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ABSTRACT 

 
 

MINIBRAIN AND WINGS APART CONTROL ORGAN GROWTH AND TISSUE 

PATTERNING THROUGH DOWNREGULATION OF CAPICUA 

 
 

December 2016 
 
 

Liu Yang, B.A., Northwest University, Xi’an 
M.S., Northwest University, Xi’an 

Ph.D., University of Massachusetts Boston 
 
 

Directed by Associate Professor Alexey Veraksa 
 

The regulation of organ growth is a fundamental aspect of developmental biology.  

My work uses Drosophila as a model system to understand how the various growth 

regulators are coordinated. The transcriptional repressor Capicua (Cic) controls tissue 

patterning and restricts organ growth, and has been recently implicated in several cancers 

and neurodegenerative diseases. Cic has emerged as a primary sensor of signaling 

downstream of the receptor tyrosine kinase (RTK)/extracellular signal-regulated kinase 

(ERK) pathway, but how Cic activity is regulated in different cellular contexts remains 

poorly understood. In order to identify Cic regulators, I have used affinity 

purification/mass spectrometry (AP-MS) to study the Cic protein interactome 

in Drosophila S2 cells and embryos. I have found that the kinase Minibrain (Mnb, 

Drosophila ortholog of Down syndrome kinase DYRK1A), acting through the adaptor 
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protein Wings apart (Wap), physically interacts with and phosphorylates the Cic protein. 

Mnb and Wap inhibit Cic function by limiting its transcriptional repressor activity. 

Downregulation of Cic by Mnb/Wap is necessary for promoting the growth of multiple 

organs, including the wings, eyes, and the brain, and for proper tissue patterning in the 

wing. This work has uncovered a previously unknown mechanism of downregulation of 

Cic activity by Mnb and Wap, which operates independently from the ERK-mediated 

control of Cic. Therefore, Cic functions as an integrator of upstream signals that are 

essential for tissue patterning and organ growth. Finally, since DYRK1A and CIC 

exhibit, respectively, pro-oncogenic versus tumor suppressor activities in human 

oligodendroglioma, my results raise the possibility that DYRK1A may also downregulate 

CIC in human cells. 
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CHAPTER 1 
 

INTRODUCTION 

 
 

 Dysregulation of organ growth results in many human diseases, such as cancers 

and neurodevelopmental disorders. Understanding how organ size is controlled is a 

critical and fundamental question in biological research.  

Although both intrinsic and extrinsic factors contribute to the regulation of organ 

growth, our understanding of this question remains incomplete. Organ size is determined 

by nutritional sources in the environment.  For example, nutritional deprivation at the 

larval stage in Drosophila leads to small, but well-proportioned adults, suggesting an 

organ-extrinsic mechanism.  However, organ growth is not only controlled by nutritional 

status, but also regulated by many extracellular mitogens, such as insulin, insulin-like 

growth factors (IGF), epidermal growth factors (EGF) and growth hormones. These 

extracellular molecules initiate a variety of intracellular signaling events to activate cell 

growth, DNA replication and cell cycle progression (Lloyd, 2013). 

Moreover, there must be homeostatic size-control mechanisms in which the organ 

knows when to stop growing at the appropriate size. These autonomous mechanisms have 
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been demonstrated in both developmental and regenerative experiments. For example, 

when the wing imaginal discs from a mid-third instar larvae were transplanted into an 

adult abdomen, they developed properly and stopped growth at approximately the same 

size as normal wildtype discs (Bryant and Levinson, 1985). In mammals, the thyroid and 

the liver retain the potential to regenerate to their full size after removal of part of their 

mass in adult (Bryant and Simpson, 1984).  

In general, organ growth is a consequence of cell proliferation, cell growth and 

cell death. The overall growth must be coordinated at the level of individual cells. There 

are several conserved signaling pathways that regulate cell growth, including the Hippo 

pathway (Xu et al., 1995), the receptor tyrosine kinase (RTK) pathway (Prober and 

Edgar, 2000), the mechanistic target of rapamycin (mTOR) pathway (Laplante and 

Sabatini, 2012), the transforming growth factor β (TGFβ) pathway (Massague et al., 

2000), and the insulin/IGF signaling pathway (Oldham and Hafen, 2003). In this section, 

I will focus on the receptor tyrosine kinase (RTK) pathway and the Hippo pathway that 

were implicated in organ growth control in Drosophila.  

  

1.1 Drosophila as a model system 

The fruit fly, Drosophila melanogaster, was first introduced in the biology 

laboratory by Charles W. Woodworth at Harvard University in the early 1900s, and 

further used by Thomas Hunt Morgan in his genetic studies of inheritance at Columbia 

University (Markow, 2015). In March 1910, Morgan discovered the very first Drosophila  
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mutation, speck. Two months later, he discovered the famous white1 allele in one of his 

wildtype red-eyed fly bottles (Markow, 2015). Since then, Drosophila has been used 

widely as a powerful genetic system. In recent decades, Drosophila has emerged as an 

ideal model organism to study organ growth. This is largely due to the studies carried out 

in Drosophila imaginal discs.  

 

The Drosophila imaginal discs 

The Drosophila imaginal discs are larval epithelial tissues for forming adult 

epidermal organs including the wings and eyes. They are folded pouches that are 

comprised of single-layer epithelia. During the first few days of larval life, they grow 

dramatically in mass but remain undifferentiated until metamorphosis (Postlethwait and 

Schneiderman, 1973). This feature makes them an attractive model system to study 

growth regulation. Moreover, many of the known genes that have been implicated in the 

regulation of organ growth have homologues in mammals, suggesting conserved growth 

control mechanisms. For example, the core components of the Hippo pathway in 

Drosophila such as Hippo, Yorkie, and Warts have homologs in mammals. In addition, a 

tremendous amount of genetic techniques are available in Drosophila to modulate gene 

expression during the imaginal discs development. For instance, mitotic recombination 

clones lacking specific genes can be generated in imaginal discs using the FRT/Flp 

technique (Theodosiou and Xu, 1998). Similarly, particular genes can also be  
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overexpressed or downregulated in mitotic clones using the CoinFLP method (Bosch et 

al., 2015), or in specific regions by using the GAL4 system (Brand and Perrimon, 1993).  

The Drosophila wing imaginal disc is likely the most extensively studied model 

for growth control. Most of our understanding of organ growth control has been derived 

from the studies of the wing imaginal discs. The Drosophila wing imaginal disc derives 

from a cluster of approximately 30 cells that invaginate from the embryonic epithelium 

(Hariharan, 2015). These cells undergo 9-11 rounds of cell division and grow to a cluster 

of 30,000-50,000 cells at the end of the larval stage (Hariharan, 2015; Martin et al., 2009; 

Worley et al., 2013). The arrangement of the Drosophila wing imaginal discs (Fig. 1.1) is  

 

 

 

Figure 1.1. Schematic of the Drosophila wing imaginal disc. The boundary between anterior 
(A) and posterior (P) compartments is shown as a blue line, and the boundary between 
ventral (V) and dorsal (D) is shown as a dotted red line. 



5 
 

subdivided into anterior and posterior compartments, and then into dorsal and ventral 

compartments at the second-instar larval stage (Irvine and Harvey, 2015). The wing discs 

from late third-instar larvae consist of two apposed sheets: the thick folded disc 

epithelium and the thin peripodial membrane. During the prepupal and pupal 

development, the disc epithelium folds back to form the apposed dorsal and ventral 

compartments of the wing blade (Fig. 1.1). 

         

 

 

 

 

 

 

 

Figure 1.2. The wildtype Drosophila adult wing. The locations of the longitudinal 
veins (L1-L5) and the incomplete vein (L6) are indicated. The crossveins are 
indicated as ACV and PCV. The boundary between anterior (A) and posterior (P) 
compartments are shown as a blue line. 
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The vein pattern of the Drosophila adult wing. 

In the Drosophila wing, there are five longitudinal veins (L1-L5) which span the 

wing proximodistally. There are also two crossveins, the anterior and posterior crossveins 

(ACV and PCV), which connect the longitudinal L3-L4 and L4-L5, respectively (Fig. 

1.2). In addition, there is an incomplete longitudinal vein, L6, in the posterior 

compartment. The adult wing consists of two apposed surfaces, dorsal and ventral. 

Therefore, the veins are sometimes referred to as dorsal or ventral veins. The adult wing 

veins can be traced back to their primordia in the wing discs.  

 

1.2 The Hippo signaling pathway 

In the past two decades, it has been established that the Hippo signaling pathway 

functions as a key regulator in organ size control (Hariharan, 2015; Irvine and Harvey, 

2015). In 1995, the Hippo signaling pathway was first discovered in mosaic genetic 

screens for Drosophila tumor suppressor genes. Loss-of-function alleles of warts (wts) 

result in an overgrowth of multiple tissues, which include the eyes, wings, legs, and the 

central nervous system (Justice et al., 1995; Xu et al., 1995). Subsequently, a flurry of 

studies identified additional key pathway regulators, including the WW domain-

containing protein Salvador (Sav) (Kango-Singh et al., 2002; Tapon et al., 2002), the 

Ste20-like protein kinase Hippo (Hpo) (Harvey et al., 2003; Pantalacci et al., 2003; Udan 

et al., 2003; Wu et al., 2003), and the adaptor Mob as tumor suppressor (Mats) (Lai et al., 

2005). Lost-of-function mutants for any of these four proteins phenocopy tissue  
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overgrowth in Drosophila caused by wts alles. In 2005, the transcriptional coactivator 

Yorkie (Yki) was identified as a component of the Hippo pathway in a yeast two-hybrid 

screen for Wts-interacting proteins (Huang et al., 2005). Thus, these five proteins (Wts, 

Hpo, Sav, Mats and Yki) form the core of the Hippo signaling pathway. 

The Hippo pathway is evolutionarily conserved from Drosophila to humans. The 

core five members of the Hippo pathway have direct mammalian orthologs. They have 

conserved roles in growth control, differentiation and morphogenesis. Recently, more 

than 40 proteins have been implicated in both Drosophila and mammalian Hippo 

pathway (Irvine and Harvey, 2015; Pan, 2010). These Hippo pathway components can be 

subdivided into three groups: the core kinase cassette, the upstream regulatory proteins 

and the downstream transcriptional regulatory proteins (Irvine and Harvey, 2015). 

 

The core kinase cassette of the Hippo pathway 

The core kinase cassette proteins include Hpo, Wts, Sav, Mats and Yki, of which 

Hpo and Wts function as kinases. Sav serves as a scaffold protein for the phosphorylation 

and activation of Wts by Hpo. Similarly, Yki is phosphorylated by Wts and its adaptor, 

Mats. Yki is the key effector of the Hippo pathway, and functions as a transcriptional 

coactivator. In Drosophila, Yki requires another transcriptional co-activator, Scalloped 

(Sd), to regulate gene expression, which facilitates tissue growth (Goulev et al., 2008; 

Wu et al., 2008; Zhang et al., 2008; Zhao et al., 2008b). Yki functions downstream of 

Hpo, Sav, and Wts since epistasis experiments have shown that depletion of Yki  
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suppresses the overgrowth phenotype associated with Hpo, Sav and Wts mutants, 

whereas overexpression of Yki phenocopies the Hpo, Sav and Wts mutants (Huang et al., 

2005). Yki functions as an oncogene and promotes the transcription of genes controlling 

cell proliferation and the inhibition of apoptosis.  When Yki is present in the nucleus, it 

can activate a variety of factors that promote tissue growth. Activation of Hippo signaling 

results in the phosphorylation and inactivation of Yki by Wts, followed by nuclear export 

and cytoplasmic accumulation (Oh and Irvine, 2008; Pan, 2010; Yu and Guan, 2013). 

Recently, Misshapen (Msn) has been identified as another kinase that phosphorylates 

Wts, which negatively regulates the Yki activity (Li et al., 2014).   

 

The downstream transcriptional regulatory proteins of the Hippo pathway 

The Yki target genes can be classified into three groups (Pan, 2010).  The first 

class of genes includes the cell-autonomous growth promoting targets of Yki, such as the 

microRNA bantam, Myc, CyclinE, E2F1, and the apoptosis inhibitor diap1 (Goulev et al., 

2008; Nolo et al., 2006; Thompson and Cohen, 2006; Wu et al., 2003). The second class 

of Yki targets includes Kibra, Merlin (Mer), Expanded (Ex) and Four-jointed (Fj), as Yki 

upregulates their expression. Interestingly, Kibra, Mer and Ex can serve as upstream 

signals for the Hippo pathway, suggesting a negative feedback mechanism (Cho et al., 

2006; Genevet et al., 2010; Hamaratoglu et al., 2006; Yu et al., 2010). The third class of 

Yki targets contains signaling molecules that are also implicated in pathway crosstalk. 

These proteins include the Notch ligand Serrate, the EGFR ligand Vein, Wingless, E-
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Cadherin, and Dally and Dally-like (Baena-Lopez et al., 2008; Cho et al., 2006; Genevet 

et al., 2009; Zhang et al., 2009).  

 

The upstream regulatory proteins of the Hippo pathway 

Unlike ligand-receptor driven signaling pathways, the upstream signals for the 

Hippo pathway are not yet fully understood. It has been shown that the Hippo signaling 

pathway is regulated by cell polarity, cell adhesion, the actin cytoskeleton, cell contact 

and mechanical force (Sun and Irvine, 2016). 

Three cell-cortex localized proteins, Kibra, Mer and Ex, were reported as scaffold 

proteins for the core kinase cassette to activate the Hippo pathway, as their loss-of-

function mutants have similar tissue overgrowth phenotype. In contrast, overexpression 

of Kibra, Mer and Ex was found to promote the activity of Hpo and Wts (Baumgartner et 

al., 2010; Genevet et al., 2010; Yu et al., 2010). Additionally, Kibra, Mer and Ex might 

activate the Hippo pathway through the Tao-1 kinase, which phosphorylates and activates 

Hpo (Boggiano et al., 2011; Poon et al., 2011).  

Cell adhesion and cell polarity proteins can also regulate Hippo signaling. For 

example, the cell adhesion protein, Echinoid (Ed) was found to function as a tumor 

suppressor since it binds to and stabilizes Sav, which activates Hpo (Yue et al., 2012). In 

addition, many proteins that regulate apicobasal polarity of the epithelial cells have been 

implicated in controlling the Hippo pathway activity. These proteins include Lethal giant 
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larvae (Lgl), Scribble (Scrib), Discs Large (Dlg) and Crumbs (Crb) (Chen et al., 2010; 

Ling et al., 2010; Robinson et al., 2010; Zhao et al., 2008a). 

The Hippo pathway is also controlled by the actin cytoskeleton. Modulating the 

expression of actin regulators, including capping proteins and Diaphanous, can affect Yki 

activity and tissue growth (Fernandez et al., 2011; Sansores-Garcia et al., 2011).  In 

Drosophila wing disc, increased cytoskeletal tension can suppress Yki activity by 

inducing the apical localization of Ajuba/LIM protein Jub, which is a negative regulator 

of Warts (Rauskolb et al., 2014). Recently, it has been shown that disruption of the 

Spectrin proteins network leads to tissue overgrowth by activating Yki-mediated gene 

expression (Deng et al., 2015; Fletcher et al., 2015).  

In addition, the atypical cadherins, Fat (Ft) and Dachsous (Ds), play important 

roles in regulating the Hippo pathway (Bennett and Harvey, 2006; Matakatsu and Blair, 

2006). Ds and Ft function as a ligand-receptor pair to affect the localization of each other 

(Ma et al., 2003). The interaction between Ft and Ds is mediated by the kinase Fj, as it 

phosphorylates Ft and Ds on their extracellular regions (Ishikawa et al., 2008). Ft and Ds 

can affect the subcellular localization of the atypical myosin, Dachs, and thereby 

influence the protein level and/or cellular distribution of Wts and Ex (Bennett and 

Harvey, 2006; Cho et al., 2006; Silva et al., 2006; Willecke et al., 2006). This mechanism 

is likely independent of Wts phosphorylation by Hpo. More recently, it has been shown 

that the Wts activity is regulated by an allosteric mechanism, in which a Drosophila 

Mps1 one binder (Mob) protein, Mats, converts Wts from an inactive to active state. This 
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transition can be inhibited or reversed by Ft and Ds signaling via Dachs (Vrabioiu and 

Struhl, 2015). 

We and our collaborators have identified another downstream branch of Ft and Ds 

signaling that regulates the Hippo signaling (Degoutin et al., 2013). In this study, we 

identified the WD40 repeat protein, Wings apart (Wap), also known as Riquiqui, as a Ds-

interacting protein. Wap functions together with the Minibrain kinase (Mnb) to interact 

with and phosphorylate Wts, which in turn inhibits Wts-mediated phosphorylation of 

Yki, resulting in Yki derepression. This branch of signaling downstream of Ds regulates 

Wts and Yki independently of Dachs (Degoutin et al., 2013).  

 

The Mnb Kinase 

In addition to its role in Hippo signaling, Mnb and its mammalian homolog, 

DYRK1A, functions as key regulator of neuronal development. The role of Mnb in 

neurodevelopment was first elucidated by the analysis of mnb mutants of Drosophila 

(Tejedor et al., 1995). The mnb mutant alleles display a remarkable reduction in the size 

of the adult brain, particularly in the optic lobes (OL). However, the overall neuronal 

architecture is preserved. The reduction in the size of the central brain occurs mainly in 

the dorsal-ventral (DV) and anterior-posterior (AP) directions (Tejedor et al., 1995).  

However, the sizes of other organs, such as the body and sensory organs, appear almost 

indistinguishable from wildtype. This neuronal specific phenotype is caused by altered 

proliferation in the neuroepithelial primordia of the larval CNS, as axon bundles between   
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the lobula complex and the optic stalk are thinner, and the anterior optic tract fibers and 

cervical connective fibers are reduced. In addition, the mutant animals display behavioral 

abnormalities, such as reduced locomotor activity and impaired odor discrimination 

(Tejedor et al., 1995).  

In Drosophila embryos, Mnb proteins are expressed predominately in the central 

nervous system (CNS) (Tejedor et al., 1995). Drosophila embryos and pupae contain 

more Mnb proteins than adults. In late embryos, Mnb is expressed in the supraesophageal 

ganglion and the ventral nerve cord, but is absent in the peripheral nervous system.  In 

third instar larval brain, Mnb is expressed prominently in the mushroom body neuropil 

and OL. However, Mnb expression is relatively low in the adult OL and central brain 

(CB), suggesting that Mnb is critical for the development of the OL and CB, but not for 

the maintenance of neurons in these structures (Tejedor et al., 1995). More recently, Mnb 

has been found to be expressed in a subset of symmetrically located neurons, posterior to 

the antennal lobe in the adult brain (Hong et al., 2012).  

Mnb is an evolutionarily conserved kinase. Its mammalian ortholog, DYRK1A, 

plays critical roles in neurogenesis, proliferation, neuronal differentiation, survival, 

apoptosis and synaptic plasticity. DYRK1A belongs to the dual-specificity tyrosine–

regulated kinase (DYRK) family. The human DYRK1A gene is located on chromosome 

21 (Guimera et al., 1997). DYRK1A in trisomy produces multiple cognitive deficits 

associated with Down syndrome (DS) (Becker et al., 2014; Duchon and Herault, 2016; 

Hammerle et al., 2003; Smith et al., 1997). In addition, elevated DYRK1A activation has  
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been implicated in Alzheimer’s disease and Pick disease (Ferrer et al., 2005; Kimura et 

al., 2007). Recently, DYRK1A has been associated with autism spectrum disorders 

(ASDs) (O'Roak et al., 2014; Willsey and State, 2015).  

DYRK1A is a dose-sensitive gene, as both overexpression and reduction of 

DYRK1A protein in transgenic mice results in growth defects and DS related 

phenotypes, including locomotor activity, coordination, and cognition defects (Altafaj et 

al., 2001; Arque et al., 2008; Benavides-Piccione et al., 2005; Branchi et al., 2004; 

Dierssen, 2013; Dierssen and de Lagran, 2006; Ferrer et al., 2005; Fotaki et al., 2002; 

Fotaki et al., 2004; Martinez de Lagran et al., 2004). Homozygous null DYRK1A 

mutation causes lethality in the mouse in utero and results in delayed general growth and 

size reductions in multiple organs including the developing brain in the embryo. Mice 

heterozygous for the DYRK1A allele survive to adulthood, but display decreased neonatal 

viability and reduction in brain size, as well as behavioral defects (Fotaki et al., 2002; 

Fotaki et al., 2004). Moreover, patients with heterozygous mutations in DYRK1A exhibit 

developmental delays and mental retardation associated with microcephaly, seizures, 

facial dysmorphisms and cardiac hypertrophy (Bronicki et al., 2015; Fernandez-Martinez 

et al., 2015; Ruaud et al., 2015; van Bon et al., 2016). Disruptive or loss-of-function 

mutations of DYRK1A have been implicated in many neurodevelopmental disorders, 

including autosomal dominant mental retardation 7 (MRD7), autism spectrum disorder 

(ASD) and intellectual disability (ID) (Bronicki et al., 2015; Duchon and Herault, 2016; 

Moller et al., 2008; van Bon et al., 2016).  
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The overexpression of DYRK1A in mouse models is sufficient to induce 

phenotypes similar to DS patients (Dierssen and de Lagran, 2006; Dierssen et al., 2006; 

Dierssen et al., 2009; Guedj et al., 2012). In contrast, reducing the expression of  

DYRK1A in DS mouse models by shRNA injection results in a persistent increase in 

synaptic strength, reduced motor alteration and restored memory performance (Altafaj et 

al., 2013; Ortiz-Abalia et al., 2008).  As a result, DYRK1A inhibitors, such as harmine 

and epigallocatechin-3-gallate (EGCG), have been developed for the treatment of DS 

(Bain et al., 2003; De la Torre et al., 2014; Gockler et al., 2009; Laguna et al., 2008; Noll 

et al., 2012).  

          

1.3 The receptor tyrosine kinase (RTK) pathway 

The receptor tyrosine kinase (RTK) pathway is a critical pathway that regulates 

growth and survival since the RTK receptors mediate the transduction of proliferation 

signal from growth factors, including EGF, Platelet-derived growth factor (PDGF), 

fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF) and 

hepatocyte growth factor (HGF) (Lemmon and Schlessinger, 2010). It is well known that 

the RTK pathway serves not only as a critical regulator of normal cellular responses, but 

also as a key element in development and progression of human cancers (Kratchmarova 

et al., 2005; Meloche and Pouyssegur, 2007). Dysregulation of RTK pathways is 

frequently implicated in human cancers and hyper-proliferative diseases (Dhillon et al., 

2007). 
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Overview of RTK signaling 

The receptor tyrosine kinase (RTK) signaling pathway has been intensively 

studied for the past three decades. It controls numerous critical cellular responses, which 

include proliferation, differentiation, development, metabolism, cell migration and cell 

survival (Dhillon et al., 2007; Lemmon and Schlessinger, 2010; Marshall, 1995; Simon, 

2000). The key regulatory mechanisms of RTK signaling are highly conserved from C. 

elegans to humans.  Dysregulation of the RTK pathway leads to numerous human 

diseases, such as cancers, diabetes and inflammation.  In addition, cancer driver 

mutations are frequently found in RTK pathway components (Cai et al., 2013; Li and 

Hristova, 2006; Robertson et al., 2000).    

Human RTKs include 20 subfamilies of proteins with similar overall structures: 

they contain a single transmembrane domain that separates the extracellular region from 

the intracellular tyrosine kinase region. Typically, binding of the extracellular ligands to 

the cell surface RTK receptors induces conformation change and RTK dimerization, 

which leads to RTK autophosphorylation on tyrosine residues as well as a series of 

phosphorylations on other signaling molecules.  This in turn initiates a number of 

intracellular signaling cascades including the mitogen-activated protein kinase (MAPK) 

pathway, the phosphatidyl-inositol-3-kinase (PI3K) pathway and phospholipase Cγ 

(PLCγ) pathways (Lemmon and Schlessinger, 2010).  The most well characterized 

pathway downstream of RTKs is the MAPK pathway. 

 



16 
 

Most RTKs activate the small GTPase Ras, which stimulates the MAPK cascade 

by a series of phosphorylation events (Schlessinger, 2000). The sequential activation of 

the MAPK cascade includes activation of Raf (MAPKKK), MEK (MAPKK) and 

ultimately ERK (MAPK), and is a conserved mechanism. Activated MAPK 

phosphorylates more than 200 substrates in the cytoplasm, nucleus and cell membrane 

(Futran et al., 2015). Previous studies showed that Ets-domain transcription factors are 

key effectors of RTK signaling (Hollenhorst et al., 2011; Jacobs et al., 1998; Murphy et 

al., 2002). For example, two ETS factors, Pointed-P2 and Yan, are thought to be 

downstream effectors of all RTKs in Drosophila  (Rebay and Rubin, 1995). Pointed-P2 

and Yan are both direct targets of MAPK in response to RTK signaling. MAPK 

dependent phosphorylation activates Pointed-P2, which serves as a transcriptional 

activator to activate the downstream target genes that are required for eye development. 

Conversely, Yan functions as a transcriptional repressor, which is inhibited by MAPK 

dependent phosphorylation. Phosphorylated Yan is exported from the nucleus to the 

cytoplasm for degradation, which leads to the expression of the RTK target genes 

(Brunner et al., 1994; Gabay et al., 1996; Rebay and Rubin, 1995; Schlessinger, 2000). 

 

The RTK pathway and growth control 

Considerable evidence suggests that the activation of the RTK pathway is 

required for organ growth. Loss-of-function mutations in the core components of the 

RTK pathway result in many growth defects in Drosophila. For example, raf mutant  
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larvae lack imaginal discs except the underdeveloped eye imaginal discs, and reduction 

of organ size is also observed in brain lobes, lymph glands, testes and ovaries (Nishida et 

al., 1988). rl (ERK) null mutation leads to larval lethality and a significant reduction in 

the size of imaginal discs (Biggs et al., 1994). Moreover, mitotic clones expressing a 

dominant negative form of Ras exhibit decreased cell and clone sizes, whereas gain-of-

function mutations in Ras result in increased cell and clone sizes (Prober and Edgar, 

2000).  

In humans, it has been shown that the deregulation of the RTK pathway can lead 

to increased signaling activity. This results in a variety of diseases including cancers. For 

example, gene amplification and overexpression of HER2 is implicated in a variety of 

human cancers, particularly in human breast and ovarian cancer (Slamon et al., 2001). In 

addition, the overexpression of EGFR is frequently found in squamous-cell carcinomas of 

the head and neck in non-small-cell lung, kidney, pancreatic, ovarian, cervical, and 

bladder cancer (Rocha-Lima et al., 2007). Furthermore, the aberrations in RTK activation 

have been implicated in other hyperproliferative diseases such as psoriasis (Zwick et al., 

2002). However, the mechanisms how RTK pathway regulates growth are not well 

understood.  
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1.4 The Capicua transcriptional repressor 

Recently, the High Mobility Group (HMG)-box protein Capicua (Cic) has been 

identified as a general downstream sensor of RTK activation (Jimenez et al., 2000). Cic 

was first identified as a repressor of RTK Torso target genes, which control the 

development of the terminal regions of the embryo. Therefore, it was named “Capicua”, 

which means “head and tail” in Catalan (Jimenez et al., 2000). It was demonstrated that 

Cic mediates the expression of multiple RTK target genes downstream of Torso and the 

epidermal growth factor receptor (EGFR) pathways (Ajuria et al., 2011; Goff et al., 2001;  

Figure 1.3. Schematic of RTK-dependent Control of gene expression by Cic. 
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Jimenez et al., 2000; Jimenez et al., 2012; Roch et al., 2002). As shown in Fig. 1.3, in the 

absence of RTK activation, Cic represses the transcription of RTK target genes. When 

RTK signaling is activated, active MAPK (ERK) phosphorylates Cic, which relieves the 

Cic-mediated repression of RTK target genes. 

Cic is conserved from worms to mammals. Three conserved domains have been 

identified in the Cic proteins. One is the HMG box region which is responsible for 

recognition and binding to the octameric T(G/C)AATG(A/G)A DNA sites in target genes 

(Ajuria et al., 2011). The other motif that has a repressor function, C1, is located at the 

carboxy-terminal end of the Cic protein (Astigarraga et al., 2007; Jimenez et al., 2000). 

The third motif is amino-terminal to the HMG-box and includes a binding interface for 

the Ataxin-1 (ATXN1) protein. The Drosophila Cic protein also contains the C2 domain 

which was identified as the MAPK-docking motif (Astigarraga et al., 2007). There are 

two main CIC isoforms (CIC-L and CIC-S) expressed in Drosophila (Fig. 1.4).  Cic-S 

has been intensively studied in recent years while little is known about the amino-

terminal extension in Cic-L (Jimenez et al., 2012). 

 

 

 

                 

Figure 1.4. Schematic of the two main isoforms of Cic proteins in Drosophila. 
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MAPK-dependent regulation of Cic 

MAPK dependent phosphorylation of Cic is a well-characterized mechanism in 

Drosophila. For example, RTK Torso activation induces the phosphorylation of the 

Drosophila MAPK ERK homologue, Rolled (Rl), in the pole regions of the early embryo. 

Activated MAPK phosphorylates and downregulates Cic in the same regions (Coppey et 

al., 2008; Jimenez et al., 2000). This phosphorylation is dependent on the interaction 

between the Cic C2 motif and Rl since mutations in the Cic C2 motif are insensitive to 

Torso or EGFR inactivation. The resulting phenotype is similar to the effects of Torso or 

EGFR loss-of-function (Astigarraga et al., 2007). Torso signaling not only induces Cic 

phosphorylation but also reduces the Cic protein level. For example, activation of Ras in 

the wing imaginal disc results in reduction of Cic levels (Roch et al., 2002). 

Phosphorylation of Cic also changes the rate of its nucleocytoplasmic shuttling (Grimm 

et al., 2012). A recent study showed that MAPK dependent relief of Cic repression is a 

two-tier process: phosphorylated Cic rapidly loses its repressor activity which is followed 

by a slower export from the nucleus, ultimately resulting in the reduction of protein level 

(Lim et al., 2013).  

Studies in mammalian cells also provide evidence for RTK/MAPK dependent 

phosphorylation of Cic, which indicates that this is a conserved mechanism. A global 

phosphoproteomic analysis in HeLa cells revealed that Cic becomes phosphorylated 

within 10 minutes after stimulating the cells with EGF (Olsen et al., 2006).  Another 

study showed that EGF stimulation of HEK293T cells induces phosphorylation of Cic, 
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which prevents its binding with importin α4/karyopherin α3 (KPNA3) (Dissanayake et 

al., 2011). This is consistent with the Drosophila study that showed that RTK activation 

affects nucleocytoplasmic shuttling of Cic (Grimm et al., 2012).  In addition, the study in 

HEK293T cells showed that p90 ribosome S6 kinase (p90RSK) phosphorylates Ser173 of 

Cic, which promotes its interaction with 14-3-3 proteins (Dissanayake et al., 2011).  

 

Cic and its targets in RTK signaling   

Cic was first identified as a repressor of the RTK Torso target genes such as 

tailless (tll) and huckebein (hkb) in Drosophila (de las Heras and Casanova, 2006; 

Jimenez et al., 2000; Li, 2005). The Torso receptor is ubiquitously expressed in the 

plasma membrane of the early Drosophila syncytial embryo, but its activation only 

happens in the anterior and posterior poles of the embryo. This is due to the restricted 

proteolytic processing of its ligand, Trunk (Trk), that only takes place at the poles of the 

oocyte, producing the C terminal part of Trk as an active ligand (Furriols and Casanova, 

2003). Then the Torso-Ras-MAPK pathway is activated at the poles. As a result, Cic is 

downregulated in the same regions, which allows for the expression of the target genes tll 

and hkb. 

In addition, Cic functions as a repressor of Drosophila wing vein-specific genes 

downstream of the EGFR pathway. One of these genes is argos (aos), which encodes a  

secreted factor involved in negative feedback control of EGFR signaling (Freeman and 

Gurdon, 2002). In wing vein cells, aos expression is autonomously repressed by Cic. 
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Similarly, EGFR activation downregulates Cic level and induces the expression of aos in 

vein cells, which is required for vein patterning (Ajuria et al., 2011; Blair, 2007; Roch et 

al., 2002). Moreover, Cic acts in a similar way to repress the expression of the 

intermediate neuroblasts defective (ind) in embryonic neuroectoderm, and mirror (mirr) 

in ventral cells (Ajuria et al., 2011; Atkey et al., 2006; Roch et al., 2002).  

In humans, few Cic targets have been identified. A study in HEK293T cells 

reported that the RNAi depletion of Cic results in elevated mRNA levels of the PEA3 

subfamily of ETS transcription factors, including ETV1, ETV4 and ETV5 (Dissanayake 

et al., 2011). This finding suggests that Cic is required for transcriptional repression of 

these genes, which are overexpressed in several breast and prostate cancer cases (Carver 

et al., 2009; Hermans et al., 2008; Jane-Valbuena et al., 2010). This is consistent with the 

study in Ewing’s sarcoma cases, as CIC-DUX4 fusions were found in both two Ewing’s 

sarcoma cases and the CIC-DUX4 chimera results in a significant upregulation of 

ERM/ETV5 and ETV1 genes (Kawamura-Saito et al., 2006). 

 

 Cic and EGFR signaling 

The role of the EGFR-Ras-MAPK pathway in promoting proliferation of imaginal 

discs is well characterized in Drosophila (Hariharan and Bilder, 2006). For example, 

loss-of-function mutations in Ras/MAPK pathway components result in small imaginal 

discs, whereas gain of function mutations such as RasV12 are sufficient to drive ectopic 

cell proliferation and tissue growth (Karim and Rubin, 1998; Prober and Edgar, 2000). 
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Considerable evidence suggests that Cic negatively regulates proliferation 

downstream of the EGFR-Ras-MAPK pathway. The role of Cic as a negative regulator of 

growth was first described by the Hariharan lab. Loss-of-function mutations of Cic were 

shown to promote tissue growth in eye imaginal discs, which indicated that the normal 

function of Cic is to inhibit cell growth (Tseng et al., 2007). In the same study, Cic 

protein level was elevated in the loss-of-function clones of EGFR or Ras, whereas RasV12 

clones had reduced level of Cic. In addition, loss-of-function mutations of Cic bypassed 

the requirement of Ras in cell proliferation. These data support the role of Cic in 

regulating proliferation downstream of EGFR-Ras-MAPK. 

Moreover, Cic restricts the growth of stem cells, as studies in Drosophila showed 

that RNAi depletion of Cic induced the ectopic proliferation of intestinal stem cells 

(ISCs) (Jiang et al., 2011; Jin et al., 2015). The activation of EGFR pathway results in 

ISC growth as well as regeneration in the midgut epithelial cells (Buchon et al., 2010; 

Jiang and Edgar, 2009; Jiang et al., 2011). Cic functions downstream of the EGFR 

pathway to regulate ISC proliferation (Jin et al., 2015). A genome-wide mapping of Cic 

target genes in ISC has identified cell cycle genes, string (stg, Cdc25) and Cyclin E 

(CycE), as RNAi depletion of Cic leads to elevated mRNA levels of these genes (Jin et 

al., 2015). Cic was found to regulate the ETS family transcription factors, pnt and Ets21C 

through direct binding to the TGAATGAA motif (Jin et al., 2015).  
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 Cic and the Hippo signaling pathway  

It has been shown that Cic is regulated by the Hippo pathway. One of the Yki-

target genes is microRNA bantam. Yki activates expression of bantam microRNA, and 

bantam is necessary for Yki-induced overproliferation (Thompson and Cohen, 2006). 

Interestingly, it was found that bantam expression was repressed by Cic (Herranz et al., 

2012). Herranz et al. also showed that bantam is subject to regulation by the EGFR 

pathway via relief of Cic repression, suggesting that bantam serves as a common target of 

the EGFR and Hippo pathways. Conversely, bantam represses the expression of Cic 

through a negative feedback loop mechanism. In addition, the same study showed that 

Yki could activate the EGFR pathway but EGFR was not required for Yki to activate 

bantam (Herranz et al., 2012). Overall, cross-regulatory relationships between the Hippo 

and EGFR pathways appear to be rather complex, suggesting that there might be two 

parallel signaling inputs from Yki to Cic: EGFR-dependent and bantam dependent.  

 

 Cic and neurodegeneration 

Cic has been implicated in several human diseases, such as spinocerebellar ataxia 

type1 (SCA1) neurodegeneration, which is caused by the expansion of the polyglutamine 

region of the disease protein, Ataxin-1 (ATXN1) (Watase et al., 2002). The normal 

ATXN1 protein contains up to 39 copies of glutamine, whereas the polyglutamine-

expanded mutant contains 40 or more copies (Lasagna-Reeves et al., 2015).   
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It has been reported that both Cic isoforms (Cic-L and Cic-S) form a native 

nuclear complex with ATXN1 in the wildtype mouse cerebellum (Lim et al., 2006). 

Polyglutamine-expanded ATXN1 interacts less efficiently with Cic, which indicates that 

ATXN1 might function as a co-repressor and loss of repressor activity may contribute to 

SCA1 neurodegeneration (Crespo-Barreto et al., 2010). This is consistent with the finding 

that Cic target genes such as ETV5 are upregulated in mice expressing polyglutamine-

expanded ATXN1 (Lam et al., 2006; Lim et al., 2008). However, another study reported 

that polyglutamine-expanded ATXN1 promotes the binding of Cic to the promoters of 

specific genes causing hyper-repression of these genes, whereas reducing the binding of 

Cic to other specific genes leading to derepression effects (Fryer et al., 2011). As a result, 

genetic reduction of Cic levels by 50% resulted in a partial rescue of SCA1 mouse, 

improving motor functions and survival rate (Fryer et al., 2011; Zoghbi and Orr, 2009).  

More recently, a study proposed that Cic does not discern between wildtype ATXN1 and 

polyglutamine-expanded ATXN1. Cic interacts with wildtype ATXN1, and forms a 

natural transcriptional repressor complex with ATXN1. Cic binds equally well to 

polyglutamine-expanded ATXN1, but assembles and stabilizes a dysfunctional 

oligomeric complex. This dysfunctional complex assembles into toxic aggregates, driving 

pathogenesis (Lasagna-Reeves et al., 2015).  

 

Cic and human tumors 

Recently, mutations in CIC have been implicated as potential markers for certain 

human brain tumors (Alentorn et al., 2012; Chan et al., 2014). As shown in Table 1.1, 
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CIC mutations were frequently found in human brain tumor samples, especially 

oligodendrogliomas (OD), which is the second most common malignant brain tumor in 

adults.  Most of the mutations are located in the HMG-box region, which indicates that 

the mutations result in loss of CIC activity as a transcriptional repressor and suggests that 

CIC may act as a tumor suppressor (Bettegowda et al., 2011). In addition, CIC-DUX4 

fusion proteins resulting from chromosomal translocations were identified in Ewing-like 

sarcoma cases. The CIC-DUX4 fusion functions as a transcription activator rather than a 

repressor, which results in the overexpression of the downstream genes, including the 

PEA3 subfamily of ETS transcription factors (Arvand and Denny, 2001; Kawamura-

Saito et al., 2006). Moreover, CIC mutations have been implicated in other cancers, 

including breast cancer (Sjoblom et al., 2006), and colon cancer (Seshagiri et al., 2012). 

More recently, a study showed that CIC negatively regulates prostate cancer progression 

(Choi et al., 2015). 

In summary, it is obvious that Cic plays a critical role in controlling tissue growth, 

and is implicated in several neurodegenerative diseases and human cancers. There is 

evidence that Cic activity is under the control of the RTK pathway as well as possibly the 

Hippo pathway. However, the molecular details of how Cic activity is regulated by 

signaling pathways is not well understood. My research started from a proteomic 

approach to study Cic-interacting proteins, with the goal of uncovering how Cic is 

regulated and how it contributes to organ growth and tissue patterning. 
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Tumor Types Positive/ Total References 

Oligodendrogliomas 6/7 (Bettegowda et al., 2011) 

Oligodendrogliomas 22/47 (Chan et al., 2014) 

Oligodendrogliomas 15/18 (Sahm et al., 2012) 

Oligodendrogliomas 23/50 (Jiao et al., 2012) 

Oligodendrogliomas 14/42 (Sahm et al., 2012) 

Oligodendrogliomas 20/29 (Yip et al., 2012) 

Astrocytomas 3/10 (Sahm et al., 2012) 

Oligodendrogliomas 60/127 (Gleize et al., 2015) 

Breast cancer 3/11 (Sjoblom et al., 2006) 

Colon cancer 6/72 (Seshagiri et al., 2012) 

Table 1.1 Cic mutations found in tumor samples. 
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CHAPTER 2 

MINIBRAIN AND WINGS APART CONTROL ORGAN GROWTH AND TISSUE 

PATTERNING THROUGH DOWNREGULATION OF CAPICUA 

 

This chapter was adapted from Yang, L., Paul, S., Trieu, K.G., Dent, L.G., Froldi, F., 

Forés, M., Webster, K., Siegfried, K.R., Kondo, S., Harvey, K., Cheng, L., Jiménez, G., 

Shvartsman, S.Y. and Veraksa, A. (2016). Minibrain and Wings apart control organ 

growth and tissue patterning through down-regulation of Capicua. Proc Natl Acad Sci 

USA 113(38), 10583-10588.  The analysis of mnbd419 mutant phenotypes in larva and 

pupal brains were performed by Dr. Francesca Froldi. Dr. Marta Forés generated the cic3 

allele, recombined cic3 allele with mnbRNAi, and performed the analysis of the wing 

phenotypes involving this mutation. I performed all other experiments discussed in this 

chapter. 

 

2.1 Introduction 

The High Mobility Group (HMG)-box transcriptional repressor protein Capicua 

(Cic) has been identified as a key regulator of tissue patterning and organ growth in 

multiple developmental contexts (Jimenez et al., 2000; Jimenez et al., 2012). In 

Drosophila, Cic controls anteroposterior and dorsoventral embryonic polarity, the 

subdivision of the lateral ectoderm, and pattern formation in several tissues (Ajuria et al., 

2011; Astigarraga et al., 2007; Goff et al., 2001; Jimenez et al., 2000; Roch et al., 2002). 

In addition, Cic negatively regulates the growth of imaginal discs and the midgut (Jin et        
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al., 2015; Tseng et al., 2007). In humans, a single Cic ortholog (CIC) has been implicated 

in the neurodegenerative disease spinocerebellar ataxia 1 (SCA1) (Lam et al., 2006), and 

recently mutations in Cic have been found in the majority of oligodendroglioma cases, 

suggesting that CIC is a tumor suppressor (Bettegowda et al., 2011; Sahm et al., 2012; 

Wesseling et al., 2015).  

In both Drosophila and mammals, Cic functions as a primary sensor of signaling 

downstream of the receptor tyrosine kinase (RTK)/extracellular signal-regulated kinase 

(ERK) pathway (Ajuria et al., 2011; Astigarraga et al., 2007; Dissanayake et al., 2011; 

Grimm et al., 2012; Jimenez et al., 2012; Jin et al., 2015; Kim et al., 2010b; Kim et al., 

2011; Tseng et al., 2007). According to the current model, activation of RTK signaling 

results in the accumulation of doubly-phosphorylated activated ERK, which directly 

binds to and phosphorylates Cic (Astigarraga et al., 2007). ERK-mediated Cic 

phosphorylation leads to a rapid relief of repression of Cic target genes, followed by a 

slower export from the nucleus and eventual cytoplasmic degradation (Grimm et al., 

2012; Lim et al., 2013). The molecular details of these processes are unknown, though 

apparently each of them contributes to the overall downregulation of Cic activity. Cic is 

also involved in a mutual regulatory relationship with the Hippo pathway, though 

regulation of Cic in this context appears to take place at the RNA level (Herranz et al., 

2012). 

In this chapter, I present the identification of the kinase Minibrain (Mnb) 

(Degoutin et al., 2013; Tejedor et al., 1995) and an adaptor protein, Wings Apart (Wap) 

(Degoutin et al., 2013; Morriss et al., 2013), as novel Cic regulators that cooperate to 
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phosphorylate Cic and restrict its repressor activity. I show that Mnb/Wap and ERK 

target different regions of the Cic protein for phosphorylation, and that inhibition of Cic 

activity by Mnb and Wap is required for the growth of several organs and for correct 

patterning of the wing. These data suggest that Mnb/Wap-dependent downregulation of 

Cic occurs in parallel to the RTK/ERK and Hippo signaling pathways. I propose that Cic 

functions as an integrator of upstream developmental signals which together tightly 

control its activity. This mechanism is necessary for the proper execution of tissue 

patterning and regulation of organ growth. 

 

2.2 Results  

Characterization of Cic interactomes  

In order to identify Cic regulators, I used affinity purification/mass spectrometry 

(AP-MS) (Veraksa, 2013) to study the Cic protein interactome in Drosophila S2 cells and 

embryos (Fig. 2.1A). SBP tagged Cic protein was expressed in Drosophila S2 Cells. 

Embryonic cic-Venus was expressed at endogenous levels as part of a genomic rescue 

construct (Grimm et al., 2012) (Fig. 2.1B). The tagged protein and associated interactors 

were purified by affinity purification, and protein complexes were analyzed by liquid 

chromatography-tandem mass spectrometry (LC-MS/MS).  

The identified Cic-interacting proteins were analyzed with the SAINT program 

(Choi et al., 2011), which is designed to assign probability scores for bona fide protein-

protein interactions. Probability scores above 0.8 are considered highly significant. The  
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top 20 Cic interacting proteins identified in S2 cells and embryos are shown in Table 2.1 

and Table 2.2, repectively. From the S2 cells, I successfully recovered the known Cic 

interactor MAPK rl (Astigarraga et al., 2007), and also identified 14-3-3 proteins, which 

were previously found to interact with human Cic in HEK293T cells (Dissanayake et al., 

2011). Rolled (rl) was also identified as a top interactor in the embryo data. Interestingly, 

the SCA1 disease protein, Ataxin-1 (Atx-1), was identified with a high SAINT score of 

0.9487. The human homolog of Atx-1 was previously shown to interact with human CIC 

(Lam et al., 2006), and my data suggest that this interaction is conserved in Drosophila.  

In conclusion, I successfully recovered most of the known interactors of Cic, including 

Drosophila ERK ortholog Rolled, Ataxin-1 and 14-3-3 proteins (proteins marked in red, 

Fig. 2.2A). 

 

A 

B 

Figure 2.1. Affinity purification mass spectrometry (AP-MS) method. (A) AP-
MS work flow. (B) Schematic of Cic-SBP and Cic-Venus constructs used for 
protein expression in Drosophila S2 cells and embryos, repectively.  
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Protein Pep. Num. in exp. Pep. Num. in ctrl. SAINT Probability 
cic 81|89 0|0|0|0|0 1 

rl 10|22 3|0|0|0|0 1 
Wap 8|11 0|0|0|0|0 0.9995 

Hsp70Aa 11|7 1|1|0|0|0 0.9985 
14-3-3epsilon 10|19 8|0|0|0|1 0.9965 

Ranbp9 8|8 3|0|0|1|0 0.994 
Hsp68 8|8 4|2|0|0|0 0.9785 

Ef1alpha100E 6|11 0|0|0|0|5 0.974 
RpS14b 4|6 0|0|0|0|0 0.965 
Hsc70-2 5|4 1|0|0|0|0 0.9605 
CG30382 4|5 0|0|0|0|0 0.949 
RpS27A 4|3 0|0|0|0|0 0.901 

sesB 3|3 1|0|0|0|0 0.8965 
14-3-3zeta 7|13 7|1|0|0|2 0.8745 
Thiolase 4|6 3|0|0|0|2 0.8715 
RagC-D 2|6 0|0|0|0|0 0.8605 

CtBP 3|16 3|0|0|0|0 0.7965 
CG8230 2|4 2|0|0|0|0 0.7755 

Roe1 4|2 1|0|0|0|0 0.77 
CaBP1 3|3 4|0|0|0|0 0.737 
Rab6 2|4 3|0|0|0|0 0.7355 

ms(3)72Dt 2|2 0|0|0|0|0 0.6945 

 

 

 

 

 

 

Table 2.1. Statistical analysis of Cic interactome from S2 cells expressing Cic-SBP. 
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Protein Pep. Num. in exp. Pep. Num. in ctrl. SANIT Probability 
cic 49|68|63 0|0|0|0|0 1 

rl 5|8|5 0|0|0|0|0 0.9967 
Atx-1 3|4|4 0|0|0|0|0 0.9487 

cin 2|5|6 0|1|0|0|0 0.888 
Klp61F 4|3|7 0|1|2|0|0 0.8613 

Wap 2|4|2 0|0|0|0|0 0.8593 
Nup358 35|30|32 0|16|17|0|21 0.83 
CG1677 7|3|5 0|1|2|0|1 0.8263 
CG1091 2|2|3 0|0|0|0|0 0.823 
Nup50 4|5|6 1|3|1|1|0 0.7923 

CG8108 2|2|4 0|0|1|0|1 0.7257 
Top2 13|8|14 1|2|9|1|4 0.718 

Hsc70-5 17|11|12 0|6|8|0|7 0.7143 
Pgi 3|7|5 0|0|4|0|2 0.6983 

RanGAP 9|7|10 1|4|3|1|5 0.6957 
Hsp23 4|4|3 0|2|1|0|1 0.684 

CG6453 5|5|7 0|3|2|0|3 0.6777 
Rrp1 1|5|5 0|0|0|0|2 0.6737 
wech 5|3|4 0|2|0|0|3 0.6733 
tacc 2|2|3 0|1|0|0|1 0.666 

CG1218 3|2|3 0|1|2|0|0 0.665 
Hcf 1|4|3 0|0|0|0|1 0.6507 

 

 

 

 

 

Table 2.2. Statistical analysis of Cic interactome from Drosophila embryos 
expressing Cic-Venus. 
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Figure 2.2. Mnb and Wap physically interact with Cic, and Wap promotes the binding 
of Mnb to Cic. (A) The Cic protein interactome identified in Drosophila S2 cells 
(CicS) and embryos (CicV). Thick lines, highly significant interactions. (B) Western 
blots showing co-immunoprecipitation of Cic, Mnb and Wap in S2 cells. Endogenous 
dpERK is stabilized by Cic expression. (C-D) Co-immunoprecipitation of Cic, Mnb, 
and Wap in vivo using embryo lysates from yw (control), cic-Venus, or cic-Venus 
crossed with mnb-tRFP. (E) Wap is required and sufficient to bridge Cic and Mnb. (F) 
Cic mobility was changed when Cic was co-expressed with Wap and wildtype Mnb, 
but not kinase-dead Mnb (MnbKR).  
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Wap and Mnb interact with Cic  

I hypothesized that the interactors found from both in vitro and in vivo data would 

be the strongest candidates to be true Cic-interacting proteins. Cytoscape was used to 

incorporate the interactome data into Fig. 2.2A for visualization. I found two hits that 

were common between the cell culture and embryo data: rl and Wap. Wap is a WD40 

repeat domain containing protein, which was previously reported to regulate 

neuromuscular development and tissue growth (Degoutin et al., 2013; Morriss et al., 

2013). Wap is a highly conserved protein and its mammalian orthologue, DDB1 and 

CUL4 associated factor 7 (DCAF7), is expressed in vertebrate muscle and the nervous 

system. Wap mutant flies failed to properly form a jump muscle (Degoutin et al., 2013; 

Morriss et al., 2013). Wap functions together with the kinase Minibrain (Mnb) to regulate 

wing and leg tissue growth through the Hippo pathway downstream of Dachsous 

(Degoutin et al., 2013). Wap interacts with both Mnb and Wts, and serves as an adaptor 

to promote the Mnb-dependent phosphorylation and inhibition of Wts.  The interaction 

between Wap and Mnb is conserved in mammals, as the Wap ortholog DCAF7 forms a 

stable complex with the dual-specificity tyrosine phosphorylation-regulated kinase 1A 

(DYRK1A), which is the mammalian ortholog of Mnb (Skurat and Dietrich, 2004). The 

AP-MS experiments also identified four peptides of Mnb in the Cic-SBP pulldown in S2 

cells (Fig. 2.2A), suggesting that Wap, Mnb and Cic form a protein complex. Co-

immunoprecipitation in S2 cells using overexpressed proteins confirmed that Cic binds to 

both Wap and Mnb (Fig. 2.2B).  
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To study the interactions between proteins expressed at endogenous levels in vivo, 

I used tagged mnb-tagRFP-T (mnb-tRFP) and wap-Venus alleles that were generated in 

Dr. Shu Kondo’s laboratory by CRISPR/Cas9-mediated homologous recombination. 

Endogenous Wap was detected in the Cic-Venus complex using an anti-DCAF7 antibody 

(Fig. 2.2C), and both Wap and Cic-Venus were present in Mnb-tRFP complexes isolated 

from embryos expressing both Mnb-tRFP and Cic-Venus (Fig. 2.2D). Next I asked 

whether Wap could serve as a bridge for the interaction between Mnb and Cic. RNAi 

depletion of wap in S2 cells led to a reduction in the binding of Cic to Mnb, whereas 

overexpression of Wap promoted the interaction (Fig. 2.2E). Collectively, these data 

suggest that Wap, Mnb and Cic form a protein complex, with Wap likely serving as a 

bridging adaptor between Cic and Mnb.  

 

Mnb phosphorylates the amino-terminal third of Cic in S2 cells.  

Given that Mnb/DYRK1A is a kinase (Degoutin et al., 2013; Tejedor et al., 1995), 

I asked whether Mnb could phosphorylate Cic. Cic mobility on an SDS-PAGE was 

reduced when Cic, Mnb, and Wap were co-expressed (Fig. 2.2B, E, and F). Notably, the 

levels of activated ERK (dpERK) did not increase in this condition (Fig. 2.2B). In 

contrast, a kinase-dead mutant of Mnb (MnbKR) (Degoutin et al., 2013) failed to reduce 

Cic mobility (Fig. 2.2F), suggesting that the kinase activity of Mnb is required to reduce 

Cic mobility and that this modification is likely to be phosphorylation.   

To determine which region of Cic was phosphorylated by Mnb, three Cic 

fragments (Cic1-3, Fig. 2.3A) were coexpressed with Wap in the presence or absence of  
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Figure 2.3. Mnb and ERK target different regions of Cic for phosphorylation. (A) 
Schematic diagram of the three Cic fragments (Cic1, Cic2 and Cic3) with locations of 
phosphorylation sites. (B) Mnb interacts with and phosphorylates only the amino 
terminal Cic fragment, Cic1. (C) Phos-tagTM gel analysis of Cic1 phosphorylation. 
Bottom panel: regular SDS-PAGE. (D) Mnb phosphorylates region Cic1, whereas 
activated ERK (ERKSem) phosphorylates region Cic3. (E) Summary of Cic binding and 
phosphorylation data.   
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Mnb in S2 cells. Only the amino-terminal fragment of Cic (Cic1, representing amino 

acids 1-453) was found to interact with Mnb (Fig. 2.3B). In addition, Mnb decreased the 

electrophoretic mobility of Cic1, but not Cic2 or Cic3 (Fig. 2.3B). Phos-tagTM gel 

analysis confirmed phosphorylation of Cic1 by wildtype but not kinase-dead Mnb (Fig. 

2.3C). Next I asked which residue(s) in Cic1 are phosphorylated by Mnb. Threonine 28 is 

part of a motif in Cic1 (RSATP) that closely matches the DYRK1A phosphorylation 

consensus RP(X)(S/T)P (Himpel et al., 2000). Surprisingly, mutation of this residue 

(T28A) did not alter the phosphorylation pattern of Cic1 (Fig. 2.3C). To identify Cic 

residues that are phosphorylated by Mnb, Cic1 and Wap were coexpressed in S2 cells 

either with Mnb or MnbKR, Cic1 was purified, and its phosphorylation was analyzed by 

mass spectrometry. Four Cic1 residues (S41, S49, T89, and S91) were more highly 

phosphorylated by Mnb compared to MnbKR, with T89 and S91 phosphorylations found 

exclusively in the wildtype Mnb sample (Figs. 2.3A and 2.4). The S41 and S49 residues 

were also found to be phosphorylated in an unbiased global phosphoproteomic study in 

Drosophila embryos (Zhai et al., 2008). Alanine substitutions of the four residues 

resulted in a reduction of phosphorylation of Cic1, with the most pronounced effect 

observed for a quadruple mutant, Cic-SSTS/A (Fig. 2.3C). 

Previous studies showed that region Cic3 includes an ERK docking site and is 

subject to ERK-mediated phosphorylation (Astigarraga et al., 2007; Futran et al., 2015; 

Kim et al., 2010b). To compare the activities of Mnb and ERK, I co-expressed Cic1 or 

Cic3 with Mnb or a constitutively active Drosophila ERK, ERKSem (Brunner et al., 

1994). Mnb could only reduce the electrophoretic mobility of Cic1 but not Cic3, whereas  
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Figure 2.4. Locations of Cic phosphorylation sites identified by mass spectrometry. A 
Cic1 region is shown (amino acids 1-453). The putative DYRK1A consensus is 
underlined, and the corresponding residue (T28) is highlighted in blue. T28 
phosphorylation was not detected by mass spectrometry. S41 and S49 (green) were 
more highly phosphorylated in wildtype Mnb samples compared to MnbKR. T89 and 
S91 phosphorylations (red) were found exclusively in the wildtype Mnb samples. 
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ERKSem only reduced the electrophoretic mobility of Cic3 but not Cic1 (Fig. 2.3D). 

Collectively, these results suggest that Mnb and ERK target different regions of Cic for 

phosphorylation: Wap facilitates Mnb-dependent phosphorylation of the amino-terminal 

third of Cic, whereas ERK targets the carboxy-terminal region (Fig. 2.3E). 

 

Mnb and Wap reduce Cic repressor activity  

Previous studies have shown that phosphorylation of Cic by ERK can result in 

downregulation of Cic by lowering its repressor activity, protein level, or nuclear 

localization (Ajuria et al., 2011; Astigarraga et al., 2007; Lim et al., 2013). I hypothesized 

that Mnb may exert similar effects. First, I used the CoinFLP-GAL4 system (Bosch et al., 

2015) to generate RNAi-depletion clones in the eye imaginal discs (Fig. 2.5A). As 

expected, I observed reduced levels of Cic protein in UAS-cic-RNAi clones (Fig. 2.5B). 

However, no obvious increase in Cic protein level or change in subcellular localization 

was found in CoinFLP-generated UAS-mnb-RNAi clones (Fig. 2.5C). Therefore, Mnb is 

unlikely to control Cic at the level of protein turnover or nuclear access.  

It has been shown that the relief of Cic repressor function by ERK does not 

necessarily require reduction in Cic protein levels (Lim et al., 2013). To assess whether 

Mnb could similarly affect Cic repressor activity, I used a reporter, CUASC-lacZ, which 

contains five GAL4 binding sites flanked on either side by two Cic binding motifs (Fig. 

2.6A) (Ajuria et al., 2011). This reporter is only responsive to GAL4 in areas where Cic 

activity is inhibited, e.g. by RTK signaling (Fig. 2.6B). Uniform induction of GAL4  
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Figure 2.5. RNAi depletion of Mnb does not increase Cic levels in imaginal eye discs. 
(A-C’’) Mosaic eye discs of the indicated genotypes generated using CoinFLP-GAL4 
and stained with anti-Cic antibody (red). GAL4-positive cells are marked with UAS-
GFP (green). (A-A’’) Control clones do not affect Cic protein levels. (B-B’’) 
Knockdown of cic reduces Cic protein levels. (C-C’’) Knockdown of mnb does not 
increase Cic protein level or change Cic subcellular localization. Scale bar, 50 μm. 
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Figure 2.6. Mnb reduces Cic repressor activity. (A) Diagram of the CUASC-lacZ 
reporter. (B) Summary diagram of expression patterns. (C-G) LacZ expression pattern 
resulting from C5-GAL4-directed activation of CUASC-lacZ in wing discs from 
control (C), UAS-cicRNAi1 (D), UAS-cic (E), UAS-mnb (F), and UAS-mnbRNAi (G) 
larvae. Scale bar, (C-G), 50 μm.  
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expression in the wing pouch under the control of the C5-GAL4 driver (Yeh et al., 1995) 

resulted in a localized activation of LacZ expression in prospective veins (Fig. 2.6C). 

This pattern results from Epidermal Growth Factor Receptor (EGFR)/ERK-mediated 

inactivation of Cic in these regions (Fig. 2.6B) (Ajuria et al., 2011). RNAi depletion of  

cic or overexpression of ERKSem throughout the wing pouch led to a much broader 

expression of LacZ (Figs. 2.6D and 2.7B), confirming that the normal restriction of the 

expression pattern of CUASC-lacZ to prospective veins is Cic dependent. In contrast, 

overexpression of Cic resulted in the loss of LacZ expression in the vein L5 region (Fig. 

2.6E, open arrowhead). Overexpression of Mnb or Wap induced a broader LacZ 

expression in the wing pouch (Figs. 2.6F and 2.7C). Conversely, RNAi depletion of mnb 

or wap under the control of C5-GAL4 resulted in reduced LacZ expression, particularly in 

vein L5 (Figs. 2.6G and 2.7D). These data suggest that Mnb and Wap limit Cic repressor 

function in the wing disc. This contribution likely complements the regulation by ERK, 

which appears to be insufficient on its own, at least for vein L5 (Fig. 2.6B).  

Mnb and Wap have been shown to phosphorylate and inhibit Warts, which results 

in elevated Yki activity (Degoutin et al., 2013). To test whether CUASC-lacZ expression 

was affected by Hippo signaling, I depleted the levels of the Yki-interacting transcription 

factor Scalloped (Sd), which is required for the activation of Yki targets (Zhang et al., 

2008). I observed that knockdown of sd using RNAi had no obvious effect on the 

expression of CUASC-lacZ (Fig. 2.7E), suggesting that Hippo signaling is not involved in 

the regulation of Cic repressor activity in this context. To further assess whether Mnb and  
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Figure 2.7. Modulation of Cic repressor activity by Mnb and Wap does not require Sd 
and does not affect activity of ERK. (A-E) LacZ expression pattern resulting from C5-
GAL4-directed activation of CUASC-lacZ in wing imaginal discs from control (A), 
UAS-ERKSem (B), UAS-wap (C), UAS-wapRNAi (D), and UAS-sdRNAi (E) larvae. 
Expression of ERKSem and Wap led to a broader activation of the reporter (B, C), 
whereas knockdown of wap resulted in lower LacZ expession, particularly in 
presumptive vein L5 (D). Knockdown of sd did not alter the normal pattern of 
expression in presumptive veins. (F-H) dpERK expression pattern in wing discs from 
control (F), C5-GAL4>UAS-mnbRNAi (G), and C5-GAL4>UAS-wapRNAi (H) larvae. 
Scale bar, 50 μm. 
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Wap engage RTK/ERK signaling to control Cic, I analyzed dpERK levels in wing 

pouches expressing mnb-RNAi or wap-RNAi. I found that RNAi depletion of wap or  

 mnb did not alter the dpERK pattern in wing discs (Figs. 2.7F-H). This result is in 

agreement with the observation that overexpression of Mnb did not increase dpERK 

levels in S2 cells (Fig. 2.2B). I conclude that Mnb and Wap downregulate Cic repressor 

activity independently from the RTK/ERK and the Hippo pathways. 

To directly address how Mnb and Wap affect Cic function as a transcriptional 

repressor, I studied the activity of a reporter, CUASC-Luc, which is controlled by GAL4 

and Cic, in S2 cells (Fig. 2.8A). Transfection of GAL4 activated this reporter ~10-fold, 

and this activation was repressed by co-expression of Cic in a dose-dependent manner 

(Fig. 2.8B). Depletion of endogenous mnb, wap, or rl (ERK) by RNAi resulted in a 

reduction of reporter activity (Fig. 2.8C), suggesting that Mnb, Wap and ERK are 

required to limit the activity of Cic. I next tested whether Mnb and Wap could reduce the 

capacity of Cic to repress CUASC-Luc expression, and found that co-transfection of Cic 

with Mnb and Wap partially relieved Cic-mediated repression of this reporter (Fig. 2.8D). 

Whereas the Cic-SSTS/A mutant repressed the reporter gene expression to a similar level 

as wildtype Cic, co-expression of this mutant with Mnb and Wap did not affect its ability 

to repress CUASC-Luc (Fig. 2.8D). Collectively, these results indicate that Mnb and Wap 

reduce the activity of Cic as a transcriptional repressor, likely via Mnb-mediated 

phosphorylation of residues located in the amino terminus of the Cic protein.  
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Figure 2.8. Mnb and Wap reduce Cic repressor activity in Luciferase assay. (A) 
Schematic diagram of the CUASC-Luc reporter construct. (B) Dose-dependent 
repression of CUASC-Luc expression by Cic. S2 cells were co-transfected with the 
reporter CUASC-Luc, pMT-GAL4 and decreasing amounts of Cic expressing plasmid 
(500 ng, 250 ng, 125 ng). The values shown are fold changes over the negative 
control set at 1. (C) mnb, wap, and rl (ERK) are required to limit the activity of Cic. 
(D) Mnb and Wap reduce transcriptional repressor activity of wildtype Cic, but not of 
the phosphorylation site mutant, Cic-SSTS/A. n.s., not significant, * p<0.05, ** 
p<0.01, *** p<0.001, Statistical significance was analyzed using unpaired Student’s t 
test. Error bars represent standard deviation.
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Mnb opposes Cic function in controlling wing and eye growth.  

I next investigated whether the inhibitory effects of Mnb/Wap on Cic were 

involved in the control of organ growth. Overexpression of Mnb using the wing pouch 

MS1096-GAL4 driver (Capdevila and Guerrero, 1994) promoted wing growth (Figs. 2.9B 

and G). Conversely, overexpression of Cic or the Cic-SSTS/A mutant resulted in a 

reduction of wing size (Figs.2.9C, E and G). Whereas coexpression of Mnb with Cic 

suppressed the smaller wing size associated with Cic overexpression (Figs. 2.9C, D, and 

G), coexpression of Mnb with Cic-SSTS/A did not modify this phenotype (Figs. 4E, F, 

and G). These data suggest that Mnb regulates Cic function at least in part through the 

phosphorylation of the SSTS residues. I also asked whether mnb and cic would display 

opposing effects on growth in a reduction-of-function context. RNAi depletion of cic 

using the MS1096-GAL4 driver caused a severe defect in wing development. I thus used a 

weaker driver, C96-GAL4, which is expressed primarily around the wing margin (Helms 

et al., 1999), to study the effects of reduced levels of mnb and cic. Knockdown of cic 

caused wing overgrowth (Figs. 2.9I, L), and RNAi depletion of mnb resulted in an 

opposite effect (Figs. 2.9J, L). Importantly, RNAi depletion of cic partially rescued the 

small wing phenotype induced by expression of mnb-RNAi (Figs. 2.9K, J). Mutually 

antagonistic effects of Mnb and Cic on growth were also observed in the eye (Fig. 2.10). 

Collectively, I conclude that Mnb and Wap promote wing and eye growth by 

antagonizing the growth-restricting function of Cic.  
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Figure 2.9. Mnb opposes Cic function in controlling wing growth. (A-F) Wings from 
adult female flies expressing UAS-GFP as a control (A), UAS-mnb (B), UAS-cic (C), 
UAS-mnb together with UAS-cic (D), UAS-cic-SSTS/A (E), and UAS-mnb together with 
UAS-cic-SSTS/A (F) using the MS1096-GAL4 driver. (G) Quantification of the wing 
areas for the genotypes shown in (A-F) (n=20 for each genotype). (H-K) Wings from 
adult female flies expressing UAS-GFP as a control (H), UAS-cicRNAi1 (I), UAS-mnbRNAi 
(J), and UAS-cicRNAi1 together with UAS-mnbRNAi (K) using the C96-GAL4 driver. (L) 
Quantification of the wing areas for the genotypes shown in (H-K) (n=20 for each 
genotype). * p<0.05, ** p<0.01, *** p<0.001. Statistical significance was analyzed 
using Student’s t test. Error bars represent standard deviation. Scale bar, 200 μm. 
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Figure 2.10. Mnb opposes Cic function in controlling eye growth. (A-D) Adult female 
flies expressing UAS-GFP (A), UAS-cicRNAi1 (B), UAS-mnb-RNAi (C), and UAS-mnb-
RNAi together with UAS-cicRNAi1 (D) under the control of the da-GAL4 driver. 
Knockdown of mnb results in a smaller eye (C), which is reversed by a concomitant 
knockdown of cic (D). Scale bar, 100 μm. 
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Reduction of cic level restores adult brain size in mnb mutants.  

Mnb was originally identified in a genetic screen for mutants with altered brain 

structure (Tejedor et al., 1995). Mutant mnb adult animals have smaller brains, with the 

optic lobes (OLs) most significantly affected (Tejedor et al., 1995). In Drosophila 

development, the size of the central brain (CB) is determined by the proliferative ability 

of the neuroblasts (NBs) that are of embryonic origin, whereas the OLs are generated by 

the neuroepithelium (NE) which gives rise to the OL NBs during the larval stages (Sousa-

Nunes et al., 2010). In order to identify the tissue origins of the reduction in adult brain 

size, the larval and pupal brains from the wildtype and mnbd419 animals were analyzed 

(mnbd419 is a null allele, (Hong et al., 2012)). The volumes of the larval and pupal brains 

in the mnbd419 mutants were significantly smaller than controls (Fig. 2.11), suggesting 

that the effects of loss of mnb can be traced to these developmental stages. I asked 

whether the smaller OLs in mnb mutants could result from altered proliferation in the NE 

and/or NB regions during the larval stages. The widths of both the NB and NE regions in 

the larval brains from mnbd419 animals were significantly reduced, compared to controls 

(Figs. 2.12A-D, G, H). Conversely, overexpression of Mnb in MARCM clones resulted 

in an increase of the width of NE specifically in the clone area (Figs. 2.12E and F). These 

results suggest that Mnb is required for the proper growth of both the NE and NB regions 

in the OL. Additionally, Mnb may be involved in controlling the timing of NE to NB 

differentiation (Reddy et al., 2010).  
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Figure 2.11. Loss of mnb leads to smaller brain size in larvae and pupae. (A, B) Third 
instar larval brains from control (w1118) (A) and mnbd419 (B) animals. (C) 
Quantification of the larval brain volumes in (A, B) (n=2, 4). (D, E) Pupal brains from 
control (w1118) (D) and mnbd419 (E) animals. (F) Quantification of the pupal brain 
volumes in (D, E) (n=4, 4). * p<0.05. Statistical significance was analyzed using 
Student’s t test. Scale bars, 100 μm. These data were obtained in collaboration with 
Francesca Froldi (Cheng Lab). 
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Figure 2.12. Loss of mnb leads to thinner Neuroblast (NB) and Neuroepithelium (NE) 
regions in larvae. (A, B) NB regions (Mira-positive cells) in larval CNS from control 
(w1118) (A) and mnbd419 animals (B). (C, D) NE regions (E-cad positive cells) in larval 
CNS from control (w1118) (C) and mnbd419 animals (D). (E, F) NE region is expanded 
cell-autonomously in UAS-mnb overexpression clones (marked in green in E). Dotted 
red line: clone areas; solid red line: boundary between NB and NE. (G) Quantification 
of results in (A, B) (n=9, 4). (H) Quantification of results in (C, D) (n=5, 4). Scale 
bars: 50 μm  *p<0.05, **p<0.01, ***p<0.001. Error bars represent standard deviation. 
Statistical significance was analyzed using Student’s t test. These data were obtained 
in collaboration with Francesca Froldi (Cheng Lab). 
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Next I asked whether interactions between cic, mnb and wap were involved in the 

control of adult brain size. RNAi knockdown of mnb or wap with a ubiquitous da-GAL4 

driver (Wodarz et al., 1995) resulted in a smaller adult brain, especially in the optic lobes 

(Figs. 2.13A, C and G). This result suggests that both Mnb and Wap are required for 

normal brain growth. Knockdown of cic resulted in an increased adult brain size (Figs. 

2.13B and G). Strikingly, depletion of cic strongly suppressed the small brain phenotype 

caused by the knockdown of mnb (Figs. 2.13C, E and G), suggesting that Mnb promotes 

brain growth via downregulation of Cic. Similarly, RNAi depletion of cic rescued the 

smaller brain phenotype of wap-RNAi (Figs. 2.13D, F and G). Overall, these results 

implicate Cic, Mnb and Wap in a common pathway controlling organ growth, and 

suggest that at least some of the growth-promoting functions of Mnb and Wap are 

mediated via their inhibition of Cic activity.  
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Figure 2.13. Reduction in cic level restores adult brain size in mnb mutants. (A-G) 
Brains from adult female flies with the indicated genotypes. da-GAL4 driver was used 
to drive the expression of UAS-GFP (A), UAS-cicRNAi1 (B), UAS-mnbRNAi (C), UAS-
wapRNAi (D), UAS-cicRNAi1 together with UAS-mnbRNAi (E), or UAS-cicRNAi2 together 
with UAS-wapRNAi (F). Ph, phalloidin stain. (G) Quantification of brain volumes for 
the genotypes shown in (A-F) (n=8 for each genotype). Scale bars: 100 μm. *p<0.05, 
*p<0.05, **p<0.01, ***p<0.001. Error bars represent standard deviation. Statistical 
significance was analyzed using Student’s t test. 
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Figure 2.14. Deletion of the C2 motif does not affect the binding between Cic and 
Mnb. Protein lysates from S2 cells transfected with the indicated plasmids were 
incubated with anti-V5 beads, and immunocomplexes were analyzed on western blots 
probed with anti-V5, anti-HA, and anti-tubulin antibodies. 
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Mnb and ERK have additive effects on Cic activity  

This study so far has shown that Mnb is required for inhibiting Cic activity in 

various tissue contexts, which is also how ERK transmits signals from RTKs to control 

growth and patterning. Next I asked whether the effects of ERK and Mnb on Cic are 

additive, by first individually and then simultaneously reducing their ability to inhibit 

Cic. ERK-mediated downregulation of Cic depends on the conserved C2 motif located in 

region Cic3, which serves as the ERK docking site (Astigarraga et al., 2007). Deletion of 

the C2 motif abrogated Cic-ERK interaction (Astigarraga et al., 2007), and a single 

amino acid substitution, F1054A, in the C2 motif (QQFILAPTPAQLG) reduced the 

binding of Cic to ERK (Futran et al., 2015). Importantly, deletion of the C2 domain did 

not affect the binding of Cic to Mnb (Fig. 2.14).  

Using CRSPR/Cas9-mediated mutagenesis, our collaborators from Jiménez 

laboratory generated an allele (cic3) lacking residue F1054, which is predicted to 

specifically disrupt the interaction of Cic with ERK. Most of the cic3 mutant animals 

showed normal wing vein pattern (Figs. 2.15A and B), however a partial loss of vein L5 

was observed in approximately 30% of adult flies, indicating that this is a gain-of-

function mutation. RNAi depletion of mnb using C5-GAL4 resulted in a partial loss of 

veins L4 and L5 (Fig. 2.15C, arrowheads), which is in agreement with our observation 

that CUASC-lacZ expression was lost in the L5 region in this background (see Fig. 2.6G). 

I reasoned that if Mnb and ERK had additive effects on Cic activity, reduction of mnb 

level in the cic3 background would cause a more severe vein loss phenotype, compared to  
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Figure 2.15. Mnb and ERK function additively to inhibit Cic. (A-D) Wings from adult 
female flies of the following genotypes: C5-GAL4 (A), C5-GAL4 cic3/+ (B), C5-
GAL4/UAS-mnbRNAi (C), C5-GAL4 cic3/UAS-mnbRNAi (D). Scale bar: 200 μm. These 
data were obtained in collaboration with Marta Forés (Jiménez Lab). 
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depletion of mnb alone. Indeed, I observed not only a more severe loss of veins L4 and 

L5, but also partial loss of veins L2 and L3 in the C5>mnbRi; cic3 animals (Fig. 2.15D). I 

conclude that Mnb and ERK function additively to regulate wing tissue patterning via 

inhibition of Cic activity.  

 

2.3 Discussion  

Our knowledge of upstream signals controlling Cic activity has been largely 

limited to its regulation by the RTK/ERK pathway (Jimenez et al., 2012). In this study, I 

have identified a previously unknown mechanism for the regulation of Cic by the kinase 

Mnb and its adaptor Wap. Wap facilitates Mnb-dependent phosphorylation of Cic in the 

amino-terminal region, which is necessary for downregulation of Cic activity. I found 

that the primary mechanism of Cic downregulation by Mnb is through the relief of Cic-

dependent transcriptional repression. Mnb-dependent downregulation of Cic is necessary 

for the proper growth of multiple organs and correct patterning of tissues. 

In this study, I have used AP-MS to identify Mnb and Wap as novel Cic-

interacting proteins. Co-immunoprecipitation experiments from 0-16 h Drosophila 

embryos have shown that Mnb, Wap and Cic interact with each other in vivo. I have 

shown that Mnb interacts with and phosphorylates the amino-terminal third of the Cic 

protein. However, it is still not known how Mnb interacts with Cic. Future studies are 

required to elucidate the structural basis for the interaction between Mnb and Cic. It may 

be informative to screen for the inhibitors specifically disrupting the Mnb-Cic interaction.   
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The Mnb-Cic interaction and phosphorylation is different from the ERK-mediated 

phosphorylation of Cic, as previous reports showed that ERK interacts with Cic through 

C2 motif located in the carboxyl-terninal third of Cic (Astigarraga et al., 2007; Futran et 

al., 2015). This distinct Mnb-mediated phosphorylation of the amino-ternimal third of Cic 

results in at least 4 phosphorylation sites (S41, S49, T89, and S91), as revealed by a 

kinase assay. It would be informative to perform an in vitro kinase assay to survey the 

ERK-dependent phosphorylation sites on Cic. This assay will allow us to have a better 

understaning of the functional outcomes of Cic phosphorylations. 

Unlike ERK-mediated phosphorylation, Mnb does not affect Cic protein level or 

cellular localization. Instead, I found that Mnb only inhibits Cic transcriptional repressor 

activity. However, the molecular details of this inhibition are still not clear. One possible 

explanation is that Mnb-mediated phosphorylation of Cic interferes with the binding of 

the Cic protein to its target DNA sequences, despite the fact that no phosphorylation site 

in the HMG box region has yet been identified. Therefore, it is worth performing a 

thorough kinase assay to identify all possible Mnb-dependent phosphorylation sites in 

full-length Cic. Previous studies showed that the repression of RTK target genes requires 

co-repressors such as Groucho (Gro) (Astigarraga et al., 2007; Cinnamon et al., 2008). 

Another possible reason for a reduction in Cic repressor function could be that Mnb-

mediated phosphorylation of Cic disrupts its binding to the co-repressors, which in turn 

reduces its transcriptional repressor activity.  

According to the current model (Fig 1.3), the RTK activation results in the 

phosphorylation of ERK, which in turn phosphorylates and downregulations Cic. This 
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RTK/ERK mediated regulation of Cic allows the derepression of RTK target genes, 

which are essential for development, patterning and growth. Therefore, Cic was regarded 

as a general sensor of RTK signaling (Jimenez et al., 2012). At least two RTKs function 

as upstream inputs into Cic signaling to regulate multiple cellular responses. Torso 

signaling functions through Cic to regulate embryo tissue patterning in Drosophila 

(Cinnamon et al., 2004; de las Heras and Casanova, 2006; Jimenez et al., 2000). EGFR 

signals are transduced through Cic to control patterning, differentiation, and proliferation 

(Ajuria et al., 2011; Atkey et al., 2006; Blair, 2007; Goff et al., 2001; Jiang et al., 2011; 

Jin et al., 2015; Roch et al., 2002). However, little is known about the upstream 

regulatory mechanisms of Mnb and Wap.  

Mnb is expressed and required in neuroblast proliferation centers during 

neurogenesis, but what upstream signals activate Mnb is still unknown (Tejedor et al., 

1995). One study revealed that Mnb formed a transitional intermediate during translation, 

which phosphorylates tyrosine326 in the activation loop of the kinase domain. This 

autophosphoryaltion is an intramolecular event. Once Mnb is released from the ribosome, 

tyrosine kinase activity is lost, and the Mnb kinase only functions as a serine/threonine 

kinase (Lochhead et al., 2005). Its mammalian homologue, DYRK1A, also relies on 

autophosphorylation of the conserved tyrosine321 in the activation loop of the kinase 

domain. In addition, autophosphorylation is not restricted to tyrosine321. A study showed 

that DYRK1A also autophosphorylates on serine520 in the PEST domain, which is  
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important for its interaction with 14-3-3 proteins (Alvarez et al., 2007).  Given that the 

DYRK family kinases autoactivate themselves soon after translation (Becker and Sippl, 

2011), it is likely that the effects of Mnb and Wap on Cic are constitutive.  

Inhibition of Cic activity by Mnb/Wap has two developmentally important 

consequences (Fig. 2.16). First, this regulation is important for the proper growth of 

several organs, such as the wings, eyes, and the brain. Second, downregulation of Cic 

activity by Mnb/Wap is required for proper tissue patterning. Given the broad expression 

patterns of Cic, Mnb, and Wap, the inhibitory mechanism I describe appears to operate in 

most, if not all, cells. In relation to ERK, the contribution from Mnb and Wap to Cic 

downregulation depends on the tissue context and includes three possible scenarios: in 

some cells (e.g. developing vein L5 in the wing), both pathways are required for 

complete inhibition of Cic and operate additively. In other cells, ERK is the primary 

inhibitory signal, whereas the contribution of Mnb/Wap is less prominent (e.g. veins L2 

and L3). Finally, in yet other cells in which ERK is not active, the function of Mnb and 

Wap to limit Cic activity would be dominant. 

In addition to the RTK/ERK pathway, Cic was also shown to be regulated by 

Hippo signaling (Herranz et al., 2012), and we have previously implicated Mnb and Wap 

as Hippo pathway regulators downstream of Dachsous (Degoutin et al., 2013). In this 

study, I found that knockdown of sd, a required component of Hippo signaling, did not 

affect the pattern of expression of CUASC-LacZ, and that knockdown of mnb or wap did 

not alter the pattern of ERK activation (Fig. 2.7), suggesting that Mnb and Wap control  
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Cic activity independently from ERK and Hippo signaling. Altogether, current evidence 

suggests that Cic functions as an integrator of upstream developmental signals that 

converge on Cic to limit its activity, which is necessary for the proper execution of 

developmental programs responsible for tissue patterning and organ growth (Fig. 2.16). 

Cic controls these developmental programs by direct binding to the enhancers of the 

genes encoding regulators of tissue patterning and cell proliferation in Drosophila and 

mammals (Ajuria et al., 2011; Fores et al., 2015; Jin et al., 2015; Kawamura-Saito et al., 

2006).   

 

Figure 2.16. Cic integrates upstream signals to control organ growth and tissue 
patterning.  
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Interactions between Mnb/Wap and Cic in the brain have interesting parallels in 

human biology. The majority (>70%) of oligodendrogliomas, which are aggressive brain 

tumors, have been recently shown to harbor loss-of-function mutations in CIC, 

suggesting that it functions as a tumor suppressor (Sahm et al., 2012; Wesseling et al., 

2015). Higher expression of DYRK1A was also found in a subset of oligodendroglioma 

patient samples (Pozo et al., 2013), raising a possibility that DYRK1A may suppress Cic 

activity in human cells, much like Mnb does in Drosophila. A connection between 

DYRK1A and Cic in controlling brain development may extend even deeper, since both 

proteins have been implicated in neurodegenerative diseases (Guimera et al., 1996; Lam 

et al., 2006; Moller et al., 2008; Tejedor and Hammerle, 2011).  

 

2.4 Materials and Methods 

Drosophila melanogaster Stocks  

All Drosophila stocks were maintained on standard yeast-cornmeal-agar medium 

at 25°C or 18°C as indicated.  MS1096-GAL4, da-GAL4, C96-GAL4, en-GAL4 and hh-

GAL4 UAS-GFP, ey-FLP UAS-dcr2 (#58757), CoinFLP UAS-GFP (#58751) were from 

the Bloomington Drosophila Stock Center. UAS-wap RNAi (KK 107076), UAS-mnb 

RNAi (GD 28628), UAS-cic RNAi1 (KK 103012), UAS-cic RNAi2 (GD 40867), UAS-sd 

RNAi (KK 101497) were from the Vienna Drosophila Resource Center (VDRC). UAS-

cic, UAS-mnb, UAS-wap were made using standard cloning methods, and transgenic lines 

were generated by Genetic Services, Inc (Cambridge, MA). Cic-Venus is a genomic Cic  
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rescue construct from (Grimm et al., 2012). Other stocks were C5-GAL4 and CUASC-

lacZ (Ajuria et al., 2011), mnbd419 (Hong et al., 2012), mnb-tagRFP-T and wap-Venus  

(Poon et al., 2016). The targeting vectors comprised the tagRFP-T (Shaner et al., 2008) or 

Venus gene, the 3xP3-RFP gene for transformant selection and 1-kb homology arms. The 

vectors were designed such that the fluorescent protein gene is inserted immediately in 

front of the stop codon of the target gene and expressed as a fusion protein. The cic3 

allele was obtained by CRISPR/Cas9-mediated mutagenesis. A guide RNA (gRNA) 

sequence (5’-GTGGGTGCCAAAATAAACTGC-3’) targeting the C2 coding sequence 

was subcloned in vector pCFD3 (Port et al., 2014) and inserted at the attP40 genomic site 

via PhiC31-based integration. Transgenic gRNA males were crossed to nanos-cas9 

females, and the resulting founder males were then crossed to TM3-bearing females for 

recovery of mutations. Induced alleles were identified by sequencing PCR products 

amplified from candidate flies. 

Immunohistochemistry and Immunoblotting  

Primary antibodies were: mouse anti-β-galactosidase (LacZ) 1:100 (Promega), 

mouse anti-dpERK 1:100 (Sigma), rabbit anti-GFP 1:1,000 (Abcam), mouse anti-V5 

1:1,000 (Sigma), rabbit anti-Flag 1:1,000 (Sigma), rabbit anti-HA 1:1,000 (Sigma), 

guinea pig anti-Cic 1:100 (gift from Iswar Hariharan, University of California, Berkeley),  

rabbit anti-DCAF7 1:100 (Novus Biologicals), rabbit anti-tRFP 1:1000 (Evrogen), mouse 

anti-Mira 1:100 (gift from Alex Gould), mouse anti-Ecad 1:50 (Developmental Studies 

Hybridoma Bank), mouse anti-Engrailed 1:5 (Developmental Studies Hybridoma Bank). 

Secondary antibodies used were: Alexa Donkey anti Rabbit-647 (Life Technologies), 
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Alexa Donkey anti-Mouse 488 (Abcam), Alexa Donkey anti-Rabbit 555 (Life 

Technologies), IRDye 800CW Donkey anti-Rabbit IgG (LI-COR), IRDye 680CW 

Donkey anti-Guinea pig IgG (LI-COR), IRDye 680CW Donkey anti-Mouse IgG (LI-

COR). Dissected imaginal discs were stained as in (Degoutin et al., 2013). Stained tissues 

were mounted with Prolong Gold anti-fade mounting reagent with DAPI (Life 

Technologies), and images were acquired with Zeiss LSM 510 or Zeiss LSM 880 

confocal microscopes. Tissues from the Mnb-tRFP, Wap-Venus, Cic-Venus stocks were 

mounted in 90 percent glycerol and images were acquired with the Nikon C2 confocal 

microscope and processed in Fiji. 

Quantification of Wing and Brain Size  

Wing area from 20 flies was quantified using Adobe Photoshop. For 

quantification of brain size, flies were raised at 18°C. Brains from 8 ten-days old female 

flies were dissected in cold 1x PBS, fixed with 4% formaldehyde/PBS and stained with 

Alexa Fluor 594 Phalloidin (Life Technologies) overnight. Stained brains were mounted 

with Prolong Gold anti-fade mounting reagent with DAPI (Life Technologies). Brain 

volume measurements were done from 3D reconstructions of 2.5 µm-spaced confocal Z-

stacks acquired with a Zeiss LSM 880 or Leica SP5 confocal microscopes, using a 3D 

Viewer plugin in Fiji or Volocity software. Significance was calculated with a 

Student’s t-test. In all figures, the following indications are used: * p<0.05, ** p<0.01, 

*** p<0.001. 
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Expression Plasmids and Cell Culture  

For establishing a stable S2 cell line, full-length Cic open reading frame was 

tagged with streptavidin binding peptide (SBP) at the C terminus and cloned into pMK33 

vector (Kyriakakis et al., 2008). Full-length open reading frame and fragments of Cic 

were cloned into pMT/V5-His A vector (Invitrogen). Full-length Wap was tagged with 

the Flag tag and cloned into the pMT vector. pMT-Mnb-HA and pMT-MnbKR-HA 

plasmids were from (Degoutin et al., 2013). The pGL2-CUASC-Luc (“CUASC-Luc”) 

reporter was generated by PCR amplification of the promoter regions of pC4PLZ-

CUASC vector (Ajuria et al., 2011) with primers CUASC-XhoI-UP1 (5’-

ATCGCTCGAGGAATTCCCAGTTTATG-3’) and CUASC-XhoI- DN1 (5’-

GCTACTCGAGTTATCACCCACGGCTCTGCTC-3’), which was subcloned into pGL2 

basic (Promega). Full-length GAL4 was cloned into pMT/V5-His A vector (Invitrogen) 

to generate pMT-GAL4. pIE4-lacZ was described previously (Frolov et al., 2001). 

Drosophila S2 cells were maintained in standard Schneider’s S2 medium with fetal 

bovine serum (Gibco) at 25°C, and transfections were performed using Effectene 

transfection reagent (Qiagen). In some instances, cells were treated with 30 µg dsRNA 

specific for wap, mnb or rl (ERK) for 96 h. After 96 h, cells were transfected with 

indicated plasmids. CuSO4 was added to culture media at a final concentration of 0.35 

mM for inducing expression. Cells were lysed using Default Lysis Buffer (DLB) (50 mM 

Tris pH 7.5, 125 mM NaCl, 5% glycerol, 0.2% IGEPAL, 1.5 mM MgCl2, 1 mM DTT, 25 

mM NaF, 1mM Na3VO4, 1mM EDTA and 2x Complete protease inhibitor, Roche). Clear 

cell lysates were incubated with anti-V5 beads (Sigma), streptavidin beads (Pierce), GFP-
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Trap or RFP-Trap resin (ChromoTek) for 2 hrs at 4°C. Beads were washed three times 

with lysis buffer, and protein complexes were eluted with SDS buffer. To visualize 

differences in Cic1 mobility, 6% Tris-Glycine gels were used with 50 µM Phos-tagTM 

(Wako Laboratory Chemicals) and 100 µM MnCl2.  

Luciferase Reporter Assays  

S2 Cells were co-transfected with the luciferase reporter vector pGL2-CUASC-

Luc and with the effector plasmids. pIE4-LacZ was used to normalize transfection 

efficiencies. Each transfection point was assayed in triplicate, and each experiment was 

repeated three times. Luciferase and β-galactosidase activities were measured in S2 cell 

lysates by Luc-Screen® Extended-Glow Luciferase Reporter Gene Assay System 

(Thermo Fisher) and Galacto-Star™ One-Step beta-Galactosidase Reporter Gene Assay 

System (Thermo Fisher), respectively. Luminescence signals were acquired on 

POLARstar Omega multifunction microplate reader (BMG Labtech).   

Mass Spectrometry  

Cic-interacting proteins were purified from Drosophila S2 cells (Cic-SBP) 

essentially as described in (Kyriakakis et al., 2008), using a modified single-step 

procedure for SBP-tagged Cic. For expression in S2 cells, pMK33-Cic-SBP construct 

was transfected using Effectene transfection reagent (Qiagen), and stable cell lines were 

selected in the presence of 300 µg/mL hygromycin (Sigma). Cic-SBP purifications were 

performed in 2 biological replicates. To analyze Cic complexes in vivo, 0-16 hr Cic-

Venus embryos were collected and the proteins were extracted and purified on GFP-Trap  
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resin (ChromoTek) as described in (Neumuller et al., 2012). The Cic-Venus construct 

uses genomic regulatory sequences of the cic gene and therefore expresses the Cic-Venus 

protein at endogenous levels (Grimm et al., 2012). Functionality of this construct was 

previously confirmed in a rescue assay (Grimm et al., 2012). Cic-Venus purifications 

were performed in 3 biological replicates. Protein complexes were analyzed by nanoLC-

MS/MS as described in (Kyriakakis et al., 2008) at the Taplin Mass Spectrometry Facility 

at Harvard Medical School. Identified Cic-interacting proteins were analyzed by the 

SAINT program (Choi et al., 2011). A complete mass spectrometry dataset is shown in 

Table S1. Interactions with SAINT scores >0.8 were considered significant.  

To identify Cic residues that are phosphorylated by Mnb, Cic1-V5 and Wap-Flag 

were coexpressed in S2 cells either with Mnb-HA or MnbKR-HA, Cic1-V5 was purified 

on anti-V5 agarose resin, and its phosphorylation was analyzed by nanoLC-MS/MS. 
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CHAPTER 3 

CONCLUSION 

 

The work presented in this dissertation aimed to identify novel regulators that 

control developmental processes through a critical node, Cic, in a signaling network. This 

work started with addressing an open question: What are the Cic-interacting proteins? 

Current proteomic studies of signaling interactomes are limited to cultured cells 

(Friedman et al., 2011; Kwon et al., 2013). My research used affinity purification-mass 

spectrometry (AP-MS) to study the Cic interactome in both S2 cells and the developing 

Drosophila embryos. This unbiased approach provided a comprehensive understanding 

of Cic signaling at a systems level in vivo.  

I identified the Minibrain kinase (Mnb) and the adaptor protein, Wings apart 

(Wap), as novel Cic-interacting proteins. Furthermore, I employed various molecular 

biology tools, including co-immunoprecipitation (CoIP), RNA interference (RNAi), 

mutagenesis, in vitro kinase assay, mass spectrometry (MS), to characterize the 

interactions between Cic, Wap, and Mnb, and phosphorylation of Cic by Mnb. I found 

that Mnb interacts with Cic via amino-terminal third of Cic protein, which is distinct 

from the interaction between ERK and Cic. In addition, I showed that Mnb and ERK 
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target different regions of Cic protein for phosphorylation. I discovered 4 Mnb-dependent 

phosphorylation residues (S41, S49, T89, and S91) in the amino-terminal region of Cic. 

The functional importance of these residues was confirmed in luciferase and in vivo 

assays.          

This study also investigated the consequences of Mnb-mediated phosphorylation 

of Cic. By using reporter assays, I showed that Mnb inhibits Cic transcriptional repressor 

activity in Drosophila wing imaginal discs and in S2 cells. Alanine substitution of the 4 

putative Mnb phosphorylation residues (S41, S49, T89, and S91) resulted in a form of 

Cic that was resistant to the inhibition by Mnb, suggesting that Mnb and Wap reduce Cic 

repressor activity via Mnb-mediated phosphorylation of these residues. One question still 

unanswered is how Mnb-mediated phosphorylation of Cic reduces Cic activity. 

Answering this question would elucidate how Mnb downregulates Cic.  

In this study, I investigated the effects of Mnb on Cic in multiple developmental 

contexts. Most notably, the downregulation of Cic by Mnb is required for the proper 

growth of several organs, such as the wings, eyes, and the brain. In addition, I discovered 

that the downregulation of Cic by Mnb is required for proper tissue patterning. Finally, I 

showed that Mnb functions additively with ERK to regulate Cic. Altogether, I uncovered 

a previously unknown mechanism of Cic regulation which acts in parallel to other 

signaling pathways.  
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APPENDIX 
 

SINGLE-STEP AFFINITY PURIFICATION OF ERK SIGNALING COMPLEXES 

USING THE STREPTAVIN-BINDING PEPTIDE (SBP) TAG 

 

This section was adapted from Yang, L. and Veraksa, A. (2016) Single-step affinity 

purification of ERK signaling complexes using the streptavidin-binding peptide (SBP) 

tag. Methods in Molecular Biology (in press) 

 

Summary 

Elucidation of biological functions of signaling proteins is facilitated by studying 

their protein-protein interaction networks. Affinity purification combined with mass 

spectrometry (AP-MS) has become a favorite method to study protein complexes. Here I 

describe a procedure for single-step purification of ERK (Rolled) and associated proteins 

from Drosophila cultured cells. The use of the streptavidin-binding peptide (SBP) tag 

allows for a highly efficient isolation of native ERK signaling complexes, which are 

suitable for subsequent analysis by mass spectrometry. Our analysis of the ERK 

interactome has identified both known and novel signaling components. This method can 

be easily adapted for SBP-based purification of protein complexes in any expression 

system. 
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1. Introduction 

Receptor tyrosine kinase (RTK)/extracellular signal-regulated kinase (ERK) 

signaling controls many cellular processes, including proliferation, differentiation, and 

apoptosis (Futran et al., 2015; Lemmon and Schlessinger, 2010). Dysregulation of this 

pathway has been implicated in multiple human diseases, including cancer (Jindal et al., 

2015; Lemmon and Schlessinger, 2010; Newbern et al., 2008; Rauen, 2013; Rauen et al., 

2011; Tidyman and Rauen, 2009). The development of relevant therapies depends on the 

knowledge of the structure and dynamics of the ERK signaling network. Genetic analysis 

of the RTK/ERK pathway in Drosophila and other model systems identified its key 

components, and subsequent biochemical studies revealed key protein-protein 

associations, such as those involving the core Raf-MEKERK kinase cascade, as well as 

scaffolding and adaptor proteins (Li, 2005; Shilo, 2014; Sopko and Perrimon, 2013). 

However emerging evidence suggests that the ERK signaling network is complex and 

includes dozens of substrates and additional regulatory molecules (Friedman et al., 2011; 

von Kriegsheim et al., 2009). Affinity purification of protein complexes followed by 

mass spectrometry-based identification of interacting components has emerged as a 

powerful method to study signaling networks (Gavin et al., 2011; Veraksa, 2013). 

Previously our lab applied tandem affinity (TAP) purification to isolate signaling 

complexes in Drosophila, first using the original TAP tag (Rigaut et al., 1999; Veraksa et 

al., 2005), and more recently using an improved version, the GS-TAP tag (Burckstummer 

et al., 2006; Kyriakakis et al., 2008). Both of these methods are rather lengthy, as they 

require two affinity binding steps separated by tobacco etch virus (TEV) protease   
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cleavage after the first affinity column. Due to inevitable sample loss at every step, they 

require a large amount of starting material. In order to overcome these limitations, I have 

developed and present here an efficient single-step purification approach for isolating 

signaling complexes from Drosophila cultured cells, based on the use of streptavidin-

binding peptide (SBP). SBP is a 38-amino acid peptide that was artificially selected for 

high-affinity binding to native streptavidin (Keefe et al., 2001). Compared to other 

affinity purification methods, the SBP tag offers several advantages. First, the SBP tag is 

relatively compact and therefore less likely to impair protein function (4 kDa vs. 20 kDa 

for the TAP or GS-TAP tags). Second, SBP interacts with native streptavidin with high 

affinity (Kd = 2.5 nM), which results in an efficient association of the tagged protein with 

the matrix (Keefe et al., 2001). Third, the SBP tag works well when placed either at the 

amino or carboxy terminus of the protein, or even in the middle. Fourth, SBP-tagged 

proteins can be eluted with a heterologous compound, biotin, which results in a lower 

carryover of contaminants compared to other elution methods, such as competition with 

excess tag peptide. Fifth, streptavidin matrices are less costly than many other affinity 

resins.  

Finally, single-step purification is faster and less labor-intensive than TAP. These 

properties make SBP tagging an attractive option for affinity purification studies. 

Usability of this approach has been validated in our studies involving various signaling 

proteins (Degoutin et al., 2013; Dent et al., 2014; Gilbert et al., 2011; Zhang et al., 2015), 

and this method has also been used to purify complexes from vertebrate cultured cells 

(Kim et al., 2010a). In this section I describe a procedure to generate Drosophila cultured  
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cells stably expressing SBP-tagged ERK, followed by purification of ERK protein 

complexes. The mass spectrometry step is not presented, however I give suggestions for 

preparing samples for this analysis and for analyzing mass spectrometry data using the 

SAINT (significance analysis of interactome) program (Choi et al., 2011). Using this 

workflow, I was able to identify most of the known core components of ERK signaling, 

including two major ERK phosphatases. In addition, the identified list of ERK interactors 

includes several proteins that have not been previously associated with ERK signaling. 

Though the method I describe is for Drosophila cultured cells, it can be easily adapted for 

mammalian cells or any other cell culture system. 

 

2. Materials 

A tissue culture facility and a general molecular biology lab with -20°C and -80°C 

freezers and a 4°C cold room or a refrigeration chamber are needed for carrying out this 

protocol. Prepare all solutions using ultrapure (18.2 MΩ·cm) water. 

 

2.1. Tissue culture and cell transfection materials and reagents 

1. Tissue culture hood with vacuum connection. Cell transfections are performed in the 

hood.  

2. Cell culture incubator at 25°C. Use a dish with ultrapure water at the bottom shelf to 

maintain humidity in the incubator. 

3. Qiagen Maxiprep plasmid purification kit. 
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4. Qiagen Effectene transfection reagent. 

5. Drosophila S2 cells (see Note 1). 

6. Tissue culture treated sterile 6-well plates, e.g. Corning catalog number 3516. 

7. Tissue culture treated vented 25 cm2
 and 75 cm2 flasks, e.g. Corning catalog number 

353109. 

8. 15-mL and 50-mL Falcon tubes, sterile and regular Eppendorf tubes. 

9. 250-mL and 500-mL sterile disposable filter units for preparing S2 cell media, 0.2 μm 

pore size. 

10. Clinical centrifuge that accommodates 15-mL and 50-mL Falcon tubes, at 4°C. 

11. Microcentrifuge, at 4°C. 

12. Vortex mixer in or next to the tissue culture hood. 

13. Gibco Schneider’s Drosophila Medium (1x) with L-glutamine (Life Technologies 

catalog number 21720024). Store at 4°C. 

14. Gibco Fetal Bovine Serum (FBS), heat-inactivated (Life Technologies catalog 

number 

10082147). Aliquot by 50 mL in 50-mL Falcon tubes, store at -20°C. 

15. Gibco Penicillin-Streptomycin, “Pen/Strep” (5,000 U/mL) (Life Technologies catalog 

number 15070063). Aliquot by 5 mL in 15-mL Falcon tubes, store at -20°C. 

16. Complete S2 cell medium: in the tissue culture hood, combine in a 500-mL filter unit:  
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500 mL Schneider’s Drosophila Medium, 50 mL FBS, and 5 mL Pen/Strep, filter using 

vacuum connection, cap and swirl to mix. Store at 4°C. Warm to room temperature 

before use. 

17. Hygromycin, 300 mg/mL stock solution: dissolve 250 mg hygromycin (Sigma 

catalog number H3274) in 800 μL sterile PBS or ultrapure water, store at 4°C in the dark. 

18. Complete S2 cell medium with 300 μg/mL hygromycin: co-filter 250 mL complete 

S2 cell medium (item 16) with 250 μL hygromycin stock solution (1:1,000 dilution). 

Wrap medium with hygromycin with aluminum foil to protect from light and store at 4°C 

for up to 1 month. A larger (500 mL) batch can be made as needed. 

19. Anti-SBP antibody: Santa Cruz Biotechnology sc-101595, anti-SBP Tag (clone 

SB19-C4). Use 1:1000 for western blotting to check the expression of SBP-tagged 

proteins. 

 

2.2. Affinity purification reagents 

1. 0.07 M CuSO4: dissolve 8.74 g CuSO4·5H2O in 500 mL water, filter-sterilize, store at 

room temperature. 

2. 1x phosphate buffer saline (PBS). Store at 4°C. 

3. 5x lysis buffer: 250 mM Tris pH 7.5, 25% glycerol, 1% IGEPAL, 7.5 mM MgCl2, 625 

Mm NaCl, 125 mM NaF, 5 mM Na3VO4. To make 200 mL: completely dissolve 1 g NaF 

powder and 184 mg Na3VO4 powder in 71 ml water with constant stirring. Add 50 mL 1  
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M Tris pH 7.5, 2 mL 100% IGEPAL (Sigma catalog number I8896), 1.5 mL 1 M MgCl2, 

25 mL 5 M NaCl, then add 50 mL glycerol (add last) and continue stirring for one hour. 

Filter-sterilize using 250-mL filter unit (this step can be slow). Aliquot by 10 mL in 50-

mL Falcon tubes and store at -80°C. 

4. 1 M dithiothreitol (DTT) solution. Store at -20°C. 

5. cOmplete™ protease inhibitor cocktail tablets, with EDTA: Roche catalog number 

11697498001 (20 tablets). Store at 4°C. 

6. Streptavidin beads: Pierce™ Streptavidin Plus UltraLink™ Resin, Pierce catalog 

number 53117. 

7. 10-ml Luer-Lok disposable syringes. 

8. Syringe filters, 26 mm diameter, SFCA membrane, 0.45 μm pore size, e.g. Corning 

catalog number 431220. 

9. Dry heating block at 95°C. 

10. 4x SDS sample buffer: 8% SDS, 160 mM Tris pH 6.8, 30% glycerol, 1 mg/ml 

bromophenol blue. To make 100 mL; combine 50 mL water, 8 g SDS powder, 16 mL 1 

M Tris pH 6.8, 30 mL glycerol, 100 mg bromophenol blue powder. Dissolve well with 

constant stirring, filter-sterilize and store at room temperature. Before use, mix 950 μL 

buffer with 50 μL 1 M DTT (to get 50 mM final DTT concentration), vortex to mix. 

Buffer with DTT is stored at -20°C. 

11. 2x SDS sample buffer: mix equal volumes of 4x SDS sample buffer (with DTT) and 

water. 
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12. Rotating wheel with clamps for Falcon tubes and Eppendorf tubes, at 4°C. 

13. 200 mM biotin stock solution: in the chemical hood, mix 875 μL water with 125 μL 

NH4OH (ammonium hydroxide solution, 28% NH3 in water), this will make 2 M NH4OH 

solution. To this solution, add 50 mg biotin (e.g. Sigma catalog number B4501) and 

vortex well. Store at -20°C. 

14. 2 mM biotin working solution: dilute 200 mM biotin stock solution 1:100 with lysis 

buffer with DTT and cOmplete™ protease inhibitor, see protocol step 3.2.2 (e.g. 990 μL 

lysis buffer and 10 μL of 200 mM biotin stock). Make 2 mM biotin working solution 

right before use and discard unused portion. 

15. 100% (w/v) trichloroacetic acid (TCA) solution. To make 100% (w/v) TCA solution, 

combine 500 g TCA crystals with 350 mL water, mix and store at room temperature. 

16. 10% (w/v) TCA solution. Dilute 100% TCA 1:10 with water. Store at 4°C. 

17. Acetone at -20°C. 

 

2.3. Reagents for silver-staining gels 

1. Molecular weight marker: any unstained marker can be used, but prefer BioRad 

Precision Plus unstained standards. Dilute 1:10 with 2x SDS sample buffer. Store at -

20°C. 

2. Gel for silver staining: a regular SDS-PAGE can be used, however I find that 

commercial gradient gels provide a better coverage of the complete molecular weight 

range. I use Novex NuPAGE 4-12% Bis-Tris gels, 1.5 mm thick, with 10 wells, Life 
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Technologies catalog number NP0335. They require a corresponding gel apparatus, such 

as the XCell SureLock Mini system. 

3. Electrophoresis buffer for NuPage Bis-Tris gels: MOPS SDS running buffer, with 

antioxidant, Life Technologies catalog number NP0001. 

4. Silver staining kit: Life Technologies SilverQuest Staining Kit, catalog number 

LC6070. 

5. Dish for silver staining. 

 

3. Methods 

3.1. Transfection and establishment of stable S2 cell lines 

1. Clone your protein of interest into the pMK33-SBP-N or pMK33-SBP-C vector (Fig. 

1A) (see Note 2). For this procedure, I used full-length Drosophila ERK (Rolled) cloned 

into pMK33- SBP-C. Prepare DNA for transfection using Qiagen Maxiprep protocol 

following manufacturer’s recommendations (see Note 3). 

2. Dispense 1.5 mL per well of complete S2 cell medium in a 6-well plate. Add 0.5 mL of 

Drosophila S2 cells from dense cultures (4-5 days). Incubate at 25°C overnight (optional) 

or at least 3 hours to allow cell attachment to the bottom of the well. 

3. Use Qiagen Effectene transfection reagent to prepare DNA for transfection into cells 

(see Note 4). Perform all transfection steps in the hood. Mix in a sterile Eppendorf tube: 

150 μL buffer EC, 2 μg DNA, 16 μL Enhancer, and vortex for 5 sec. Incubate at room  
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Figure 1 Diagram of the pMK33-SBP vectors and workflow for single-step SBP-

based purification. (A) Diagram of the pMK33-SBP vectors. Mt prom.: 

metallothionein promoter for CuSO4-inducible expression; MCS: multiple cloning site 

(polylinker). Unique cloning sites in the MCS are shown in bold and underlined. (B) 

Workflow for single-step SBP-based purification, as described in the protocol. 
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temperature for 5 min, briefly spin down. Add 21 μL Effectene reagent, immediately 

vortex for exactly 10 sec, do not spin down. Incubate at room temperature for 15 min. 

4. Remove old medium from cells using 1-mL tip. Add 1 mL of fresh complete medium 

to cells, then add 1 mL of fresh complete medium to the tube with DNA from step 3, 

gently but thoroughly pipet up and down 4-5 times, add DNA/medium solution dropwise 

to cells, swirl to mix. Total volume will be 2 mL per well. Incubate plates with 

transfected cells for 48 hours at 25°C. 

5. Resuspend cells in the well, transfer to 15-mL Falcon tube, spin down for 3 min at 500 

g in a clinical centrifuge, resuspend in 10 mL of complete medium with 300 μg/mL 

hygromycin, and seed the cells in a 25 cm2
 vented flask. 

6. Carry out selection of stable cell lines. Watch the number of cells in the flasks and 

allow them to reach good density before splitting. During the first 2-3 weeks, significant 

cell death will be visible, and splitting can be done more rarely and retaining a higher 

volume of cells (e.g. 1:1 split once a week instead of a normal 1:5 split every 4-5 days). 

Medium should contain hygromycin during all passages. Cells in a control well (e.g. 

transfected with actin-GFP) will completely die out after 3-4 weeks, and cells in the 

experimental well should grow normally after about a month of continuous selection (see 

Note 5). 
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3.2. Cell lysis and affinity purification 

A general workflow for affinity purification steps is shown in Fig. 1B. Unless 

indicated otherwise, all cell collection, lysis and affinity purification steps should be 

performed on ice (see Note 6). 

1. Amplify cells in two 75 cm2
 vented flasks, 25 mL in each flask, for a total of 50 mL 

(see Note 7). Use untransfected S2 cells grown in parallel as a negative control sample 

for purifications, and follow all of the same steps with that sample. Allow the cells to  

grow to medium-high density (3-4 days) and induce overnight with 0.07 mM CuSO4 by 

adding 25 μL of 0.07 M CuSO4 stock solution to 25 mL of cells in a flask (1:1000 

dilution). Mix well by swirling and rocking the flask (see Note 8). 

2. Prepare lysis buffer: add 40 mL water to 10 mL of 5x concentrated lysis buffer (stored 

at - 80°C) in a 50-mL Falcon tube. Add 50 μL of 1 M DTT to a final concentration of 1 

mM, mix well and separate into two 50-mL Falcon tubes, 25 mL in each. To one of the 

tubes, add one cOmplete™ protease inhibitor tablet and rotate at 4°C for 30 min (see note 

9). At the end, check to make sure the cOmplete™ tablet has fully dissolved. The second 

tube can be stored at -80°C and will only require addition of the cOmplete™ tablet before 

the next experiment. 25 mL of lysis buffer is sufficient for up to 4 purification samples. 

3. While cOmplete™ tablet is dissolving, resuspend cells in flasks with a 10-mL pipette 

and collect into a 50 mL Falcon tube on ice. 

4. Spin in a clinical centrifuge at 500 g for 3 minutes at 4°C. 
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5. Remove supernatant by aspiration and wash cells with 50 mL of cold PBS. Mix by 

inversion. 

6. Spin in a clinical centrifuge at 500 g for 5 minutes at 4°C. Remove as much 

supernatant as possible. 

7. Lysis: add 1 mL of cold lysis buffer with cOmplete™ protease inhibitor (from step 2) 

to cells and pipet up and down 4-5 times to lyse the cells. For more efficient lysis, press 

the tip against the bottom of the tube to create shearing force. Transfer lysate to a chilled 

Eppendorf tube and incubate on ice for 15-20 minutes. 

8. Prepare streptavidin beads, aiming for 50 μL of packed beads per sample. Take the 

appropriate amount of 50% bead slurry and add to an Eppendorf tube. Wash beads three 

times with 1 mL of lysis buffer (see step 2), mixing by inversion. After each wash, 

centrifuge the tube for 1 min at 500 g at 4 °C. After the last wash, remove supernatant, 

leaving the volume that is equal to the volume of packed beads (to obtain 50% slurry 

after subsequent mixing). Keep washed beads on ice. 

9. Centrifuge cell lysates from step 7 at maximum speed (e.g. 14,000 g) at 4°C for 15 

min.  

10. This step is best performed in the cold room. Aspirate supernatants with 1-ml tip and 

load into chilled 10-ml syringes with 0.45 μm filters attached. Push all of the solution 

into fresh Eppendorf tubes on ice. Optional: save Before Binding (BB) analytical sample: 

mix 50 μL of lysate with 25 μL of 4x SDS sample buffer (see Note 10). Vortex and heat 

at 95°C for 5 minutes. Store at -20°C. 
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11. Binding: resuspend washed streptavidin beads by pipetting and add 100 μL of slurry 

(corresponding to 50 μL of packed beads) to each sample (see Note 11). Rotate for 2-3 

hours at 4°C on a rotating wheel. 

12. Remove the tubes from the rotating wheel and centrifuge at 500 g for 1 min at 4 °C.  

Optional: save the Flow-through (FT) analytical sample: mix 50 μL of supernatant with 

25 μL of 4x SDS sample buffer. Vortex and heat at 95°C for 5 minutes. Store at -20 °C. 

Aspirate and discard the rest of the supernatants, keeping the bead pellets. 

13. Washes: add 1 mL of lysis buffer (see step 2) to the beads, mix by inversion 4-5 times 

and spin down at 500 g for 1 min at 4°C. Aspirate and discard the supernatant. 

14. Repeat step 13 four more times for a total of 5 washes. After the last wash, take care 

to remove as much supernatant as possible, without dislodging the beads. 

15. Elution: prepare 2 mM biotin working solution, 300 μL per sample, right before use, 

by diluting 200 mM biotin stock solution 1:10 with lysis buffer. Resuspend bead samples 

in 100 μL of 2 mM biotin working solution. Use a pipet tip with a large orifice to 

resuspend the beads gently but completely by pipetting. Incubate on ice for 5 min. 

Centrifuge at 500 g for 1 min at 4°C. Carefully collect 100 μL of supernatant, avoiding 

the beads, and place in a new Eppendorf tube on ice. 

16. Repeat step 15 two more times, each time adding 100 μL of the supernatant to the 

same Eppendorf tube on ice, for a total of 300 μL of eluate after 3 elution steps. Optional: 

collect the Retentate (RT) sample: place the tubes with the beads into a rack at room 

temperature and let stand for 2 min. Add 50 μL of 4x SDS sample buffer to the beads, 
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mix by swirling with a tip without pipetting, heat at 95 °C for 5 min and store at -20°C 

(see Note 12). 

17. Spin down pooled eluate at full speed for 30 sec at 4°C and transfer supernatant into a 

fresh Eppendorf tube, avoiding any beads that may remain at the bottom. Optional: 

collect the Eluate (EL) sample: combine 10 μL of eluate with 10 μL of 4x SDS sample 

buffer. Mix by flicking, heat at 95 °C for 5 min and store at -20°C. 

18. TCA precipitation: the final eluate will be divided into two unequal parts to prepare 

samples for mass spectrometry and silver-stained gel analysis (see Fig. 1B). For the mass 

spectrometry sample, combine 180 μL of eluate with 20 μL of 100% TCA in a fresh 

Eppendorf tube labeled “MS.” For the silver-stained gel sample, combine 90 μL of eluate 

with 10 μL of 100% TCA in a fresh Eppendorf tube labeled “SSG.” Mix well and 

incubate on ice for 1 hr. 

19. Centrifuge samples at maximum speed for 15 min at 4°C. 

20. TCA wash: remove supernatant, add 500 μL of 10% TCA, mix by inversion, and 

centrifuge samples at maximum speed for 15 min at 4°C. 

21. Acetone washes: remove TCA wash and add 500 μL of cold acetone. Mix by 

inversion. Centrifuge samples at maximum speed for 5 min at 4°C. 

22. Remove supernatant and repeat acetone washes (step 21) three more times for a total 

of 4 washes. After the last wash, remove supernatant as completely as possible and allow 

the pellets to dry overnight in open tubes at room temperature. Loosely cover the rack 
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with the tubes with aluminum foil to prevent dust from falling into tubes. Store dried 

samples at -20°C until ready to analyze by gel electrophoresis. 

 

3.3. Silver-stained gel 

1. Prepare samples for analysis on a silver-stained gel. To the SSG dried pellet from step 

3.2.18, add 20 μL of 2x SDS sample buffer and let stand at room temperature for 15 min, 

flicking the tube periodically. Heat at 95°C for 5 min. 

2. Run the samples using your choice of SDS-PAGE setup. I have successfully used 

Novex NuPAGE 4-12% Bis-Tris gradient gels run with MOPS running buffer, as they 

offer excellent separation of most molecular weights. Other brands can be used for this 

purpose. 

3. After the dye front reaches the bottom of the gel, open the cassette and place the gel in 

a staining dish. Perform silver staining of the gel using the SilverQuest Staining Kit 

following the Basic Staining Protocol, per manufacturer’s instructions. 

4. Capture the image of the stained gel using a scanner or another imaging device. An 

example of a silver-stained gel after ERK-SBP purification is shown in Fig. 2A (see Note 

13). 

 

3.4. Suggestions for preparation of samples for mass spectrometry and analysis of 

interacting proteins 
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Figure 2.  Results of ERK-SBP purification from Drosophila S2 cells. (A) Silver-

stained gel showing a typical result from SBP-based purifications. Arrow indicates 

position of the bait ERK-SBP protein. (B) Top portion of SAINT output. Proteins are 

sorted according to the average probability of interaction, AvgP (column K). (C) The 

ERK protein interactome in Drosophila S2 cells. The proteins shown were identified 

with the SAINT score of >0.6, and were grouped into functional classes. 
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           After obtaining the final dried pellets of purified protein complexes, samples can 

be analyzed by a variety of methods, including mass spectrometry (MS). Generally, the 

user is advised to follow recommendations of their mass spectrometry facility of choice. 

Dried pellets can be used directly for trypsin digestion and liquid chromatography tandem 

mass spectrometry (nanoLC-MS/MS) analysis. In that case, care should be taken to 

purify the peptides away from biotin and detergent. I found that separating the samples 

on a short SDS-PAGE gel prior to submission for MS analysis improves protein 

identification. The dye front is allowed to migrate in the separating gel up to a distance of 

1 cm, then the gel is stained using a standard Coomassie dye/methanol/acetic acid 

procedure, destained with 25% methanol/5% acetic acid and extensively washed in water, 

after which the lane is cut into two square 5 mm x 5 mm pieces which are submitted for 

MS analysis. 

           MS results can be analyzed in various ways. When applied to studying protein-

protein interactions, often a goal is to identify genuine interacting components and 

eliminate contaminants. I found that one reliable and unbiased way to do it is using the 

program SAINT (significance analysis of interactome) (Choi et al., 2011). Our lab and 

others have validated SAINT in studies of various signaling complexes (Dent et al., 2014; 

Kwon et al., 2013). The user is advised to follow the procedure described in the original 

SAINT publication (Choi et al., 2011). I use the number of unique peptides identified for 

each protein in a given purification dataset as input values, and run SAINT using 

defaults. The most reliable results are obtained when two or more experimental 

purifications are compared to two or more controls, preferably (but not critically) run in 
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parallel with experimental samples. A higher number of controls further increases the 

reliability of identifying genuine interactions.  

Using this approach, I analyzed data from two independent ERK-SBP 

purifications from Drosophila S2 cells and compared them to 5 control samples obtained 

from untransfected S2 cells. The top portion of the SAINT output for these experiments 

is shown in Fig. 2B. A key value to consider for evaluating protein interactions returned 

by SAINT is AvgP, which is an average probability of interaction for every identified 

protein (Fig. 2B). AvgP values above 0.8 are considered significant (Choi et al., 2011), 

however relevant proteins may be identified even with lower values. Using SAINT cutoff 

of 0.6, I was able to identify most of the known components of ERK signaling in our 

studies (such as the core kinases Phl (Raf) and Dsor1 (MEK) (6), scaffolds and adaptors 

Sos, Ksr, and Cnk (5), phosphatases Mkp3 and PTP-ER (Rintelen et al., 2003), and a 

transcriptional repressor Cic (Jimenez et al., 2012), as well as several novel putative ERK 

interactors (Fig. 2C). 

 

4. Notes 

1. There are different “flavors” of S2 cells grown in various laboratories. Our lab 

obtained our S2 cells from Dr. S. Artavanis-Tsakonas (Harvard medical school). Once a 

given line is selected for work, it should be consistently used for both control and 

experimental samples. 

2. Our lab has developed these vectors based on our previously published pMK33-NTAP 

(GS) and pMK33-CTAP (SG) vectors (15). pMK33-based vectors allow for inducible 
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expression of a gene of interest using induction with CuSO4, and facilitate establishment 

of stable cell lines using hygromycin selection, because hygromycin resistance gene is 

carried in the same construct. These vectors are medium-copy plasmids. 

3. I have found that a final phenol/chloroform extraction of plasmid DNA after Qiagen 

Maxiprep followed by precipitation with sodium acetate/ethanol further improves 

transfection efficiency. 

4. Qiagen Effectene transfection reagent does not require incubation of either cells or 

DNA in serum-free media. It is always good to include a separate transfection control 

performed in parallel to the main experiment, e.g. a plasmid encoding actin-GFP. This 

way general success of transfection can be verified by assessing the number of GFP-

positive cells in a small aliquot from that well, and also the same well can be used to 

verify successful selection using hygromycin, as control cells that do not have the 

pMK33 plasmid should all die during selection. 

5. After establishment of a stable cell line, expression of the tagged protein can be 

verified after an overnight induction with 0.35 mM CuSO4 followed by cell lysis and 

western blotting using anti-SBP antibody. 

6. For holding Eppendorf tubes during the washes and solution changes, I use an 

aluminum block that is embedded in ice (e.g. from a dry bath). This makes it convenient 

to perform tube inversions by removing the whole block with the tubes, rather than doing 

it one by one for each tube, and keeps the samples at 0°C at all times. Care should be 

taken to make sure that the ice is well packed around the block and there is little water in 

the ice bucket, otherwise the block may sink. 
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7. While hygromycin-containing medium should be used for maintaining the main cell 

line at all times, hygromycin can be omitted from the medium for final cell amplification 

step, which can reduce the cost. 

8. This concentration of CuSO4 will result in a medium level of protein induction. This is 

recommended to avoid possible artefacts resulting from extreme overexpression of the 

tagged protein. 

9. I am using 2x recommended concentration of cOmplete™ protease inhibitor for a 

stronger inhibition of proteases. Remaining buffer with cOmplete™ protease inhibitor 

can be stored in 1- mL single-use aliquots at -80°C. 

10. Analytical samples can be collected throughout the procedure where indicated. These 

fractions can be analyzed by western blotting with anti-SBP antibody using 

approximately 10 μL from each of the collected samples. 

11. Cut off the tip to obtain a larger orifice for bead resuspension. 

12. The Retentate (RT) sample may contain a lot of protein, so further dilution (e.g. 1:5 

with 2x SDS buffer) is recommended for western blot analysis. 

13. Silver staining is used for a sensitive quality assessment of the sample. Some proteins 

may be visible in a control sample from untransfected S2 cells. The major band in the 

experimental lane will be the SBP-tagged bait protein, which should migrate at the 

expected molecular weight (taking into account 4 kDa added by the SBP tag). Additional 

bands of interacting proteins should be visible in the experimental lane. 
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