (no

admission control), almost all settings obtain a good fairness value. Since all jobs are

from the same benchmark in simple workload, they finish their map phases in wave

and enter the reduce phase roughly in the same time. Thus the Fair scheduler

performs well in this case (k=10). Overall, FRESH-Dynamic outperforms all other

schemes and achieves very-close-to-1 fairness value even when k = 3 or k = 5.
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3.4.2.2 Performance with Mixed Workloads

Additionally, we evaluate the performance with mixed workloads consisting of

different benchmarks. We specifically form five sets (Set A to Set E) of mixed jobs

whose details will be introduced when we present the evaluation results. For mixed

workloads, the order of the jobs has a big impact on the performance. In our ex-

periments, after generating all the jobs, we conduct the Johnsons’s algorithm [27],

which can build an optimal two-stage job schedule, to determine the order, i.e., the

workload for evaluation is a ordered list of mixed jobs.

Our mixed workloads are specified as follows. Set A∼C contain equal number of

jobs from every benchmark. The details of Set A are listed in the following Table 3.1.

It has two jobs from each benchmark, one job uses 4G data set and the other uses

8G dataset. Set B is a smaller workload, with one job from each benchmark, and all

jobs use 8G dataset. In addition, Set C represent a large workload which doubles the

workload of Set A, i.e., 4 jobs from each benchmark.

Table 3.1: Set A: 12 mixed jobs

JobID Benchmark Dataset Map # Reduce #
01 Classification 8GB Movie Rating 270 250
02 Classification 4GB Movie Rating 129 120
03 Invertedindex 8GB Wikipedia 256 250
04 Invertedindex 4GB Wikipedia 128 120
05 Wordcount 8GB Wikipedia 256 200
06 Wordcount 4GB Wikipedia 128 100
07 Grep[a-g][a-z]* 8GB Wikipedia 270 250
08 Grep[a-g][a-z]* 4GB Wikipedia 128 100
09 Histogram ratings 8GB Movie Rating 270 250
10 Histogram ratings 4GB Movie Rating 129 120
11 Histogram movies 8GB Movie Rating 270 200
12 Histogram movies 4GB Movie Rating 129 100

In addition, we create another two sets of jobs (Set D and Set E) to represent

map-intensive and reduce-intensive workloads. Based on our experiments with sim-

ple workloads, benchmark “Inverted Index” and “Grep” are reduce-intensive, and
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“Classification” and “Histogram Rating” are map-intensive. Thus, we set 12 jobs in

Set D with 8 jobs from map-intensive benchmarks and 12 jobs in Set E with 8 jobs

from reduce-intensive benchmarks.

Table 3.2: Set D: 12 map-intensive mixed jobs

Benchmark Job # Dataset Map # Reduce #
Classification 2 8GB Movie Rating Data 270 250
Classification 2 4GB Movie Rating Data 129 120
Wordcount 1 8GB Wikipedia 256 200
Wordcount 1 4GB Wikipedia 128 100

Histogram ratings 2 8GB Movie Rating Data 270 250
Histogram ratings 2 4GB Movie Rating Data 129 120
Histogram movies 1 8GB Movie Rating Data 270 200
Histogram movies 1 4GB Movie Rating Data 129 100

Table 3.3: Set E: 12 reduce-intensive mixed jobs

Benchmark Job # Dataset Map # Reduce #
Invertedindex 2 8GB Wikipedia 256 250
Invertedindex 2 4GB Wikipedia 128 120

Wordcount 1 8GB Wikipedia 256 200
Wordcount 1 4GB Wikipedia 128 100

Grep[a-g][a-z]* 2 8GB Wikipedia 270 250
Grep[a-g][a-z]* 2 4GB Wikipedia 128 100

Histogram movies 1 8GB Movie Rating Data 270 200
Histogram movies 1 4GB Movie Rating Data 129 100

First, Fig. 3.5 shows the makespan and the overall fairness with Set A and dif-

ferent values of k. For the makespan, FRESH-dynamic is always superior to Fair

scheduler with static slot configurations. The best performance in the makespan

of Fair scheduler is achieved when the ratio of map slots to reduce slots is 2:2

(Fair-2:2). Compare to Fair-2:2, FRESH-dynamic still improves the makespan by

27.62% when k = 5. Compared to the performance of the overall fairness with simple

workload, the Fair scheduler performs much worse with the mixed workloads (the

best value is around 0.8) because diverse jobs finish their map phases at different
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time points. On the other hand, FRESH-Dynamic significantly improves the overall

fairness, especially when k ≥ 5 (with fairness values around 0.95). However, conven-

tional Fair scheduler yields much lower fairness values with the mixed workloads

(the best value is around 0.8). handle the overall fairness with different values of k.

When k is greater than 1, FRESH achieves much better fairness than Fair scheduler.

Fig. 3.6 illustrates the tasks execution and slots assignments. Different colors

denote different jobs in the set. The axis y indicates the slot index, where slot 1∼40

are all possible map slots and slot 41 ∼ 80 are all possible reduce slots in the cluster.

Recall that there are totally 40 slots in the cluster. The entire execution process

can be divided into three stages. The first stage is from the beginning to about 650

seconds. As no job finishes its map phase and no reduce task is available, all slots are

assigned to map phase. The second stage is from 650 seconds to 1500 seconds. After

the first job finishes its map phase, FRESH-dynamic starts to leverage the number of

map slots and reduce slots in the cluster according to the total remaining workloads

in map phase and reduce phase. In the beginning of this stage (around 650 seconds),

only a few slots are assigned as reduce slots, while most slots are still occupied by

map tasks since the total remaining workload in map phase is heavier. Starting from

about 800 seconds to 1000 seconds, the number of map slots becomes similar to the

number of reduce slots as the remaining workloads in map phase and reduce phase are

getting close. After 1000 seconds, the remaining workload eventually dominates, and

more slots are assigned to reduce phase. The third stage is the last 300 seconds in the

execution, where all map tasks are finished and all slots are reduce slots. Furthermore,

Fig. 3.7 shows the overall fairness during the experiment with Set A.

In addition, we present the results with Set B∼E. We test FRESH-Dynamic with

three different settings of k: only one job, half of the jobs, and all the jobs, repre-

sented by FRESH:1, FRESH:half, and FRESH:all respectively. We compare to the

conventional Hadoop with FIFO scheduler, Capacity scheduler [28] and Fair sched-
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Table 3.4: Set B: 6 mixed jobs

JobID Benchmark Dataset Map # Reduce #
01 Classification 8GB Movie Rating Data 270 250
02 Invertedindex 8GB Wikipedia 256 250
03 Wordcount 8GB Wikipedia 256 200
04 Grep[a-g][a-z]* 8GB Wikipedia 270 250
05 Histogram ratings 8GB Movie Rating Data 270 250
06 Histogram movies 8GB Movie Rating Data 270 200

Table 3.5: Set C: 24 mixed jobs

Benchmark Job # Dataset Map # Reduce #
Classification 2 8GB Movie Rating Data 270 250
Classification 2 4GB Movie Rating Data 129 120
Invertedindex 2 8GB Wikipedia 256 250
Invertedindex 2 4GB Wikipedia 128 120

Wordcount 2 8GB Wikipedia 256 200
Wordcount 2 4GB Wikipedia 128 100

Grep[a-g][a-z]* 2 8GB Wikipedia 270 250
Grep[a-g][a-z]* 2 4GB Wikipedia 128 100

Histogram ratings 2 8GB Movie Rating Data 270 250
Histogram ratings 2 4GB Movie Rating Data 129 120
Histogram movies 2 8GB Movie Rating Data 270 200
Histogram movies 2 4GB Movie Rating Data 129 100

uler. For Capacity scheduler, we create two queues and each queue has the same

number of task slots. Each queue can obtain at most 90% slots in the cluster. Also,

we separate jobs equally to these queues. The test results are illustrated in Fig. 3.8

and Fig. 3.9. In Fig. 3.8, in most of the cases, Fair scheduler yields the worst

performance of makespan with different sets of jobs. On average, FRESH improves

31.32% of makespan compared to the Fair scheduler and 25.1% to Capacity sched-

uler. When a set of jobs is neither map-intensive or reduce-intensive (Set B and Set

C), FIFO performs as well as FRESH. However, when workloads in map and reduce

phases are unbalanced (Set D and Set E), FRESH improves 24.47% of makespan

compared to FIFO. Overall, FRESH achieves an excellent and stable makespan per-
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formance with different sets of jobs. In Fig. 3.9, FIFO apparently yields the worst

performance in fairness. When the number of concurrently running jobs k is greater

than 1, the performance of FRESH outperforms the Fair scheduler with above

0.95 fairness values in all the tested cases. Especially, in the experiment with Set

B, FRESH achieves almost 1 fairness. Finally, we test Set B on a large cluster with

20 slave nodes and the results are shown in Fig. 3.10. We can observe a consistent

performance gain from FRESH as in the smaller cluster of 10 slave nodes. Compared

to Fair scheduler, FRESH reduces the makespan by 31.1%. In summary, FRESH

yields a significant improvement in both makespan and fairness under both simple

and mixed workloads.

3.5 Related Work

Job scheduling is an important direction for improving the performance of a

Hadoop system. The default FIFO scheduler cannot work fairly in a shared clus-

ter with multiple users and a variety of jobs. Fair scheduler [29] and Capacity

Scheduler [28] are widely used to ensure each job can get a proper share of the avail-

able resources. Both of them consider fairness separately in map phase and reduce

phase, but not the overall executions of jobs.

To improve the performance, Quincy [17] and Delay Scheduling [15] optimize

data locality in the case of Fair scheduler. But these techniques trade fairness off

against data locality. Coupling Scheduler in [30, 31, 32] aims to mitigate the starva-

tion of reduce slots in Fair scheduler and analyze the performance by modeling

the fundamental scheduling characteristics for MapReduce. W. Wang [33] presents

a new queueing architecture and proposes a map task scheduling to strike the right

balance between data-locality and load-balancing. Another category of schedulers

consider user-level goals while improving the performance. ARIA [18] allocates the

appropriate amounts of resources to the jobs to meet the predefined deadline. iShuf-
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fle [34] separates shuffle phase from reduce tasks and provides a platform service to

manage and schedule data output from map phase. However, all these techniques are

still based on static slot configurations.

Another important direction to improve performance in Hadoop is the resource

aware scheduling. RAS [22] aims at improving resource utilization across machines

and meeting jobs completion deadline. MROrchestrator [23] introduces an approach

to detect task resource utilization at each TaskTracker as a local resource manager

and allocate resources to tasks at the JobTracker as a global resource manager. Fur-

thermore, some other work is focused on heterogeneous environments. M. Zaharia et

al. proposes a LATE scheduler [35] to stop unnecessary speculative executions in

a heterogeneous Hadoop cluster. LsPS [36] uses the present heterogeneous job size

patterns to tune the scheduling schemes.

Finally, we have proposed TuMM [37, 38] in our prior work which dynamically

adjusts slots configurations in Hadoop based on FIFO. This work, however, consid-

ers concurrent execution of multiple jobs, which is a completely different and more

complicated problem setting. We also include a new objective of fairness in this

work.

3.6 Summary

This work focus on the problem of resource allocation to various stages of multiple

jobs. We choose Hadoop MapReduce as the representative. We study a Hadoop

cluster serving a batch of MapReduce jobs. We target on the slot configuration and

task scheduling problems. We develop FRESH, an enhanced version of Hadoop,

which supports both static and dynamic slot configurations. In addition, we present

a novel definition of the overall fairness. Our solution can yield good makespans while

the fairness is also achieved. We have conducted extensive experiments with various
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workloads and settings. FRESH shows a significant improvement on both makespan

and fairness compared to a conventional Hadoop system.
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Figure 3.3: Makespan of simple workloads under FRESH and Fair scheduler
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Figure 3.4: Fairness of of simple workloads under FRESH and Fair scheduler
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Figure 3.6: Set A tasks execution and slots assignments with FRESH-dynamic(k = 5)
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Figure 3.7: Fairness of set A with different values of k
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Figure 3.8: Makespan of set B∼E (with 10 slave nodes)
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Figure 3.9: Fairness of set B∼E (with 10 slave nodes)

FIFO Fair FRESH:1 FRESH:12FRESH:24
0

500

1000

1500

2000

2500

M
a
k
e
s
p
a
n
 (

S
e
c
)

FIFO Fair FRESH:1 FRESH:12FRESH:24
0

0.2

0.4

0.6

0.8

1

F
a
ir
n
e
s
s

Figure 3.10: Makespan and fairness of set B with 20 slave nodes
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CHAPTER 4

DEPENDENCY-BASED RESOURCE ALLOCATION

In this chapter, we investigate the dependency between two active consecutive

stages of every job and aim to improve the efficiency of big data computing sys-

tems by optimizing the overlap between the consecutive stages. A new scheduling

mechanism called OMO is developed to achieve this target. In OMO, we develop

a new prediction module to estimate the execution time of each stage. Based on

the prediction results, OMO dynamically adjusts the starting of the later stage of

every job to achieve a good alignment of the two consecutive stages. We also consider

Hadoop MapReduce as a representative and implement OMO as a plug-in sched-

uler in Hadoop. In the following chapter, we introduce the detailed motivation and

solution of OMO. In the evaluation section, simulation results are shown to prove

the validation of our prediction mechanism and experimental results are illustrated

to show the performance improvement of OMO compared to default schedulers in

Hadoop and our work FRESH.

4.1 Background and Motivation

This work aims to develop an efficient scheduling scheme in a MapReduce cluster

to improve the resource utilization and reduce the makespan (i.e., the total comple-

tion length) of a given set of jobs. Given a limited set of resources in a MapReduce

cluster, scheduling algorithm is crucial to the performance, especially when concur-

rently executing a batch of MapReduce jobs. Without an appropriate management,

the available resources may not be efficiently utilized, which leads to a prolonged
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finish time of the jobs. The scheduling in MapReduce, however, is quite different

from the traditional job scheduling in the previous work. MapReduce is composed

of ‘map’ phase and ‘reduce’ phase, where the intermediate output of ‘map’ serves

as the input of ‘reduce’. A typical MapReduce job consists of multiple map tasks

and reduce tasks. Thus, the scheduling algorithm in MapReduce needs to handle

both job-level and task-level resource management. In addition, a complicated de-

pendency exists between map tasks and reduce tasks of the same job. First, reduce

tasks need the output of map tasks, thus cannot be finished before the map phase is

done. However, reduce tasks can start earlier before the completion of the map phase

(for transferring/shuffling the intermediate data). These factors make the scheduling

design extremely challenging yet the existing products have not thoroughly addressed

these issues.

This work develops a new strategy, named OMO, which particularly aims to op-

timize the overlap between map and reduce phases. We observe that this overlapping

period plays an important role in the MapReduce process especially when the map

phase generates a large volume data to be shuffled. A good alignment of the map and

reduce phases can reduce the job execution time. Compared to the prior work, our

solution considers more dynamic factors at the runtime and allocates the resources

based on the predication of the future task execution and resource availability. Specif-

ically, our solution OMO includes two new techniques, lazy start of reduce tasks and

batch finish of map tasks. The first technique attempts to find the best timing to

start reduce tasks so that there is sufficient time for reduce tasks to shuffle the inter-

mediate data while slots are allocated to serve map tasks as much as possible. We

introduce a novel predication model to estimate the resource availability in the future

which further helps make scheduling decision. The second technique is to increase

the execution priority of the tailing map tasks in order to finish them in a wave.

Different from the prior work that prefers wave-like execution throughout the map
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phase, we only focus on the last batch of the map tasks. Both techniques catch the

characteristics of the overlap in a MapReduce process and achieve a good alignment

of the map and reduce phases.

In summary, the contributions of this work include (1) We first develop a new

monitoring component that records the amount of the resources released in the past.

This information serves the new techniques in our solution to predict the resource

release frequency in the future. (2) We develop a new technique, lazy start of reduce

tasks, that estimates the execution time of the map phase and the shuffling step of the

reduce phase, and derives the best time to start the reduce phase in order to minimize

the gap from the end of the map phase to the end of the shuffling phase. (3) We

develop a new technique, batch finish of map tasks, to mitigate the extra overhead

caused by the misalignment of the tailing map tasks. (4) We present a complete

implementation on a Hadoop platform. Experiment-based evaluation validates our

design and shows a significant improvement on performance.

4.2 Problem Formulation

In this work, we consider a Hadoop cluster as the MapReduce service platform.

Currently, there are two branches of Hadoop frameworks available, Hadoop [2] and

Hadoop YARN [3]. Our solution and implementation are based on the first genera-

tion of Hadoop [2]. But the techniques we present can be easily extend to Hadoop

YARN [3]. We will also compare the performance with Hadoop YARN in our evalu-

ation (Section 4.4).
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Table 4.1: Notations

n/K/S # of jobs / # of active jobs / # of slots in the cluster
Ji/mi/ri i-th job / number of its map tasks / number of its reduce

tasks
Fo observed slot release frequency
Ao observed # of available slots
Fe estimated slot release frequency
Ae estimated # of available slots
Tm execution time of a map task
Ts execution time of the shuffling phase
Tw length of a historical window
Rt # of slots released in the t-window
ft slot release frequency in the t-th window, ft = Rt/Tw
at # of available slots in t-th window
m′i # of pending map tasks of job Ji
α gap from the end of map phase to the end of shuffling

phase
d size of data generated by one map task
B network bandwidth

In our problem setting, we consider that a Hadoop cluster consists of a master

node and multiple slave nodes. Each node is configured with multiple slots which

indicate its capacity of serving tasks. A slot can be set as a map slot or reduce

slot to serve one map task or reduce task, respectively. We assume there are totally

S slots and the cluster has received a batch of n jobs for processing. J represents

the set of jobs, J={J1,J2,...,Jn}. Each job Ji is configured with mi map tasks and

ri reduce tasks. In a traditional Hadoop system, the cluster administrator has to

specify the numbers of map slots and reduce slots in the cluster. A map/reduce slot

is dedicated to serve map/reduce tasks throughout the lifetime of the cluster. In

this work, however, we adopt a dynamic slot configuration that we have developed in

our prior work [37, 12], where a slot can be set as a map slot or reduce slot during

the job execution based on the scheduler’s decision. Therefore, there is no need to

configure the number of map slots and reduce slots before launching the cluster.
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The system will dynamically allocate slots to serve map and reduce tasks on-the-

fly. We omit the details of its implementation in this work because our focus is a

different scheduling strategy based on the dynamic slot configuration. Essentially,

our objective is to develop a scheduling algorithm that assigns tasks to available slots

in order to minimize the makespan of the given set of MapReduce jobs. Table 4.1

lists the notations we use in the rest of this work.

4.3 Our Solution : OMO

In this section, we present our solution eSplash which aims to reduce the execu-

tion time of MapReduce jobs. We develop two new techniques in our solution, lazy

start of reduce tasks and batch finish of map tasks. In the rest of this section, we

first describe a monitor module that serves as a building block for both techniques.

And then, we introduce these two techniques individually and present a complete

algorithm that integrate both of them. The entire solution is mainly developed as a

new Hadoop scheduler. The implementation details will be introduced in Section 4.4.

4.3.1 Slot Release Frequency

Both of our new techniques rely on an important parameter which is the estimated

frequency of slot release in the system. For a Hadoop scheduler making decisions of

resource allocation, this parameter represents the system resource availability in the

future. We find that it is a critical factor for the system performance, but neglected

by all the prior work. While the details will be discussed in the following subsection,

we first present the basic method we adopt to estimate the slot release frequency.

We define two parameters Fo and Fe to represent the observed slot release fre-

quency and estimated slot release frequency respectively, i.e., Fo or Fe slots released

per time unit. Fo is a measurement value obtained by monitoring the job execution

and Fe is the estimation of the future release frequency that will be used by the
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scheduler. In addition, we introduce a new concept of available slots to describe

the slots that could be possibly released in the near future. Available slots include all

the slots serving map tasks and the slots serving a job’s reduce tasks if the job’s map

phase has be finished. In other words, the available slots exclude the slots serving the

reduce tasks of a job with unfinished map tasks in which case the release time of the

slots is undetermined. In our solution, we suppose that for a particular circumstance,

the slot release frequency is proportional to the number of available slots.

Specifically, we monitor a historic window to measure the number of released slots

and the number of available slots in the window indicated by Rt and at (for the t-th

window), respectively. Assume that the window size is Tw seconds. The slot release

frequency in this window will be ft = Rt

Tw
and the ratio between slot release frequency

and the number of available slots is ft
at

= Rt

at·Tw . In our design intuition, this ratio is

supposed to be consistent over a certain period. For each window t, we thus record

the (ft, at) pairs and derive the average value of the slot release frequency Fo and

the average number of available slots denoted by Ao. We use the common method of

exponential moving average (EMA) to catch the dynamics during the execution,

Fo(t) = α · f(t) + (1− α) · Fo(t− 1),

Ao(t) = α · a(t) + (1− α) · Ao(t− 1),

where Fo(t) or Ao(t) is the value of Fo or Ao after the t-th window and Fo(t − 1) or

Ao(t− 1) indicates the old value of Fo or Ao after the (t− 1)-th window.

When estimating Fe for a future scenario, we first need to determine the number

of available slots (Ae) in that scenario. Then, based on the assumption that the slot

releasing frequency is proportional to the number of available slots, we can calculate

Fe as

Fe =
Fo · Ae
Ao

. (4.1)
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This component of estimating the slot release frequency will be used by both of

our new techniques which will be presented later in this section. We will introduce

more details, such as how to obtain the value of Ae, in the algorithm descriptions.

4.3.2 Lazy Start of Reduce Tasks

The goal of our first technique is to optimize the start time of the reduce phase

of the MapReduce jobs. We first show how a traditional Hadoop system controls the

overlapping period and give the motivation of our design. Then, we will introduce

the intuitions of our solution followed by the details of the algorithm.

4.3.2.1 Motivation

One important feature of MapReduce jobs is the overlap between the map and

reduce phase. The reduce phase usually starts before the map phase is finished, i.e.,

some reduce tasks may be concurrently running with the map tasks of the same job.

The benefit of this design is to allow the reduce tasks to shuffle (i.e., prepare) the

intermediate data (partially) generated by map tasks before the entire map phase is

done to save the execution time of the reduce tasks. In Hadoop, a system parameter

slowstart can be configured to indicate when to start the reduce tasks. Specifically,

slowstart is a fractional value representing the threshold for the map phase’s progress

exceeding which reduce tasks will be allowed to execute.

Table 4.2 shows some simplified experimental results of execution times with dif-

ferent values of slowstart. First, we conduct one Terasort job in a Hadoop cluster

with two slave nodes (Amazon AWS m3.xlarge instances) and each slave node is con-

figured with 2 map slots and 2 reduce slots. The input data is 8GB wiki category

links data and there are 80 map tasks and 4 reduce tasks created in the job. Then

we conduct 3 Terasort jobs with 10 slave nodes to show the results of multiple jobs.

Apparently, setting slowstart to 1 yields the worst performance because all data

shuffling happens after the map phase is finished. For the singe job execution, there
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Table 4.2: Execution times of 1 and 3 Terasort jobs with different slowstart values in
traditional Hadoop systems.

Slowstart 0.5 0.6 0.7 0.8 0.9 1
Execution time of 1 job 309 307 311 312 320 336
Execution time of 3 jobs 291 259 275 272 283 317

is no big difference in our experiments when slowstart is less than 1. The reduce

slots have been reserved to serve reduce tasks and there is almost no disadvantages

for starting reduce tasks early. When executing multiple jobs, however, early start

of reduce tasks incurs performance penalty because the occupied reduce slots cannot

serve reduce tasks of other jobs and the running reduce tasks will be idle most of

time, waiting for more intermediate data from map tasks if started too early.
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Figure 4.1: Slot allocation of one Terasort job with dynamic slot configuration (slowstart
= 1).
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Figure 4.2: Slot allocation of one Terasort job with dynamic slot configuration (slowstart
= 0.6).
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In our solution with dynamic slot configuration, when to start reduce tasks of a

job becomes more critical to the performance even for the single job execution. In

our setting, all the pre-configured slots in the cluster serve as a resource pool, and

they can be arbitrarily set as map or reduce slots during the execution of jobs. If we

start reduce tasks too early, it will not only affect the reduce progress of other jobs,

but also the execution of map tasks because those occupied slots could otherwise

serve map tasks. We run the same experiments as the ones above with dynamic

slot configuration and the execution time results are shown in Table 4.3. Fig. 4.1 and

Fig. 4.2 additionally illustrates the slot allocation during the execution of one Terasort

job with two different values of slowstart. We observe that setting the slowstart value

too high or too low will both degrade the system performance. With both 1 and 3

jobs, the optimal value of slowstart in our tests is 0.6.

Table 4.3: Execution times of 1 and 3 Terasort jobs with different slowstart values and
dynamic slot configuration.

Slowstart 0.5 0.6 0.7 0.8 0.9 1
Execution time of 1 job 287 277 278 299 306 316
Execution time of 3 jobs 255 234 262 310 335 358

In practice, it is extremely hard for a user to specify the value of slowstart before

launching the cluster. And the pre-configured value will not be the optimal for various

job workloads. In this work, we develop a new technical, lazy start of reduce tasks,

to improve the performance. The basic idea is to postpone the start of reduce phase

as much as possible until data shuffling will incur additional delay in the process.

Ideally, a perfect alignment of the map and reduce phases is that the last reduce task

finishes the data shuffling right after the last map task is completed. However, simply

using the slowstart threshold is difficult to achieve the best performance because it

depends on not only the progress of the map phase but also other factors such as the

map task execution time and shuffling time. In the rest of this subsection, we present
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our solution that determines the start time of reduce tasks during the execution of

the job. We first introduce an algorithm for single job execution to illustrate our

design intuition, and then extend it for multiple job execution.

4.3.2.2 Single Job

The original design of the slowstart parameter in Hadoop indicates that the

progress of the map phase is certainly important for deciding when to start the first

reduce task. The best start time of the reduce phase, however, also depends on the

following factors. (1) Shuffling time: This is determined by the size of intermediate

data generated by map tasks and the network bandwidth. Intuitively, a job generat-

ing more intermediate data after the map phase needs a longer shuffling time in its

reduce phase. Thus, we should start the reduce tasks earlier. The intermediate data

size is generally proportional to the progress of the map phase. Thus, by monitoring

the finished map tasks, we can obtain a good estimation of the final data size. (2)

Map task executing time: The benefit of starting reduce tasks before the end of the

map phase is to overlap the shuffling in the reduce phase with the execution of the

rest of map tasks (the last a few waves of map tasks). Therefore, given a certain

shuffling time, if each map task of a job requires longer time to finish, then we prefer

to start the reduce phase later. (3) Frequency of slot release: How frequently a slot

is released and becomes available in the cluster is also an important factor. For both

map and reduce phases, the tailing tasks have the critical impact on the overlapping

period. Once we specify a target start time for the last reduce task, we can use the

information of slot release frequency to derive when we should start the reduce phase.

Our solution monitors the above three parameters to decide the start time of the

reduce phase. Before introducing the detailed algorithm, we first present and prove

a design principal.
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Figure 4.3: Illustration of the proof.

Principle 4.3.1 Once the reduce phase of a job is started, all reduce tasks of the job

should be consecutively executed in order to minimize the job execution time.

Proof We can prove this principle by contradiction. Assume that the best arrange

does not follow this principle, i.e., some map tasks are launched after the first reduce

task is started, and before the last few reduce tasks are started. We identify the last

such map tasks, e.g., task B in Fig. 4.3, and the first reduce task, e.g., task A in

Fig. 4.3. Then, we form another arrangement by switching these two tasks and show

that the performance is no worse than the original arrangement. After the switch,

the finish time of the map phase could become earlier because task A occupies a slot

at a later time point and that slot could serve map tasks before task A is started.

Meanwhile, the shuffling performance keeps the same, i.e., the gap from the end of

the map phase to the end of the shuffling has no change because the bottleneck of the

shuffling is the last reduce task, i.e., task C in Fig. 4.3. Therefore, if we consider the

end of the shuffling phase as the performance indicator, the new arrangement after

the switch is no worse than the original solution. We can keep applying the same
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switch on new arrangements and eventually get a solution where reduce tasks are

consecutively executed with no interruption of map tasks.

Based on the above principal, we analyze the gap from the ends of the map phase

to the shuffling phase and derive the best start time of the reduce phase to minimize

this gap. Assume the running job has m map and r reduce tasks. When a slot

becomes available, our scheduler needs to assign it to a new task. When the reduce

phase has not started, there are just two options, to serve a map task or to serve a

reduce task which starts the reduce phase.

Let α be the time gap from the end of the map phase to the end of the shuffling

stage (see Fig. 4.4) and assume that variable x represents the number of pending map

tasks. We first derive α as a function x and then decide the time to start the reduce

phase. Additionally, we use Tm to indicate the average execution time of a map task,

and Ts to represent the estimated shuffling time of the last reduce task.

Time

Map Task

Reduce Task

shuffling phase

... ...

shuffling phase

... ...

First reduce task

Last reduce task

Last map task

Ts

Tm

1/Fe

1/Fe

∝

Figure 4.4: Lazy Start of Reduce Tasks: illustrating the alignment of map phase and
shuffling phase.

Since all reduce tasks are executed consecutively and reduce task slots will not

be released until the end of a job, after the last reduce task is assigned, the number

of available slots becomes S − r. Therefore, the estimated frequency of slot release
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is decreased to Fe = Fo·(S−r)
S

. Assuming the slots to be released at a constant rate

with an interval of 1
Fe

between any two consecutive releases, the execution time for

the remaining map tasks can be expressed as x
Fe

+ Tm (see Fig. 4.4). Therefore, we

express α as a function of x:

α = Ts − (
x

Fe
+ Tm) = Ts − (

x · S
Fo · (S − r)

+ Tm), (4.2)

where Fo is a measured value as described in Section 4.3.2 and Tm records the average

execution of a map task. Both Fo and Tm are updated once a task is finished. To

estimate Ts, we measure the average size of the intermediate data generated by a

map task (indicated by d) and the network bandwidth in the cluster (indicated by

B). Thus, Ts can be expressed as:

Ts =
d ·m
B · r

During the execution of a job, our scheduler forms α as the function of x and then

calculates the values with different x whenever a slot is released. When the actual

number of the pending map tasks m′ satisfies the following equation, the reduce phase

will be started, i.e., the first reduce task will be assigned to the current available slot:

m′ = arg min
x∈[m′,m]

α.

Multiple Jobs Now, we extend our design for serving multiple MapReduce jobs.

Our scheduler is built upon Fair scheduler which evenly distributes slots to all

the active jobs. Specifically, if there are S slots in the cluster and K jobs running

concurrently, each job can occupy S
K

slots and the effective slot release frequency for

each job is Fo

K
.
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Following Eq. (4.2), we calculate the gap α for each job Ji,

α = Ts(i)− (
xi
Fe

+ Tm(i)),

where xi is the variable representing the number of the pending map tasks of Ji

and parameters Ts(i) and Tm(i) are also specific to Ji. The estimated slot release

frequency Fe can be estimated as

Fo · Ae
Ao ·K

,

where Fo and Ao are common parameters for all the jobs. With multiple jobs running,

Ao may not be the same as S as in the case of single job execution. When calculating

α for Ji, we will use the measured value of Ao. However, the following equation still

holds Ae = Ao − ri, where ri is the number of the reduce tasks in Ji. Therefore,

α = Ts(i)− (
xi · Ao ·K
Fo · (Ao − ri)

+ Tm(i)). (4.3)

Finally, the reduce phase should be started when the number of pending map

tasks m′i satisfies the following equation:

m′i = arg min
x∈[m′

i,mi]
α.

It is possible that multiple jobs satisfy the above equation, in which case our scheduler

will allocate the slot to the job that has occupied the fewest slots among all the

candidates.

The details of our algorithm are shown in Algorithm 4.3.1. Function LazyS-

tartReduce() is supposed to return the index of the job that should start its reduce

phase. If there is no candidate, the function will return “−1”. The variable res

records the set of candidate job indexes. Specifically, lines 1–6 set the number of ac-

tive jobs (K). Lines 7–21 enumerate all the running jobs that have not started their
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reduce phases, and use Eq. (4.3) to determine if they are candidate jobs to start the

reduce phase. Eventually, when there are multiple candidates in res, the algorithm

return the index of the job with the minimum occupied slots (lines 22–27).

Algorithm 4.3.1: Function LazyStartReduce()

1: K = 0, res = {}
2: for i = 1 to n do
3: if Ji is running then
4: K ← K + 1
5: end if
6: end for
7: for i = 1 to n do
8: if Ji is running and has not started reduce phase then

9: αOPT = Ts(i)− (
m′

i·Ao·K
Fo·(Ao−ri) + Tm(i))

10: selected = true
11: for x = m′i + 1 to mi do
12: α = Ts(i)− ( xi·Ao·K

Fo·(Ao−ri) + Tm(i))
13: if α < αOPT then
14: selected=false; break;
15: end if
16: end for
17: if selected == true then
18: res = res+ {i}
19: end if
20: end if
21: end for
22: if res is empty then
23: return −1
24: else
25: return the index of the job in res with the least number of occupied slots
26: end if

4.3.3 Batch Finish of Map Tasks

Our second technique aims to improve the performance of the map phase by

arranging the tailing map tasks to be finished in a batch. In this subsection, we first

show how the alignment of map tasks affects the execution time of a MapReduce job,

and then present our algorithm to improve the performance.
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4.3.3.1 Motivations

In the design of a Hadoop system, the map tasks are expected to finish in waves

to achieve the good performance. The misalignment of map tasks, especially the

tailing map tasks may significantly degrade the overall job execution time. With

a misalignment, the last few pending map tasks will incur an additional round of

execution in the map phase, and the reduce tasks that have been started have to wait

for the finish of these map tasks causing poor utilization of their occupied slots.

In practice, however, map tasks are barely aligned as waves because the number of

map tasks may not be a multiple of the number of the allocated slots. In a traditional

Hadoop system, the number of map slots in the cluster is a system parameter, and

unknown to the user who submits the job. In our solution with dynamic slot configu-

ration, the same problem remains and with no reserved slots for map or reduce tasks,

the number of slots assigned to map tasks is even more uncertain. In addition, when

multiple jobs are concurrently running, the misalignment of map tasks is more serious

because of the heterogeneous execution times of map and reduce tasks and various

scheduling policies. Fig. 4.5 and Fig. 4.6 illustrate a simplified example of executing

one MapReduce job. Assume that each map task can be finished in a time unit and

each reduce task also needs a time unit to finish after its shuffling phase. Fig. 4.5

shows the execution process with 12 map tasks where the map phase is finished with

4 rounds and the total execution time is 5 time units. In Fig. 4.6, however, there is an

additional map task causing an extra round in the map phase. The total execution

time becomes 6 time units, i.e., a 20% increase compared to Fig. 4.5.

Fig. 4.7 shows an experiment with three jobs: terasort, wordcount and k-means

in a Hadoop cluster with 4 slave nodes. Each node has 3 map slots and 1 reduce

slot. The input data of each job is 8GB. There are 32 map tasks in the k-means and

wordcount, and 50 map tasks for the terasort job. The number of reduce task for

each job is 1. These three jobs are running with Fair scheduler and the slowstart
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Figure 4.5: Map tasks are finished in 4 waves

Reduce TaskMap Task

Figure 4.6: The tailing map task incurs an additional round

is set to 0.6. The X-axis is execution time and the Y-axis shows the task slots in the

cluster. Slot 1 to 12 are map slots and 13 to 16 are reduce slots. Apparently, the map

tasks of all three jobs are not well aligned after the first wave.

Therefore, in our solution, we aim to arrange the tailing map tasks in a batch to

address this issue. Our intuition is to let the Hadoop scheduler increase the priority

of the tailing map tasks when assigning tasks to available slots, which may violate its

original policy. The decision depends on the number of pending map tasks and the

estimation of the slot release frequency in the future. Basically, given the number of

the pending map tasks of a job, if the scheduler finds that the cluster will release a

sufficient number of slots in a short time window, it will reserve those future slots to

serve the pending map tasks. The benefit is that the target job’s map phase can be

finished more quickly and the slots occupied by its reduce tasks will become available
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sooner. The downside is a possible delay incurred to other active jobs because those

reserved future slots could otherwise serve them.
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Figure 4.7: Experiment with 3 jobs in a Hadoop cluster with Fair scheduler: Solid lines
represent map tasks and dashed lines represent reduce tasks.

4.3.3.2 Algorithm Design

First of all, the candidate jobs for batch finish of map tasks must have started

their reduce phase. Otherwise, if we apply this technique to the jobs that have not

started their reduce phases, then the result is equivalent to launching their reduce

phases after the map phases without any overlap. Second, for each candidate job, our

scheduler analyzes the benefit and penalty of finishing the pending map tasks in a

batch and then chooses the job which yields the most reward to apply this technique.

Specifically, we examine each job that has started its reduce phase and determine

if the batch finish of its map tasks is appropriate. We first analyze the performance

under regular Fair scheduler and then compare to the case if we finish all the

pending map tasks in a batch. For each job Ji, recall that m′i be the number of

its pending map tasks and ri be the number of reduce tasks. Given the slot release

frequency Fo, a slot will be allocated to job Ji every K
Fo

, where K is the number of

active jobs in the cluster. Under Fair scheduler, Ji will finish its map phase in

tfair time units,

tfair =
K ·m′i
Fo

+ Tm(i). (4.4)
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Meanwhile, other jobs get Fo·(K−1)
K

slots per time unit, thus the total number of slots

that other jobs obtain is

s =
Fo · (K − 1)

K
· tfair = (K − 1) ·m′i +

Fo · (K − 1) · Tm(i)

K
.

Now if we decide to increase the priority of Ji’s pending map tasks and finish them

in batch, then the map phase will be finished in m′i · 1
Fo

+ Tm time unites. After that,

Ji’s reduce slots become available and the slot release frequency will be increased to

Fe = Fo·(Ao+ri)
Ao

. To contribute s slots to other jobs, the time required is

tbatch =
s

Fe
=

s · Ao
Fo · (Ao + ri)

. (4.5)

If tbatch < tfair, then the batch finish of map tasks becomes superior because it

achieves the same scenario, i.e., Ji’s map phase is finished and all the other jobs

get s slots, in a shorter time period. The details are illustrated in Algorithm 4.3.2.

Function BatchFinishMap returns the index of the job that should apply the batch

finish to its pending map tasks. Variable c represents the index of the candidate

job. If there is no such candidate, the function will return “−1”. The algorithm

mainly includes a loop (lines 7–14) that enumerates every active job and calculates

tfair and tbatch to determine if it is worthwhile to apply the technique. Variable max

is defined to temporarily record the current maximum difference between tfair and

tbatch. Eventually, the index of the job with the maximum benefit is returned.
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Algorithm 4.3.2: Function BatchFinishMap ()

1: K = 0,max = 0, c = −1

2: for i = 1 to n do

3: if Ji is running then

4: K ← K + 1

5: end if

6: end for

7: for i = 1 to n do

8: if Ji is running and has started reduce phase then

9: Calculate tfair and tbatch as in Eq. (4.4) and Eq. (4.5)

10: if tbatch < tfair and tfair − tbatch > max then

11: max = tfair − tbatch, c = i

12: end if

13: end if

14: end for

15: return c

4.3.4 Combination of the Two Techniques

Finally, our scheduler integrates our two techniques introduced above into the

baseline fair scheduler for the execution of all the jobs. The challenge in the design is

that there could be conflict between these two techniques. For example, when a slot is

released, the first technique may decide to use this slot to start a job’s reduce phase,

i.e., assigning a reduce task to it, while the second technique may prefer to reserve

the slot as well as the following consecutive slots to finish another job’s pending tasks

in a batch. In our solution, we adopt a simple strategy to solve the issue: when there

is a conflict, we give the technique of lazy start of reduce tasks a higher priority. The

intuition is that when a new job starts its reduce phase, the decision of batch finish
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of map tasks could be affected because there is a new candidate for applying the

technique.

Specifically, we integrate Algorithm 4.3.1, Algorithm 4.3.2, and the Fair sched-

uler in Algorithm 4.3.3. When a slot is released in the cluster, the algorithm first

calls the function LazyStartReduce(). If it selects a job that should start its reduce

phase, the released slot will be assigned to the job’s first reduce task. If the function

LazyStartReduce() does not find a candidate, then the algorithm considers the batch

finish of map tasks. Similarly, if the function BatchFinishMap returns a candidate

job, the released slot will be assigned to serve a pending map task of the job. Fi-

nally, if neither of our new techniques finds a candidate job, our algorithm invokes

the default policy in Fair scheduler.

Algorithm 4.3.3: Slot Allocation

1: i = LazyStartReduce()

2: if i ≥ 0 then

3: Allocate the released slot to Ji’s reduce task

4: else

5: i = BatchFinishMap();

6: if i ≥ 0 then

7: Allocate the released slot to Ji’s map task

8: else

9: i = FairScheduler();

10: Allocate the released slot to Ji

11: end if

12: end if

4.4 Performance Evaluation

In this section, we evaluate the performance of OMO and compare it with other

alternative schemes.
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4.4.1 System Implementation
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Figure 4.8: System implementation

We implemented our new scheduler OMO on Hadoop version 0.20.2 by adding

a set of new components to support our solution. Fig 4.8 shows the details of the

system implementation. The shadow parts are new modules created and other parts

are existing modules in native Hadoop system and recalled by OMO. First, we create

four new modules into JobTracker: the Task Monitor (TM), the Cluster Monitor

(CM), the Execution Predictor (EP) and the Slot Assigner (SA). TM is responsible

for recording the size of the intermediate data created by each map task, the execution

progress of each task, the execution time of each completed task and the numbers of

the finished and pending map/reduce tasks of each job. According to the statistics

from TM and the number of concurrent jobs in the cluster from JobInProgress, CM

collects the number of released slots in the whole cluster in real-time and updates

the slot release frequency dynamically. It is also responsible for collecting the total

intermediate data output by the map phase of each job.

Based on above statistics, EP is responsible to predict the overall slot frequency

of the cluster, the best time point to apply the algorithm of the batch finish of map
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tasks, the remaining execution time of the map phase and the execution time of the

shuffling of each job. Furthermore, the role of SA is to assign a map or reduce task

to every released slot by applying Algorithm 4.3.3 introduced in Section 4.3 with the

information received from EP.

In addition, we have modified the fairness calculation in the traditional Fair

scheduler, where the fairness of map slots and reduce slots are separately consid-

ered. Since we use dynamical slot configuration, a slot does not exclusively belong

to either map or reduce slot category. Therefore, we consider the total number of

the slots assigned to each job, and use it to calculate the deficiency for the Fair

scheduler to make the scheduling decision.

4.4.2 Testbed Setup and Workloads

First, we introduce the cluster setting and the workloads for the evaluation.

4.4.2.1 Hadoop Cluster

All the experiments are conducted on NSF CloudLab computing platform at the

University of Utah [39]. Each server has 8 ARMv8 cores at 2.4GHz, 64 GB ECC

memory and 120 GB storage. We create two Hadoop clusters with 20 and 40 slave

nodes. Each slave node is configured with 4 slots.

OMO and other schedulers for Hadoop are compared on the 20 slave nodes plat-

form. And we use other cluster to evaluate the scalability of OMO. Additionally,

we also launch another YARN cluster (v2.6.0) with 20 slave nodes (node managers)

for performance comparison. Instead of specifying the number of slots, each node

declares 8 CPU cores and 40 GB memory as the resource capacity.

4.4.2.2 Workloads

Our workloads for evaluation consider general Hadoop benchmarks with large

datasets as the input. In particular, we use six datasets in our experiments includ-
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ing 10GB/20GB wiki category links data, 10GB/20GB Netflix movie rating data,

and 10GB/20GB synthetic data. The wiki data includes the information about wiki

page categories, the movie rating data is the user rating information and the syn-

thetic data is generated by the tool TeraGen in Hadoop. We choose the following six

Hadoop benchmarks from Purdue MapReduce Benchmarks Suite [26] to evaluate the

performance.

• Terasort: Sort (key,value) tuples on the key with the synthetic data as input.

• Sequence Count: Count all unique sets of three consecutive words per document

with a list of Wikipedia documents as input.

• Word Count: Count the occurrences of each word with a list of Wikipedia

documents as input.

• Inverted Index: Generate word to document indexing with a list of Wikipedia

documents as input.

• Classification: Classify the movies based on their ratings with the Netflix

movie rating data as input.

• Histogram Moives: Generate a histogram of the number of movies in each

user rating with the Netflix movie rating data as input.

Table 4.4 shows the details of all six benchmarks in our tests, including the bench-

mark’s name, input data type/size, intermediate data size, and the number of map

and reduce tasks.
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Table 4.4: Benchmark characteristics

Benchmark
Input Input Shuffle map, reduce
Data Size Size #

Terasort Synthetic
20 GB 20 GB 80, 2
10 GB 10 GB 40, 1

SeqCount Wikipedia
20 GB 17.5 GB 80, 2
10 GB 8.8 GB 40, 1

WordCount Wikipedia
20 GB 3.9 GB 80, 2
10 GB 2 GB 40, 1

InvertedIndex Wikipedia
20 GB 3.45 GB 80, 2
10 GB 1.7 GB 40, 1

HistMovies Netflix
20 GB 22 KB 80, 2
10 GB 11 KB 40, 1

Classification Netflix
20 GB 6 MB 80, 2
10 GB 3 MB 40, 1

4.4.2.3 Validation of OMO Design

The design of OMO mainly relays on two new techniques: slot release rate pre-

diction, and batch finish of the tailing map tasks. In this subsection, we present the

experimental results that validate our design intuition.

Fig. 4.9 shows the slot release rate derived from an experiments with 12 mixed

MapReduce jobs on a cluster of 20 nodes using Fair scheduler. We consider 10 seconds

as a time window to derive the histograms of the slot releases. In addition, we apply

the slot release rate estimation algorithm used in OMO and present the estimated

value as the curve ‘Estimation’ in the following Fig. 4.9. Overall, we observe that

our estimation of the slot release rate is close to the real value in the experiment.

From the experimental trace, we find that the slot release rate in reality shows a

high variance as we can see spikes in the curve. The estimation in OMO may not

accurately predict the change when there is a big gap between two consecutive time

windows. However, our algorithm usually catch up the trend quickly in the next time

window mitigating the negative impact on the performance. Above all, we believe

that predicting resource availability in a large scale cluster with complex workload is
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a valid and feasible mechanism in practice. Later in this section, we will show the

performance benefit we gain from this technique.
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Figure 4.9: Slot release prediction

The other main technique in our solution is the batch finish of the map tasks.

Our design mainly focus on the last batch of the map tasks. The following Fig. 4.10

compares OMO to Fair scheduler with a set of 12 mixed MapReduce jobs running

on a 20-node cluster. We define last batch in a job as the last set of map tasks whose

finish times are within 10 seconds. In Fig. 4.10, we observe that with Fair scheduler,

the last batch of all the jobs contains no more than 10 tasks and half of the jobs have

less than 5 map tasks in the last batch. With OMO, on the other hand, the last

batch of map tasks is usually much bigger. Especially for short map tasks, e.g., job

2 and job 3, OMO gives the map tasks higher priority and purge them quickly. In

addition, there are cases where OMO yields even fewer number of map tasks in the

last batch that Fair scheduler. It is caused by the complicity and dynamics during

the execution of the set of mixed jobs. Other factors may conflict with this technique

when the scheduler makes the decision, e.g., starting a reduce task due to the lazy
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start algorithm, and starting a duplicate task for a failed or stale execution. Overall,

the batch finish of map tasks in OMO is effective from the experimental results. We

will show how it helps improve the overall performance in the next subsection.
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Figure 4.10: Last batch of map tasks

4.4.3 Evaluation

In this subsection, we present the performance of OMO and compare it to other

solutions. We mainly compare OMO to the following alternative schedulers in the

prior work

• Fair scheduler: We use the Hadoop’s default slot configuration, i.e, each

slave has 2 map slots and 2 reduce slots. The slowstart is set from the default

value 0.05 to 1, represented as Fair-0.05, Fair-0.2, Fair-0.4, Fair-0.6, Fair-0.8

and Fair-1.

• FRESH: Our work FRESH also adopts dynamic slot configuration. The slow-

start is set to 1.

In Summary, our results include following aspects:
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• Slot Allocation: We illustrate the detailed slot allocation of OMO and other

alternative schemes in Hadoop.

• Performance: We show the performance of the lazy start of reduce tasks, batch

finish of map tasks, and the combination of such two techniques, represented

as Lazy Start, Batch Finish and OMO. Given a batch of MapReduce jobs, our

performance metrics are the makespan (the finish time of the last job) and the

breakdown execution times of both the map phase and the shuffling phase. All

experiments are conducted with simple workloads and mixed workloads.

• Comparison to YARN: We also compare some tests with the Fair sched-

uler in Hadoop YARN.

• Scalability: Finally, we show the scalability of OMO by experiments with

different settings of input data sizes, job numbers and cluster sizes.
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Figure 4.11: Slot allocation in the execution of 8 Terasort jobs with Fair scheduler and
the default slowstart=0.05

4.4.3.1 Slot Allocation

First, we use TeraSort as an example to illustrate the slot allocation of OMO and

other alternative schedulers in Hadoop (Fig. 4.11 - Fig. 4.14). In each test, we use 8

jobs with the Terasort benchmark. The input data size is 20 GB for each job. There

are 160 GB data totally in each experiment. The X-axis is the execution time and
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Figure 4.12: Slot allocation in the execution of 8 Terasort jobs with Fair scheduler and
the default slowstart=1
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Figure 4.13: Slot allocation in the execution of 8 Terasort jobs with FRESH and the default
slowstart=1

the Y-axis shows all the slots in the cluster. The red lines show the execution of all

map tasks, and the green and blue lines indicate the shuffling phase and the reduce

phase in reduce tasks, respectively. For Fair-1, the shuffling phase lasts 293 seconds

after the map phase is finished and this time span is decreased to 36 seconds in Fair-

0.05. But Fair-0.05 spends an additional 75 seconds in the map phase compared to

Fair-1. Our solution OMO achieves 34.9% shorter execution time in the map phase

than Fair-1 and takes only 43 seconds in the shuffling phase after the map phase is

finished. For FRESH, since all the slots are assigned to the map tasks before the map

phase is finished, the time cost in the map phase is 17.8% shorter than Fair-1. Our

solution OMO yields 20.8% shorter execution time in the map phase than FRESH.

Such improvement is achieved by Batch Finish.
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Figure 4.14: Slot allocation in the execution of 8 Terasort jobs with OMOand the default
slowstart=1

4.4.3.2 Performance

We compare our solutions with other schedulers in a Hadoop cluster with 20 slave

nodes. We first show the makespan performance of Lazy Start and Batch Finish

individually. Then we show the performance with the combination of these two

techniques.

In each set of experiments, we consider both simple and mixed workloads. For

each test of simple workloads, we create 8 jobs of the same benchmarks with the

same input data. The size of each data size is 20 GB. Therefore, there are overall 160

GB data processed in each experiment and each job has 80 map tasks and 2 reduce

tasks. All jobs are consecutively submitted to the Hadoop system with an interval of

2 seconds.

To further validate the effectiveness of eSplash, we evaluate the performance

with mixed workloads consisting of different benchmarks. We conduct eight job sets

(Set A to H) of mixed jobs whose details are introduced in Table. 4.5. Set A is mixed

with all six benchmarks including both heavy-shuffling and light-shuffling ones. A

recent trace from Cloudera shows that about 34% of jobs have at least the same

amount of output data as their inputs [40]. So, during the 12 jobs in Set A, there

are 4 heavy-shuffling jobs and 8 light-shuffling jobs. Each benchmark has two jobs,

one with 20 GB input data and the other with 10 GB input data. Set B is a mixed

job set with the two heavy-shuffling benchmarks: Terasort and Sequence Count. For
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each benchmark, there are 8 jobs, four with 20 GB input data and the other four

with 10 GB input data. Set C to H are for scalability experiments of eSplash.

Table 4.5: Sets of mixed jobs

Job
Benchmarks

Job Input map, reduce
Set # Size #

A All benchmarks
6 20 GB 80, 2
6 10 GB 40, 1

B TeraSort, SeqCount
4 20 GB 80, 2
4 10 GB 40, 1

C All benchmarks 12 20 GB 80, 2
D All benchmarks 12 30 GB 120, 3
E All benchmarks 12 40 GB 160, 4
F All benchmarks 18 20 GB 80, 2
G All benchmarks 24 20 GB 80, 2

H All benchmarks
12 20 GB 80, 2
12 10 GB 40, 1

Makespan Performance of Lazy Start

First, we disable Batch Finish algorithm in the Execution Predictor (EP) module

in OMO to show the performance of Lazy Start. Fig. 4.15 shows the makespan

performance of Fair scheduler, FRESH and Lazy Start in both simple and mixed

benchmarks. Due to the page limit, we show the simple workloads evaluation results

with three benchmarks.

In the simple workloads experiments, for heavy-shuffling benchmarks, such as

Terasort and Sequence Count, Fair scheduler can achieve best makespan perfor-

mance when the slowstart is set as 0.05 or 0.2 and Lazy Start improves 11.6% and

15.9% in makespan compared to the best one in Fair scheduler, and 24.5% and

23.8% compared to FRESH. For light-shuffling benchmarks, such as Word Count,

Fair scheduler results in similar performance with different values of the slow-

start. Since the shuffling time is short, FRESH achieves the good performance. On
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average, the makespan in Lazy Start is 27.8% shorter than Fair scheduler and

15.8% shorter than FRESH.

In the mixed workloads experiments, Fair-1 yields the worst performance with

different sets of jobs in Fair scheduler. In job set A, Lazy Start improves 18.1%

of makespan compared to the best performance in Fair scheduler and 20.2% to

FRESH. In job set B, Lazy Start improves 15.6% and 20.7% of makespan compared

to the best performance in Fair scheduler and FRESH.

Makespan Performance of Batch Finish

To show the evaluation results of Batch Finish, we disable Lazy Start technique

in OMO. Fig. 4.16 shows the makespan performance of Fair-1, FRESH and Batch

Finish in both simple and mixed workloads. The value of the slowstart is 1 for all

these schedulers. FRESH achieves better performance in makespan than Fair-1. On

average, the makespan of FRESH is 7.26% and 12.3% less than Fair-1 in simple and

mixed workloads experiments. And Batch Finish decreases the makespan by 7.1%

and 11% compared to FRESH.
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Figure 4.15: Execution time under Fair scheduler, FRESH and Lazy Start (with
20 slave nodes)
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Figure 4.16: Execution time under Fair scheduler, FRESH and Batch Finish (with
20 slave nodes)

Performance of OMO

Finally, we show the evaluation results of OMO, the combination of the two

techniques above. First, we show the makespan performance of OMO with both

simple and mixed workloads compared with other schedulers. Then we illustrate the

breakdown execution time in both the map phase and the shuffling phase of each

experiment.
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Figure 4.17: Execution time under Fair scheduler, FRESH, Lazy Start, Batch
Finish and OMO (with 20 slave nodes)

The experiment results of three simple workloads and two sets of mixed work-

loads are shown in Fig. 4.17. Fair:best represents the best makespan performance in

Fair scheduler. From the evaluation results, Lazy Start shows more significant im-

provement of makespan in heavy-shuffling benchmarks and Batch Finish shows better

performance in light-shuffling benchmarks. OMO takes advantage of both techniques
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and achieves better makespan performance than either of them. On average, OMO

improves 26% and 29.3% in makespan compared to Fair:best and FRESH.

Fig. 4.18 shows the details of the breakdown execution time in three steps of each

experiment with simple workloads: Map Only represents the time span that only map

tasks are executed but no reduce tasks, Overlap represents the time span that both

the map phase and the shuffling phase are running concurrently and Shuffle Only

represents the time span that the shuffling phase continues after the map phase has

finished. By increasing map task slots in the cluster, FRESH reduces 15.51% of the

time span in the map phase compared to Fair scheduler. However, it takes more

time in Shuffle Only than Fair:0.05. Overall, OMO decreases the execution time in

Shuffle Only significantly with the help of Lazy Start and still optimize the time span

of the map phase by the technique of Batch Finish.

4.4.3.3 Comparison with YARN

In addition, Table. 4.6 shows the comparison with YARN. Note that not all the

benchmarks are available in the YARN distribution and we only use Terasort in our

experiments with YARN. In each experiment, there are 8 Terasort jobs with 20 GB

input data. For each YARN job, we set the CPU requirement of each task to be 2

core so that there are at most 4 tasks running concurrently at each node. YARN

uses a new mechanism to assign reduce tasks. Basically, for each job, reduce tasks

can be assigned according to the processing of the map phase (slowstart) and a

memory limitation for reduce tasks in the cluster (maxReduceRampupLimit). We

use the default configuration in the experiments. During the experiments, we set the

memory demand of each map/reduce task of each job to be 2 GB, 4 GB, 6 GB and

8 GB, represented by YARN:2, YARN:4, YARN:6 and YARN:8 in Table. 4.6. In

the YARN cluster, the makespan of YARN:2 is about 6.6% larger than the one with

other memory requirements. And OMO improves the makespan by 17.3% compared
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to YARN:2 and 11.6% compared to the others. Note that YARN adopts a fine-grained

resource management implying inherited advantages over the Hadoop system OMO

is built on. But OMO still outperforms the YARN system. Our design can be easily

extended and ported to the YARN system which is a part of our future work. When

it is done, we certainly expect a more significant overall improvement.

Table 4.6: Execution time of Terasort benchmark under YARN and OMO (with 20 slave

nodes).

YARN:2 YARN:4 YARN:6 YARN:8 eSplash
Makespan 1583s 1490s 1464s 1481s 1319s

4.4.3.4 Scalability

Finally, we show the scalability of OMO with the experiments of different input

data sizes, jobs numbers and cluster sizes.

First, we test the input data scalability. We run the experiments of 12 mixed jobs

with the input data size: 20 GB (Set C), 30 GB (Set D) and 40 GB (Set E). Fig. 4.19

(a) shows the evaluation results. The execution times with 30 GB and 40 GB inputs

are 1.6 and 2.1 times of the one with 20 GB inputs. The growth of the execution

time in OMO is proportional to the rise of the input data size.
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Figure 4.19: Execution time under OMO with: (a) different sizes of the input data and
(b) different number of jobs
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Then, we test the number of jobs scalability. we run the experiments with the

same setting of mixed benchmarks. The input data of each job is 20 GB. Set C has

12 jobs, Set F has 18 jobs and Set G has 24 jobs. Fig. 4.19 (b) shows the experiments

results. The execution time in OMO grows linearly according to the number of jobs.

In the end, we test Set H on a large cluster with 40 slave nodes to show the

scalability of OMO and the evaluation results are shown in Table 4.7. We can

observe a consistent performance gain from OMO as in the smaller cluster of 20

slave nodes with Set A. Compared to Fair scheduler and FRESH, OMO reduces

the makespan by 37%. The improvement is consistent with the experiments with Set

A and the 20-node cluster.

Table 4.7: Makespan of set H with 40 slave nodes

Fair-default Fair-1 FRESH OMO
Makespan of Set D 1885s 2258s 2037s 1238s

Overall, OMO achieves an excellent and stable makespan performance with both

simple workloads and mixed workloads of different sets of jobs.

4.5 Related Work

In Hadoop system, job scheduling is a significant direction. The default FIFO

scheduler cannot work fairly in a shared cluster with multiple users and a variety of

jobs. Fair scheduler [29] and Capacity Scheduler [28] are widely used to ensure

each job to get a proper share of the available resources.

The Hadoop community released Next Generation MapReduce (YARN) [3]. In

YARN, instead of fixed-size slots, each task specifies a resource request in the form of

<memory size, number of CPU cores> and each slave node offers resource containers

to process such requests. To improve the resource utilization in YARN, Haste [41]

leverages the information of requested resources, resource capacities, and dependency
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between tasks in the resource allocation. Opera [42] proposes a novel opportunistic

and efficient resource allocation approach which breaks the barriers knowledge of

actual runtime resource utilizations to re-assign opportunistic available resources to

the pending tasks.

Some recent work [43, 44] proposed to use multiple scheduler to solve the scal-

ability issue. Mesos [4] introduced a distributed two-level scheduling mechanism to

share clusters and data efficiently between different platforms such as MapReduce,

Dryad [45] and others. Our work can be integrated into these platforms as a single

low-level scheduler.

4.6 Summary

This work studies the scheduling problem in a Hadoop cluster serving a batch

of MapReduce jobs. Our goal is to reduce the overall makespan by the appropriate

slot allocation. We develop a new scheme OMO which particularly optimizes the

overlap between the map and reduce phases. Two new techniques are included in

OMO: lazy start of reduce tasks and batch finish of map tasks. Compared to the

prior work, our solution considers more dynamic factors and predicts the resource

availability when assigning the slots to jobs. We have implemented our solution on

the Hadoop platform, and conducted extensive experiments with various workloads

and settings. The results show a significant improvement on the makespan compared

to a conventional Hadoop system, especially for heavy-shuffling jobs.
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Figure 4.18: Execution time in map + shuffling phase of simple workloads.
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CHAPTER 5

RESOURCE ALLOCATION WITH NODES FAILURE

In this chapter, we introduce our resource allocation schemes eSplash with node

failures in the cluster. This work aims to mitigate the impact of node failures on the

system performance by efficiently and effectively detecting stragglers and assigning

speculative tasks in a heterogeneous cluster. Besides accurately and efficiently iden-

tifying stragglers, eSplash can assign speculative tasks to the appropriate nodes in

order to improve the system performance. In the following part of this chapter, we

elaborate our motivate and solution of eSplash. In addition, we compare eSplash

with the latest default speculative mechanism in Hadoop YARN. From the experi-

mental results, eSplash can distinctly reduce the increased makespan of batch jobs

caused by the stragglers.

5.1 Background and Motivation

In any large-scale computing cluster, node failures are normality in practice. A

usual omen is the straggling computing performance on the node. Speculative execu-

tion is a common and effective solution for mitigating the impact of node failures, e.g.,

speculation is a built-in component in Hadoop. Basically, once detecting a straggler

node, the cluster will launch a redundant copy of the task running on the problematic

node. Once either of them is finished, the other one will be killed. The intuition is

to trade the resource efficiency with the reliability, especially if the delay of one task

may further postpone the whole data processing. However, the traditional speculation

does not work well in a heterogeneous cluster, which consists of nodes with different
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hardware profiles. The heterogeneous setting has become a common environment in

practice due to various reasons such as incremental hardware upgrade and diverse

demands from different applications. Designing a speculation scheme in such a het-

erogeneous cluster, however, is challenging because it is very difficult to distinguish

straggling nodes from naturally slow nodes.

In this work, we present eSplash, a Hadoop system with an efficient speculation

scheme specifically designed for heterogeneous clusters. We identify the problems in

the existing Hadoop system and develop the following major components: (1) Clus-

ter all the nodes into different levels according to their computing performance; (2)

Identify straggler nodes by monitoring the task’s estimated finish time and progress

rate; (3) Submit speculative request with parameters that guide the future execution.

All the techniques presented in this work are implemented in Hadoop YARN system.

We conduct extensive experiments for evaluation, and the results show that eSplash

significantly improve the system performance.

5.1.1 Speculative Execution in Hadoop

Speculative execution is an important feature in a Hadoop system. It aims to

identify the unstable slave nodes in the cluster and avoid the delay of the job execution

caused by these nodes. In a large scale Hadoop system, each node’s status and

performance may not be consistent for a long-term process depending on a lot of

hardware and software factors. It is possible that some nodes are prone to a failure,

and their performance is degraded at the runtime. This laggard performance could

be temporary, or eventually require restarting the Hadoop service or even a reboot.

In the Hadoop system, the centralized ApplicationMaster monitors the execution of

every task, and if it detects that a task is running slowly (more slowly than the other

same type of tasks), it will start a redundant task, called speculative task, as an
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alternative. When one of them is completed (either the original task or speculative

task), the other task will be killed.

Particularly, Hadoop runs a background speculator service that maintains a statis-

tics table to record all the execution times of the identical tasks, i.e., all the map or

reduce tasks in a job. In other words, each MapReduce job has two entries in this

statistics table, one for its map tasks and the other for its reduce task. The data in

this table is updated upon the completion of each task. The speculator service will

periodically check this table and the running tasks to find the candidate tasks for

speculative execution. Specifically, it enumerates all the running tasks and estimate

the finish time of each task ti based on the elapsed time and the current progress

as shown in Eq(5.1), where Tnow is the current timestamp, Tstart(i) is the starting

time of task ti, and PG(i) indicates ti’s current progress. In addition, the speculator

service estimates the finish time of the alternative speculative execution in Eq(5.2.

The execution time of the speculative task is estimated as the mean value of the

historic execution times of the same type of tasks maintained in the statistic table.

Fig. 5.1 shows an example of estimating Eq(5.1) and Eq(5.2) in the current Hadoop

system. Apparently, if EstEnd is greater than EstRepEnd, the task is expected to

benefit from a speculative execution. When there are multiple candidate tasks for

speculative execution, the speculator service will pick the one with the maximum

value of EstEnd−EstRepEnd. Finally, the speculator service will create a new task

attempt of the selected running task, and submit it to the pending task queue as a

regular task.

EstEnd =
Tnow − Tstart(i)

PG(i)
+ Tstart(i) (5.1)

EstRepEnd = mean( getTaskType(ti) ) + Tnow (5.2)
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Job 1: Reduce

Job 2: Map

Job 2: Reduce
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Task ID Exe Time

j1_map0 20s

j1_map1 22s

j1_map2 18s

j1_map3 25s

j1_map4 23s

… … … … 

Statistic Table

j1_map5

… … …

Running Tasks

Elapsed time:  10s
Progress:         25%

EstEnd = now+30s

EstRepEnd = now+22s

Figure 5.1: Hadoop records the historic execution times of each type of tasks in each
job for determining the candidate tasks for speculative execution

5.1.2 Problems in a Heterogeneous System

The current speculative execution, however, is not effective in a heterogeneous

Hadoop system, and could even lead to severe performance degradations. The main

issue is that a heterogeneous cluster consists of ‘slow’ nodes and ‘fast’ nodes. The

mean value of the execution times is no longer a good guideline to judge if a node

is abnormally slow. In addition, it is difficult to estimate the execution time of each

speculative task as it depends on what type of nodes the task will be running on.

Specifically, because of the diverse processing performance across the cluster, there

are the following two major problems for the speculative execution.

First, the decision of starting or not starting a speculative task for each running

task may be wrong. The intuition of the current design is to detect the running tasks

that are far behind the expected progress compared to other finished tasks of the

same type. This intuition, however, does not hold in a heterogeneous system as a

‘slow’ node does need more time to finish a task than a ‘fast’ node. If the current

statistical data are mainly from the same type of tasks finished on ‘fast’ nodes, the

speculator service may consider the task running on a ‘slow’ node behind the schedule

and start a redundant speculative task for it. However, this ‘slow’ node is behaving

normally, and the scheduled speculative execution is unnecessary. On the other hand,
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if a ‘fast’ node gets some problems and halts after executing a task for a while, the

speculator service may consider its progress still in the normal range compared to the

tasks finished on other nodes (especially on those ‘slow’ nodes). No speculative tasks

will be created until this faulty ‘fast’ node has been hanging for a long time.

Second, the scheduled speculative tasks, when executed in the system, may not

be as effective as we expect. The benefit of speculative execution is to mitigate the

negative effects of problematic nodes in the system and avoid the delay caused by

them. In a heterogeneous system, however, the execution time of the speculative task

depends on the node that hosts its execution. If the task is assigned to a slower node,

the execution time would be longer than the original task. What is even worse is that

the speculative task might be assigned to the same node that hosts the original task

because of the diverse resource capacities.

We conduct an experiment on a cluster of 4 nodes with identical hardware settings.

However, when configuring the Hadoop service, we set the each node’s capacity of

vcores with different values as follows, slave1(32 vcores), slave2(16 vcores), slave3(8

vcores), slave4(4 vcores). As the number of physical cores in each node is fixed, the

node set more vcores has worse performance for each vcore. In another words, for the

tasks in the same type and from the same job, the node with more vcores configured

takes more time to execute a task. In this case, slave1 can be consider as the slowest

node.

In the experiment, we execute 5 MapReduce jobs each consisting of 38 map tasks

and 10 reduce tasks. The statistics of the speculative execution is listed in the fol-

lowing Table 5.1. Out of the total of 240 original tasks, the speculator service has

generated the redundant execution for 62 of them. All these 62 original tasks are

initially assigned to the slowest node slave1. Among all the 62 speculative tasks, 25

of them are assigned back to slave1 and all of them get killed in the end.
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Task Type slave1 slave2 slave3 slave4 Total

Finished
Map 0 19 5 5 28
Reduce 0 0 1 0 1

Killed
Map 25 7 1 0 33
Reduce 0 0 0 0 0

Table 5.1: Speculative executions in an experiment

Above all, we aim to develop an efficient speculation scheme eSplash for a het-

erogeneous cluster which can accurately and quickly detect straggler nodes, effectively

avoid unnecessary speculative execution, submit speculative tasks to the most appro-

priate nodes.

5.2 Our Solution: eSplash

In this section, we present the details of the design of eSplash that aims to

efficiently manage the speculation execution in a large scale heterogeneous computing

system. It mainly includes the three components:

• Classify cluster nodes: To accommodate the heterogeneous environment,

our solution classifies the cluster nodes into different groups depending on their

computing capabilities. A centralized manager maintains the run-time perfor-

mance statistics for each individual group. These per-group data will serve other

components such as detecting straggler nodes and submitting speculative tasks.

The classification of the nodes can be pre-configured by the administrator, or

dynamically determined based on run-time performance.

• Detect straggler nodes: The straggler nodes are the ‘slow’ nodes compared

to other nodes in the same group, and could be prone to a failure. The tasks

running on a straggler node are candidates for speculative execution. In eS-

plash, we develop a scheme that accurately and quickly detects straggler nodes

in a large cluster.
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• Submit speculative tasks: This is the most important component in eS-

plash. Basically, we need to determine whether a speculative task is worth-

while. The decision is based on the comparison of the estimated complete time

of the current task (running on a straggler node), and the estimated execution

time of a new speculative task. However, it is difficult to achieve an accurate

estimation in practice, and it is more challenging in a heterogeneous cluster

because the execution time of the speculative task depends on the computing

capability of the hosting node. Our design in this component considers the prac-

tical factors, derives accurate estimation, and provides associated parameters

for each speculative task for its future execution.

5.2.1 Classify Cluster Nodes

In order to effectively identify the straggler node and launch speculative tasks, the

cluster manager has to compare a node’s run-time performance to other nodes with

similar hardware that are executing the same task.

In our design, each node in the cluster is associated with a level indicating its

computation performance. Specifically, we classify all the nodes into multiple groups

according to their performance, and the level value is the index number the group the

node belongs to. We define that a higher level value represents a stronger computation

ability. In other words, a level i node will finish a task faster than a level j node for

i > j.

The node classification can be pre-configured by the cluster manager based on

each node’s hardware profile, or dynamically adjusted based the nodes’ run-time

performance. In this subsection, we focus on the dynamic classification algorithm at

the run-time.

Performance vector: In our design, the cluster master maintains a performance

vector PVi for each node i,
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PVi = {e1, e2, . . . , eD},

where D is the number of distinct types of tasks node i has finished, and each value

in the vector is the execution time of each type of tasks. For example, if there are

five concurrent MapReduce jobs running in the cluster with the Fair scheduler, after

finishing at least one map tasks from each job, every node will have a performance

vector of five values. If more than one tasks have been finished for a particular type of

tasks, then the average execution time will be filled in the PV . Then we will cluster

all the nodes based on their PV s.

Clustering algorithm: We consider each node’s performance represented by PVi

is a data point in a D-dimensional space, and our problem becomes similar to the

traditional clustering problem such as k-mean. However, in our setting, the resulting

clusters(levels) indicate the performance and require a lexicographical order of the

performance vectors. A node in a higher level is supposed to dominate any other

nodes in lower levels for any type of tasks. Therefore, we present a new clustering

algorithm based on the traditional k-mean algorithm.

Our solution consists of a grouping algorithm and a group-based k-mean clustering

algorithm. The goal of the grouping algorithm is to merge individual PV data points

into a set of groups that satisfy the lexicographic order. Then in our group-based

k-mean algorithm, each group is the smallest unit to be assigned to a cluster, i.e., all

the data points in a group will always stay in the same cluster.

The details are presented in Algorithm 5.2.1 and Algorithm 5.2.2. In Algo-

rithm 5.2.1, we start with each data point as a group (line 1). Then the algorithm

tries to merge the groups to enforce the lexicographic order. For each group gi, we

keep track of the minimum and maximum values of each dimension, recorded in mini

and maxi (lines 3–6). Then the algorithm compares every pair of groups, gi and

gj, and merge them if they do not dominate each other. In line 8, we present the
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condition for the merging operation. If there exist two dimensions, where each of the

two groups performs better in one of them, then we have to merge these two groups.

After forming a new group, we need to merge other groups that overlap with the new

group ([min,max] overlapping in any dimension), and update the mini and maxi

(lines 10–11). The resulting groups are non-overlapping, and keep the lexicographic

order between any two of them.

Algorithm 5.2.1: Grouping Algorithm

1: Initial grouping: ∀i, gi = {PVi}
2: Merging groups: form final groups based the lexicographical order
3: for gi do
4: mini(k) = min{ek ∈ PVl|PVl ∈ gi}, ∀k ∈ [1, D]
5: maxi(k) = max{ek ∈ PVl|PVl ∈ gi}, ∀k ∈ [1, D]
6: end for
7: for any gi and gj do
8: if ∃a, b, mini(a) > maxj(a) and minj(b) > maxi(b)
9: then merge gi and gj, gi → gi ∪ gj

10: Merge all other overlapping groups into gi
11: Update mini and maxi
12: end for

Based on the result of the grouping algorithm, we develop the following clustering

algorithm. The basic steps are similar to the traditional k-mean algorithm. However,

after each data point calculates the distance to each cluster center (line 2), it does not

select the closest cluster center to join. In our algorithm, the decision has to be made

by the whole group, not each individual data point. In particular, we adopt a voting

scheme in line 3, by counting the preferred cluster center of every group member. The

most popular cluster center will become the group preferred cluster center. Then all

the data points in the group will be assigned to that cluster center. The algorithm

repeats this iterative process until there is no reassignment.

The following Fig. 5.2 shows a comparison of traditional clustering algorithm and

our group-based clustering algorithm. The ground truth is that we configured 4 types

of nodes, each with 20 nodes. We conduct experiments with two jobs, WordCount
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Algorithm 5.2.2: Group-based k-mean Clustering Algorithm

1: Randomly select k cluster centers
2: For each PVi, calculate the distance to each center, and pick the closest

one as the preferred center
3: For each group gi, check the preferred center selected by each member
PV , and pick the center with the most votes as the group preferred one

4: Assign all the PV points in a group to the group preferred center
5: Recalculate the cluster centers and repeat the process until no PV /group

is reassigned

and TeraSort, and measure the execution time of each job’s map tasks on every

node. Apparently, our algorithm accurately captures the pre-defined levels while the

clustering result from the traditional k-mean is not feasible in our problem setting.
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Figure 5.2: An example of clustering 80 nodes: we collect the execution time of two
types of tasks (the map tasks in WordCount and TeraSort), thus each PV is a two
dimensional data.

5.2.2 Detect Straggler Nodes

The traditional speculation scheme makes the decision based on per-task perfor-

mance and is not suitable for a heterogeneous system because of the naturally varying

performance across the cluster. In our design, detecting straggler nodes is the first

step for speculative execution. Only the tasks on a straggler node are candidates for

speculation.
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Performance Statistics Table: With every node associated with a level value,

eSplash maintains a per-level performance statistic table (ST ), and uses the data

in this table to detect the straggler nodes in the system. This table consists of L×D

cells, where L is the number of levels in the system and D is the number of active

task types. Each cell ST (i, j) represents the performance statistics of task type j at

a level i node,

ST (i, j) =< µ (mean), δ (variance), PR (progress rate) >,

where µ and δ are regular statistics for the task execution time, and PR records the

average progress increase of this type of tasks in the past epoch. The table data is

updated once the master node receives the heartbeat messages from the slave nodes.

Straggler Value: Based on the information in table ST , eSplash detects the ab-

normally slow node by comparing the task performance on the node with the statistic

data for the level it belongs to. In particular, we assign each node a straggler value

(SV ) to indicate how likely the node is a straggler. Once the value exceeds a thresh-

old τ , the node is marked as a straggler. The straggler value of a node is updated

with the task performance on the node, and the following two aspects are included:

• Estimated execution time: For each running task on the node, we estimate

its execution time (denoted bt EstT ) by dividing the elapsed time by the task

progress. Then, we compare it with the mean and variance values stored in

table ST . Assume the node is in level i, the following formula is applied to

update SV ,

SV ← SV +
∑

running task j

EstT − µ(i, type(j))

δ(i, type(j))
,

where type(j) returns the task type index of j and we exclude the running tasks

whose EstT values are smaller than the recorded mean values.
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• Progress rate: While the estimated execution time is a good indicator for the

performance, sometimes it takes a relatively long time for the system to detect

a straggler node. For example, if a node normally executes a task and gets stuck

when the task is almost finished, its estimated execution time will stay in the

normal range for quite a long time. Therefore, we include the second metric,

progress rate, to help quickly identify a straggler node. Let PRj represents the

progress rate of task j running on the node, we use the following formula to

update SV ,

SV ← SV +
∑

running task j

PR(i, type(j))

PRj

,

Note that there are other approaches to aggregate these two metrics to calculate SV ,

and their weights can be adjusted with coefficient parameters. The current design in

eSplash is an empirical setting and out intuition is to pay more attention on the

deficit of the progress rate.

5.2.3 Submit Speculative Tasks

Once straggler nodes are identified, all the active tasks running on those nodes are

candidates for speculative execution. The goal of this module is to select one candi-

date task and submit a speculative task for it. In the traditional speculation scheme

in Hadoop, we need to estimate the finish time of the speculative task and compare

to the currently running task to determine if it is worthwhile. In a heterogeneous

system, however, the finish time of the speculative task depends on which (level of)

node will host the execution. For example, given a candidate task, it is possible that

running a speculative task on a high level node will be faster, but running it on a

low level node will be even slower than the current task. Therefore, when making the

decision for speculative execution, we have to consider the level of the prospective

hosting node of the speculative task. In addition, when submitting the speculation

request, the level constraint should be specified.
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In eSplash, we require every speculation request to be associated with a value

of the minimum level (minL) to execute the speculative task. Only the nodes in

the minimum level or higher level are eligible to host the speculative task. The

following Algorithm 5.2.3 is developed in eSplash to determine the value of minL.

When examining an active task running on a node at level i, the possible values for

Algorithm 5.2.3: Determine minL for a speculation request

1: Given a task running on a straggler node at level i
2: for l = i to HL do
3: ExpTl ←

∑
m∈[l,HL] Pr(m) · EstT (m)

4: end for
5: minL = min{ExpTl,∀l ∈ [i,HL]}

minL range from i to HL which represents the highest level in the system. In the

algorithm, we enumerate all the possible values, and then decide the best choice.

Assume the minL is set to be l, the algorithm calculates an expected execution time

of the speculative task in line 3. The speculative task could be executed on a node

at level l or above. We use EstT (m) to indicate the execution time if the speculative

task is hosted on a level m node, and Pr(m) is probability of this case. The value of

EstT (m) can be set as the mean value in the performance statistic table, and Pr(m)

is derived as follows:

Pr(m) =
C(m)∑

j∈[l,HL]C(j)
,

where C(j) is the number of containers on all the nodes at level j that can serve

this type of task. The value of C(j) can be pre-computed according to the resource

capacity on all the level j nodes and the resource demands of the task. Eventually,

in line 5, minL is set to the value that yields the minimum expected execution time.

Finally, after every candidate task derives a minL value with its speculative re-

quest, we need to pick one candidate and submit its request. Following the Hadoop

workflow, this process will be repeated periodically, but every time only one specula-

tive request can be submitted. We inherit the Hadoop’s design, and use a speculative
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value to indicate the priority of each candidate task. However, this speculative value

is re-defined as follows:

∑
m∈[minL,HL]C(m) · (EstEnd− Tnow − EstT (m))∑

m∈[1,HL]C(m)
,

where EstEnd is the estimated finish time of the original task, and Tnow is the current

timestamp. Essentially, this speculative value is the expected benefit (execution time

reduction) the task can obtain. Therefore, the task with the highest speculative value

will be selected for speculation execution.

5.2.4 Other Enhancements when Executing Speculative Tasks

In eSplash, we developed a couple of other enhancements to improve the perfor-

mance. First, the marked straggler nodes are excluded from hosting any speculative

task. Second, if a speculative task waits for a certain amount of time in the queue of

the pending task, we re-evaluate its estimated finish time and compare to the original

task to see if it is still worth a speculative execution. Due to the page limit, the

details are omitted in this work, but these enhancements are also evaluated in our

experiments.

5.3 Performance Evaluation

In this section, we evaluate the performance of eSplash and compare it with

other alternative schemes.
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Figure 5.4: System implementation

To support our solution, we implemented our new scheduler eSplash on Hadoop

YARN version 2.7.1 by creating a new Speculator component and modifying RM-

ContainerAllocator component (Container Allocator) in MRAppMaster (MapRe-

duce Application Master). Fig. 5.4 shows the details of the system implementation.

5.3.1 System Implementation

First, to determine the speculative tasks, we create the new Speculator compo-

nent. Its architecture follows Speculate component in native Hadoop. In Speculator,

all modules in green exist in native Hadoop and we create new methods in them.

And the modules in yellow are newly created by us. NewDataStatistics statistics the

average execution time of each completed map/reduce task on each node level. Ac-

cording to such statistics, StartEndTimeBase estimates the execution time of every

97



running task on the slave nodes with different levels. In addition, the new compo-

nent ProgressRate monitors the progress variety of every running task in real time.

LegacyTaskRuntimeEstimator is the subclass of StartEndTimeBase and it collects

the information of the progress rate per running task from ProgressRate. TaskRun-

timeEstimator is the interface for DefaultSpeculator to get all statistics above. Based

on the estimated execution time and progress rate of every running task, Default-

Speculator firstly determines the candidate tasks for speculation execution. Then it

quantifies the speculative value of each candidate task and marks the minimum node

level where the speculation can be executed. Finally, it selects the candidate task

with the highest speculative value and creates a speculative task for it.

Second, to allocate the appropriate containers for the speculative tasks, we modify

the RMContainerAllocator component. Firstly, it re-calculates the estimated execu-

tion time of the original tasks with pending speculative tasks to check whether it is

still worthy to execute these speculative tasks. Secondly, it removes the unnecessary

pending tasks and updates their minimum node levels. In the end, it checks the

node levels that all available containers belong to and assigns the most appropriate

container to each pending speculative task.

In addition, we modified ClusterInfo to set the node level for each slave node and

the TaskImpl/Task in job to mark the minimum node level that every task can be

executed on.

5.3.2 Testbed Setup and Workloads

All the experiments are conducted on NSF CloudLab platform at the University

of Utah [39]. In each server, there are 8 ARMv8 cores at 2.4GHz, 64 GB memory

and 120 GB storage. We launched a cluster with 9 servers: 1 master node and 8

slave nodes. We create 4 node levels and assign two slave nodes in each level. To

create the heterogeneous environment, we classify node levels by specifying different
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capacities of servers in different levels. Specifically, we configure 32 vcores in each

slave node of level 1, 16 vcores of level 2, 8 vcores of level 3 and 4 vcores of level 4.

As the number of physical cores is fixed in each server, the one configured by more

vcores has worse performance for each vcore. So the slave nodes in level 4 achieve the

best performance in executing a map/reduce task and the nodes in level 1 present

the worst performance.

Our workloads for evaluation consider general Hadoop benchmarks with large

datasets as the input. In particular, we use two datasets in our experiments including

20 GB wiki category links data and 20 GB synthetic data. The wiki data includes

wiki page categories information, and the synthetic data is generated by the tool

TeraGen in Hadoop. We choose the following four Hadoop benchmarks from Hadoop

examples library to evaluate the performance: (1) Terasort : Sort (key,value) tuples

on the key with the synthetic data as input. (2) Word Count : Count the occurrences

of each word with a list of Wikipedia documents as input. (3) Grep: Take a list of

Wikipedia documents as input and search for a pattern in the files. (4) Wordmean:

Count the average length of the words with a list of Wikipedia documents as input.

5.3.3 Performance Evaluation

Given a batch of MapReduce jobs, our performance metrics are the increased

makespan with stragglers and the accumulated wasted time of killed speculative

tasks. We mainly compare eSplash to the native speculation scheduler in YARN

(LATE [35]) and the one with speculation disabled (Non-specu). We have conducted

two categories of tests with different workloads: simple workloads consist of the same

type of jobs and mixed workloads represent a set of hybrid jobs. For each test of simple

workloads, we generate 8 jobs of the same benchmarks. For testing mixed workloads,

we mix all four benchmarks above and generate 2 jobs for each benchmark. For each

job of both simple and mixed workloads, the input data is 20 GB. There are 80 map
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tasks and 10 reduce tasks created by each job and each task requires 1 vcore and

2 GB memory. In the rest of this subsection, we separately present the evaluation

results in the heterogeneous environment: (1) without stragglers, (2) with stragglers

which can be recovered, and (3) with stragglers which cannot be recovered.

5.3.3.1 Performance without Stragglers

For our first experiment, we test both single and mixed workloads in the hetero-

geneous cluster without any stragglers. The first graph of Fig. 5.3 shows the number

of speculative tasks created during the experiments. The black parts represent all

killed speculative tasks and the white parts show all successful ones. According to

the principle of speculation execution, speculative tasks are killed because of their

original tasks are finished earlier than the speculative ones. Ideally, there should be

no speculative tasks created during the experiments. However, under LATE, there

are 28 speculative tasks averagely created in the experiments of simple workloads and

62 ones in mixed workloads. The original tasks of such speculative ones are all from

the slave nodes on node level 1. As there is no mechanism in assigning speculative

tasks to appropriate slave nodes in LATE, on average, 64.8% of the speculative tasks

are assigned back to the ’slow’ nodes on node level 1 and killed when their original

tasks are finished. We notice that there are still about 5 speculative tasks created in

each experiment under eSplash. After tracing the logs of such tasks, we found the

reason. In eSplash, we revoke the function in native YARN to report the estimated

execution time of each running task. In very low chance, it may report one extreme

high value and eSplash mistakenly create a speculative task based on such value.

We will try to fix this issue in the future work. But still, eSplash reduces 80% -

91.9% unnecessary speculative tasks over LATE. In addition, the average accumu-

lated execution time of killed speculative tasks in each experiment is 3536 seconds in
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LATE and 343 seconds in eSplash. eSplash decreased 90.3% wasted time cost in

killed speculative tasks over LATE.

Fig. 5.5 shows the makespan performance of eSplash, LATE and Non-specu.

Although 64.8% speculative tasks are killed in LATE, the remaining successful spec-

ulative tasks help to speed up the finish of all jobs. There is no significant difference

in makespan between LATE and Non-specu. On average, eSplash improves 5.89%

and 4.58% of the performance on makespan compared to Non-specu and LATE.
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Figure 5.5: Makespan without stragglers

5.3.3.2 Performance with Stragglers Which Can Be Recovered

To evaluate the speculative execution with stragglers in the cluster, we manually

slow down a slave node by running four CPU-intensive processes (the factorial of the

integer 10,000) and four disk-intensive processes (dd tasks writing large files in a loop).

Such processes last 1000 seconds during jobs execution and then the straggler will be

recovered to normal performance. We run experiments separately with the straggler

in ‘slow’ node (Level 1) and in ‘fast’ node (Level 4). The second and third graph

of Fig. 5.3 shows the statistics of speculative tasks created during the experiments

with a straggler on node level 1 and on node level 4. Killed in Straggler represents

the killed speculative tasks which are assigned to the straggler node, Killed in slow

node represents the killed speculative tasks which are assigned to the slave nodes in

the same or lower node level compared to their original tasks. From the test results,
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all killed speculative tasks in LATE are either assigned to the straggler itself or to a

slower slave node. While triggering a straggler in a slow node (on node level 1), 61.9%

averagely of speculative tasks are killed in LATE. Among all these killed speculative

tasks, 50.4% of them are assigned back to the straggler. When the straggler is a fast

node (on node level 4), on average 87.1% of speculative tasks are killed in LATE

and 47.7% of the killed ones are assigned to the straggler. Meantime, there is no

speculative task assigned to the straggler or the slower slave nodes in eSplash.
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Figure 5.6: Increased makespan with a straggler on node level 1

Fig. 5.6 and Fig. 5.7 shows the increased makespan in both experiments. Gen-

erally, since Non-specu cannot address the situation with stragglers in the cluster,

it represents the worst performance in the increased makespan. However, in the

test with the straggler in the ‘fast’ node, as LATE assigned 13 out of 19 specula-

tive tasks to the slave nodes on node level 1, the increased makespan of LATE is

even 47.9% more than the one in Non-specu. eSplash improves the performance

of the increased makespan significantly. With the straggler in the ‘slow’ node, aver-

agely, eSplash improves the increased makespan by 76.7% and 65.7% compared to

Non-specu and LATE. With the straggler in the ‘fast’ node, on average, the increased

makespan under eSplash is 69.4% and 66.7% shorter than the ones under Non-specu

and LATE. From the test results, LATE cannot efficiently deal with the stragglers in

the heterogeneous cluster.
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Figure 5.7: Increased makespan with a straggler on node level 4

5.3.3.3 Performance with Stragglers Which Cannot Be Recovered

In practice, abnormally slow execution of a server is a sign of a system failure.

Rebooting the whole system is a common operation to handle such failure. So we de-

sign an experiment to check whether speculation executions can deal with this issue.

In the experiment, we set a slave node in the node level 4 to be a straggler and slow

down it by the same processes above. After running these processes for 1000 seconds,

we manually shut down the processes of NodeManager and DataNode of the slave

node and restart them after 600 seconds (to simulate the rebooting of the straggler

node). We run the same experiment under Non-specu, LATE and eSplash. Fig. 5.8

illustrates the increased makespan under each mechanism. As the straggler is consid-

ered as normal node and speculative tasks from other ‘slow’ nodes are assigned to the

straggler, for the benchmarks Wordcount and Wordmean, the increased makespan

under LATE is even larger than the one under Non-specu. Under eSplash, as all

the tasks running on the straggler have created speculative tasks on other ‘faster’

nodes, nearly no time is wasted to recover the failed tasks on the straggler when it’s

shut down. eSplash shows the best performance on the increased makespan which

is averagely 42.4% shorter than Non-specu and 45.8% shorter than LATE.
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Figure 5.8: Increased makespan with a straggler which will be restarted

5.4 Related Work

MapReduce is a programming model and an associated implementation for pro-

cessing and generating large data sets [46] [47]. J.D., etc. provide a detailed demon-

stration of MapReduce, especially a Straggler Backup Policy [46] [47] where master

schedules backup executions of the remaining in-progress tasks and the task is marked

as completed either the primary or the backup execution completes. Preceding pol-

icy inspires Speculative Execution [48] where task predicted to be slow can launch a

redundant copy to re-execute.

However, due to system perturbations and equipment partial upgrade, most clus-

ters in industry are not homogeneous anymore. Regarding to this truth, a large vol-

ume of work aiming at improving performance of Hadoop in a heterogeneous cluster

has been done recently. B.R., etc [49] provide guidelines on how to overcome bottle-

necks of heterogeneous clusters. Based on previous suggestions, a hybrid solution [50]

of FIFO, FairSharing [51] and COSHH [52] is introduced based on job classification.

What’s more, J.X. etc. [53] place data on different nodes to assure a balanced load

aiming at improving performance by optimizing data locality. S.G. etc. [54] pro-

pose a ThroughputScheduler which dynamically selects nodes by optimally matching

job requirements to node capabilities. Targeting on the problem that speculation
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mechanism degrades predictability of a cluster, Hopper [55] finds a balance between

scheduling decision and speculation, also retrieves outstanding result after testing on

Hadoop, Spark [6] and Sparrow [43], both centralized and decentralized schedulers.

Not only about scheduler, some other work also seeks the opportunity to increase

the usage of storages in a heterogeneous cluster. For instance, N.S.I. and X.L. [56]

propose new hybrid design and data placement policies to accelerate HDFS. Similarly,

Cura [57] optimizes global resource utilization by configuring MapReduce jobs from

the view of a service provider.

Nevertheless, previous work neglects that many unnecessary speculative tasks gen-

erated by slow nodes is one of the most important reasons for traditional Speculative

Execution strategy incapable of adapting heterogeneous environment. LATE Sched-

uler [35] is created to solve the previous problem by only speculatively execute a copy

of task that will finish farthest among all currently running tasks. Unfortunately the

estimation of tasks’ remaining execution time in LATE is not accurate enough, espe-

cially it is unable to make self-adjustment to adapt the system. Inspired by preceding

work, we create eSplash, which labels nodes into levels for system to accurately and

quickly identify straggling nodes. Our eSplash not only shows high performance on

YARN [3], Next Generation MapReduce of Hadoop, but also can be integrated into

other cloud computing systems.

5.5 Summary

This work studies the speculative execution in a large-scale heterogeneous com-

puting cluster. Our goal is to mitigate the impact of node failures in the cluster. We

develop a new speculation scheme eSplash which can efficiently and quickly identify

the stragglers and submit the speculative tasks to the most appropriate nodes and

avoid resource waste on the unnecessary speculation execution. We have implemented

our solution on the Hadoop YARN platform, and conducted extensive experiments
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with various workloads. The results show a significant improvement on distinguishing

the stragglers, assigning speculative tasks, and reducing the impact of stragglers on

the makespan compared to a conventional YARN system.
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Figure 5.3: The Speculative tasks created under both LATE and eSplash: (1) without
Straggler, (2) with one straggler on node level 1, (3) with one straggler on node level 4
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CHAPTER 6

CONCLUSION

6.1 Dissertation Summary

In the era of big data, we envision that large-scale big data computing systems

become ubiquitous to serve a variety of applications and customers. It is motivated

by two factors. First, big data processing has shown the potential of benefiting many

applications and services ranging from financial service, health applications, customer

analysis, to social network applications. With more and more daily generated data,

powerful processing ability will become the focus for research and development. Sec-

ond, with the rise of cloud computing, it is now inexpensive and convenient for regular

customers to rent a large cluster for data processing. Therefore, how to improve the

performance in terms of execution times is the top issue on the list, especially when

we imagine that a cluster computing system will often serve a large volume of jobs

in a batch. In this dissertation, we mainly investigate the common characteristics

of large-scale big data computing systems and aim to improve their efficiency and

performance through more effective resource management and scheduling.

To achieve this target, three of our resource management schemes are introduced

in this dissertation. First, we develop a fair and efficient resource allocation and

scheduling for clusters called FRESH which can dynamically allocate resource based

on the workloads of every stage of each job. FRESH not only reduces the makespan

but also guarantees the fairness of a batch of jobs. Another main contribution of this

dissertation lies in a new scheduling strategy OMO which is based on the dependency

between stages. Unlike the traditional job scheduling problem, the later stage of a job
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usually starts before the former stage is finished to “shuffle” the intermediate data.

Motivated by this feature, OMO dynamically adjusts the start of the later stages

of different applications to reduce the makespan of jobs and improve the resource

utilization of the system. In addition, we present an efficient resource management

scheme, eSplash, to deal with the node failures in the cluster. Based on monitoring

the performance of every node and the execution of every task in the cluster, eSplash

can detect the abnormal nodes quickly and accurately, create duplicated tasks on

them, and assign these tasks to the most appropriate nodes. Therefore, eSplash can

efficiently mitigate the impact of abnormal nodes on the system performances.

All our resource management schemes and algorithms are implemented in Hadoop

MapReduce and Hadoop YARN, and evaluated in the large clusters on Amazon AWS

EC2 and NSF CloudLab with multiple standard benchmarks. Our works achieve

16% to 67% improvement on system performance compared to the default scheduling

policies and speculative mechanism in Hadoop MapReduce and Hadoop YARN.

6.2 Future Work

As resource management is critical for the big data computing systems, in the

future, we would like to explore more resource allocation and scheduling algorithms

to improve the efficiency of the cluster computing platforms. More dynamic factors

will be investigated and implemented in the resource management. For example, data

locality is important for the execution of tasks. Tasks with input data stored locally

perform better execution time. Data blocks in the existing systems are randomly

deployed in the distributed systems. We plan to develop an efficient and dynamic

data block placement strategy that can improve the percentage of tasks with local

data in the cluster. Furthermore, as new big data computing systems are recently

developed to support more complex applications such as machine learning and graph

processing, we also plan to investigate features and properties of the new systems
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and develop new efficient resource management schemes and scheduling algorithms

to improve the system performance.

110



REFERENCE LIST

[1] Idc reports. https://www.emc.com/collateral/analyst-reports/

idc-digital-universe-2014.pdf.

[2] Apache Hadoop. http://hadoop.apache.org.

[3] Apache hadoop nextgen mapreduce (yarn). http://hadoop.apache.org/docs/

current/hadoop-yarn/hadoop-yarn-site/YARN.html.

[4] Benjamin Hindman, Andy Konwinski, Matei Zaharia, et al. Mesos: A platform

for fine-grained resource sharing in the data center. NSDI, pages 22–22. USENIX,

2011.

[5] Bikas Saha, Hitesh Shah, Siddharth Seth, Gopal Vijayaraghavan, Arun Murthy,

and Carlo Curino. Apache tez: A unifying framework for modeling and building

data processing applications. In Proceedings of the 2015 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD ’15, pages 1357–1369,

New York, NY, USA, 2015. ACM.

[6] Apache Spark. http://spark.apache.org.

[7] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,

Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: A ware-

housing solution over a map-reduce framework. Proc. VLDB Endow., 2(2):1626–

1629, August 2009.

111



[8] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and An-

drew Tomkins. Pig latin: A not-so-foreign language for data processing. In

Proceedings of the 2008 ACM SIGMOD International Conference on Manage-

ment of Data, SIGMOD ’08, pages 1099–1110, New York, NY, USA, 2008. ACM.

[9] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin, Scott Shenker,

and Ion Stoica. Shark: Sql and rich analytics at scale. In Proceedings of the 2013

ACM SIGMOD International Conference on Management of Data, SIGMOD

’13, pages 13–24, New York, NY, USA, 2013. ACM.

[10] A Storm is coming: more details and plans for release. https://blog.twitter.

com/2011/a-storm-is-coming-more-details-and-plans-for-release.

[11] Apache Mahout. http://mahout.apache.org/.

[12] Jiayin Wang, Yi Yao, Ying Mao, Bo Sheng, and Ningfang Mi. Fresh: Fair and

efficient slot configuration and scheduling for hadoop clusters. In CLOUD, 2014.

[13] Jiayin Wang, Yi Yao, Ying Mao, Bo Sheng, and Ningfang Mi. Optimize mapre-

duce overlap with a good start(reduce) and a good finish(map). In IPCCC, Dec

2015.

[14] Jiayin Wang, Teng Wang, Zhengyu Yang, Ningfang Mi, and Sheng Bo. eSplash:

Efficient Speculation in Large Scale Heterogeneous Computing Systems. In 35th

IEEE International Performance Computing and Communications Conference

(IPCCC). IEEE, 2016.

[15] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, et al. Delay scheduling:

A simple technique for achieving locality and fairness in cluster scheduling. In

EuroSys, pages 265–278, 2010.

112



[16] Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. Two sides of a

coin: Optimizing the schedule of mapreduce jobs to minimize their makespan

and improve cluster performance. In MASCOTS, Aug 2012.

[17] Michael Isard, Vijayan Prabhakaran, Jon Currey, et al. Quincy: Fair scheduling

for distributed computing clusters. In SOSP, pages 261–276, 2009.

[18] Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. Aria: Automatic

resource inference and allocation for mapreduce environments. In ICAC, pages

235–244, 2011.

[19] Jorda Polo, David Carrera, Yolanda Becerra, et al. Performance-driven task

co-scheduling for mapreduce environments. In NOMS, pages 373–380, 2010.

[20] Next generation mapreduce scheduler. http://goo.gl/GACMM".

[21] Xiao Wei Wang, Jie Zhang, Hua Ming Liao, and Li Zha. Dynamic split model

of resource utilization in mapreduce. In DataCloud-SC, pages 21–30, 2011.
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