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ABSTRACT 

 

EXTERNAL VALIDATION AND COST EFFECTIVENESS ANALYSIS OF THE 

NON-LB FRAMINGHAM CARDIOVASCULAR DISEASE RISK ASSESSMENT 

ALGORITHM IN THE ATHEROSCLEROSIS RISK IN COMMUNITIES 

DATASET 

May 2016 

 

Jacob K. Kariuki, BSN., University of Eastern Africa Baraton 

MS., University of Massachusetts Boston 

PhD., University of Massachusetts Boston 

 

 

Directed by Professor Eileen Stuart-Shor 

 

 

Background: In recent years, non-Laboratory based (non-LB) risk assessment 

algorithms have been developed to facilitate absolute cardiovascular disease (CVD) risk 

assessment in resource constrained primary care settings. The non-LB Framingham 

algorithm, which substitutes body mass index (BMI) for lipids, has the best 

discrimination and calibration among the published algorithms, but its external validity 

and cost-effectiveness have not been determined.  

Purpose: External validation and comparative effectiveness analysis of the non-

LB versus laboratory based (LB) Framingham algorithm in a racially diverse population, 

and simulated cost-effectiveness analysis focusing on a black sample. 
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Methods: Secondary data analysis was performed using the Atherosclerosis Risk 

in Communities (ARIC) dataset. Cox regression models including the non-LB and LB 

Framingham covariates were developed. Model discrimination was assessed using the C 

statistic, calibration using the goodness-of-fit test, and equivalence of regression 

coefficients using the z-test. Algorithms based on the models were developed and their 

performance assessed using the area under receiver operating characteristic curve 

(AUROC), and agreement using kappa statistics. Analyses using simulated incremental 

cost-effectiveness ratios (ICER) were focused on the black sample. IRB approval was 

obtained. Data were analyzed using Stata© software version 14. 

Results: Among 11,601 individuals (mean age 53.9 ± 5.7 years, 55% female, 24% 

black), the non-LB versus LB models performed as follows: C statistic (0.75 vs 0.76 for 

women, & 0.67 vs 0.68 for men); goodness-of-fit (14.2 vs 10.5 for women, & 25.8 vs 

21.8 for men) respectively. In the black sample, regression coefficients of all covariates 

were similar to those generated in Framingham (z = ±1.96). The two algorithms based on 

the models had a kappa statistic of 0.76. When used to stratify risk in the entire ARIC 

sample, the non-LB and LB Framingham algorithms had AUROC of 0.706 vs 0.710 

respectively. Prevention program guided by the non-LB Framingham dominated those 

guided by individual risk factors and LB Framingham algorithm. 

Conclusions: These results demonstrate the validity and cost-effectiveness of the 

non-LB Framingham algorithm.  This approach could provide a valuable and efficient 

alternative to the traditional LB approaches in the ongoing efforts to address the high 

burden of CVD in underserved communities especially the US black population.  
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CHAPTER 1 

 INTRODUCTION 

Cardiovascular disease (CVD), including coronary heart disease and stroke, is 

now the leading cause of death globally due in part to the ongoing epidemiological 

transition from infectious to non-communicable diseases in developing countries (WHO, 

2015). Currently over 75% of all CVD deaths occur in developing countries where CVD 

is taking toll on populations in resource constrained settings who rely on under-developed 

health care systems that are traditionally invested in treating infectious diseases (Mensah, 

2008; WHO, 2015). Consequently, most of the CVD mortality and morbidity occur at 

younger ages in these countries (S. Mendis et al., 2007; WHO, 2015).  

In developed countries such as the United States (US), underserved racial and 

ethnic minorities bear the highest burden of CVD (Mozaffarian et al., 2015). The US 

black population continues to be disproportionately affected by CVD related morbidity 

and mortality. For instance, the age-adjusted mortality attributable to CVD is 

approximately 34% higher in the black population compared to the overall US population 

(Mozaffarian et al., 2015). Although factors leading to these disparities are complex, 

barriers related to access of preventive and curative treatments are known to play a 

prominent role (Institute of Medicine, 2001). 
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The public health and socioeconomic ramifications of CVD, especially on the 

poor and underserved populations in both developed and developing countries require 

pragmatic and robust preventive initiatives. Feasible strategies that improve access and 

quality of CVD preventive treatments are necessary to address the burden of CVD in 

resource constrained settings. If well implemented, such strategies may promote 

cardiovascular health and economic progress of minority groups in developed countries, 

as well as the economically deprived populations in developing countries.  

Contemporary CVD management guidelines recommend absolute risk assessment 

as a clinically sound guide to CVD prevention and risk surveillance (Cooney, Dudina, & 

Graham, 2009; World Health Organization, 2007). Absolute CVD risk, also known as 

total or global risk, denotes the probability that an individual will develop CVD within a 

given time frame, depending on the combination and severity of the risk factors present 

(Jilcott et al., 2007). To facilitate absolute CVD risk assessment, dozens of algorithms 

have been developed to predict the likelihood that a particular constellation of risk factors 

will contribute to occurrence of CVD related morbidity or mortality over a specific 

period of time (Hayman, Helden, Chyun, & Braun, 2011; D. M. Lloyd-Jones, 2010a).  

For many years the available absolute CVD risk assessment algorithms were 

based on laboratory measures which are not readily available in resource constrained 

settings or for individuals with limited access to care (Beswick, Brindle, Fahey, & 

Ebrahim, 2008; Gaziano, Young, Fitzmaurice, Atwood, & Gaziano, 2008).  However, in 

recent years progress has been made in developing non-LB algorithms, a move that may 

be helpful for management of CVD in resource constrained settings.  
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A recent systematic review of literature reported that of the five published non-LB 

risk assessment algorithms for primary prevention of CVD, the non-LB Framingham 

algorithm had the best sensitivity and specificity ratios (Kariuki, Stuart-Shor, Leveille, & 

Hayman, 2013). In the high risk category (ten-year risk threshold of 20%) the algorithm 

had sensitivity/specificity ratios of 0.48/0.85 and 0.58/0.83 for men and women 

respectfully. These sensitivity/specificity ratios were comparable to the established LB 

Framingham algorithm (0.49/0.85 and 0.60/0.84) for men and women respectfully 

(D'Agostino RB et al., 2008).  

Despite the solid performance of the non-LB Framingham algorithm in its 

predominantly white (99.7%) derivation dataset, its performance and applicability in 

multiracial and black populations has not been tested. External validation is considered to 

be an essential process of testing the applicability of an algorithm to diverse populations 

with baseline characteristics which differ from those in the algorithm’s derivation dataset 

(Cooney et al., 2009). Without external validation, the suitability of the algorithm beyond 

the Framingham population remains uncertain.  

This study performed external validation of the non-LB Framingham algorithm in 

the multiracial Atherosclerotic Risk in Communities (ARIC) dataset (23% black). The 

external validation focused on evaluation of the algorithm’s ability to optimally stratify 

CVD risk and predict cardiovascular events in the multiracial population that forms the 

ARIC dataset. A sub-analysis focusing on the black participants enlisted in the ARIC 

study assessed the performance of the algorithm in a group that bears the highest burden 

of CVD, and more likely to reside in resource constrained or underserved settings in the 
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US. A subsequent cost effectiveness analysis evaluated the costs and benefits associated 

with using the algorithm in guiding prevention of CVD in the black participants enlisted 

in the ARIC study. Race was self-reported and individuals who report black race or white 

race will hereafter be referred to as “blacks” and “whites” respectively. 

Goals of the Study 

The main purpose of this study was to externally validate and cost the non-LB 

Framingham algorithm by testing four hypotheses to achieve three aims: - 

Specific aim 1: Assess the accuracy of the non-LB Framingham algorithm in 

stratifying risk and predicting CVD events a racially diverse population. 

Hypothesis 1: Non-LB Framingham algorithm will have adequate discrimination 

(Harrell’s C statistic greater than 0.75) and calibration (Hosmer-Lemeshow goodness of 

fit (χ 2) below 20 (p>0.05) in the multiracial ARIC dataset. 

Specific aim 2: Compare the performance of the non-LB Framingham algorithm 

in black versus white participants of the ARIC study. 

Hypothesis 2: There will be no significant difference in discrimination and 

calibration of the non-LB Framingham algorithm between the black and white 

participants of the ARIC study. 

Specific aim 3: Establish the cost feasibility of using the non-LB Framingham 

algorithm in guiding prevention of CVD among the black participants enlisted the ARIC 

study. 

Hypothesis 3:  A CVD prevention strategy guided by the non-LB Framingham 

algorithm will be more cost-effective compared with treating each elevated CVD risk 



5 
 

factor (diabetes and/or hypertension) independently in the black subset of the ARIC 

cohort. 

Hypothesis 4:  A CVD prevention strategy guided by the non-LB Framingham 

algorithm will be more cost-effective compared to a strategy guided by the LB 

Framingham algorithm in the black subset of the ARIC cohort.   

Significance and Innovation 

Validating and costing the non-LB Framingham algorithm was an important step 

in availing a risk assessment tool that could guide CVD prevention in resource 

constrained settings. The high representation of blacks in the ARIC cohort (23%) enabled 

adequate evaluation of the algorithm’s performance in this population that has the highest 

rates of CVD in the US.  

Defining Key terms  

In this study, the performance of the non-LB Framingham algorithm is assessed 

through external validation. External validation is the assessment of the performance of 

an algorithm in an external dataset. The external validation process is considered an 

essential step in assessing transportability of an algorithm to different populations 

because baseline survival and risk factors used in the test are not a perfect match for those 

in the algorithm’s derivation dataset (Cooney et al., 2009).The main approaches for 

measuring the performance include discrimination, and calibration. 

Discrimination is the ability of an algorithm to assign a higher risk to those who will 

develop the end point and a lower score to those who will not, and it is frequently 

measured using area under Receiver Operating Characteristic curve (AUROC) or 
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Harrell’s C statistic. AUROC or C statistic of 1 denotes perfect discrimination whereas 

0.5 equates to chance discrimination. Although the C statistic of CV risk assessment 

algorithms rarely exceeds 0.8, a valid algorithm should have a C statistic of 0.75 or 

higher (Cooney et al., 2009; May, Lawlor, Brindle, Patel, & Ebrahim, 2006). In addition, 

threshold discrimination operationalized by sensitivity and specificity is used to define 

low/high risk populations and treatment decisions are made in reference to this threshold 

(Cooney et al., 2009). 

Calibration is a measure of the agreement between the predicted outcomes and 

observed outcomes. It is frequently assessed using Hosmer-Lemeshow goodness of fit 

testing (χ 2). Goodness of fit (χ 2) values below 20 (lack of fit, p>0.05) are considered 

good fit (Cooney et al., 2009). 

Conceptual Framework 

The proposed study was guided by the Social Ecological and Chronic Care 

Models which are combined and adapted to provide an organizing structure for testing 

the validity and cost-effectiveness of the non-LB Framingham algorithm (see Figure 1).  

Various socioecological models were developed after the First World War to 

expand understanding of the dynamic relationship between various personal and 

environmental factors. In 1991 Dahlgren and whitehead published the Social Ecological 

Model to enhance understanding of policies and strategies to promote social equity in 

health. They contended that policies and strategies focusing on health equity should be 

based on a clear understanding of factors that threaten, promote or protect health 

(Dahlgren & Whitehead, 1991). 
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In the Social Ecological framework, the major factors that influence health are 

organized in hierarchical layers which include: macro-socioeconomic environment, living 

and work conditions, social and community networks, lifestyle choices, and 

genetical/constitutional factors (Dahlgren & Whitehead, 1991). The postulated influence 

of these interactive layers resonates with current knowledge on cardiovascular health 

trajectory which is known to be influenced by the interrelation between personal and 

environmental factors over an individual's lifetime (Hayman et al., 2011; Stuart-Shor, 

Berra, Kamau, & Kumanyika, 2012). 

 Personal factors, which include genetics and lifestyle, form the core of the model 

are affected by, and affect the social determinants of health which are espoused in the 

three outer layers of the Social Ecological model (see Figure 1).  The social determinants 

of health include life improving resources such as food supply, education, and social 

relationships, and their distribution across populations is well known to impact the health 

trajectory (Will, Keydron, Cynthia, Luis, & Zachary, 2011).  

The Chronic Care Model was developed by Dr. Edward Wagner and colleagues 

as part of the “Improving Chronic Illness Care initiative” supported by the Robert Wood 

Johnson Foundation (Bodenheimer, Wagner, & Grumbach, 2002). The initiative sought 

to develop innovations in primary care that would help close the quality gaps described in 

the 2001 Institute of Medicine report titled: Crossing the Quality Chasm: A New Health 

System for the 21st Century. In the report, the Institute of Medicine detailed many quality 

problems that caused a huge gap between current practices and attainable optimal chronic 

illness care in the US (Institute of Medicine, 2001). 
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To address these problems, the Chronic Care Model identifies the entire 

community, health care systems, and provider organizations as the three galaxies where 

chronic illness care occur (Bodenheimer et al., 2002). The three galaxies overlap and 

encompass six essential elements or pillars which may undermine or promote chronic 

illness care.  The six pillars include: community resources and policies, self-management 

support, health care organization, delivery system design, decision support, and clinical 

information systems (Barr et al., 2003; Bodenheimer et al., 2002). Improvements in these 

six essential and interrelated pillars are expected to produce reformed health care systems 

in which informed, activated patients interact with prepared, proactive health care 

providers (Bodenheimer et al., 2002).  

Although the six pillars of the Chronic Care Model are interrelated, only the 

decision support pillar is directly relevant to the objectives of this study as outlined in 

Figure 1. Therefore, the discussion of the other five pillars is beyond the scope of this 

study. The decision support pillar calls for integration of evidence based guidelines in 

routine protocols to help clinicians in making prudent clinical decisions in management 

chronic illness (Bodenheimer et al., 2002).  

Decision support is not intended to substitute individualized clinical judgement, 

but to support it by providing real time essential data on the patient or available evidence 

based interventions to the clinician. Optimal decision support tools may also promote 

self-management by making complex concepts more concrete and comprehensible to the 

patient; hence increasing risk awareness and motivation to adhere to risk reduction 

interventions. 
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The value of any tool used to support clinical decisions depends on the extent to 

which it is valid and applicable to the relevant clinical practice. Generally clinicians are 

more likely to use decision support tools that are not only valid, but also quick and easy 

to use (Cooney et al., 2009; Gaziano et al., 2008). The need for valid but simple, user 

friendly decision support tools is even more acute in resource constrained settings where 

non-physician health workers are increasingly being entrusted with traditionally 

physician responsibilities such as screening for and managing CVD. 

Absolute CVD risk assessment algorithms are considered as valid decision 

support tools appropriate for guiding CVD risk assessment and management. 

Consequently, the algorithms are currently used in many developed countries to support 

clinical decisions on CVD management by providing guidance on risk stratification and 

selection of treatment intensity (D. M. Lloyd-Jones, 2010b). In resource constrained 

settings, these algorithms are rarely used because they require laboratory measures that 

are usually inaccessible in these settings. Therefore, validating and costing the non-LB 

Framingham algorithm was an important step in availing a tool that would support 

implementation of evidence based guidelines in routine management of CVD.  

The absolute risk assessment algorithms use some covariates which are influenced 

by the dynamic relationship between personal and environmental factors included in the 

Social Ecological Model. Equipping healthcare providers with a decision support tool 

that enables them to have a comprehensive view of factors that threaten, promote or 

protect cardiovascular health is expected to make them well prepared and proactive in 

prevention and management of CVD. Individuals and populations served by such 
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proactive providers will have improved access to timely CVD risk assessment, increased 

risk awareness, and motivation to adherence. 

The Conceptual Theoretical and Empirical (CTE) structure 

The Social Ecological model’s proposition that a dynamic relationship between 

personal factors and the social determinants of health dictates the individual’s level of 

risk and subsequent development of disease forms the central concept of the framework. 

The chronic care model’s conceptualization of the importance of clinical decision support 

in shaping the dynamic relationship between personal factors and social determinants of 

health in favor of optimal cardiovascular health forms the middle range theory of the 

framework. Empirical indicators will include discrimination and calibration statistics 

quantifying the contribution of clinical decision support tool (non-LB Framingham CVD 

risk assessment algorithm) in detecting individual’s level of risk. Quantification of risk is 

expected to foster risk reduction discussion thereby producing proactive and well 

prepared healthcare providers and activate patients. 
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Figure 1: The Social Ecological & Chronic Care Model adapted to focus on CVD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In chapter 1, the concept of absolute CVD risk assessment and the role of valid 

and feasible risk assessment algorithms were introduced. The external validation process 

as well as the organizing framework for the study were also presented in the context of 

CVD. Chapter 2 will focus on the science behind these concepts and existing knowledge 

gaps pertaining to CVD risk assessment in resource constrained settings.
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CHAPTER 2 

LITERATURE REVIEW 

 Background 

Although the morbidity and mortality associated with CVD usually occur in 

middle and late adulthood, the main pathological pathway leading to CVD begins early in 

life and progresses cumulatively through adolescence and early adulthood (World Health 

Organization, 2007). This lifelong cumulative process is influenced by the interaction 

between constitutional (genetic) and lifestyle factors, with social determinants of health 

such as education and socioeconomic status as exemplified in the widely published social 

ecological model (Golden & Earp, 2012; Whitehead & Dahlgren, 1991). 

The insidious progression of CVD risk necessitates timely detection and initiation of 

preventive treatments. The major risk factors known to independently increase the risk of 

CVD include: cigarette smoking, high blood pressure, dyslipidemia, diabetes mellitus, 

and advancing age (Grundy, Pasternak, Greenland, Smith, & Fuster, 1999). Predisposing 

risk factors are known to aggravate the major CVD risk factors and include; obesity, 

physical inactivity, family history of premature CVD, ethnic characteristics, and 

psychosocial factors (Grundy et al., 1999). Co-occurrence or clustering of these risk 

factors is known to compound the effect of individual risk factors increasing the 

likelihood of developing CVD (World Health Organization, 2007)
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Absolute CVD risk assessment algorithms are recommended by contemporary 

CVD management guidelines to facilitate assessment of “total” or “global” risk. These 

algorithms take into consideration the clustering of risk factors in an individual to predict 

their likelihood of experiencing a CVD event within a given time frame, usually 10 years 

(Beswick et al., 2008). The foremost absolute risk assessment algorithms were derived 

from the Framingham Heart Study which was inaugurated in 1948 to investigate risk 

factors associated with development of CVD.  At the commencement of the study, the 

town of Framingham was an industrial trading center in North Eastern United States 

inhabited by white middle class families (Dawber, Meadors, & Moore, 1951). As a result, 

the cohort was 99.7% white. In 1971, descendants of the original cohort and their spouses 

were recruited to form the Framingham offspring cohort with an overarching goal of 

mapping the familial and genetic determinants of CVD. Similar protocols have been used 

in the examination of the original and offspring cohorts so as to enable combined 

analyses (Beswick et al., 2008). 

As part of the premier cardiovascular research study, the Framingham cohorts 

have been instrumental in identifying many CVD risk factors. The identified risk factors 

have been progressively included in the Framingham based algorithms, enabling 

significant improvements in risk discrimination and calibration (Beswick et al., 2008). 

High-density lipoprotein (HDL) cholesterol was identified and incorporated into 

Framingham risk assessment algorithms as an independent risk factor for CVD in 1968 

(Beswick et al., 2008). Traditionally, the Framingham algorithms have required 
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laboratory measures and were tailored to estimate the 10-year risk of developing coronary 

heart disease (Cooney et al., 2009).  

In an effort to simplify absolute CVD risk assessment, D'Agostino RB et al. (2008) 

developed a risk prediction model that demonstrated that Body Mass Index (BMI) could 

effectively substitute total and HDL cholesterol without compromising the robustness of 

the Framingham model. In the same study, the focus of risk assessment was broadened 

from a narrow focus on hard coronary events to a broader focus that entailed the full 

spectrum of CVD.  

The 2008 update of the Framingham model includes the simplified non-LB algorithm 

and the LB algorithm. Both the non-LB and LB algorithms were also modelled to predict 

general CVD events (coronary heart disease, cerebrovascular events, peripheral artery 

disease and heart failure). As a result of this broad focus, the absolute CVD risk 

estimated using the updated 2008 algorithms is significantly higher than when using 

earlier versions of Framingham model (D'Agostino RB et al., 2008).  

The predicted CVD risk (𝑝) in both the non-LB and LB algorithms is calculated using 

the general formulae: 𝑝 =  1 − S0(𝑡)exp(∑ =1 
𝑝
𝑖 �̇�𝑖𝑋𝑖−∑ =1 

𝑝
𝑖 �̇�𝑖�̅�𝑖) where S0(𝑡) is baseline 

survival at follow-up time t (here t=12 years), �̇�𝑖  is the estimated  regression coefficient, 

𝑋𝑖  is the log-transformed value of the ith  risk factor, (if continuous), �̅�𝑖  is the 

corresponding mean, and p denotes the number of risk factors (D'Agostino RB et al., 

2008). 
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The 2008 non-LB and LB Framingham algorithms use similar covariates (risk 

factors) except for substitution of BMI for cholesterol in the non-LB model as outlined in 

Table 1 (D'Agostino RB et al., 2008). This substitution had a benign effect on the model 

because both the non-LB and LB algorithms had comparable discrimination (C=0.749 vs. 

0.763 men & 0.785 vs. 0.793 women) and equally good calibration (χ 2 =13.61 vs. 13.48 

men & 10.24 vs. 7.79 women) in their derivation dataset respectively (D'Agostino RB et 

al., 2008). Although the Framingham cohort is more than 99% white, previous studies 

have suggested that Framingham risk prediction functions generally perform well in 

predicting coronary heart death and myocardial infarction among the US black 

population (D'Agostino RB, Grundy, Sullivan, Wilson, & CHD Risk Prediction Group, 

2001b). 

 In 2011, the 2008 LB Framingham model was tested in the multiracial third National 

Health and Nutrition Examination Survey (NHANES III) population, where it 

demonstrated optimal discrimination (C=0.776 men & 0.834 women); but calibration was 

not assessed due to lack of data on clinical end points (Pandya, Weinstein, & Gaziano, 

2011). The non-LB Framingham algorithm has been used to assess the effectiveness and 

impact of simulated national wide CVD screening strategies in Malaysia, but no 

published external validation studies have been found so far (Kariuki et al., 2013; 

Selvarajah et al., 2013). Therefore, validating and costing the non-LB algorithm in a 

multiracial population is an important step in availing a tool that could be instrumental in 

guiding prevention of CVD in resource constrained settings.
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    Table 1: Sample characteristics and end points used in Framingham vs ARIC cohorts 
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The impact of CVD in resource constrained settings 

A striking similarity in the epidemiology of CVD in both developed and 

developing countries pertains to its impact on underserved populations. Although 

developed countries have strong health care systems, advanced medical technologies and 

abundance of resources, they are still dominated by high CVD mortality and morbidity 

(D. Lloyd-Jones et al., 2010). In 2011 the US spent over three hundred billion dollars to 

manage CVD. However, despite the staggering healthcare expenditure, CVD continues to 

take a lopsided toll on underserved minority groups especially the black population 

(Mozaffarian et al., 2015).  

In developing countries which are plagued by infectious diseases and 

underdeveloped fragile health care systems, CVD has significantly contributed to a 

protracted double burden of disease (S. Mendis et al., 2011). Despite lack of adequate 

resources to manage a full blown CVD epidemic, many developing countries are yet to 

implement feasible CVD prevention and surveillance initiatives. The inaction continues 

to expose masses of vulnerable populations to the dangers of cardiovascular events which 

are labor and resource intensive to manage.  

The burden and impact of CVD in the black US population 

According to the 2015 American Heart Association estimates, about half of all 

black adults in the US (48% women, 46% men) are affected by some form of CVD 

(Mozaffarian et al., 2015). In addition, US blacks bear a disproportionately high burden 

of CVD risk factors including obesity, diabetes, and hypertension. It is estimated that 

46% of women and 45% of men in the adult black population have high blood pressure 

compared to 33% of the general US population (Mozaffarian et al., 2015). Despite this 
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high burden of CVD, blacks experience delays in CVD diagnosis and usually receive low 

quality of care leading to worse health outcomes (Bonow, Grant, & Jacobs, 2005).  

Although health disparities are complex and multi-factorial, the high burden of 

CVD in US blacks has been related to suboptimal access to the healthcare system, 

primary care providers, and preventive health services (Institute of Medicine, 2003). Lack 

of insurance coverage and geographic location has been identified as major access 

barriers to quality CVD preventive and curative treatments (Escarce, 2007). Overall, 

blacks have the second lowest health insurance coverage in every state of the union, 

coming only second to the Hispanics (Wilson, 2013).  With the escalating cost of health 

care, lack of insurance is a major deterrent to optimal health care access. 

Geographic location also plays an important role in limiting access to CVD 

preventive and curative treatments. Due to low education and high poverty levels, many 

US blacks reside in rural areas or inner cities. As a result of high crime rates and/or other 

environmental factors, health workers avoid working in inner cities leaving these 

populations without adequate health care access. The same trend is observed in most rural 

areas which are characterized by resource constrained health care systems and physical 

barriers such as distance and unavailability of transportation (Kamble & Boyd, 2008). 

These geographic limitations arguably make US blacks more likely to experience 

difficulties accessing health care, leading to disparate cardiovascular health outcomes.  

The US southern state of Mississippi has been cited as an example of how a 

geographical location can be a barrier to health care access. The state has highest 

proportion of rural-dwelling black women, and the highest heart disease death rate in the 

US (Kamble & Boyd, 2008). Notwithstanding these statistics, over 80% of the counties in 
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Mississippi have no physicians who specialize in heart disease (Kamble & Boyd, 2008). 

These geographic barriers and other challenges unique to resource constrained settings 

necessitates innovativeness to maximize each clinical encounter. 

Current policy initiatives aimed at reducing health care access barriers include 

subsidies to improve insurance coverage, and incentives to encourage health workers to 

provide services in marginalized rural or inner city communities (Brennan, Baker, & 

Metzler, 2008; National Rural Health Association, 2013). To reduce the burden of CVD 

in the US black population, these policy initiatives need to be supplemented by pragmatic 

strategies that would help reduce health care costs without compromising quality.  

Validating the non-LB Framingham algorithm in the black sample of ARIC 

cohort was an important step in availing a high quality CVD prevention tool that can be 

readily used in settings where laboratory measures are inaccessible due to location 

constraints or lack of insurance coverage. If validated, the algorithm will allow improved 

prediction of CVD events, enabling providers working in marginalized environments to 

better identify high risk individuals who require intensive preventive treatments. If used 

in combination with counseling, the validated algorithm may help to demonstrate a 

patient risk profile and indication for any proposed intervention (Shillinglaw, Viera, 

Edwards, Simpson, & Sheridan, 2012).  Although absolute CVD risk profile is in the 

context of the “average person” calculating the absolute CVD risk score provides a 

relatively concrete basis for engaging the patient on the abstract concept of risk. The 

ensuing patient-provider risk reduction discussion is likely to foster improved health 

literacy and may increase adherence to the prescribed interventions.  
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Preventing CVD in resource constrained settings 

Integrating absolute CVD risk assessment into routine clinical assessment and 

population based surveys may foster a standardized opportunistic and proactive CVD risk 

surveillance and prevention in underserved populations. Availability of validated non-LB 

risk assessment algorithms will enable health care providers in resource constrained 

settings to initiate risk reduction discussion and interventions within one clinical visit. It 

has been estimated that an individual’s absolute risk score can be calculated within five to 

ten minutes using these algorithms because the only data required to estimate absolute 

risk include: age, BMI, systolic blood pressure, antihypertensive medication use, current 

smoking, and diabetes status (D'Agostino RB et al., 2008; Gaziano et al., 2008). This 

point of care utility may add great value in underserved populations which are difficult to 

follow.  

The proposed use of the non-LB Framingham algorithm, which was derived in a 

population that was 99.7% white, raises issues of applicability in black populations. 

Whereas poor performance of Framingham based algorithms has been reported in certain 

ethnicities (e.g. Hispanics), the models have performed reasonably well in predicting 

CVD in the US black population (Beswick et al., 2008).  

The adoption of algorithms developed in significantly different settings and 

populations is traditionally done under the assumption that the major risk factors for 

CVD are fairly similar around the world (Yusuf et al., 2004). The INTERHEART 

investigators delineated 9 major risk factors (smoking, lipids, hypertension, diabetes, 

obesity, unhealthy diet, physical inactivity, harmful alcohol consumption, and 
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psychosocial factors) which account for over 90% of the population attributable risk of 

acute myocardial infarction worldwide (Yusuf et al., 2004). 

Summary 

Validating and costing the non-LB Framingham algorithm could make an 

important contribution to the ongoing efforts to address the high burden of CVD in 

underserved communities especially the US black population. The challenges discussed 

in this review including the problem of limited access to healthcare due to location and 

lack of health insurance can be mitigated by availability of a valid and cost-effective risk 

assessment algorithm.  

Such an algorithm can be deployed at the point of service in real time, without 

need for follow-up visits to draw laboratory specimens or to review results. The time 

utility would make every visit in the resource constrained settings an opportunity to 

initiate risk reduction discussion, and to motivate adherence and self-management since 

the data required is readily collected during the office visit. To improve the effectiveness 

of CVD prevention while using the non-LB Framingham algorithm, individuals with 

borderline or indeterminate risk may then be further screened using the more resource 

intensive laboratory measures whenever feasible. 

Chapter 3 focuses on research design and methodology used in the external 

validation and cost-effectiveness analysis. 
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CHAPTER 3 

RESEARCH DESIGN AND METHODS 

Overview  

To address the specific aims of the project, a secondary data analysis was 

conducted using the ARIC dataset. The dataset is organized in four cohorts, three of 

which are predominantly or completely white (Forsyth County, NC; Suburbs of 

Minneapolis, MN; and Washington County, MD) while one cohort (Jackson, MS) is 

composed of black participants (ARIC Investigators, 1989). This diversity facilitated an 

adequately powered sub-analysis of the performance of the tool in the black sample.  

Data Source and Design  

The ARIC study is a prospective epidemiologic study with an overarching goal to 

investigate the etiology and natural history of atherosclerosis and its clinical sequelae, 

and examine the distribution of cardiovascular risk factors, medical care, and disease by 

race, sex, living location, and time. The study includes cohort and community 

surveillance components conducted in four ARIC field centers that include Forsyth 

County, NC; Jackson, MI; Minneapolis, MN and Washington County, MD. The Cohort 

Component of the study commenced in 1987, with each ARIC field center using driver 

license lists to randomly select about 4,000 individuals aged between 45-64 years from a 

defined population in their community (ARIC Investigators, 1989). 
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A total of 15,792 individuals were recruited, but the ARIC dataset provided by the 

NHLBI included 15,053 adults who had no missing variables on the identification 

variable. Before the eligibility criteria was employed, the dataset included a total of 8,163 

women (54%) and 3,898 blacks (26%) aged 45-64 years. The sample was organized in 

four cohorts based on the ARIC field centers described earlier and all participants were 

examined at baseline between 1987 and 1989, followed by three more site-based 

examinations which ended in 1998. Yearly telephone follow-up interviews continue as a 

way to maintain contact with participants and to assess the health status of the cohort. 

Details of the examination procedures and criteria for the endpoints assessed have been 

reported elsewhere (ARIC Investigators, 1989). Table 1 summarizes sample 

characteristics, how essential risk factors relevant to this study were assessed, and CVD 

related endpoints monitored.   

This secondary data analysis focused on the first 12 years of follow-up after 

baseline examination in ARIC. Therefore, this study’s sample consists of study 

participants who attended baseline examination (1987-1989) and who at baseline were 

free of CVD, aged 45 to 64 years, and with no missing data on the variables of interest 

either at baseline or follow-up assessments in the next 12 years. The sample meeting 

these eligibility criteria includes 11,601 participants as described in Figure 2.  

The 12 years follow-up employed in this study matches the follow-up time used 

by (D'Agostino RB et al., 2008) when generating the non-LB and LB Framingham 

algorithms. This congruence of follow-up time will increase comparability of the 

performance of the algorithms in ARIC and Framingham datasets. The covariates 

required to validate the non-LB Framingham algorithm include age, sex, and diabetes 
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status, smoking status, blood pressure, hypertension treatment and body mass index. The 

end points that are necessary to evaluate the calibration of the tool include the confirmed 

diagnosis of coronary artery disease, cerebrovascular disease, peripheral arterial disease 

and heart failure. Table 1 compares key aspects of the non-LB and LB Framingham 

algorithms and their derivation dataset, with the ARIC dataset in regard to design, 

sampling, assessments, data collected at baseline and the endpoints monitored. The cost-

effectiveness analysis focused on the black subset of the ARIC dataset who met the 

eligibility criteria described above. 

 

Figure 2: Flowchart of inclusion and exclusion criteria and monitored outcomes  

 

    

  

 

 

 

 

 

 

 

15,053  participants (26% Black, 54% Female) of the ARIC baseline exam 

(1987-1989) 

(A) Minneapolis, MN  
3,217 (100% White)

(B) Washington, MD  
2,893   (100% White)

(C) Jackson, MS  
2,381 (100% Black)  

(D) Forysth, NC    
3,110 (10% Black)

Ineligibile: 3,452 (23%)
*609 (18%) from Minneapolis, MN

*889 (26%) from Washington, MD

*1,052 (30%) from Jackson,MS

*799 (23%) from Forysth,NC

*103 (3%) cohort location missing

1,545 incident 

CVD events in 

the entire ARIC 

cohort (13.32%) 

401 incident 

CVD events in 

the black ARIC 

cohort (14.91%) 

11,601 (23% Black) 
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Baseline assessment 

In the ARIC cohort, the baseline examination commenced with participants 

giving informed consent. The baseline examination assessed CVD conditions and 

measured key athrogenic risk factors. Key elements of the interview included the 

assessment of angina (Rose Questionnaire), history of diabetes, transient ischemic attack, 

and peripheral arterial disease, smoking status and medications use. Positive history was 

verified by laboratory test results and/or in the medical records abstracted by nurse 

researchers (ARIC Investigators, 1989).  

Blood pressure was measured with the participant seated, with feet on the floor 

and arm at heart level, with three readings 5 minutes apart using random zero 

sphygmomanometer. The average of the second and third systolic blood pressure is 

entered into the model as a continuous variable. Anthropometric measurements were 

made with the participants wearing light-weight; non-constricting underwear, after 

emptying the bladder. Height and weight measurements were taken with the participant 

in light clothing and not wearing shoes. BMI was calculated as a function of height in 

meters and weight in kilograms, and was entered into the model as a continuous variable 

(ARIC Investigators, 1989).  

Diabetes was operationalized by two variables in the ARIC study. The DIABTS03 

variable defined diabetes as fasting glucose greater or equal to 126 mg/dL, and use of 

insulin or oral hypoglycemic medications, while the DIABTS02 variable applied a similar 

definition but used a fasting glucose level greater or equal to140mg/dL. Fasting glucose 

in both variables was measured during the scheduled baseline assessment, after at least 8 

hours of fasting. Sex and smoking status were ascertained based on self-report and 
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entered as dichotomous variables, while antihypertensive medication use was determined 

through self-report and medication review as described in Table 1 (ARIC Investigators, 

1989). 

Similar protocols were used to measure covariates in the Framingham cohort, 

with the exception of diabetes whereby fasting glucose greater or equal to 126mg/dL was 

used as the threshold for diabetes in the Framingham offspring cohort, and greater or 

equal to 140mg/dL as the threshold for the original cohort (D'Agostino RB et al., 2008). 

In this analysis, we used DIABTS03 as the dichotomous variable indicating presence or 

absence of diabetes since it includes both thresholds used in the original and offspring 

cohorts of the Framingham study. Table 1 compares how selected sample characteristics, 

covariates and end points were assessed in the Framingham versus ARIC datasets.  

Follow-up Assessments  

All study participants were under continuous sentinel surveillance for the 

development of CVD events and death. The average follow-up response rate at year 12 

was 95.68%, will all cohorts having response rates greater than 93% (University of North 

Carolina at Chapel Hill, 2013). After the baseline examination, a telephone questionnaire 

was administered annually, including the Rose angina questionnaire (screens for angina) 

and items on general health and hospitalization. Events of interest during follow-up 

included hospitalized and non-hospitalized myocardial infarction, coronary heart disease 

death, angina pectoris, stroke, and intermittent claudication (ARIC Investigators, 1989). 

However, the events included in the secondary dataset provided by National Heart Lung 

and Blood Institute (NHLBI) included; coronary artery and cerebrovascular disease, atrial 

fibrillation or flutter and heart failure. 
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 In this analysis general CVD events include coronary heart and cerebrovascular 

disease, and heart failure. Atrial fibrillation and flutter were not included since they were 

not included in the Framingham cohort outcomes, while peripheral vascular disease 

outcomes were not availed in the ARIC dataset provided by the NHLBI (see Table 1). 

The cardiovascular events were ascertained through annual follow-up 

questionnaires, physical examinations at the study sites, communication with personal 

physicians and surveillance of medical records. Suspected new events were 

independently confirmed through review of medical charts by three experienced 

investigators, and neurological events were confirmed by a neurologist. Hospital records 

were abstracted twice independently by nurse abstractors to monitor CVD events; all 

substantive discrepancies were reconciled. Cardiac enzyme levels were recorded three 

times one day after the event, and two times for each of the next three days. The reviewed 

cardiac enzymes included: lactate dehydrogenase, lactate dehydrogenase subfractions, 

and creatinephosphokinase. Three serial electrocardiograms were reviewed, coded and 

interpreted at the University of Minnesota ECG Center using the full Minnesota code 

(ARIC Investigators, 1989).  

Underlying and contributory causes for all deaths of cohort members were also 

investigated to determine whether the cause was CVD. Where death occurred in a 

hospital, the hospital record was used, but if the decedent had died outside the hospital, 

family interviews, physician questionnaires, and coroner records were used (ARIC 

Investigators, 1989). 

The endpoints monitored in ARIC study follow-up closely correlate with the end 

points used in the internal validation of the non-LB and LB Framingham algorithm which 
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included coronary events (coronary death, myocardial infarction, coronary insufficiency, 

and angina), cerebrovascular events (ischemic stroke, hemorrhagic stroke, and transient 

ischemic attack), peripheral artery disease (intermittent claudication), and heart 

failure.(D'Agostino RB et al., 2008) This congruence of protocols for assessing risk 

factors and endpoints (with exception of failure to include peripheral vascular disease in 

ARIC) enables rigorous external validation of the algorithm (see Table 1). Cost-

effectiveness measures are discussed separately in the analysis strategy under hypothesis 

3 and 4. 

Statistical Analyses 

The sex-specific non-LB Framingham algorithm was developed using sex-

specific Cox proportional-hazards regression models (Cox regression). The covariates 

included in the model, which were also measured in the ARIC dataset, entail; age, 

systolic blood pressure, antihypertensive medication use, current smoking, BMI, and 

diagnosis of diabetes mellitus (D'Agostino RB et al., 2008). To ensure coherence and 

rigor of the external validity analysis, the same regression model and covariates were 

used in the secondary analysis of the ARIC dataset since the necessary inputs were 

available in the dataset.   

Continuous variables (covariates) were transformed into natural logarithms to 

improve discrimination and calibration of the model and to minimize influence of 

extreme observations. Specific data on the exact days to incident CVD events since 

baseline examination, which are essential when using Cox regression, were included in 

the ARIC dataset. The incident CVD dates were ascertained through the rigorous follow-

up methods detailed above, including systematic tracking of medical records and personal 
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communication with physicians since the participants had consented to these disclosures 

(ARIC Investigators, 1989).  

Cox regression allowed evaluation of the effect of various independent variables 

on the time at which a specified event occurs without making assumptions on the baseline 

hazard. Cox regression was used in the survival analysis after all the covariates included 

in the models met the proportionality of hazards assumption (Cleves, 2008). The 

assumption required; a) all continuous predictors such as systolic blood pressure to have 

a constant effect on survival across all analysis groups during the entire period of follow-

up; b) categorical predictors (e.g. smoking status) to have the same shape of hazard 

function within each analysis group during the entire period of follow-up.  

Analysis plan by study aims  

Specific aim 1: Assess the accuracy of the non-LB Framingham algorithm in 

stratifying risk and predicting CVD events in a racially diverse population. 

Hypothesis 1: Non-LB Framingham algorithm will have adequate discrimination 

(Harrell’s C statistic greater than 0.75) and calibration (Hosmer-Lemeshow goodness of 

fit (χ 2) below 20) in the multiracial ARIC dataset. 

This hypothesis was tested by evaluating the frozen sex-specific non-LB 

Framingham algorithm’s ability to: a) accurately stratify risk (discrimination) for persons 

who experienced a CVD event and those who did not, and b) predict CVD events 

(calibration), in the ARIC dataset. Discrimination (the ability of a risk prediction tool to 

assign a higher risk to those who will develop the end points of interest compared to 

those who will not) was measured using Harrell’s C statistic and AUROC curve. 

Adequate discrimination was demonstrated by an overall C statistic of 0.75 or higher as 



 

30 
 

recommended in the literature (Cooney et al., 2009; May et al., 2006). In addition, 

sensitivity (proportion of individuals with CVD events who were predicted as high risk) 

and specificity (proportion of individuals without CVD events who are not predicted as 

high risk) of the tool was calculated using the roctab command in Stata©. 

Calibration of the mathematical models was assessed by measuring the 

concurrence between the predicted outcomes and observed outcomes using Hosmer-

Lemeshow goodness of fit statistic (χ 2). Kaplan-Meier survival analysis was used to 

obtain the observed incidence of CVD events, which was then be compared with the 

CVD events predicted by the non-LB Framingham algorithm. Kaplan-Meier method was 

preferred in this analysis because it allowed estimation of survival over time, even when 

some participants were censored or had varying lengths of follow-up. A Hosmer-

Lemeshow goodness of fit (χ 2) statistic below 20 was considered a good fit as 

recommended in literature (Cooney et al., 2009).  

The frozen Framingham model and algorithm was compared by one generated 

using ARIC data. In addition, re-calibration of the Framingham model using ARIC’s 

baseline survival and risk factor means was done and new recalibrated model and 

algorithm developed for comparability in discrimination and calibration (D'Agostino RB, 

Grundy, Sullivan, Wilson, & CHD Risk Prediction Group, 2001a). In this study, the 

frozen Framingham algorithm refers to the unaltered Framingham algorithms with 

baseline survival, regression coefficients and mean of risk factors as published by D 

’Agostino and colleagues (D'Agostino RB et al., 2008). 

Specific aim 2: Compare the performance of the non-LB Framingham algorithm 

in the black versus white participants of the ARIC study. 
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Hypothesis 2: There will be no significant difference in discrimination and 

calibration of the non-LB Framingham algorithm between the black and white 

participants of the ARIC study. 

After validating the sex-specific non-LB Framingham algorithm in the entire 

ARIC cohort, a sub-analysis was conducted to assess the performance of the tool in the 

black and white cohorts. This analysis examined the ability of the tool to accurately 

predict CV risk in each racial subgroup stratified by sex.   The Statistical analyses 

approach described under hypothesis 1 were used to conduct the sub-analysis by race. 

Re-calibration was done by substituting Framingham baseline survival and risk factor 

means with race specific baseline survival and risk factor means in the ARIC dataset. All 

the non-LB models were compared with their LB counterparts using AUROC analysis 

and agreement using kappa statistic. The kappa-statistic is measure of inter-rater 

agreement, which is 0 when agreement is random and 1 when agreement is perfect.  

  Cost-effectiveness analysis 

Specific aim 3: Establish the feasibility of using the non-LB Framingham 

algorithm in guiding prevention of CVD among the black participants enlisted the ARIC 

study. 

Hypothesis 3:  A CVD prevention strategy guided by the non-LB Framingham 

algorithm will be more cost-effective compared with treating each elevated CVD risk 

factor (diabetes and/or hypertension) independently in the black subset of the ARIC 

cohort. 
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Hypothesis 4:  A CVD prevention strategy guided by the non-LB Framingham 

algorithm will be more cost-effective compared with a strategy guided by the LB 

Framingham algorithm in the black subset of the ARIC cohort.   

This analysis compared the cost-effectiveness of a CVD prevention strategy 

guided by absolute CVD risk estimates, calculated using the non-LB and LB 

Framingham algorithms, visa-vis an approach based on treating each elevated CVD risk 

factor (diabetes and/or hypertension) independently in the black subset of the ARIC 

cohort.  

Although there are seven major risk factors for CVD that are modifiable, only two 

were included in costing the approach based on treating individual CVD risk factors. 

Hypertension and diabetes were selected due to their strong association with CVD and 

their significance in the global public health agenda.  Hypertension is the leading cause of 

CVD worldwide, and diabetes is known to double the risk of CVD events (S. Mendis et 

al., 2011). 

The thresholds for initiating therapy and treatment modalities in the individual 

risk factors approach e based on recommendations from the American Society of 

Hypertension and International Society of Hypertension (ASH-ISH) guidelines for 

management of hypertension, and the International Diabetes Federation (IDF) guidelines 

for management of diabetes (IDF Clinical Guidelines Task Force, 2006; Weber et al., 

2014). The guidelines were selected for costing due to their primary focus on either 

diabetes or hypertension, and their international applicability. The essential components 

of these guidelines relevant to this analysis are discussed below and summarized in 

Figure 3.   
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According to the ASH-ISH guidelines, hypertension is defined as systolic blood 

pressure greater or equal to 140 mmHg or diastolic blood pressure greater or equal to 90 

mmHg or both. The guidelines recommend timing and tailoring the intensity of treatment 

based on the stage of hypertension.  Stage 1 hypertension is defined as systolic blood 

pressure below 160 or diastolic blood pressure below 100, while stage 2 hypertension 

denotes blood pressures above these thresholds. Monotherapy with a calcium channel 

blocker (e.g. Amlodipine) or a thiazide diuretic (e.g. Hydrochlorothiazide) is 

recommended for blacks with stage 1 hypertension irrespective of their diabetes status, 

while addition of a second agent (angiotensin-converting enzyme (ACE) inhibitor in 

diabetes) is recommended in stage 2 hypertension as outlined in Figure 3. 

 In resource constrained settings, the guidelines recommend use of lifestyle 

modification for up to one year before starting drug therapy in stage 1 hypertension when 

no other CVD risk factors are present. All treatment modalities are focused on attaining 

targets below the diagnostic threshold but no explicit follow-up regimen is provided by 

the ASH-ISH guidelines (Weber et al., 2014).   

The IDF guidelines defines diabetes as fasting blood sugar greater than 7 mmol/l 

(126mg/dL) or random blood sugar above 11.1mmol/l (200mg/dL). Treatment options 

are graded from first-line to fourth-line therapy depending on attainment of glucose 

control targets. First-line therapy includes monotherapy with a biguanide (e.g.  

Metformin) or an equivalent agent, while second-line therapy adds a sulfonylurea (e.g. 

Glipizide) or an equivalent agent as summarized in Figure 3.  Addition of a third agent, 

such as a-glucosidase inhibitor, or starting insulin treatment constitutes third-line therapy. 

If glucose control targets are not achieved with third-line therapy, insulin treatment is 
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initiated alongside oral hypoglycemic agents as part of fourth-line therapy. The 

guidelines also recommend use of statins (based on lipid levels) to reduce risk of CVD 

events and periodic monitoring of glycated hemoglobin (HbA1C) as part of a 

comprehensive management program (IDF Clinical Guidelines Task Force, 2006). A 

follow-up regimen is not explicitly stipulated. Figure 3 outlines risk stratification and the 

basic preventive interventions prescribed by the approach guided by treating individual 

CVD risk factors.  

Figure 3: CVD prevention strategy based on treating diabetes/hypertension to target goals   

 

 

 

 

 

 

 

 

 

 

 

CVD prevention strategy based on treating diabetes and hypertension to target goals adapted from ASH-

ISH and IDF guidelines (IDF Clinical Guidelines Task Force, 2006; Weber et al., 2014) 

The absolute risk approach to CVD prevention is recommended by major CVD 

management guidelines based on the premise that whereas individual risk factors 

independently increase the likelihood of CVD events, clustering of multiple risk factors is 

known to compound the CVD risk (Beswick et al., 2008). Guidelines adopting the 

absolute risk approach to CVD prevention tailor the choice and intensity of recommended 
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treatments based on absolute CVD risk scores calculated using CVD risk assessment 

algorithms, such as the non-LB Framingham algorithm externally validated in this study.  

The 2007 CVD prevention guidelines by the WHO were selected as the basis for 

costing interventions associated with the absolute risk approach due to their congruence 

with Framingham algorithms and relevance to primary prevention of CVD. Interventions 

recommended by the WHO guidelines (see Table 2) are based on absolute risk scores for 

general CVD events including coronary heart disease, peripheral vascular disease and 

cerebral vascular disease (World Health Organization, 2007). Both the non-LB and LB 

Framingham algorithms validated in this study were developed to predict these general 

CVD events, these are broader outcomes than the hard coronary events predicted by 

earlier versions of Framingham (D'Agostino RB et al., 2008). Currently there are no 

feasible alternatives to the WHO guidelines since the American Heart Association CVD 

prevention guidelines are dated (published in 2002) and limited by their narrow focus on 

hard coronary events (Pearson et al., 2002).  

The WHO CVD prevention guidelines organize their recommended preventive 

interventions in four categories based on absolute CVD risk scores as follows; low risk 

(>10%), moderate risk (10% to 20%), high risk (20% to 30%) and very high risk >30%. 

Table 2 outlines the four risk categories and the treatment options recommended for each 

(World Health Organization, 2007). According to these guidelines, an individual with an 

absolute risk score >30% is: a) scheduled for follow-up visits at least every 6 months, b) 

started on antihypertensive therapy (if blood pressure is greater or equal to 

130/80mmHg), c) started on a statin, d) put on glucose lowering therapy (if fasting blood 

sugar is equal or greater than 7mmol/l), and e) started on low dose aspirin therapy.
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Table 2: WHO choice & intensity of CVD prevention strategy guided by absolute CVD risk 

 

CVD prevention strategy based absolute risk score, adapted from the WHO CVD prevention guidelines (World 

Health Organization, 2007). 

Key: TC (total cholesterol); FBS (fasting blood sugars) 
a Smoking cessation and lifestyle management recommended across risk profiles 
b Abstaining or reducing alcohol intake to <3units per day recommended across risk profiles 
c First line antihypertensive therapy includes: thiazide-like diuretic, ACE inhibitor, calcium channel blocker 
d Measures of TC may not be accessible in resource constrained regions. 
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Case example: individual vs absolute CVD risk approach 

The differences between the individual risk factors approach and the absolute risk 

approach to CVD prevention are evident in the treatment modalities recommended in 

Figure 3 and Table 2 for each strategy respectively. A case example is Mr. Q, a 57 years 

old male, who is a smoker with no history of diabetes or hypertension.  He presents with 

a blood pressure of 138/88 mmHg, fasting blood sugar of 6 mmol/l (108mg/dL), HDL of 

1.16 mmol/l (45mg/dL), total cholesterol of 5.84 mmol/l (226 mg/dL) and a BMI of 26.  

If the individual risk factors approach outlined in Figure 3 was used to manage 

Mr. Q, only lifestyle modification, with emphasis on smoking cessation, would be 

recommended since he does not meet the hypertension threshold specified by the ASH-

ISH guidelines or the threshold for diabetes recommended by the IDF guidelines.  

If the absolute risk approach was used to manage Mr. Q, he would have an 

absolute CVD risk score of 30.4% and 30.1% according to the online interactive non-LB 

and LB Framingham absolute CVD risk calculators respectively (D’Agostino & Pencina, 

2016). These absolute CVD risk calculators use the general formulae for predicting CVD 

events outlined in the literature review section. The general formulae combine sundry 

CVD risk factors to calculate the probability of a CVD event occurring within a 

maximum time frame of 12 years.  

Mr. Q absolute CVD risk score is very high despite apparently normal or near 

normal individual risk factors because the score appreciates the additive nature of subtle 

elevations in CVD risk factors (e.g. blood pressure, BMI and total cholesterol). 

Consequently, in addition to lifestyle modification, the absolute risk approach based on 

either the non-LB or LB Framingham algorithm absolute risk score will prescribe Mr. Q 
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the relevant interventions under the “very high risk category” (>30%) in Table 2. The 

relevant interventions for Mr. Q would include: follow-up visits at least every 6 months, 

antihypertensive therapy (since BP>130/80mmHg), statin therapy, and low dose aspirin. 

Absolute versus individual risk decision model 

 In order to fully appreciate the differences between the individual risk factors and 

absolute risk approaches to CVD prevention, the black cohort in ARIC was stratified by 

the type of screening algorithm used in the preventive approach. The different categories 

for each CVD prevention approach are summarized in Figure 4.1 and detailed below. 

 When the individual CVD risk factor approach was employed (lower arm in 

Figure 4.1), the black cohort free of CVD at baseline was stratified into high and low 

CVD risk categories depending on presence or absence of diabetes and/or hypertension. 

The true and false high risk categories were both prescribed the intensive preventive 

interventions outlined in Figure 3, while the true and false negatives were prescribed 

lifestyle management. The false positives ended up receiving unnecessary intensive 

treatment, while the false negatives missed essential treatment culminating in CVD 

events. In the simulated analysis, a high number of false positives were expected to 

increase level II expenses, while a high number of false negatives would increase level III 

expenses due to treatment and rehabilitative costs associated with CVD events that occur 

as a result of missing preventive interventions. 

When the absolute CVD risk approach was employed guided by either the non-

LB or LB Framingham algorithm, the black cohort free of CVD at baseline was stratified 

into four CVD risk categories based on their absolute risk score. When a specific risk 

category was selected as the threshold for initiating treatment based on 
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sensitivity/specificity analysis, individuals below the threshold were assumed to be low 

risk, while those above the threshold were considered high risk and put under the 

treatments prescribed for their respective category.  

For instance, if the moderate risk category (10-20%) in Figure 4.1 was set as the 

treatment threshold, the sample with absolute risk score below 10% would be exempted 

from treatment, while individuals in other risk categories would receive the appropriate 

therapy based on their risk sore as outlined in Table 2. As a result, the false positives 

receive unnecessary treatments and increase level II expenses, while the false negatives 

miss essential preventive treatments culminating in CVD events which incur level III 

treatments outlined in Figure 4.1. 
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Figure 4.1: Event trajectories associated with three CVD prevention strategies 
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  Cost-effectiveness framework 

The incremental cost effectiveness tested under hypothesis 3 and 4 was done 

under the framework of the cost-effectiveness model below adapted from the methods 

described by Drummond for evaluating incremental costs and effects of a program 

(Drummond & Drummond, 2005).  To adapt the equation for hypothesis 4, the individual 

risk factors (r) approach was substituted with the LB Framingham (l) approach). 

The incremental cost effectiveness ratio (ICER) model: 

ICER =
∆TCa−r

∆Ea−r
=  

t=1
12 j=1

2[CRxajt +CUSEajt –CRxrjt−CUSErjt ]/(1+d)𝑡

t=1
12j=1

2[CVDajt – CVDrjt]/(1+d)𝑡   

ICER model Key:  

 ICER = incremental cost-effectiveness ratio 

 TCa – r = the discounted difference between the total costs incurred in 12 years to 

manage CVD in the absolute (a) versus the individual risk factors (r) approach. 

 Ea – r = the discounted difference between true positives predicted in the absolute (a) vs. 

the individual risk factors (r) approach. 

 CRxajt, CRxrjt = the discounted cost of preventive interventions (see Table 2) prescribed to 

the j-th risk group predicted by absolute (a) versus by individual risk factors (r) approach 

in year t (same for CRxrjt, use Figure 3). 

 CUSEajt, CUSErjt = the discounted cost of treating 3 major CVD events occurring (false 

negatives in Figure 4.1) in the j-th risk group associated with absolute (a) vs individual 

risk factors (r) approach in year t (same for CUSErjt) 

 CVDajt-CVDrjt = the discounted difference between true positives predicted in the j-th 

absolute or individual risk factors group in year t.   

 d = 3% discount rate as recommended by the US Panel on Cost-Effectiveness in Health 

and Medicine (Weinstein, Siegel, Gold, Kamlet, & Russell, 1996). 

Each preventive approach was costed on three levels as outlined in Figure 4.1. Level I 

expenses includes screening costs, level II expenses included the cost of preventive 

interventions prescribed in Table 2 for the absolute risk approach, and Figure 3 for the 

individual risk factors approach, while level III expenses included the cost of treating 

CVD events that occurred in the false negative group. Outcomes in this analysis included 

three CVD events (fatal and non-fatal CHD, heart failure, and stroke) expected to be 

prevented over 12 years after implementation of each preventive strategy. The sum of 
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level I and II expenses constituted CRx, while level III expenses were represented by 

CUSE in the ICER model.  All costs and outcomes were discounted at the rate of 3% as 

recommended by the US Panel on Cost-effectiveness in health and medicine (Weinstein 

et al., 1996).  

Discounting refers to the practice of weighting future gains and losses less heavily 

than those that occur in the present. The concept is based on the premise that a dollar or a 

life is worth more today that it would be in the future (Smith & Gravelle, 2001). In this 

analysis, discounting is used to estimate the present value of future costs and CVD events 

associated with each of the three CVD prevention programs. 

  Interpreting the ICER 

The incremental cost-effectiveness ratio was interpreted using a cost-effectiveness 

plane adapted from Drummond (Drummond & Drummond, 2005). In this analysis, the 

existing programs were considered to be the individual risk factors and LB absolute risk 

approaches to CVD prevention, while the new program was considered to be the non-LB 

absolute risk approach.  In the plane outlined in Figure 4.2, an ideal ICER ratio would be 

a more effective and less costly new program as depicted in the lower right quadrant. The 

ratio could also be acceptable if the new CVD prevention program is slightly less 

effective but way less costly (see left lower quadrant), or more expensive but highly 

effective compared to the existing programs (see right upper quadrant). An expensive but 

less effective program is unacceptable under all circumstances.  At origin, the new 

program is similar in costs and effects with the existing program. 
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Figure 4.2: Cost-effectiveness plane depicting acceptability of ICER ratios 
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CHAPTER 4 

RESULTS  

The external validation described in this chapter entails evaluation of 

mathematical performance and applicability of the Framingham non-LB algorithms in the 

ARIC dataset. Mathematical performance is evaluated by reproducing the underlying 

Framingham mathematical models in ARIC and comparing their regression coefficients, 

discrimination and calibration with those derived in the Framingham dataset. 

Applicability of the Framingham algorithms in ARIC is evaluated by comparing the 

AUROC’s and sensitivity/specificity ratios of CVD risk stratification based on the 

published Framingham algorithms versus other models generated in the ARIC dataset. 

This chapter is organized in five parts to address; a) description of the ARIC 

sample baseline characteristics and incident CVD events, b) mathematical performance 

of the Framingham models in ARIC dataset, c) performance of the Framingham 

algorithms in the ARIC sample, d) sensitivity/specificity analysis of the algorithms 

applied to predict risk in the ARIC sample, and e) simulated cost-effectiveness analysis 

of the non-LB Framingham algorithm in the black cohort  of the ARIC sample.
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a)  Sample description 

This section describes the baseline characteristics of the eligible and ineligible 

sample based on the criteria discussed in the methods section, and the observed 

incidence of CVD events within the 12 years of follow stratified by sex and race.  

Sample characteristics 

The ARIC dataset provided by the NHLBI consisted 15,053 participants who 

completed the ARIC baseline exam between 1987 and 1989. Twenty-six percent of these 

participants were black and 55% were female. When the eligibility criteria described in 

the methods section were applied, 23% (3,452) of the original ARIC cohort was 

excluded. Therefore, the sample in this study includes 11,601 participants (23% black, 

55% female).  

The baseline characteristics of the eligible and ineligible sample are described in 

Table 3.1. Overall, 82% of those excluded had CVD at baseline examination. When the 

eligible sample was stratified by sex, men had a higher profile of CVD risk factors 

(diabetes, hypertension, smoking, HDL and total cholesterol) compared to women except 

for BMI and diabetes. Table 3.2 outlines the variables of interest stratified by gender. 
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Table 3.1: Baseline characteristics stratified by eligibility criteria 

 Eligible Ineligible 

 

P (95% CI) 

N 11601 3452  

Male (n, %) 5246 (45.22) 1541 (46.01) 0.417 

white (%) 8911 (76.81) 2141 (63.93) 0.000 

Age (mean, sd) 53.91 (5.74) 55.43 (5.69) 0.000 

Diabetes (n, %) 1152 (9.93) 658 (20.48) 0.000 

Current smoker (n, %) 2970 (25.60) 990 (29.69) 0.000 

BMI (mean, sd) 27.39 (5.14) 28.84 (5.96) 0.000 

SBP (mean, sd) 120.27 (17.99) 125.35 (21.90) 0.000 

Hypertension (n, %) 3,866 (33.32) 2116 (64.28) 0.000 

BP treatment (n, %) 2775 (23.92) 1858 (55.61) 0.000 

HDL (mean, sd) 52.15 (17.08) 48.92 (16.93) 0.000 

Total chol (mean, sd) 214.21 (41.05) 218.19 (45.36) 0.000 

Baseline CVD (n, %) 0 (0) 2801 (81.52) 0.000 

Baseline characteristics recorded at the baseline exam for entire ARIC cohort between 1987 and 1989 

Data presented as mean/SD for continuous variables and as frequencies (%) for categorical variables  

Chi2 and t test were used as the tests of homogeneity for categorical and continuous variables respectively 

 

 

 

Table 3.2: Baseline characteristics of the eligible sample stratified by sex and race 

 White 

female 

Black 

female 

p  
(95% CI) 

 White 

male 

Black  

male 

p  

(95% CI) 

N 4758 1597   4153 1093  

Diabetes ( %) 6.85 18.79 0.000  8.72 15 0.000 

Current smoker (%) 24.88 23.67 0.329  24.01 37.60 0.000 

BMI (mean, sd) 26.3 (5.2) 30.6 (6.3) 0.000  27.3 (3.9) 27.5 (4.9) 0.213 

SBP (mean, sd) 116.4 (17.4) 126.5 (19.5) 0.000  120 (15.8) 129 (20.1) 0.000 

Hypertension (%) 27.87 53.73 0.000    26.99 51.33 0.000 

BP treatment (%) 21.21 42.08 0.000  18.28 30.65 0.000 

HDL (mean, sd) 58 (17) 58.3 (17.3) 0.525  43.2 (12.4) 51.3 (17.2) 0.000 

Total chol (mean, sd) 217.4 (41.4) 216.5 (44.4) 0.464  210.3 (38) 211.6 (43.1) 0.319 

Age (mean, sd) 53.8 (5.7) 53.1 (5.8) 0.000  54.4 (5.7) 53.5 (6) 0.000 

Intermediate educ. (%) 51.16 29.59 0.000  39.43 26.72 0.000 

Advanced educ. (%) 33.85 32.79 0.000  44.61 31.22 0.000 

Baseline characteristics recorded at the baseline exam for entire ARIC cohort between 1987 and 1989 

Data presented as mean/SD for continuous variables and as frequencies (%) for categorical variables  

Chi2 and t test were used as the tests of homogeneity for categorical and continuous variables respectively 
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Incident CVD during 12 years of follow-up 

During the 12 years of follow-up included in this analysis 1,545 new cases of 

CVD occurred in the eligible ARIC cohort comprised of 11,601 individuals. This 

translated into 11.1 incident CVD cases per 1000 persons-years.  Stratified by sex and 

race, the incidence rate among white versus black women was 6.5 versus 10.2 cases per 

1000 person-years respectively, and 15.5 versus 15.6 cases per 1000 person-years among 

white versus black men respectively.  

white and black men had the highest incidence rate of CHD (12.1 and 9.0 cases 

per 1000 person-years respectively), while black and white women had the lowest 

incidence (4.3 and 3.7 per 1000 person-years respectively). The incidence of heart failure 

was highest among black women and men (5.4 and 5.2 cases per 1000 person-years 

respectively), while white men and women had the lowest incidence (4.6 and 2.7 cases 

per 1000 person-years respectively). The incidence of stroke was highest among black 

men and women (4.7 and 3.9 case per 1000 person-years respectively). White men and 

women incidence of Stroke was low at 2.4 and 1.4 cases per 1000 person-years 

respectively. Figure 5 shows the incidence rate of general and cause specific CVD events 

stratified by sex and race. 
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Figure 5: General & cause specific CVD incidence rate in ARIC stratified by sex & race 

 
 

The incidence proportion of CVD during the 12 years of follow-up was 13.3% in 

the entire ARIC cohort. Stratified by sex and race, the incidence proportion was 7.8% 

versus 12.3% among white versus black women respectively (p=0.000), and 18.6% 

versus 18.8% among white and black men respectively (p=0.900). Figures 6 depict the 

incidence proportion of general and cause specific CVD during the 12 years of follow-up 

stratified by sex and race. 
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Figure 6: General & case specific CVD incidence proportion in ARIC stratified 

by sex & race 

 

    

b) Mathematical models’ performance 

In this section, two mathematical models, namely unadjusted and adjusted 

Framingham models, were developed and their mathematical performance compared to 

the published (frozen) Framingham model. The unadjusted model was generated by 

running a Cox regression model that included only the covariates used to derive the 

published Framingham algorithms, while the adjusted model included additional 

covariates postulated to improve the discrimination and calibration of the published 

Framingham models. The mathematical model performance was evaluated using the 

metrics of discrimination and calibration as discussed in the methods section. In addition, 
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the regression coefficients generated in the unadjusted model were compared to the 

published (frozen) Framingham coefficients to compare the effect size of each covariate 

in the Framingham versus ARIC cohorts.  

 Both the unadjusted and adjusted models met the proportional hazards assumption 

(global test >0.05) and did not indicate presence of multicollinearity among the 

covariates. To compare the effect of each covariate in the Framingham versus ARIC 

cohorts, a statistical test of the difference in their respective regression coefficients (β) 

was done using the z-score formula: 𝑧 = (𝑏1 − 𝑏2) √(𝑠𝑒𝑏12⁄ + 𝑠𝑒𝑏22) , where 𝑏1 and 

𝑏2 are the unstandardized regression coefficients (β), while 𝑠𝑒𝑏1 and 𝑠𝑒𝑏2 are the standard 

errors of the regression coefficients (Paternoster, Brame, Mazerolle, & Piquero, 1998). 

Regression coefficients with similar effects across cohorts are expected to have a z score 

in the interval -1.96 and +1.96. A positive z means that the regression coefficient in 

ARIC was greater than Framingham and vice versa. 

  The unadjusted non-LB Framingham models 

The Cox regression analysis including the non-LB covariates (sex, age, smoking 

status, diabetes status, antihypertensive medication use, systolic blood pressure and BMI) 

satisfied the proportional hazards assumption with a global test of p=0.2384 among 

women and p=0.2873 among men. All the covariates included in the unadjusted non-LB 

Framingham model were statistically significant (p<0.05) in both sexes and in the white 

cohort, but BMI was not significant in the black cohort (p=0.071 for women and 0.128 

for men). In addition, untreated systolic blood pressure was not statistically significant 

among black men (p=0.065). Table 4 describes the regression coefficients for the 

unadjusted non-LB Framingham model, stratified by sex and race. 
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Stratified by sex only, the regression coefficients generated in the unadjusted non-

LB Framingham model were similar to the frozen non-LB Framingham regression 

coefficients, except for the smoking covariate among men and women, and the diabetes 

covariate among men. The effect of smoking was higher among women (z score of 3.28) 

but lower among men (z score of -2.842) in ARIC compared to the Framingham cohort. 

The effect of diabetes was higher among men (z score of 2.188) but similar among 

women in ARIC compared to the Framingham cohort.  

Stratified by sex and race, the regression coefficients for all strata were similar to 

the frozen non-LB Framingham regression coefficients, except for the smoking and 

diabetes coefficients which were different in the white cohort. Smoking had a higher 

effect among white women (z score of 3.327) and a lower effect among white men (z score of 

-2.637) in ARIC compared to the Framingham cohort. Diabetes had a higher effect among 

white men (z score of 2.174) but similar effect among white women in ARIC compared 

to the Framingham cohort.  Table 4 shows the regression coefficients for the unadjusted 

non-LB Framingham model and the associated z scores, stratified by sex and race.  
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Table 4: Regression beta coefficients of the unadjusted non-LB Framingham in ARIC 

and z test score of equality 

 

Non-LB based 

covariates 
Female coefficients stratified by race 

 

Male coefficients stratified by race 

 

 
Women 

white 

women 

black 

women 

 

Men 

 

white men 

 

black men 

N 6355 4758 1597 5246 4153 1093 

Current smoker 

 

1.053*** 

 [0.0885] 

z = 3.28† 

1.106*** 

[0.108] 

 z = 3.327† 

0.914*** 

[0.157] 

z =1.592 

0.412*** 

[0.0707] 

z = -2.842† 

0.411*** 

[0.0826] 

z = -2.637† 

0.501*** 

[0.145] 

z =-1.269    

Diabetes 

 

1.073*** 

[0.101] 

z = 1.65 

1.073*** 

[0.136] 

z = 1.467 

1.044*** 

[0.154] 

z = 1.25 

0.831*** 

[0.0814] 

z = 2.188† 

0.848*** 

[0.0948] 

z = 2.174† 

0.831*** 

[0.161] 

z = 1.537 

Log of Age 

 

3.129*** 

[0.428] 

z = 0.788 

3.333*** 

[0.545] 

z = 0.991 

2.841*** 

[0.723] 

z =0.154 

3.050*** 

[0.321] 

z = -0.164 

2.881*** 

[0.372] 

z = -0.540 

3.330*** 

[0.654] 

z = 0.316 

Log of BMI 

 

0.801*** 

[0.219] 

z = 0.828 

0.797** 

[0.284] 

z = 0.726 

0.668 γ 

[0.370] 

z = 0.341 

0.793*** 

[0.222] 

z =0.000 

0.864** 

[0.265] 

z = 0.180 

0.631 

[0.415] 

z = -0.320 

Log of non-

treated SBP 

 

1.958*** 

[0.353] 

   z = -1.701 

1.808*** 

[0.435] 

z = -1.786 

2.158*** 

[0.633] 

z = -0.902 

1.499*** 

[0.270] 

z = -0.897 

1.790*** 

[0.323] 

 z = -0.151 

1.018γ 

 [0.551] 

z = -1.341 

Log of treated 

SBP 

 

3.106*** 

[0.389] 

z = 0.425 

3.054*** 

[0.600] 

z = 0.247 

3.033*** 

[0.531] 

z = 0.235 

1.834*** 

[0.399] 

z = -0.188 

1.719*** 

[0.497] 

z = -0.361 

2.246** 

[0.693] 

z = 0.425 

* p<0.05, ** p<0.01, *** p<0.001 γ p<0.1 

Standard errors in brackets 

z = score comparing published non-LB Framingham coefficients with those generated in ARIC using the 

formulae 𝑓(𝑧) = (𝑏1 − 𝑏2) √(𝑠𝑒𝑏12⁄ + 𝑠𝑒𝑏22); † denotes z score >1.96 or < -1.96. Positive z means the 

regression coefficient in ARIC was greater than Framingham & vice versa 

 

 

In regards to risk stratification and congruence between predicted and observed 

CVD events, the unadjusted non-LB Framingham model had a higher discrimination 

statistic and better calibration among women compared to men. However, no significant 

differences in discrimination were observed between blacks and whites within their 

respective sexes. Women had a C statistic of 0.75 (95% confidence interval [CI], 0.73-

0.77) compared to men’s 0.67 (95% CI, 0.65-0.68). When stratified by sex and race, 

white women had a C statistic of 0.746 (95% CI, 0.72-0.77) compared to black women’s 

0.745 (95% CI, 0.71-0.78), while white men had a C statistic of 0.664 (95% CI, 0.65-
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0.68) compared to black men’s 0.683 (95% CI, 0.65-0.72). The published (frozen) non 

LB Framingham model had a C statistic of 0.785 (95% CI, 0.764-0.806) for women and 

0.749 (95% CI, 0.731-0.767) for men.  

Calibration was good (p>0.05) among women but poor among men with Hosmer-

Lemeshow goodness of fit (df 8) χ 2= 14.2 (p=0.1154) versus 25.8 (p=0.0022) 

respectively as depicted in Figure 7 and 8 below. When stratified by sex and race, 

calibration was good among all ARIC cohorts except white men with Hosmer-Lemeshow 

goodness of fit (df 8) χ 2= 19.6 (p=0.0208). The published Framingham model had a 

Hosmer-Lemeshow goodness of fit (df 8) χ 2= 10.24 for women (p=0.33) and 13.61 

(p=0.14) for men. 

 

        Figure 7: Calibration- unadjusted non-LB based Framingham women specific model 
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Figure 8: Calibration- unadjusted non-LB based Framingham men specific model 

  

  The unadjusted LB Framingham models 

The Cox regression analysis including the LB covariates (sex, age, smoking 

status, diabetes status, antihypertensive medication use, systolic blood pressure total 

cholesterol and HDL) also satisfied the proportional hazards assumption over the 

duration of follow-up with a global test of p=0.2999 among women and p=0.4111 among 

men. All the covariates included in the unadjusted LB Framingham model were 

statistically significant (p<0.05) in both sexes and in the white cohort, but total 

cholesterol was not statistically significant in the black cohort (p=0.356 for women and 

0.867 for men). Table 5 presents the regression coefficients for the unadjusted LB 

Framingham model, stratified by sex and race. 
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coefficients, except for the smoking status among men and women. Smoking had a 

higher effect among women (z score of 2.946) but a lower effect among men (z score of -

2.720) in ARIC compared to the Framingham cohort. Table 5 below describes the 

regression coefficients for the unadjusted LB Framingham model and the associated z 

scores stratified by sex. 

Table 5: Regression beta coefficients of the unadjusted LB Framingham in ARIC and z 

test score of equality 

 

LB 

covariates 

Female coefficients stratified by 

race 

 

Male coefficients stratified by race 

 

 

 

Women 

 

white 

women 

 

black 

women 

 

Men 

 

white men 

 

black 

men 

N  6355 4758 1597 5246 4153 1093 

Current 

smoker 

 

0.918***        

[0.0879] 

z= 2.946†          

0.966***   

[0.108] 

0.780*** 

[0.155] 

0.370***    

[0.0700] 

z= -2.720†          

0.326***   

[0.0824] 

0.471*** 

[0.143] 

Diabetes 

 

1.004*** 

[0.0999] 

z= 1.745 

0.931*** 

[0.136] 

0.983*** 

[0.155] 

0.793***    

[0.0808] 

z= 1.609          

0.803*** 

[0.0944]          

0.803*** 

[0.159]   

Log of Age 

 

2.795*** 

[0.431] 

z= 0.884 

3.121*** 

[0.551] 

2.579*** 

[0.723] 

2.966***        

[0.320]  

z= -0.24          

2.851*** 

[0.371]          

3.337*** 

[0.655] 

Log of  

T. cholesterol 

 

0.552*  

[0.217] 

z= -1.923 

0.736** 

[0.278] 

0.320  

[0.346] 

0.957*** 

[0.173] 

z= -0.618 

1.254***       

[0.202]          

0.0581   

[0.346]    

Log of HDL 
-0.987***  

[0.146] 

z= -1.232                

-1.087*** 

[0.178] 

-0.900*** 

[0.267]    

-0.896***  

[0.112]    

z= 0.203              

-0.947*** 

[0.132] 

-0.736** 

[0.236]    

Log of non-

treated SBP 

 

2.156*** 

[0.349] 

z= -1.213 

1.909*** 

[0.432]          

2.273*** 

[0.633] 

1.793*** 

[0.273] 

z= -0.350 

1.902*** 

[0.322] 

1.270* 

[0.555] 

Log of 

treated SBP 

 

3.209*** 

[0.386]   

z= 0.741         

2.911*** 

[0.593]                  

3.065*** 

[0.525]   

2.019*** 

[0.400] 

z= 0.041 

1.799*** 

[0.495] 

2.421*** 

[0.701] 

* p<0.05, ** p<0.01, *** p<0.001 

Standard errors in brackets 

z = score comparing published non-LB Framingham coefficients with those generated in ARIC using the 

formulae 𝑓(𝑧) = (𝑏1 − 𝑏2) √(𝑠𝑒𝑏12⁄ + 𝑠𝑒𝑏22); † denotes z score >1.96 or < -1.96. Positive z means the 

regression coefficient in ARIC was greater than Framingham & vice versa 
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The unadjusted LB Framingham model also had a higher discrimination statistic 

and better calibration among women compared to men, with no significant differences in 

discrimination between blacks and whites within their respective sexes. Women had a C 

statistic of 0.76 (95% CI, 0.74-0.78) compared to men’s 0.68 (95% CI, 0.67-0.70). When 

stratified by sex and race, white women had a C statistic of 0.754 (95% CI, 0.73-0.78) 

compared to black women’s 0.750 (95% CI, 0.72-0.78), while white men had a C statistic 

of 0.685 (95% CI, 0.67-0.70) compared to black men’s 0.69 (95% CI, 0.65-0.73).  The 

published LB Framingham model had a C statistic of 0.793 (95% CI, 0.772-0.814) in 

women and 0.763 (95% CI, 0.746-0.780) for men.    

 Calibration was good (p>0.05) among women but poor among men with 

Hosmer-Lemeshow goodness of fit (df 8) χ 2= 10.5 (p=0.3084) versus 21.8 (p=0.0095) 

respectively as depicted in Figure 9 and 10. When stratified by sex and race, calibration 

was good among all ARIC cohorts except white men with Hosmer-Lemeshow goodness 

of fit (df 8) χ 2= 25.5 (p=0.0024). The published LB Framingham model had a Hosmer-

Lemeshow goodness of fit (df 8) χ 2= 7.79 for women (p=0.56) and 13.48 (p=0.14) for 

men. 
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Figure 9: Calibration- unadjusted LB Framingham women specific model 

 

  

 

 

 

 

 

 

 

 

 

Figure 10: Calibration- unadjusted LB Framingham men specific model 
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  The adjusted non-LB model 

In a bid to improve discrimination and calibration, additional variables known to 

be CVD risk factors were sequentially added to the covariates included in the published 

non-LB Framingham model, and their statistical significance evaluated. The additional 

variables included waist hip ratio and family history of premature CHD.  A new model 

(adjusted non-LB model) including covariates that were statistically significant in 

multivariate regression was generated and its performance evaluated through the metrics 

of discrimination and calibration.  

Family history of premature CHD was statistically significant among men, but not 

among women (p=0.068). Waist hip ratio was marginally significant among women 

(p=0.052), but the addition of waist hip ratio rendered BMI no longer significant (0.946) 

among men. Table 6 describes each covariate’s regression coefficient and the 

corresponding standard error and p value. 

When stratified by sex and race, BMI was significant among white women but 

statistically not significant among white men (p=0.34), black women (p=0.445) and black 

men (p=0.535). On the other hand, waist hip ratio was significant among blacks and 

white men, but statistically not significant among white women (p=0.338). Family 

history of premature CHD was statistically not significant among white women 

(p=0.127), black women (p=0.195) and black men (p=0.971), but significant among 

white men. In addition, untreated systolic blood pressure was not statistically significant 

among black men (p=0.101). Table 6 describes the regression coefficients for the 

adjusted non-LB model, stratified by sex and race. 
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Table 6: Regression coefficients of the adjusted non-LB model stratified by sex and race 

Adjusted non-LB 

model covariates 
Female coefficients stratified by race 

 

Male coefficients stratified by race 

 

 

women white women black women men white men black men 

N 6353 4758 1597 4406 3612 1093 

Current smoker 

 
1.023*** 

[0.0895] 

1.106*** 

[0.108] 

0.830*** 

[0.154] 

0.373*** 

[0.0771] 

0.365*** 

[0.0882] 

0.475*** 

[0.142] 

Diabetes 

 
1.028*** 

[0.103] 

1.073*** 

[0.136] 

0.982*** 

[0.156] 

0.844*** 

[0.0897] 

0.881*** 

[0.101] 

0.773*** 

[0.161] 

Log of Age 

 
2.947*** 

[0.441] 

3.333*** 

[0.545] 

2.433*** 

[0.723] 

2.772*** 

[0.354] 

2.706*** 

[0.398] 

2.997*** 

[0.658] 

Log of BMI 

 
0.597* 

[0.242] 

0.797** 

[0.284] 
N/A N/A N/A N/A 

Log of waist hip 

ratio 
1.141 

[0.587] 
N/A 

2.462** 

[0.906] 

3.631*** 

[0.660] 

3.799*** 

[0.757] 

3.848** 

[1.229] 

Family hx of 

premature CHD 
N/A N/A N/A 

0.334** 

[0.109] 

0.359** 

[0.114] 
N/A 

Log of non-treated 

SBP 

 

1.906*** 

[0.355] 

1.808*** 

[0.435] 

2.071** 

[0.635] 

1.500*** 

[0.297] 

1.641*** 

[0.350] 

0.909 

[0.554] 

Log of treated SBP 

 
3.097*** 

[0.390] 

3.054***        

[0.600] 

3.092*** 

[0.531] 

1.800*** 

[0.434] 

1.803*** 

[0.519] 

2.196** 

[0.698] 

 
Standard errors in brackets, N/A= not applicable 

* p<0.05, ** p<0.01, *** p<0.001, γ p≤0.1 

 

There was no difference in discrimination between the adjusted and unadjusted 

non-LB models. Women maintained a C statistic of 0.75 (95% CI, 0.73-0.77) compared 

to men’s 0.67 (95% CI, 0.66-0.69). When stratified by sex and race, there was no 

significant difference in discrimination. white women had a C statistic of 0.746 (95% CI, 

0.72-0.77) compared to black women’s 0.748 (95% CI, 0.71-0.78), while white men had 

a C statistic of 0.675 (95% CI, 0.65-0.69) compared to black men’s 0.689 (95% CI, 0.65-

0.72).  

There was minimal improvement in calibration with women still maintaining 

good calibration compared to men with Hosmer-Lemeshow goodness of fit (df 8) χ 2= 

12.4 (p=0.189) versus 21.2 (p=0.0115) respectively. When stratified by sex and race, 

calibration was good in all groups stratified by sex and race. 
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  The adjusted LB model 

To improve the LB Framingham model, variables that included BMI, waist hip 

ratio, family history of premature CHD, apolipoprotein A and apolipoprotein B were 

added to the model.  A new model (adjusted LB model) including covariates that were 

statistically significant in multivariate regression was generated and its performance 

evaluated through the metrics of discrimination and calibration.  

Total cholesterol, waist hip ratio and family history of premature CHD were 

statistically significant in predicting CVD events among men, but not among women (p= 

0.765 and 0.327 and 0.106 respectively). On the other hand, apolipoprotein B was 

significant among women but not among men (p=0.969) as shown in Table 7. BMI and 

apolipoprotein A were not significant among women (p= 0.592 and 0.585 respectively) or 

men (p= 0.288 and 0.938 respectively). All other variables were significant in both sexes 

as described in Table 7. 

When stratified by sex and race, apolipoprotein B was significant among white 

women but not significant among black women (p=0.238), white men (p=0.953) and 

black men (p=0.853), waist hip ratio was significant among blacks and white men, but 

statistically not significant among white women (p=0.897). Family history of premature 

CHD was statistically not significant among white women (p=0.148), black women 

(p=0.224) and black men (p=0.955), but was significant among white men. In addition, 

untreated systolic blood pressure was marginally significant among black men (p=0.055).  
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Table 7: Regression coefficients of the adjusted LB model stratified by race and sex 

Adjusted LB 

model covariates 
Female coefficients stratified by race 

 

Male coefficients stratified by race 

 

 
women white women black women men white men black men 

Current smoker 

 

0.916*** 

[0.0880] 

0.960*** 

[0.108] 

0.771** 

[0.155] 

0.368*** 

[0.0773] 

0.332*** 

[0.0890] 

0.475*** 

[0.142] 

Diabetes 

 

1.002*** 

[0.100] 

0.935*** 

[0.136] 

0.910*** 

[0.158] 

0.787*** 

[0.0903] 

0.806*** 

[0.102] 

0.740*** 

[0.161] 

Log of Age 

 

2.809*** 

[0.429] 

3.164*** 

[0.548] 

2.482*** 

[0.722] 

2.878*** 

[0.356] 

2.814*** 

[0.399] 

3.125*** 

[0.664] 

Log of total 

cholesterol 
N/A N/A N/A 

0.812*** 

[0.192] 

1.043*** 

[0.217] 
N/A 

Log of HDL 

 

-0.877*** 

[0.151] 

-0.955*** 

[0.185] 

-0.770** 

[0.271] 

-0.800*** 

[0.131] 

-0.847*** 

[0.149] 

-0.561* 

[0.244] 

Log of ApoB 
0.368** 

[0.141] 

0.490** 

[0.183] 
N/A N/A N/A N/A 

Log of waist hip 

ratio 
N/A N/A 

1.980* 

[0.922] 

2.360*** 

[0.706] 

2.723*** 

[0.800] 

2.958* 

[1.297] 

Family hx of 

premature CHD 
N/A N/A N/A 

0.297** 

[0.109] 

0.322** 

[0.114] 
N/A 

Log of non-

treated SBP 

 

2.154*** 

[0.349] 

1.893*** 

[0.432] 

2.119*** 

[0.641] 

1.670*** 

[0.303] 

1.628*** 

[0.353] 

1.076 

[0.561] 

Log of treated 

SBP 

 

3.181*** 

[0.387] 

2.794*** 

[0.597] 

3.019***  

[0.525] 

1.920*** 

[0.437] 

1.838*** 

[0.519] 

2.301** 

[0.705] 

N 6352 4757 1597 4406 3612 1093 

Standard errors in brackets, N/A= not applicable 

* p<0.05, ** p<0.01, *** p<0.001, γ p<0.1 

 

There was no difference in discrimination between the adjusted and unadjusted 

LB models. Women had a C statistic of 0.76 (95% CI, 0.74-0.78) compared to men’s 

0.69 (95% CI, 0.67-0.71). When stratified by sex and race, there was no significant 

difference in discrimination. white women had a C statistic of 0.755 (95% CI, 0.73-0.78) 

compared to black women’s 0.753 (95% CI, 0.72-0.79), while white men had a C statistic 

of 0.693 (95% CI, 0.67-0.71) compared to black men’s 0.693 (95% CI, 0.66-0.73).  
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Both sexes had similar calibration with Hosmer-Lemeshow goodness of fit (df 8) 

χ 2= 18.6 among women (p=0.0289) versus 18.1 (p=0.0343) among men. When stratified 

by sex and race, calibration was good in all groups except among white men with 

Hosmer-Lemeshow goodness of fit (df 8) χ 2= 20.3 (p=0.0164). 

c)  Applicability of the Framingham algorithms in the ARIC sample 

In this section, the published (frozen) non-LB and LB Framingham algorithms are 

imputed in the ARIC dataset and applied to stratify CVD risk in the ARIC sample. In 

addition, two more risk prediction functions (recalibrated Framingham and adjusted 

algorithms) are derived using ARIC dataset, and their performance in stratifying CVD 

risk compared to the frozen Framingham algorithms using kappa statistic and 

sensitivity/specificity analysis. The three CVD risk prediction algorithms adhere to the 

general formulae outlined in the literature review section [ 𝑝 =  1 −

S0(𝑡)exp (∑ =1 
𝑝
𝑖 �̇�𝑖𝑋𝑖−∑ =1 

𝑝
𝑖 �̇�𝑖�̅�𝑖)] which is widely used in Framingham and other studies to 

generate CVD risk prediction algorithms.  

The frozen Framingham algorithms simply adopt all features of the published 

Framingham risk prediction functions, while the recalibrated algorithms alter the 

published Framingham functions by substituting their baseline survival and mean of risk 

factors with ARIC generated baseline survival and mean of risk factors. The adjusted 

algorithms alter the published Framingham risk function by substituting their baseline 

survival, covariates and regression coefficients with those generated in ARIC.  

  CVD risk stratification using the frozen Framingham algorithms 

The frozen non-LB Framingham algorithm calculates the 10-year CVD risk for 

women as 𝑝 = 1 − 0.94833exp (∑ =1 
𝑝
𝑖 �̇�𝑖𝑋𝑖−26.0145) ; while the risk for men is calculated as 
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𝑝 = 1 − 0.88431exp (∑ =1 
𝑝
𝑖 �̇�𝑖𝑋𝑖−23.9388). On the other hand, the frozen LB Framingham 

algorithm calculates the risk for women as 𝑝 =  1 − 0.95012 exp (∑ =1 
𝑝
𝑖 �̇�𝑖𝑋𝑖−26.1931), and 

the risk for men as 𝑝 =  1 − 0.88936 exp (∑ =1 
𝑝
𝑖 �̇�𝑖𝑋𝑖−23.9802). In addition to using the 

Framingham’s baseline survival and mean of risk factors, the frozen Framingham 

algorithms also use the Framingham generated regression coefficients (�̇�𝑖) in the 

equations above. 

When the frozen Framingham algorithms were applied to stratify CVD risk in the 

entire ARIC sample, the outcome was comparable in all risk categories.  For instance, the 

non-LB Framingham algorithm classified 18% of the sample as high or very high risk 

(see Figure 11 below) compared to 17% by the frozen LB Framingham algorithm (Figure 

12 below). When the four risk categories stratified by the two frozen Framingham 

algorithms were compared by kappa test, there was an overall agreement of 92.76% and a 

kappa statistic of 0.7624 as described in Table 8 below. 
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     Figure 11: Risk stratification in ARIC cohort as per the Frozen non-LB Framingham  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Risk stratification in ARIC cohort as per the Frozen LB Framingham 
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Table 8: Kappa test frozen non-LB versus LB Framingham algorithm’s risk categories 

Frozen non-LB 

based 

Framingham 

algorithm 

Frozen LB Framingham algorithm 

 low moderate high very 

high 

Total 

low 5,696 809 9 0 6,514 

moderate 392 2,241 443 31 3,107 

high 3 350 642 198 1,193 

very high 0 16 208 563 787 

total  6,091 3,416 1,302 792 11,601 

Ratings weighted by: 
1.0000 0.6667 0.3333 0.0000 

0.6667 1.0000 0.6667 0.3333 

0.3333 0.6667 1.0000 0.6667 

0.0000 0.3333 0.6667 1.0000 

Agreement Expected 

Agreement 

Kappa Std. Err. Z Prob>Z 

92.76% 69.56% 0.7624 0.0069 111.28 0.0000 

 

 When the frozen non-LB Framingham algorithm was used to classify CVD risk in 

the ARIC sample stratified by sex and race, a greater proportion of black women and 

black men were classified as high or very high risk compared to their white counterparts. 

The proportion of black women in the high risk category was 4.3% more than the 

proportion of white women (7.8% versus 3.5% respectively), while the proportion of 

black women in the very high risk category was 4.4% more than the proportion of white 

women (5.9% versus 1.5% respectively) as depicted in Figure 13 below.  

Among men, blacks dominated the high and very high risk categories. The 

proportion of black men in the high risk category was 6.2% higher compared to white 

men (24.2% versus 18.0% respectively). In the very high risk category, the proportion of 

black men was 10% higher than the proportion of white men (19.9% versus 9.9% 

respectively) as described in Figure 13.  
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Figure 13: Frozen non-LB Framingham algorithm risk categories stratified by sex & race 

 
 

When the frozen LB Framingham algorithm was applied to classify CVD risk in 

the ARIC sample stratified by sex and race, higher proportions of blacks dominated the 

high and very high risk categories compared to whites. The proportion of black women in 

the high risk category was 3.5% higher than the proportion of white women (6.8% versus 

3.3% respectively), while the proportion of black women in the very high risk category 

was 2.8% higher than the proportion of white women (4.4% versus 1.6% respectively) as 

depicted in Figure 14 below. Among men, the differences in the high and very high risk 

categories were minimal, with 20.1% of black men and 17.1% of white men being 

classified as high risk (3% difference), and 15% of black men versus 11.4% of white men 

classified in the very high risk category (3.6% difference) as depicted in Figure 14. 
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Figure 14: Frozen LB Framingham algorithm risk categories stratified by sex & race 
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When the recalibrated algorithms were applied to stratify CVD risk in the entire 

ARIC sample, the outcome was comparable in all risk categories.  For instance, the 

recalibrated non-LB algorithm classified 7.44% of the sample as high or very high risk 

compared to 8.09% by the recalibrated LB algorithm. When the four risk categories 

stratified by the two recalibrated algorithms were compared by kappa test, there was an 

overall agreement of 94.26% and a kappa statistic of 0.72. 

When the recalibrated algorithms were applied to classify CVD risk in the ARIC 

sample stratified by sex and race, there was no difference between the non-LB and LB 

algorithm, or between blacks and whites. However, higher proportions of men were 

classified in the high and very high risk strata compared to women in both racial groups 

by both algorithms as described in Figures 15 and 16. 

 

Figure 15: Recalibrated non-LB algorithm risk categories stratified by sex & race 
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Figure 16: Recalibrated LB algorithm risk categories stratified by sex & race 
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When the adjusted algorithms were applied to stratify CVD risk in the entire 

ARIC sample, there was no difference between categories.  For instance, the adjusted 

non-LB algorithm classified 6.88% of the sample as high or very high risk compared to 

5.90% by the adjusted LB algorithm. When the four risk categories stratified by the two 

algorithms were compared by kappa test, there was an overall agreement of 96.12% and a 

kappa statistic of 0.7996. 

When the adjusted algorithms were applied to classify CVD risk in the ARIC 

sample stratified by sex and race, there was no difference between the non-LB and LB 

algorithm, or between blacks and whites. However, higher proportions of men were 

classified in the high and very high risk strata compared to women in both racial groups 

by both algorithms as described in Figures 17 and 18. 

Figure 17: Adjusted non-LB algorithm risk categories stratified by sex & race 
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Figure 18: Adjusted LB algorithm risk categories stratified by sex & race 
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discussed in the methods section.  Therefore, the analysis described in this section 

focuses on their sensitivity/specificity analysis within 12 years’ time frame.  

   The frozen non-LB Framingham algorithm 

In the entire ARIC sample, the frozen non-LB Framingham algorithm had an 

overall AUROC of 0.7063.  At the moderate risk category (10-20%), the algorithm had a 

sensitivity of 76% and specificity of 57.03%. When the high risk (20-30%) cut point was 

used as the threshold for predicted incident CVD, the algorithm had a sensitivity of 

41.10% versus specificity of 85.49%. Table 9 below describes a detailed report of the 

algorithm’s sensitivity and specificity at the four different risk cut points described in the 

methods section, while Figure 19 plots the resultant AUROC. 

Table 9: Sensitivity/specificity analysis of the frozen non-LB Framingham algorithm 

Any CVD event within first 

12yrs of follow-up 

Frozen non-LB based Framingham risk categories in ARIC 

        low    moderate        high   very high       Total 

CVD free      5,735       2,862         965         494      10,056  

Incident CVD        356         554         337         298       1,545  

Total      6,091       3,416       1,302         792      11,601  

Detailed report of sensitivity and specificity                                 

Cut point Sensitivity    Specificity    Correctly 

Classified       

    LR+      LR- 

>=low risk (<10%) 100.00% 0.00% 13.32% 1.0000  

>=moderate risk (10-20%) 76.96% 57.03% 59.68% 1.7910 0.4040 

>=high risk (20-30%) 41.10% 85.49% 79.58% 2.8328 0.6890 

>=very high risk (>30% ) 19.29% 95.09% 84.99% 3.9263 0.8488 

> very high risk  0.00% 100.00% 86.68% 1.0000  

           ROC                    -Asymptotic Normal-- 

Obs       Area     Std. Err.      [95% Conf. Interval] 

------------------------------------------------------------ 

11,601     0.7063       0.0068        0.69294     0.71969 

Sensitivity= fraction of true positive cases 

Specificity= fraction of true negative cases 

Correctly classified= percentage correctly classified in their true disease state (CVD or no CVD)  
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Figure 19: Frozen non-LB Framingham AUROC for entire ARIC sample 
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 Figure 20: Frozen non-LB Framingham AUROC    Figure 21: Frozen non-LB Framingham AUROC  
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           Figure 22: Frozen non-LB Framingham AUROC     Figure 23: Frozen non-LB Framingham AUROC   

           white men          black men 
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   The frozen LB Framingham algorithm 

In the entire ARIC sample, the frozen LB Framingham algorithm had an overall 

AUROC of 0.71. At the moderate risk (10-20%) threshold, the algorithm had a sensitivity 

of 74.63% and specificity of 60.88%. When the high risk (20-30%) cut point is used as 

the threshold for predicted incident CVD, the algorithm had a sensitivity of 40.32% 

versus specificity of 86.51%. Table 10 below describes a detailed report of the 

algorithm’s sensitivity and specificity at the four different risk cut points described in the 

methods section, while Figure 24 plots the resultant AUROC. Both frozen Framingham 

algorithms (non-LB and LB) had similar AUROCs with no statistical difference in their 

sensitivity and specificity (p=0.3661) as depicted in Figure 25. 

Table 10: Sensitivity/specificity analysis of the frozen LB Framingham algorithm 

Any CVD event within first 

12yrs of follow-up 

Frozen LB based Framingham risk categories in ARIC 

        low    moderate        high   very high       Total 

CVD free 6,122 2,577 880 477 10,056 

Incident CVD 392 530 313 310 1,545 

Total 6,514 3,107 1,193 787 11,601 

Detailed report of sensitivity and specificity                                 

Cut point Sensitivity    Specificity    Correctly 

Classified       

    LR+      LR- 

>=low risk (<10%) 100.00% 0.00% 13.32% 1.0000  

>=moderate risk (10-20%) 74.63% 60.88% 62.71% 1.9076 0.4168 

>=high risk (20-30%) 40.32% 86.51% 80.36% 2.9882 0.6899 

>=very high risk (>30% ) 20.06% 95.26% 85.24% 4.2300 0.8392 

> very high risk  0.00% 100.00% 86.68%  1.0000 

           ROC                    -Asymptotic Normal-- 

Obs       Area     Std. Err.      [95% Conf. Interval] 

------------------------------------------------------------ 

11,601     0.7100     0.0068        0.69661     0.72345 

Sensitivity= fraction of true positive cases 

Specificity= fraction of true negative cases 

Correctly classified= percentage correctly classified in their true disease state (CVD or no CVD)  
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Figure 24: Frozen LB Framingham AUROC for entire ARIC sample 

 
 

Figure 25: Comparing frozen Framingham algorithms’ AUROCs in entire ARIC sample 

 
 

When the ARIC sample was stratified by sex and race, the frozen LB 

Framingham algorithm’s AUROCs for blacks were higher compared to whites. Figures 

26-28 plots these AUROCs stratified by sex and race.
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    Figure 26: Frozen LB Framingham AUROC         Figure 27: Frozen LB Framingham AUROC 

         white women           black women 

 

 

 

 

        Figure 28: Frozen LB Framingham AUROC        Figure 29: Frozen LB Framingham AUROC  

              white men                                                                              black men  
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  Sensitivity/specificity analysis of the recalibrated algorithms 

   The recalibrated non-LB algorithm  

 In the entire ARIC sample, the recalibrated non-LB algorithm had an overall ROC 

of 0.6711.  At the moderate risk category (10-20%), the algorithm had a sensitivity of 

58.58% and specificity of 73.45%. When the high risk (20-30%) cut point was used as 

the threshold for predicted incident CVD, the algorithm had a sensitivity of 20.13% 

versus specificity of 94.51%. Table 11 below describes a detailed report of the 

algorithm’s sensitivity and specificity at the four different risk cut points, while Figure 30 

plots the resultant AUROC. 

Applied to the ARIC sample stratified by sex and race, the recalibrated algorithm 

had the highest AUROC for black women (0.6691) followed by black men (0.6577). 

white men had a higher AUROC (0.6383) compared to white women (0.5890).  

Table 11: Sensitivity/specificity analysis of the recalibrated non-LB algorithm 

Any CVD event within first 

12yrs of follow-up 
Recalibrated non-LB algorithm risk categories in ARIC 

        low    moderate        high   very high       Total 

CVD free 7,386      2,118         431         121 10,056 

Incident CVD 640                   594 226 85 1,545 

Total 8,026               2,712         657 206 11,601      

Detailed report of sensitivity and specificity                                 

Cut point Sensitivity    Specificity    Correctly 

Classified       

    LR+      LR- 

>=low risk (<10%) 100.00%          0.00%        13.32%        1.0000       

>=moderate risk (10-20%) 58.58%         73.45%        71.47%        2.2061        0.5640 

>=high risk (20-30%) 20.13%         94.51%        84.60%        3.6671        0.8451 

>=very high risk (>30% ) 5.50%         98.80%        86.37%        4.5723        0.9565 

> very high risk  0.00%               100.00% 86.68%                      1.0000 

           ROC                    -Asymptotic Normal-- 

Obs       Area     Std. Err.      [95% Conf. Interval] 

------------------------------------------------------------ 

11,601     0.6711       0.0069        0.65745     0.68469 

Sensitivity= fraction of true positive cases 



 
 
 

79 
 

Specificity= fraction of true negative cases 

Correctly classified= percentage correctly classified in their true disease state (CVD or no CVD)  

 

 

Figure 30: Recalibrated non-LB Framingham AUROC for entire ARIC sample 

 
 

   The recalibrated LB algorithm 

 In the entire ARIC sample, the recalibrated LB algorithm had an overall AUROC 

of 0.6851.  At the moderate risk category (10-20%), the algorithm had a sensitivity of 

60.84% and specificity of 73.73%. When the high risk (20-30%) cut point was used as the 

threshold for predicted incident CVD, the algorithm had a sensitivity of 22.46% versus 

specificity of 94.12%. Table 12 below describes a detailed report of the algorithm’s 

sensitivity and specificity at the four different risk cut points, while Figure 31 plots the 

resultant AUROC. 
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Applied to the ARIC sample stratified by sex and race, the recalibrated LB 

algorithm had similar AUROC for black men (0.6648) and white men AUROC (0.6644). 

black women had a higher AUROC (0.6622) compared to white women (0.6230).  

 

Table 12: Sensitivity/specificity analysis of the recalibrated LB algorithm 

Any CVD event within first 

12yrs of follow-up 
Recalibrated LB risk categories in ARIC 

        low    moderate        high   very high       Total 

CVD free 7,414              2,051         444 147 10,056 

Incident CVD 605                       593 226 121 1,545 

Total 8,019               2,644         670 268 11,601      

Detailed report of sensitivity and specificity                                 

Cut point Sensitivity    Specificity    Correctly 

Classified       

    LR+      LR- 

>=low risk (<10%) 100.00%          0.00%        13.32%        1.0000       

>=moderate risk (10-20%) 60.84%         73.73%        72.01%        2.3158        0.5311 

>=high risk (20-30%) 22.46%         94.12%        84.58%        3.8215        0.8238 

>=very high risk (>30% ) 7.83%                98.54%        86.46% 5.3575        0.9354 

> very high risk  0.00%        100.00%        86.68%                      1.0000 

           ROC                    -Asymptotic Normal-- 

Obs       Area     Std. Err.      [95% Conf. Interval] 

------------------------------------------------------------ 

11,601     0.6851       0.0069        0.67158     0.69868 

Sensitivity= fraction of true positive cases 

Specificity= fraction of true negative cases 

Correctly classified= percentage correctly classified in their true disease state (CVD or no CVD)  

 

Figure 31: Recalibrated LB Framingham AUROC for entire ARIC Cohort 
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  Sensitivity/specificity analysis of the adjusted algorithms 

   The adjusted non-LB algorithm 

 In the entire ARIC sample, the adjusted non-LB algorithm had an overall 

AUROC of 0.6768.  At the moderate risk category (10-20%), the algorithm had a 

sensitivity of 56.77% and specificity 76.20%. When the high risk (20-30%) cut point was 

used as the threshold for predicted incident CVD, the algorithm had a sensitivity of 

21.02% versus specificity of 95.23%. Table 13 below describes a detailed report of the 

algorithm’s sensitivity and specificity at the four different risk cut points, while Figure 32 

plots the resultant AUROC. 

When applied to the ARIC sample stratified by sex and race, the adjusted non-LB 

algorithm had the highest AUROC in black women (0.6793), while white women had the 

lowest AUROC (0.6066). White men had similar AUROC (0.6568) with black men 

(0.6580). 

Table 13: Sensitivity/specificity analysis of the adjusted non-LB algorithm 

Any CVD event within first 

12yrs of follow-up 

Adjusted non-LB categories in ARIC 

        low    moderate        high   very high       Total 

CVD free 6,470 1,616         271 134 8,491 

Incident CVD 549                         454 151 116 1,270 

Total 7,019               2,070         422 250 9,761 

Detailed report of sensitivity and specificity                                 

Cut point Sensitivity    Specificity    Correctly 

Classified       

    LR+      LR- 

>=low risk (<10%) 100.00%          0.00%        13.01%        1.0000  

>=moderate risk (10-20%) 56.77%         76.20%        73.67%        2.3852        0.5673 

>=high risk (20-30%) 21.02%         95.23%        85.58%        4.4077        0.8293 

>=very high risk (>30% ) 9.13%               98.42% 86.80%        5.7877        0.9232 

> very high risk  0.00%        100.00%        86.99%                      1.0000 

           ROC                    -Asymptotic Normal-- 

Obs       Area     Std. Err.      [95% Conf. Interval] 

------------------------------------------------------------ 

9,761     0.6768       0.0077        0.66183     0.69187 

Sensitivity= fraction of true positive cases; Specificity= fraction of true negative cases 

Correctly classified= percentage correctly classified in their true disease state (CVD or no CVD)  
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Figure 32: Adjusted non-LB algorithm AUROC for entire ARIC sample

 

 

   The adjusted LB algorithm 

 In the entire ARIC sample, the adjusted LB algorithm had an overall AUROC of 

0.6908.  At the moderate risk category (10-20%), the algorithm had a sensitivity of 

58.98% and specificity of 76.73%. When the high risk (20-30%) cut point was used as the 

threshold for predicted incident CVD, the algorithm had a sensitivity of 22.05% versus 

specificity of 95.24%. Table 14 below describes a detailed report of the algorithm’s 

sensitivity and specificity at the four different risk cut points, while Figure 33 plots the 

resultant AUROC. 
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Applied to the ARIC sample stratified by sex and race, the adjusted LB algorithm 

had the highest AUROC for black women (0.7033) followed by white men (0.6783). 

black men had a higher AUROC (0.6411) compared to white women (0.6317).  

Table 14: Sensitivity/specificity analysis of the adjusted LB algorithm 

Any CVD event within first 

12yrs of follow-up 

Adjusted LB categories in ARIC 

        low    moderate        high   very high       Total 

CVD free     6,515              1,572         288 116 8,491 

Incident CVD 521                        469 163 117 1,270 

Total 7,036      2,041         451         233 9,761 

Detailed report of sensitivity and specificity                                 

Cut point Sensitivity    Specificity    Correctly 

Classified       

    LR+      LR- 

>=low risk (<10%) 100.00%          0.00%        13.01%        1.0000       

>=moderate risk (10-20%) 58.98%         76.73%        74.42%        2.5343        0.5347 

>=high risk (20-30%) 22.05%  95.24%       85.72%        4.6337        0.8185 

>=very high risk (>30% ) 9.21%         98.63%        87.00%        6.7435        0.9204 

> very high risk  0.00%        100.00%        86.99%                      1.0000 

           ROC                    -Asymptotic Normal-- 

Obs       Area     Std. Err.      [95% Conf. Interval] 

------------------------------------------------------------ 

9,761     0.6908       0.0076        0.67592     0.70574 

Sensitivity= fraction of true positive cases; Specificity= fraction of true negative cases 

Correctly classified= percentage correctly classified in their true disease state (CVD or no CVD)  

 

 

Figure 33: Adjusted LB algorithm AUROC for entire ARIC sample 
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  Comparing sensitivity/specificity of all algorithms 

When all non-LB algorithms (frozen, recalibrated and adjusted) were compared in 

the entire ARIC sample, the frozen non-LB Framingham had the highest AUROC 

(0.7086), while the recalibrated model had the lowest (0.6697) as described in Figure 34 

below. Among the LB algorithms, the frozen non-LB algorithm had the highest AUROC 

(0.7141) while the recalibrated algorithm had the lowest (0.6868) as depicted in Figure 

35 below. 

When the frozen LB Framingham algorithm was compared to all non-LB 

algorithms in the entire ARIC sample, the frozen LB Framingham had the highest 

AUROC (0.7141) followed by the frozen non-LB Framingham (0.7086). The recalibrated 

non-LB model had the lowest AUROC (0.6697) as described in Figures 36 and 37.  
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 Figure 34: Comparing all non-LB algorithms    Figure 35: Comparing all LB algorithms   

    

 

              

             Figure 36: Comparing frozen LB with all           Figure 37: Comparing frozen non-LB 

             non-LB algorithms         with all LB algorithms      
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e) Simulated cost-effectiveness analysis of the non-LB Framingham algorithm  

 Introduction 

To determine the cost-effectiveness of the non-LB Framingham algorithm, the 

expenses and outcomes associated with the three simulated CVD prevention programs 

described in the methods were calculated. The expenses were costed at three levels which 

are consistent with the steps inherent in CVD prevention programs. Level I expenses are 

the screening costs and are determined by the unit cost of screening an individual in each 

program. Level II expenses are the costs of preventive interventions prescribed in each 

program and are driven by the number of true and false positive cases associated with 

each program. Level III expenses includes the downstream costs of treating false negative 

cases associated with each preventive program. The outcomes describing the 

effectiveness of each program were quantified by identifying the true positive cases 

associated with each preventive program. 

The costs and outcomes associated with each program were used to compute their 

respective average cost-effectiveness ratios. Finally, incremental cost-effectiveness 

analysis was done where existing programs (status quo) were considered to be the 

individual risk factors and LB absolute risk approaches to CVD prevention, while the 

new program was considered to be the non-LB absolute risk approach.   

 Level I:  Expenses in screening for CVD 

Level I expenses are the over-time, non-recurring marginal costs incurred during a 

patient’s first routine office visit when the provider screens a patient to assess CVD risk. 

These expenses include the extra Registered Nurses (RN) hours spent taking a patient’s 

medical history and obtaining physiological measures to appraise CVD risk. The office 
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visit itself is not costed because the cost is incurred regardless of whether CVD screening 

takes place or not. 

 It has been estimated that an individual’s absolute risk score can be calculated 

within ten minutes using non-LB algorithms because the only data required include: sex, 

age, smoking status, diabetes status, antihypertensive medication use, systolic blood 

pressure and BMI (D'Agostino RB et al., 2008; Gaziano et al., 2008). For purposes of this 

study, the RN time required to appraise CVD risk based on individual risk factors 

(diabetes and/or hypertension) was estimated to be 5 minutes because only the 

demographic and relevant history/physiologic data are collected without calculating any 

risk scores. The RN screening time using the LB Framingham algorithm was assumed to 

be similar to the non-LB algorithm since the extra time for assessing lipids was costed 

under the laboratory expenses.   

The basic equipment needed for either preventive approach (i.e. weighing scale, 

tape measure, glucometer and sphygmomanometer) are readily available in most primary 

care offices; hence no additional capital inputs are required for screening. The diagnostic 

cost of blood glucose testing for diabetes is required for the three CVD prevention 

programs.  The LB absolute risk approach has additional diagnostic costs for HDL and 

total cholesterol tests. The absolute CVD risk score can be calculated for both approaches 

by an interactive online calculator or an offline calculator embedded in a downloadable 

excel spread sheet. Alternatively, the absolute CVD risk scores can be calculated 

manually by a paper based tool that aggregates points associated with each covariate 

included in the Framingham algorithms.  Both the online and offline calculators, and the 

paper tool can be accessed for free at the Framingham heart study website. This analysis 
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assumed use of the offline calculators, because of their efficiency and applicability to 

settings without internet connection. 

All costs were based on Mississippi payment rates because most of the black 

participants in ARIC were recruited from Jackson, Mississippi (ARIC Investigators, 

1989). The RN hourly wage is based on Bureau of Labor Statistics median RN hourly 

wage for the state of Mississippi which is $27.19/hr. (Bureau of Labor Statistics, 2014). 

Since the Centers for Medicare and Medicaid (CMS) have well established 

reimbursement rates for diagnostic tests, screening for diabetes and lipids were costed 

based on the 2016 clinical diagnostic laboratory fee schedule in Mississippi. 

Reimbursement for diabetes was calculated using Current Procedure Terminology (CPT 

code 82962 ($3.19) while HDL and total cholesterol tests were costed under CPT codes 

83718 ($11.16) and 82465 ($5.92) respectively (Centers for Medicare & Medicaid 

Services, 2015a). Medicare rates were assumed close to true marginal costs because 

many tests are conducted at these rates which are lower than with private insurance. 

The screening costs are calculated for each CVD prevention strategy in equations 

1a-c and summarized in Table 15. Both approaches will incur costs for screening the 

2,690 eligible black sample in the ARIC dataset. 

Equation 1a: The individual CVD risk factors (DM/HTN) approach:       

Screenr =  2690  individuals ∗ [(5min ∗ $0.45) + $3.19] = $14,634 

 Equation 1b: The non-LB absolute CVD risk approach: 

Screena =  2690 individuals ∗ [(10min ∗ $0.45) + $3.19] = $20,686 

 Equation 1c: The LB absolute CVD risk approach: 

Screenl =  2690 individuals ∗ [(10min ∗ $0.45) + $3.19 + $11.16 + $5.92 = $66,631 
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Table 15: Marginal screening costs: individual risk factors vs absolute non-LB vs LB 

absolute risk approach 

Costed screening items  Individual risk factors 

(DM/HTN) 

Absolute CVD risk  

(non-LB Framingham ) 

Absolute CVD risk 

(LB Framingham ) 

RN screening min/person 5 mins 10 mins 10 mins 

RN hourly wage ($27.19/hr.) $0.45/min $0.45/min $0.45/min 

Fasting glucose test cost $3.19 $3.19 $3.19 

HDL test $0 $0 $11.16 

Total cholesterol test $0 $0 $5.92 

Total Screening costs/person $5.44 $7.69 $24.77 

Total Screening costs  $14,634 $20,686.1 $66,631.3 

  Screening time is estimated as suggested by Gaziano et al. (2008) 

  RN wages are the 2014 average RN wages for Mississippi reported by Bureau of Labor Statistics. 

  Fasting glucose, HDL and total cholesterol test costs are based on reimbursement for CPT codes 82962, 83718 and   

  82465 respectively in Mississippi 

 

Level II:  Expenses of initial and follow-up visits for positive cases 

If a patient is determined to be at risk for CVD, guidelines recommend a battery 

of follow-up steps. Initial and follow-up office visits are costed using the Medicare 

physician fee schedule. The drugs prescribed by each CVD prevention approach (see 

Figure 3 and Table 2) are identified by their National Drug Code (NDC), and costed 

using the National Average Drug Acquisition Cost (NADAC) compiled by Medicaid in 

the last week of December 2015 (Centers for Medicare & Medicaid Services, 2015c; 

Medicaid.gov, 2016).  

Level II expenses are influenced by the number of participants classified above a 

certain risk threshold and the cost of interventions prescribed by each CVD preventive 

strategy (see Table 2 for absolute CVD risk programs and Figure 3 for individual risk 

factors program). A CVD preventive strategy with many false positives unnecessarily 

increases level II expenses with fewer prevented CVD events.  
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The moderate risk category (absolute CVD risk score ≥10) was selected as the 

optimal risk threshold for the absolute CVD risk programs and the high risk category 

(presence of diabetes and/or hypertension) for the individual CVD risk factor program. 

These thresholds were based on sensitivity/specificity analyses outlined in Table 16 (for 

the individual CVD risk factors program) and Table 17 and 18 (for the absolute CVD risk 

programs). 

When the high risk category was applied as the treatment threshold in the 

approach based on treating individual CVD risk factors, there were 1045 true negatives 

and 88 false negatives, along with 313 true positives and 1244 false positives as detailed 

in Table 16. The false and true negatives (1133 cases) were not be prescribed the 

preventive treatments outlined in Figure 3, and did not contribute to level II expenses. On 

the other hand, the false and true positives (1557) received the preventive interventions 

and contributed to level II expenses.  

Table 16: Sensitivity/specificity analysis of the individual risk factors strategy 

Any CVD event within first 12yrs 

of follow-up 

Individual risk factors (DM/HTN) risk categories in 

ARIC 

 low High Total 

CVD free 1,045 1,244 2,289 

Incident CVD 88 313 401 

Total 1,133 1,557 2,690 

Detailed report of sensitivity and specificity                                   

Cut point Sensitivity    Specificity    Correctly Classified           LR+      LR- 

>=low risk  100.00%          0.00%        14.91%        1.0000       

>=high risk  78.05% 45.65%        50.48%        1.4362        0.4807 

> high risk 0.00%         100.00%        85.09%                1.0000 

                                                 ROC                    -Asymptotic Normal-- 

                                   Obs       Area      Std. Err.      [95% Conf. Interval] 

                                   ------------------------------------------------------------ 
                                       2,690    0.6185       0.0116        0.59584     0.64124 

Sensitivity= fraction of true positive cases 

Specificity= fraction of true negative cases 

Correctly classified= percentage correctly classified in their true disease state (CVD or no CVD)  
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Using the non-LB moderate risk category, the absolute CVD risk prevention 

strategy has 1094 true negatives and 72 false negatives, along with 329 true positives and 

1195 false positives as detailed in Table 17. The true and false positives (1524) contribute 

to level II interventions because they receive the preventive interventions described in 

Table 2 depending on absolute CVD risk score. The false positive category drives up 

level II expenses while not preventing CVD events.  

Table 17: Sensitivity/specificity analysis of the non-LB guided absolute CVD risk strategy 

Any CVD event within first 

12yrs of follow-up 

Frozen non-LB based Framingham risk categories in ARIC 

        low    moderate        high   very high       Total 

CVD free 1,094 704 296 195 2,289 

Incident CVD 72 120 93 116 401 

Total 1,166 824 389 311 2,690 

Detailed report of sensitivity and specificity                                 

Cut point Sensitivity    Specificity    Correctly 

Classified       

    LR+      LR- 

>=low risk (<10%) 100.00% 0.00% 14.91% 1.0000  

>=moderate risk (10-20%) 82.04% 47.79% 52.90% 1.5716 0.3757 

>=high risk (20-30%) 52.12% 78.55% 74.61% 2.4298 0.6096 

>=very high risk (>30% ) 28.93% 91.48% 82.16% 3.3957 0.7769 

> very high risk  0.00% 100.00% 85.09%  1.0000 

           ROC                    -Asymptotic Normal-- 

Obs       Area     Std. Err.      [95% Conf. Interval] 

------------------------------------------------------------ 

2,690     0.7061       0.0136        0.67938     0.73277 

Sensitivity= fraction of true positive cases 

Specificity= fraction of true negative cases 

Correctly classified= percentage correctly classified in their true disease state (CVD or no CVD)  

 

When the moderate risk category of the LB Framingham algorithm was applied as 

the treatment threshold, the absolute CVD risk prevention strategy guided by the 

algorithm had 1,292 true negatives and 92 false negatives, along with 309 true positives 

and 997 false positives as detailed in Table 18. The false and true negatives (1,384 cases) 

did not contribute to level II expenses, since no preventive interventions were prescribed 
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for this group. The false and true positives (1,306 cases) received the preventive 

interventions described in Table 2 and hence contributed to level II expenses. 

Table 18: Sensitivity/specificity analysis of the LB guided absolute CVD risk strategy 

Any CVD event  Frozen lab based Framingham risk categories in ARIC 

        low    moderate        high   very high  Total 

CVD free 1,292                       616 242   139 2,289 

Incident CVD 92                         128    86 95 401 

Total  1,384                         744 328 234 2,690 

Detailed report of sensitivity and specificity                                 

Cut point Sensitivity    Specificity    Correctly 

Classified       

    LR+     LR- 

>=low risk (<10%) 100.00% 0.00% 14.91% 1.0000  

>=moderate risk (10-20%) 77.06%         56.44%        59.52%        1.7692        0.4065 

>=high risk (20-30%) 45.14%         83.36%        77.66%        2.7118        0.6582 

>=very high risk (>30% ) 23.69%               93.93%        83.46% 3.9013        0.8124 

> very high risk  0.00% 100.00% 85.09%  1.0000 

           ROC                    -Asymptotic Normal-- 

Obs       Area     Std. Err.      [95% Conf. Interval] 

------------------------------------------------------------ 

  2,690     0.7077       0.0136        0.68097     0.73441 

 

Whereas the true and false negatives in all programs do not contribute to level II 

expenses because follow-up is not recommended, the false negative cases end up missing 

the preventive interventions required to prevent CVD events. Treatment of CVD events 

observed among the false negative cases contribute to level III expenses. 

Level II expenses are subcategorized into costs associated with initial and follow-

up office visits, and costs associated with the drugs prescribed by each preventive 

strategy. These costs are discussed and calculated below. Although in clinical settings the 

CPT coding varies depending on specific problems and complexity of the office visit, this 

analysis assumed uniform complexity of all visits using CPT code 99203 that requires 

medical decision making of moderate complexity. The visit typically lasts for 45 minutes 

and includes face-to-face counseling and/or coordination of care with other providers 
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(Centers for Medicare & Medicaid Services, 2015b). The 2015 physician office 

reimbursement for CPT code 99203 was $100.28 in Mississippi (Centers for Medicare & 

Medicaid Services, 2015c). 

   Costs associated with initial office visits 

The initial office visits in this analysis are expected to occur immediately after 

screening for all individuals who meet the treatment threshold. The initial office visits are 

costed on an annual basis for each CVD prevention strategy in equation 2a-c below. 

The individual CVD risk factors approach initial office visit costs: 

For the individual risk factors approach, the initial visits included a total of 1557 

individuals (true and false positives) who met the treatment threshold for the strategy 

discussed above. The total costs of these initial office visits (IVrc) are estimated in 

equation 2a: 

 𝑓(IVrc) = 1557 individuals ∗ 1 visit  ∗  $100.28 = $156,135.96 

The non-LB absolute CVD risk strategy initial office visit costs: 

 For the non-LB absolute CVD risk strategy, initial visits included a total of 1524 

individuals (true and false positives) who met the treatment threshold. The total costs of 

these initial office visits (IVac) are estimated in equation 2b: 

𝑓(IVac) = 1524 individuals ∗ 1 visit ∗  $100.28 = $152,826.72  

The LB absolute CVD risk strategy initial office visit costs: 

For the LB absolute CVD risk strategy, initial visits included a total of 1,306 individuals 

(true and false positives) who met the treatment threshold. The total costs of these initial 

office visits (IVlc) are estimated in equation 2c: 

 𝑓(IVlc) = 1306 individuals ∗ 1visit/yr ∗  $100.28 = $130,965.68 
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   Costs associated with follow-up office visits 

The follow-up office visits in this analysis were expected to occur after the initial 

office visit for all positive cases in each program. The follow-up office visits were 

scheduled at different intervals based on each individual’s absolute CVD risk score (for 

the absolute CVD risk based programs) as summarized in Table 2, or as per the IDF and 

ISH-ASH guidelines (for the individual risk factors program) outlined in Figure 3. The 

follow-up office visits are detailed and costed on an annual basis for each CVD 

prevention strategy in equation 3-5. 

The individual CVD risk factors approach follow-up costs: 

For the individual CVD risk factors strategy, follow-up office visits were only 

relevant to individuals with diabetes and/or hypertension (high CVD risk category). Since 

the IDF and ISH-ASH guidelines do not explicitly recommend a specific follow-up 

regimen, this analysis used the follow-up schedule recommended by the American 

Diabetes Association (ADA). The association recommends twice a year office visits for 

diabetic patients with stable glycemic control (American Diabetes Association, 2014). 

Follow-up for hypertension is assumed to follow the diabetes schedule. As explained 

earlier, this analysis assumed similar complexity of all office visits. Therefore, all the 

follow-up office visits were costed under CPT code 99203.  

The high risk category (presence of diabetes and/or hypertension) identified 1557 

true and false positive cases eligible for follow-up office visits scheduled every 6 months. 

The annual costs for the office visits are estimated in equation 3 and shown in Table 19 

as discounted costs.                                                                                                            

FVrc =  1557 individuals ∗ 2 visits/yr ∗ $100.28 =  $312271.92 
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The non-LB absolute CVD risk strategy follow-up costs 

Follow-up office visits includes 824 individuals in the moderate risk category, 

389 in the high risk category and 311 in the very high risk category. The follow-up costs 

(FVac) associated with each risk category are estimated in equations (4a-c) and 

summarized in Table 19 as discounted costs. 

For the moderate risk category (10-20%), 824 follow-up office visits for treatment 

and CVD risk reduction discussion with a primary care provider are scheduled annually.  

The annual cost for these office visits is estimated in equation 4a: 

    FVac−mod =  824 individuals ∗ 1 visit/yr ∗ $100.28 =  $82630.72 

For the high risk category (20-30%), 389 follow-up office visits for treatment and 

CVD risk reduction discussion with a primary care provider are scheduled every 6 

months.  The annual costs for these office visits are estimated in equation 4b:  

  FVac−high =  389 individuals ∗ 2 visits/yr ∗ $100.28 =  $78017.84 

 For the very high risk category (>30), 311 follow-up office visits for treatment 

and CVD risk reduction discussion with a primary care provider are scheduled every 6 

months.  The annual costs for these office visits are estimated in equation 4c: 

  FVac−vhigh =  311 individuals ∗ 2 visits/yr ∗ $100.28 =  $62374.16 

Total annual cost of the follow-up office visits in all risk categories are calculated 

by summation of equations 4a-c and shown in Table 19 as discounted costs. 

∑ eq 3a−c = $82630.72 +  $78017.84 + $62374.16 = $223,022.72   
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The LB absolute CVD risk strategy follow-up costs 

Follow-up office visits includes 744 individuals in the moderate risk category, 

328 individuals in the high risk category and 234 individuals in the very high risk 

category. The follow-up costs (FVlc) associated with each risk category are estimated in 

equations 5a-c and summarized in Table 19 as discounted costs. 

For the moderate risk category (10-20%), 744 Follow-up office visits for 

treatment and CVD risk reduction discussion with a primary care provider are scheduled 

annually.  The annual costs for these office visits are estimated in equation 5a: 

  FVlc−mod =  744 individuals ∗ 1visit/yr ∗ $100.28 =  $74608.32 

For the high risk category (20-30%), 328 Follow-up office visits for treatment and 

CVD risk reduction discussion with a primary care provider are scheduled every 6 

months. The annual costs for these office visits are estimated in equation 5b: 

FVlc−high =  328 individuals ∗ 2 visits/yr ∗ $100.28 =  $65783.68  

 For the very high risk category (>30), 234 Follow-up office visits for treatment 

and CVD risk reduction discussion with a primary care provider are scheduled every 6 

months. The annual costs for these office visits are estimated in equation 5c: 

 FVlc−vhigh =  234 individuals ∗ 2 visits/yr ∗ $100.28 =  $46931.04   

Total annual cost of the follow-up office visits in all risk categories are calculated 

by summation of equations 5a-c:                                                                        

∑ eq 15a−c = $74608.32 +  $65783.68 + $46931.04 = $187,323.04   
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The annual costs associated with each year’s follow-up office visits are divided by 

the 3% discounting rate discussed under the analysis framework. Therefore, in Table 19 

the discounted annual costs for year 1 visits are divided by 1.031 and the costs for year 

12 by 1.0312 to get the respective discounted total costs for follow-up office visits. All 

costs are based on 2015 prices. 

Table 19: Discounted costs of follow-up office visits: individual risk factors vs absolute 

non-LB vs LB absolute risk approach 

 

Annual visits=True & false positives adjusted by recommended frequency of follow-up visits annually 

Discounted costs=Annual Follow-up costs discounted by (1.03) t where t= year 1 through 12 

Source: Visits based on total annual office visits expected in the ARIC cohort based on their risk profile; 

 cost based on Medicare physician fees schedule for CPT code 99203. 

Annual visits=True & false positives adjusted by recommended frequency of follow-up visits annually 

Discounted costs=Annual follow-up costs discounted by (1.03) t where t= year 1 through 12 

Source: Visits based on total annual office visits expected in the ARIC cohort based on their risk profile; 

cost based on Medicare physician fees schedule for CPT code 99203. 

 

 

Year 
Individual CVD risk 

factors approach 

non-LB absolute CVD 

risk approach 

LB absolute CVD risk  

approach 

 Discounted annual costs Discounted annual costs Discounted annual costs 

Year 1 $303,177 $216,527 $181,867 

Year 2 $294,346 $210,220 $176,570 

Year 3 $285,773 $204,097 $171,427 

Year 4 $277,450 $198,153 $166,434 

Year 5 $269,369 $192,381 $161,586 

Year 6 $261,523 $186,778 $156,880 

Year 7 $253,906 $181,338 $152,311 

Year 8 $246,510 $176,056 $147,875 

Year 9 $239,330 $170,928 $143,568 

Year 10 $232,360 $165,950 $139,386 

Year 11 $225,592 $161,116 $135,326 

Year 12 $219,021 $156,424 $131,385 

Total  $3,108,356 $2,219,969 $1,864,614 
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  Costs associated with preventive interventions 

 Besides the follow-up office visits, each CVD prevention strategy has its own set 

of preventive interventions as described in the methods section. The costs associated with 

these preventive interventions are described below. 

  The Individual CVD risk factors strategy treatment expenses 

i. Antihypertensive therapy expenses: 

The ISH-ASH guidelines recommend different treatment options depending on 

the stage of hypertension (Weber et al., 2014). In stage I hypertension (BP>140/90), 

monotherapy with either a thiazide-like diuretic or a CCB is recommended for blacks 

with or without comorbid diabetes. In stage II hypertension (BP>160/100), combined 

therapy is recommended with the second drug being an ACEI for individuals with 

comorbid diabetes (Weber et al., 2014).  

To ensure consistency in this analysis, the costing of the monotherapy treatment 

outlined in Figure 3 was done using Hydrochlorothiazide 25mg/day, while the combined 

therapy included Hydrochlorothiazide 25mg/day with Amlodipine 5mg/day in absence of 

comorbid diabetes, or Hydrochlorothiazide 25mg/day with Lisinopril 10mg/day in 

comorbid diabetes. The NADAC of Hydrochlorothiazide ((NDC 00143125601) is 

$0.01192 per 25mg tablet, Lisinopril (NDC 00143126701) $0.02011 per 10mg tablet and 

Amlodipine (NDC 76282023890) $0.01839 per 5mg tablet (Medicaid.gov, 2016).  

For the individual CVD risk factors prevention program, the high risk category 

(treatment threshold) included 1,419 individuals with blood pressure greater or equal to 

140/90 mmHg. Of these individuals, 1,230 had stage I hypertension (BP ≥ 140/90 <

160/100mmHg) while 189 had stage II hypertension (BP ≥ 160/100mmHg).  
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In the group with stage I hypertension, 959 individuals were diabetes free, while 

271 had comorbid diabetes. The group with stage II hypertension had 134 diabetes free 

individuals and 55 with comorbid diabetes. The annual costs for treating hypertension in 

the high risk (DM/HTN) category are estimated in equations 6-7 and shown in Table 20 

as discounted costs. 

Stage I hypertension category was prescribed monotherapy with 

Hydrochlorothiazide 25mg/day even if they had comorbid diabetes as explained above. 

The annual costs for treating stage I hypertension are calculated in equation 6: 

RxhtnI±𝑑𝑚 = 1230 individuals ∗ $0.01192 ∗ 365 days =  $5351.484   

Stage II hypertension category was prescribed combined therapy with addition of 

Amlodipine or Lisinopril depending on whether or not they have comorbid diabetes as 

explained above. The annual costs for treating stage II hypertension are calculated in 

equation 7a-b. 

Equation 7a: Combined antihypertensive therapy for hypertension stage II without 

comorbid diabetes: 

RxhtnII−𝑑𝑚 = 134 individuals ∗ $0.01192 + $0.01839 ∗ 365 days =  $1482.4621   

Equation 7b: Combined antihypertensive therapy for hypertension stage II with 

comorbid diabetes: 

RxhtnII+𝑑𝑚 = 55 individuals ∗ $0.01192 + $0.02011 ∗ 365 days =  $643.00225   

The total annual costs of antihypertensive therapy in the individual CVD risk 

factor approach were calculated by summing up equations 6-7 and summarized in Table 

20 as discounted costs. 

∑  eq6−7 = $5351.48 + $1482.46 + $643 = $7,476.9484  
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ii. Diabetes treatment and monitoring expenses 

The IDF guidelines recommend initiating pharmacotherapy for type 2 diabetes at 

the threshold of >7mmol/l (>126 mg/dL) as outlined in Figure 3. The recommended first 

line oral hypoglycemic agent is metformin (IDF Clinical Guidelines Task Force, 2006). 

To ensure consistency in this analysis, costing for diabetes treatment was done using the 

common prescribed first line drug start dose, i.e. Metformin 850mg/day (NDC 

00093104910). Metformin NADAC is $0.03292 per 850mg tablet (Centers for Medicare 

& Medicaid Services, 2015a). 

Although the frequency and intensity of glucose monitoring varies depending on 

the plan of care, the IDF guidelines recommend periodic monitoring of glycated 

hemoglobin (HbA1C) in all people with type 2 diabetes as part of comprehensive 

management program (IDF Clinical Guidelines Task Force, 2006). In absence of an 

explicit monitoring schedule by the IDF guidelines, this analysis assumed twice a year 

monitoring of HbA1C in diabetic patients with stable glycemic control as recommended 

by the ADA (American Diabetes Association, 2014). The costing for the HbA1C test was 

done using CPT code 83036 QW ($13.22) in Mississippi as detailed under the absolute 

CVD risk factor approach. 

For the individual CVD risk factor approach, the high risk category (treatment 

threshold) included 464 individuals with diabetes. The annual costs for treating and 

monitoring type 2 diabetes are calculated in equation 8a-b. 

Equation 8a: Cost of treating diabetes with Metformin: 

Rxdma = 464 individuals ∗ $0.03292 ∗ 365 days = $5575.3312   
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Equation 8b: The cost of monitoring diabetes using the HbA1C test:               

HbA1C𝑡𝑒𝑠𝑡𝑎 = 464 individuals ∗ $13.22 ∗ 2 tests/year = $12268.16 

The total annual costs of diabetes management in the individual CVD risk 

approach were calculated by summing up equations 8a-b and summarized in Table 20 as 

discounted costs.  

∑  eq8a−b = $5575.3312 + $12268.16 = $17843.491  

iii. Statin and Aspirin therapy: 

In the individual CVD risk factor approach treatment with statin therapy was 

recommended for diabetics at high risk for CVD based on risk appraisal that includes 

measuring lipids and other metrics beyond the scope of this analysis. Anti-platelet 

therapy was not routinely recommended except for individuals with prior CVD events 

(not included in this analysis). Therefore, these two therapies were not included in the 

costs of the approach based on treating individual risk factors (DM/HTN). 

  The non-LB absolute CVD risk strategy treatment costs: 

 The preventive interventions employed in the non-LB absolute CVD risk strategy 

were based on the recommendations included in the WHO CVD prevention guidelines 

discussed in the methods section and outlined in Table 2. Four preventive interventions 

were costed: antihypertensive therapy, diabetes treatment and monitoring, statin therapy 

and antiplatelet therapy with aspirin. These expenses are detailed below and summarized 

as discounted costs in Table 20. 

i. Antihypertensive therapy expenses: 

Antihypertensive therapy is recommended at different thresholds based on 

systolic blood pressure and the patient’s absolute CVD risk score. For blacks, initial 
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antihypertensive therapy should include monotherapy with a thiazide-like diuretic or a 

CCB, which are preferred over ACEIs except in cases where hypertension coexists with 

diabetes. Antihypertensive therapy for individuals with hypertension and diabetes should 

include an ACEI combined with a thiazide-like diuretic because blacks have poor 

response to ACEIs unless combined with a thiazide diuretic (World Health Organization, 

2007).  

To ensure consistency in this analysis, the costing of the hypertension treatments 

outlined in Table 2 was done using the commonly prescribed first line drugs’ start doses, 

i.e. Hydrochlorothiazide 25mg/day for hypertensive patients without diabetes, or 

Lisinopril 10mg/day with Hydrochlorothiazide 25mg/day for hypertensive patients with 

diabetes. Hydrochlorothiazide NADAC is $0.01192 per 25mg tablet, while Lisinopril is 

$0.02011 per 10mg tablet (Medicaid.gov, 2016). The annual costs for antihypertensive 

therapy are detailed in equations 9-11 and summarized in Table 20.  

For the moderate risk category (10-20%), antihypertensive therapy was indicated 

for 487 individuals with BP>=140/90, with 80 of them having co-existing diabetes.  The 

annual costs for the antihypertensive therapy in the moderate risk category are estimated 

in equation 9a-b below: 

Equation 9a: Hypertension without comorbid diabetes 

Rxmodhtn−dm =  407 individuals ∗ $0.01192 ∗ 365 days =  $1770.76   

Equation 9b: Hypertension with comorbid diabetes 

Rxmodhtn+dm =  80 individuals ∗ ($0.01192 + $0.02011) ∗ 365 days = $935.28   

For the high risk category (20-30%), antihypertensive therapy was indicated for 

289 individuals with BP>=140/90, with 96 of them having co-existing diabetes. The 
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annual costs for antihypertensive therapy in the high risk category/year is estimated in 

equation 10a-b below: 

Equation 10a: Hypertension without comorbid diabetes 

Rxhighhtn−dm =  193 individuals ∗ $0.01192 ∗ 365 days =  $839.70   

Equation 10b: Hypertension with comorbid diabetes 

Rxhighhtn+dm = 96 individuals ∗ ($0.01192 + $0.02011) ∗ 365days = $1122.33 

For the very high risk category (>30%), antihypertensive therapy was indicated 

for 301 individuals with BP>=130/80, with 150 of them having co-existing diabetes. The 

annual cost for treating BP>=130/80 for the very high risk category/year is estimated in 

equation 11a-b below: 

Equation 11a: Hypertension without comorbid diabetes 

Rxvhighhtn−dm =  151 individuals ∗ $0.01192 ∗ 365 days =  $656.97    

Equation 11b: Hypertension with comorbid diabetes 

Rxvhighhtn+dm = 150 individuals ∗ ($0.01192 + $0.02011) ∗ 365days = $1753.64  

The total annual costs of antihypertensive therapy in the non-LB absolute risk 

strategy were calculated by summed up costs associated with the three risk categories and 

shown in Table 20 as discounted costs.                                                                                                        

∑  eq9−11 = $1770.76 + $935.28 + $839.70 + $1122.33 + $656.97 + $1753.64 = $7078.70   

ii. Diabetes treatment and monitoring expenses: 

The WHO CVD prevention guidelines recommends pharmacotherapeutics 

treatment for type 2 diabetes to commence at the same threshold (fasting >7mmol/l or 

>126 mg/dL) for all risk categories (World Health Organization, 2007). The 
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recommended first line oral hypoglycemic agent is Metformin 850mg/day (also used in 

the individual risk factors strategy).  

In the non-LB absolute CVD risk strategy, 431 individuals with diabetes met the 

treatment threshold discussed above (absolute risk score>=10%). The annual cost for 

treating type 2 diabetes (RxDM) in the moderate, high and very high absolute CVD risk 

categories are calculated in equation 12a. 

Equation 12a: Cost of treating diabetes with Metformin: 

 RxDM = 431 individuals ∗ $0.03292 ∗ 365 days = $5178.8098 

Since the WHO CVD prevention guidelines do not give explicit recommendations 

on the frequency of blood glucose monitoring for diabetics, in this analysis, monitoring 

of HbA1C was assumed to occur twice a year during the recommended follow-up visits 

and as recommended by the ADA. Costing for HbA1C testing was done using CMS 

clinical diagnostic laboratory fee schedule for CPT code 83036 (also used in the 

individual risk factors strategy). The annual cost for glucose monitoring (HbA1Ct) in the 

three absolute CVD risk categories/year are calculated in equation 12b. 

Equation 12b: Cost of monitoring diabetes with HbA1C test: 

 HbA1Ct = 431 individuals ∗ $13.22 ∗ 2 tests/year = $11395.64 

The total cost of diabetes management in the three absolute CVD risk categories 

were calculated by summing up equations 12a-b and summarized in Table 20 as 

discounted costs.  

∑  eq12𝑎−𝑏 = $5178.8098 + 11395.64 = 16574.45  
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iii. Statin therapy expenses: 

Treatment with statin therapy was only recommended for the very high risk 

category (>30%) when there was no mechanism to assess lipid levels (see Table 2). To 

ensure consistency in this analysis, costing was done using the common prescribed first 

line drug start dose, i.e. atorvastatin 10mg/day (NDC 00378395005). Atorvastatin 

NADAC is $0.10714 per 10mg tablet (Medicaid.gov, 2016).  

The non-LB absolute CVD risk strategy put 311 individuals in the very high risk 

category, hence qualifying them for statin therapy. The annual cost of the statin therapy 

(Rxstatin) in the very high risk category/year was estimated in equation 13 and 

summarized in Table 20 as discounted costs. 

Equation 13: Cost of statin therapy: 

Rxstatin = 311 individuals ∗ $0.10714 ∗ 365 days = $12162   

iv. Aspirin therapy expenses: 

Treatment with aspirin therapy was only recommended for the very high risk 

category (>30) as outlined in Table 2. To ensure consistency in this analysis, costing was 

done using the common first line drug start dose, i.e. enteric coated aspirin 81mg/day 

(NDC 00536100410). Aspirin NADAC is $0.01117 per 81mg tablet (Medicaid.gov, 

2016).  

The non-LB absolute CVD risk strategy put 311 individuals in the very high risk 

category thus qualifying them for antiplatelet therapy. The annual cost of the Aspirin 

therapy in the very high risk category/year was estimated in equation 14 and shown in 

Table 20 as discounted costs. 
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Equation 13: Cost of Aspirin therapy:                                                                  

Rxasprin = 311 individuals ∗ $00.01117 ∗ 365 days = $1,267.9626 

  The non-LB absolute CVD risk strategy treatment costs: 

 The preventive interventions employed in the absolute CVD risk strategy guided 

by the LB Framingham algorithm were based on the absolute CVD risk score and 

followed the same pattern described under the non-LB absolute CVD risk strategy. 

i. Antihypertensive therapy expenses 

Antihypertensive therapy was costed using the same recommendations and 

thresholds described under the preventive strategy guided by the non-LB Framingham 

algorithm. These expenses were calculated in equations 14-16 below and summarized in 

Table 20 as discounted costs. 

For the moderate risk category (10-20%), antihypertensive therapy was indicated 

for 479 individuals with BP>=140/90, with 98 of them having co-existing diabetes.  The 

annual costs for the antihypertensive therapy in the moderate risk category/year are 

estimated in equation 14a-b. 

Equation 14a: Hypertension without comorbid diabetes 

Rxmodlhtn−dm =  381 individuals ∗ $0.01192 ∗ 365 days =  $1657.6548   

Equation 14b: Hypertension with comorbid diabetes  

Rxmodlhtn+dm =  98 individuals ∗ ($0.01192 + $0.02011) ∗ 365 days = $1145.7131   

For the high risk category (20-30%), antihypertensive therapy was indicated for 

252 individuals with BP>=140/90, with 89 of them having co-existing diabetes. The 

annual costs for antihypertensive therapy in the high risk category/year are estimated in 

equation 15a-b. 
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Equation 15a: Hypertension without comorbid diabetes  

Rxhighlhtn−dm =  163 individuals ∗ $0.01192 ∗ 365 days =  $709.1804   

Equation 15b: Hypertension with comorbid diabetes                       

Rxhighlhtn+dm = 89 individuals ∗ ($0.01192 + $0.02011) ∗ 365 days = $1040.495 

For the very high risk category (>30%), antihypertensive therapy was indicated 

for 200 individuals with BP>=130/80, with 108 of them having co-existing diabetes. The 

annual cost for treating BP>=130/80 for the very high risk category/year are estimated in 

equation 16a-b. 

Equation 16a: Hypertension without comorbid diabetes  

Rxvhighlhtn−dm =  92 individuals ∗ $0.01192 ∗ 365 days =  $400.2736    

Equation 16b: Hypertension with comorbid diabetes 

Rxvhighlhtn+dm =  108 individuals ∗ ($0.01192 + $0.02011) ∗ 365 days = $1262.622  

The total annual cost of antihypertensive therapy in all the categories above were 

calculated by summing equations 14-16 and summarized in Table 20 as discounted costs. 

∑  eq14−16 = $1657.65 + $1145.71 + $709.18 + $1040.5 + $1040.5 +

$400.27 + $1262.62 = $7256.43  

 

ii. Diabetes treatment and monitoring expenses 

In the LB absolute CVD risk strategy, 399 individuals with diabetes met the 

treatment threshold (absolute risk score >=10%). The annual costs for treating and 

monitoring type 2 diabetes (RxDMl) in the moderate, high and very high risk categories 

are calculated in equations 17a-b. 

Equation 17a: Cost of treating diabetes with Metformin: 

 RxDM𝑙 = 399 individuals ∗ $0.03292 ∗ 365 days = $4,794.30 

Equation 17b: Cost of monitoring diabetes with HbA1C test: 

HbA1Ctl = 399 individuals ∗ $13.22 ∗ 2 tests/yr = $10,549.56  
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The total cost of diabetes management in the three risk categories were calculated 

by summing up equations 17a-b and summarized as discounted costs in Table 20.  

∑  eq17𝑎−𝑏 = $4,794.30 + $10,549.56 = $15,343.86  

iii. Statin therapy expenses 

Treatment with statin therapy was recommended if total cholesterol was greater 

than 8 mmol/l (309 mg/dL) for the moderate risk category, and greater than 5mmol/l (193 

mg/dL) for the high risk category. In addition, everyone in the very high risk category 

(>30%) was put on statin therapy irrespective of total cholesterol levels (see Table 2).  

Based on these criteria, the LB absolute CVD risk strategy identified 25 

individuals in the moderate risk category, 250 individuals in the high risk category and 

234 individuals in the very high risk category as qualifying for statin therapy. Therefore, 

a total of 509 individuals were put on statin therapy. The associated annual cost for statin 

therapy are calculated in equation 18 and included as discounted costs in Table 20. 

Equation 18: Cost of statin therapy 

Rxstatin𝑙 = 509 individuals ∗ $0.10714 ∗ 365 days = $19,905    

iv. Aspirin therapy expenses 

Treatment with aspirin therapy was only recommended for the very high risk 

category (see Table 2). The LB absolute CVD risk strategy put 234 individuals in the 

very high risk category thus qualifying them for antiplatelet therapy. The annual cost of 

the Aspirin therapy in the very high risk category was calculated in equation 19 and 

summarized as discounted costs in Table 20. 

Equation 19: Cost of Aspirin therapy 

 Rxasiprin = 234 individuals ∗ ($00.01117 ∗ 365 days)  =  $954.0
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                 Table 20: Discounted costs of preventive interventions: Individual risk factors vs non-LB    

                                   vs LB absolute CVD risk programs 
  Y

ear 
Individual C

V
D

 risk factor 

program
 

N
on-L

B
 A

bsolute C
V

D
 risk program

 
L

B
 A

bsolute C
V

D
 risk program

 

 
B

P
 

therapy 

D
M

  

therapy 
D

iscounted 

cost /year 

B
P

 

therapy 

D
M

  

therapy 

S
tatin  

therapy 

A
spirin  

therapy 

D
iscounted 

cost/year 

B
P

 

therapy 

D
M

  

therapy 

S
tatin  

therapy 

A
spirin  

therapy 

D
iscounted 

cost/year 

Y
ear 1 

$7,259 
$17,324 

$24,583 
$6,873 

$16,092 
$11,808 

$1,231 
$36,003 

$7,045 
$14,897 

$19,325 
$926 

$42,194 

Y
ear 2 

$7,048 
$16,819 

$23,867 
$6,672 

$15,623 
$11,464 

$1,195 
$34,954 

$6,840 
$14,463 

$18,762 
$899 

$40,965 

Y
ear 3 

$6,842 
$16,329 

$23,172 
$6,478 

$15,168 
$11,130 

$1,160 
$33,936 

$6,641 
$14,042 

$18,216 
$873 

$39,771 

Y
ear 4 

$6,643 
$15,854 

$22,497 
$6,289 

$14,726 
$10,806 

$1,127 
$32,948 

$6,447 
$13,633 

$17,685 
$848 

$38,613 

Y
ear 5 

$6,450 
$15,392 

$21,842 
$6,106 

$14,297 
$10,491 

$1,094 
$31,988 

$6,259 
$13,236 

$17,170 
$823 

$37,488 

Y
ear 6 

$6,262 
$14,944 

$21,205 
$5,928 

$13,881 
$10,185 

$1,062 
$31,057 

$6,077 
$12,850 

$16,670 
$799 

$36,397 

Y
ear 7 

$6,079 
$14,508 

$20,588 
$5,756 

$13,477 
$9,889 

$1,031 
$30,152 

$5,900 
$12,476 

$16,185 
$776 

$35,336 

Y
ear 8 

$5,902 
$14,086 

$19,988 
$5,588 

$13,084 
$9,601 

$1,001 
$29,274 

$5,728 
$12,113 

$15,713 
$753 

$34,307 

Y
ear 9 

$5,730 
$13,676 

$19,406 
$5,425 

$12,703 
$9,321 

$972 
$28,421 

$5,561 
$11,760 

$15,256 
$731 

$33,308 

Y
ear 10 

$5,564 
$13,277 

$18,841 
$5,267 

$12,333 
$9,050 

$943 
$27,593 

$5,399 
$11,417 

$14,811 
$710 

$32,338 

Y
ear 11 

$5,402 
$12,891 

$18,292 
$5,114 

$11,974 
$8,786 

$916 
$26,790 

$5,242 
$11,085 

$14,380 
$689 

$31,396 

Y
ear 12 

$5,244 
$12,515 

$17,759 
$4,965 

$11,625 
$8,530 

$889 
$26,009 

$5,090 
$10,762 

$13,961 
$669 

$30,481 

T
otal 

$74,426 
$177,614 

$252,040 
$70,461 

$164,982 
$121,061 

$12,621 
$369,125 

$72,231 
$152,733 

$198,134 
$9,496 

$432,594 
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    Summary of level I and II expenses 

The total costs of screening and preventive interventions prescribed for the true 

and false positives in the individual CVD risk factor program (CRxrjt) were calculated by 

summing up the costs of screening (eq. 1a), initial (eq. 2a) and follow-up (Table 19) 

office visits, and cost of pharmacotherapeutics (Table 20) as detailed below:         

CRxrjt = $14,634 + $156,135.96 +  $3,108,356 + $252,040 = $3,531,165.96 

The total costs of screening and preventive interventions prescribed for the true 

and false positives in the non-LB absolute CVD risk program (CRxajt) were calculated by 

summing up the costs of screening (eq. 1b), initial (eq. 2b) and follow-up (Table 19) 

office visits, and cost of pharmacotherapeutics (Table 20) as detailed below:         

CRxajt = $20,686 + $152,826.72 + $2,219,969 + $369,125 = $2,762,606.72 

The total costs of screening and preventive interventions prescribed for the true 

and false positives in the LB absolute CVD risk program (CRxljt) were calculated by 

summing up the costs of screening (eq. 1c), initial (eq. 2c) and follow-up (Table 19) 

office visits, and cost of pharmacotherapeutics (Table 20) as detailed below:          

CRxljt = $66,631.3 + $130,965.68 + $1,864,614 + $432,594 = $2,494,804.98 

  Level III:  Expenses in treating false negatives cases  

 The cost of secondary prevention interventions associated with each CVD 

prevention strategy was dependent on the sensitivity of the screening algorithm used. A 

screening algorithm with low sensitivity led to a high number of false negatives requiring 

treatment and rehabilitation services for the CVD events occurring in the group. Since the 

initial follow-up in ARIC did not include the survival status of each incident CVD event, 
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costing level III expenses was done using the average costs associated with CVD events 

in general rather than the average cost for specific CVD events.  

 Although the costs associated with treating the CVD events included in this study 

vary greatly within the US, this analysis used the estimated direct average initial and 

follow-up costs for treating CVD events in the US published by Chapman and colleagues 

in 2011 (Chapman, Liu, Girase, & Straka, 2011). In their retrospective matched cohort 

analysis of commercially insured managed care population, Chapman et al. (2011) 

estimated that initial inpatient management of a CVD event would have an average cost 

of $16,981 (SD $20,474), while the first year follow-up costs would average $16,582 (SD 

$34,425) per case.  

Due to data limitations, this analysis estimated level III expenses using these 

average direct medical and pharmacological expenses published by Chapman et al. 

(2011) despite the expected great variation in event specific costs. Although Chapman et 

al. (2011) demonstrated that the follow-up costs would increase in subsequent years of 

follow-up, this analysis assumed a constant yearly follow-up cost of $16,582 per incident 

CVD. The initial treatment costs and follow-up expenses of the false negatives associated 

with the non-LB and individual CVD risk factor approaches were depended on the year 

in which each event occurred. 

To calculate level III expenses (CUSE), the false negative cases in each year were 

multiplied by the discounted average cost of initial management of a CVD event (i.e. 

icost =1
12 [False negative cases ∗ $16,981/1.03𝑡 ]) and then the discounted average yearly 

follow-up costs were added for every subsequent follow-up year, through year 12 (i.e.  

 =1
12 [False negative cases ∗ $16,582/1.03𝑡]). For instance, the non-LB absolute CVD 
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risk approach was associated with 3 false negatives in year one. The discounted initial 

costs for year one was: 3 individuals ∗ $16,981/1.031 = $49,459.22 . The follow-up costs 

for these events was the sum of the discounted follow-up costs for each of the subsequent 

years of follow-up (see Table 21).  

Table 21: Initial & follow-up costs for treating false negative cases by prevention strategy  

 Discounted initial costs have been calculated by multiplying false negative cases with the discounted average cost of 

initial management of CVD ($16,981/1.03t) published by Chapman et al. (2011). 

Discounted follow-up (f/up) costs have been calculated by multiplying false negative cases each year with the 

discounted annual follow-up cost in subsequent years using the average cost of the first year of CVD follow-up 

($16,582/1.03t) published by Chapman et al. (2011).  

False negatives are calculated from ARIC data based on the sensitivity/specificity of the screening method used 

described in Tables 17-19. 

 

 

 

 

 

 

 

 

 Individual CVD risk 

factors program 

non-LB absolute CVD risk 

program  

LB absolute CVD risk 

program  

Year Discounted 

initial costs 

Discounted 

f/up costs 

Discounted 

initial costs 

Discounted  

f/up costs 

Discounted 

initial costs 

Discounted  

f/up costs 

Yr 1 
$65,946 $660,229 $49,459 $495,172 $49,459 $495,172 

Yr 2 $80,031 $744,791 $32,012 $297,917 $48,019 $446,875 

Yr 3 
$46,620 $399,984 $62,160 $533,313 $77,700 $666,641 

Yr 4 $75,437 $590,766 $75,437 $590,766 $60,350 $472,613 

Yr 5 $117,184 $827,363 $58,592 $413,681 $87,888 $620,522 

Yr 6 $85,328 $534,700 $42,664 $267,350 $71,107 $445,583 

Yr 7 $27,614 $150,459 $69,036 $376,147 $69,036 $376,147 

Yr 8 $160,859 $740,961 $160,859 $740,961 $174,264 $802,708 

Yr 9 $91,102 $340,597 $65,073 $243,284 $104,116 $389,254 

Yr 10 $138,990 $395,428 $88,448 $251,636 $113,719 $323,532 

Yr 11 $159,477 $306,923 $147,209 $283,314 $147,209 $283,314 

Yr 12 $142,922 $139,563 $119,101 $116,303 $226,293 $220,975 

Total $1,191,509 $5,831,766 $970,051 $4,609,843 $1,229,159 $5,543,336 
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    Summary of level III expenses 

 The total costs of treating false negative cases in the individual CVD risk factors 

program (CUSErjt) were calculated by summing up the initial and follow-up costs in 

Table 21. 

 CUSErjt = $1,191,509 + $5,831,766 = $7,023,275  

The total costs of treating false negative cases in the non-LB absolute CVD risk 

program (CUSEajt) were calculated by summing up the initial and follow-up costs in 

Table 21.  

CUSEajt=$970,051 + $4,609,843 = $5,579,894 

The total costs of treating false negative cases in the LB absolute CVD risk 

program (CUSEljt) were calculated by summing up the initial and follow-up costs in 

Table 21. 

CUSEljt=$1,229,159 + $5,543,336 = $6,772,495 

 

 Outcomes associated with the three prevention programs 

Ideally, the effectiveness of a disease prevention program depends on the 

accuracy of the screening method used, and the potency of the prescribed preventive 

interventions. However, due to data limitations, this analysis assumed that the preventive 

interventions prescribed under the individual risk factors and absolute CVD risk 

approaches to CVD prevention were equally potent in preventing the true CVD cases 

identified by the respective screening methods. Therefore, the number of prevented CVD 

events for each preventive strategy were dependent on the sensitivity/specificity of its 

screening algorithm at its optimal risk threshold. 
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In the context of this analysis, sensitivity denotes the proportion of the observed 

(true) CVD cases that were correctly identified as positive (high risk) by a screening 

algorithm at baseline. On the other hand, specificity is the proportion of true CVD free 

cases that were correctly identified as negative (low risk) by a screening algorithm at 

baseline.  

The individual risk factors approach focusing on screening for diabetes and/or 

hypertension had its optimal balance of sensitivity/specificity at the high risk (presence of 

diabetes and/or hypertension) threshold where sensitivity is 78.05% and specificity 

45.65% as detailed in Table 16. This implies that when individuals with diabetes and/or 

hypertension are considered as positive cases, about 78% of all individuals who would 

end up experiencing CVD events during follow-up were identified at baseline. At the 

same time, about 56% if individuals who did not end up developing CVD events are 

misclassified as positive and hence unnecessarily put on preventive interventions.  

The non-LB Framingham algorithm had its optimal balance of 

sensitivity/specificity at the moderate risk (10-20%) threshold where sensitivity was 

82.04% and specificity 47.79% as detailed in Table 17. This implies that when 

individuals with >=10% absolute CVD risk score were considered as positive cases, 

about 82% of all individuals who would end up experiencing CVD events during follow-

up were correctly identified at baseline. At the same time, about 52% if individuals who 

did not end up developing CVD events were misclassified as positive cases.  

The LB Framingham algorithm had its optimal balance of sensitivity/specificity at 

the moderate risk (10-20%) threshold where sensitivity was 77.06% and specificity 

56.44% as detailed in Table 19. This implies that when individuals with >=10% absolute 
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CVD risk score were considered as positive cases, about 77% of all individuals who 

would end up experiencing CVD events during follow-up were correctly identified at 

baseline. At the same time, almost 44% if individuals who did not end up developing 

CVD events were misclassified as positive cases. 

True positive cases that occurred later during follow-up were weighted less than 

those occurring early in the follow-up using the annual discounting rate of 3% discussed 

under the analysis framework. Table 22 summarizes the discounted true positives 

(predicted true CVD events) for each program.  

Table 22: True positive cases stratified by CVD prevention program 

Observed events are the CVD events that occurred each year in the at risk ARIC cohort 

Predicted true CVD events are the true positive cases calculated from ARIC data based on the  

sensitivity/specificity of the screening method used 

Discounted cases are the true positive cases multiplied by annual discounting rate (1.03) t where t= year 1 

through 12 

 

 
Individual CVD risk 

factors program 

non-LB absolute 

CVD risk program 

LB absolute CVD 

risk program 

 
Observed CVD 

events 

Predicted true CVD 

events 

Predicted true CVD 

events 

Predicted true CVD 

events 

Year actual discounted actual discounted actual discounted actual discounted 

Yr 1 20 19 16 16 17 17 17 17 

Yr 2 23 22 18 17 21 20 20 19 

Yr 3 30 27 27 25 26 24 25 23 

Yr 4 31 28 26 23 26 23 27 24 

Yr 5 33 28 25 22 29 25 27 23 

Yr 6 33 28 27 23 30 25 28 23 

Yr 7 35 28 33 27 30 24 30 24 

Yr 8 48 38 36 28 36 28 35 28 

Yr 9 36 28 29 22 31 24 28 21 

Yr 10 32 24 21 16 25 19 23 17 

Yr 11 37 27 24 17 25 18 25 18 

Yr 12 43 30 31 22 33 23 24 17 

Total 401 327 313 257 329 270 309 254 
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Average and incremental cost effectiveness  

 The average cost-effectiveness ratio 

The average cost-effectiveness of each CVD prevention approach is a function of 

the net costs divided by net benefits associated with each program. These equations are 

described in equations 22-24.  

Equation 22: The individual CVD risk factors program. 

∆TCr

∆Er
=  

[$3,531,166+$7,023,275]

[257]
=

$10,554,441

257 true positives
=

$41,068

1 true positve
  

Equation 23: The non-LB absolute CVD risk program. 

∆TCa

∆Ea
=  

[$2,762,607+$5,579,894 ]

[270]
 =

$8,342,501

270 true positives
=

$30,898

1 true positive
  

Equation 24: The LB absolute CVD risk program. 

∆TCl

∆El
=  

 [$2,494,805+$6,772,495 ]

[254]
 =

$9,267,300

254 true positives
=

$36,485

1 true positive
  

Overall, the individual risk factors and LB absolute CVD risk 

programs had their cost-effectiveness ratios higher by 25% and 14% 

respectively compared to the non-LB absolute CVD risk program. 

Compared to the non-LB absolute CVD risk program, the 12-year 

discounted costs were 21% and 9% greater in the individual risk factors and 

LB absolute CVD risk programs respectively. Both programs identified 5% 

and 6% fewer cases respectively compared to the non-LB absolute CVD risk 

program.   
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 The incremental cost-effectiveness ratio 

The incremental cost-effectiveness ratio was calculated by populating the ICER 

model with the costs and outcomes discussed in the above sections. For each CVD 

prevention strategy, the costs were calculated by adding the costs of screening, initial 

visit, discounted follow-up visits, and the discounted cost of preventive treatments 

prescribed (CRx), and the cost of treating false negatives (CUSE). The outcomes for each 

CVD prevention strategy were calculated as the discounted true positive cases and 

constitutes CVD events which could be prevented through early detection of risk 

depending on the screening algorithm used. 

The incremental cost effectiveness ratio (ICER) of the non-LB absolute CVD risk 

approach versus the individual CVD risk factor approach is calculated in equation 25.                                

Equation 25: ICER= 

∆TCa−r

∆Ea−r
=  

j=1
2[$2,762,607+$5,579,894 −$3,531,166−$7,023,275]

[270−257]
 =

−$2,211,9401

+13 true positives cases
  

Interpretation: The non-LB absolute CVD risk approach would cost $2 million 

less over 12 years to identify 13 more actual CVD cases than the individual risk factors 

approach.  For every extra case that the non-LB approach identifies, it saves $170,000.  

Hence, the non-LB approach completely dominates the individual risk factors approach 

in both costs and predictive ability. 

The incremental cost effectiveness ratio (ICER) of the non-LB absolute CVD risk 

approach versus the LB absolute CVD risk approach is calculated in equation 26.                                

Equation 26: ICER= 

∆TCa−l

∆Ea−l
=  

j=1
2[$2,762,607+$5,579,894 −$2,494,805−$6,772,495 ]

[270−254]
=

−$924,799

+16  true positve cases
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Interpretation: The non-LB absolute CVD risk approach would cost $900,000 less 

over 12 years to identify 16 more actual CVD cases than the LB absolute CVD risk.  For 

every extra case that the non-LB approach identifies, it saves $58,000.  Hence, the non-

LB approach completely dominates the LB approach in both costs and predictive ability.
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CHAPTER 5 

DISCUSSION 

The overarching goal of this study was to externally validate and determine the 

cost-effectiveness of the non-LB Framingham algorithm in the multi-racial ARIC dataset. 

Validating and costing the non-LB Framingham algorithm in a multiracial sample with 

high representation of individuals who self-report black race was postulated to be an 

important step in availing a risk assessment tool that could guide CVD prevention in 

resource constrained settings. Important results discussed in this chapter include; the 

influence of social determinants of health on CVD risk assessment, and comparative 

predictive performance and cost-effectiveness of non-LB Framingham Algorithm. 

Social determinants of health and CVD risk assessment 

The conditions in which individuals are born, grow, live, work and age are known 

to play an important role in the evolution of many diseases including CVD (Will et al., 

2011). These social determinants of health are particularly influential in attenuating or 

exacerbating manifestation of the modifiable CVD risk factors included in this study. 

Risk assessment algorithms, such as the non-LB Framingham, that incorporate risk 

factors which are shaped by social determinants of health require an evaluation of 

relevance and validity before they are generalized across populations. 

The organizing framework used in this study appreciates the modulating impact 

of the social determinants of health on CVD risk and provides a basis for examining the 
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comparability of effects of CVD risk factors in the white versus black US 

population. Since the social determinants of health are in part driven by distribution of 

resources, the framework also sets the stage for evaluating the feasibility of various CVD 

risk assessment strategies in resource constrained settings.  

Incidence of CVD by sex and race 

The statistical differences between the eligible and ineligible samples are expected in 

this kind of study. Since over 81% of the ineligible sample was excluded due to prevalent 

CVD at baseline, it is expected that CVD risk factors in this group was significantly 

higher than the eligible sample which was free of CVD at baseline. The higher 

percentage of blacks in the ineligible sample (36%) compared to the eligible sample 

(23%) is consistent with the known higher burden of CVD in this population.   

In the entire ARIC cohort, the incidence rate of CVD was lower but comparable to 

the Framingham cohort (11.1 versus 11.5 cases per 1000 person-years respectively). 

white women in the ARIC dataset had a significantly lower incidence rate compared to 

their counterparts in the Framingham cohort (6.5 versus 8.4 cases per 1000 person-years 

respectively).  On the other hand, white men in the ARIC cohort had a higher incidence 

rate compared to men in the Framingham cohort (15.5 versus 15.1 cases per 1000 person-

years respectively).  

The factors associated with the disparate incidence rates between the two cohorts 

could be multifaceted. One potential factor may be the manner in which the CVD 

variable is operationalized in the two studies. In the Framingham dataset the CVD 

variable included CHD, heart failure, stroke and peripheral vascular disease, however the 

latter variable was not included in the ARIC incidence data provided by NHLBI. As a 



 
 
 

121 
 

result, the CVD variable in ARIC does not capture incident peripheral vascular disease. If 

the incidence rate of peripheral vascular disease in the Framingham dataset (1.2 and 2.2 

cases per 1000 person-years in women and men respectively) were to be applied in the 

ARIC cohort, the white women’s CVD incidence rate would increase slightly and be 

comparable to the rate in Framingham cohort, while white men would have a 

significantly higher CVD incident rate.  

The different incident rates among white men in ARIC versus Framingham may also 

be as a result of variation in sample characteristics. Since ethnicity was not reported in 

the ARIC dataset, there may be unaccounted differences in CVD incidence by ethnicity. 

Correspondence with NHLBI clarified that Hispanics in the ARIC sample were coded as 

black or white depending on their self-reported racial group. 

The similarity between the incidence proportion of CVD among white and black men 

in ARIC (18.6% and 18.8% respectively, p=0.900) is atypical since black men have been 

reported to have a higher incidence of CVD (R. Cooper et al., 2000; Mozaffarian et al., 

2015). If there were a significant number of Hispanic individuals in the ARIC cohort, this 

could have a negative effect on the discrimination and calibration since the Framingham 

algorithms are generally known to perform poorly among Hispanics (Beswick et al., 

2008).  

Performance of the non-LB Framingham CVD risk assessment algorithm 

 

After confirming that all covariates included in the non-LB and LB Framingham 

models met the proportionality of hazard assumption, and there was no significant 

multicollinearity between variables, sex specific Cox regression was used to test the 

mathematical performance of the Framingham models in the ARIC dataset. Use of sex 
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specific models was critical because CVD risk factors are known to have different effect 

sizes among women and men. Just as reported in the Framingham dataset, the unadjusted 

non-LB and LB Framingham models were comparable in discrimination and calibration, 

and their performance was superior in women compared to men in the ARIC dataset.  

Among women, both the non-LB and LB Framingham models performed well, 

but among men, discrimination was low and calibration was poor for both models. The 

comparable performance of the non-LB and LB Framingham models in both sexes 

suggest that BMI could be an adequate proxy for HDL and total cholesterol in both sexes. 

The similar performance of both the non-LB and LB Framingham models in the white 

and black cohorts collaborates previous studies which have reported optimal performance 

of Framingham algorithms in the US black population. 

The discrimination of risk among women in ARIC was within the confidence 

interval reported in the Framingham dataset for the published non-LB (95% CI, 0.76-

0.81) and LB Framingham models (95% CI, 0.77-0.81). However, risk discrimination 

among men was significantly lower. The underperformance of the models among men in 

the ARIC dataset suggest that the independent variables used to predict CVD risk in the 

Framingham dataset do not capture the full extent of risk among men in the ARIC 

dataset. This phenomenon necessitates further analysis to examine the effect of the 

Framingham derived risk factors in the ARIC cohort, and additional or alternative 

variables which may improve the performance of the non-LB Framingham models. 

Evaluation of the effect and impact of the Framingham derived risk factors in the 

ARIC cohort was done by comparing the regression coefficients from the models 

generated in the ARIC dataset to those reported from the Framingham dataset using the z 
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score formulae. Overall, all the covariates in the non-LB and LB models had similar 

effect and impact in the black cohort, but smoking and diabetes had a different effect in 

the white cohort. The impact of smoking was higher among white women but lower 

among white men, while diabetes had a higher impact among white men in ARIC 

compared to the Framingham dataset. These differences pinpoint potential causes of the 

low performance of the non-LB and LB Framingham models among men. Since white 

men constituted 79% of the male sample in the ARIC cohort, the comparative low impact 

of smoking on CVD risk in this group may have affected the overall performance of the 

models among men. The differences also suggest that additional or alternative variable(s) 

may have a stronger explanatory power on CVD risk compared to smoking.  

The equivalence of effect of the Framingham generated risk factors in ARIC’s 

black cohort suggests that the general CVD Framingham algorithms are applicable to the 

US black population. This applicability mirrors what has been reported with earlier 

versions of Framingham algorithms which focused on hard coronary events and were 

validated in black datasets (D'Agostino RB, Grundy, Sullivan, Wilson, & CHD Risk 

Prediction Group, 2001a).  The semblance of effect of the traditional CVD risk factors in 

the black ARIC dataset and the white Framingham dataset also supports the widely 

accepted premise that traditional CVD risk factors have a fairly similar effect and impact 

across populations (Yusuf et al., 2004). These results contribute to the body of knowledge 

pertaining to CVD epidemiology in the black dataset and provide an evidence based 

foundation upon which research on novel risk factors hypothesized to have a unique 

impact in the black population could be added and tested. 
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When more CVD risk factors were added to the non-LB and LB Framingham 

models, there was no significant improvement in discrimination or calibration. In fact, 

adding more risk factors to the non-LB model (family history of premature CHD and 

waist hip ratio) and the LB model (BMI, waist hip ratio, family history of premature 

CHD, and apolipoprotein A and B) tended to increase the confidence interval of their C 

statistic without meaningful improvement in discrimination or calibration. The lack of 

significance suggests that the impact of these additional risk factors is mediated by the 

traditional risk factors already included in the published Framingham models. 

It is worth noting that some Framingham risk factors lost their statistical 

significance when additional risk factors were included. For instance, waist hip ratio 

replaced BMI as the significant variable in the adjusted non-LB model for all cohorts 

except among white women. Similarly, waist hip ratio replaced total cholesterol as the 

significant variable in the adjusted LB model among black women and men, and was 

significant among white men without affecting the significance of total cholesterol.  

The differential effect of body mass across populations has been reported 

previously. For instance, the association between high BMI and CVD mortality has been 

reported as stronger in white women than in black women (Abell et al., 2007). These 

racial differences in the effect of BMI were apparent in this analysis. Among the non-LB 

Framingham risk factors, BMI had a marginally lower effect on black women and men in 

the ARIC (β=0.668 and 0.631 respectively) compared to white women and men (β= 

0.797 and 0.793 respectively) in the ARIC dataset. 

Stepwise regression analysis revealed that other covariates in the non-LB model 

(diabetes, systolic blood pressure, antihypertensive therapy, smoking and age) had 
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adequate discrimination among black women (C=0.7426) and BMI added no significant 

improvement (C=0.7452) to the CVD prediction model. Waist hip ratio had a slightly 

better effect than BMI among black women (C=0.7481). The waning effect of BMI when 

other traditional risk factors are held constant is consistent with the findings reported by 

Abell and colleagues. The study demonstrated that the association between obesity and 

CVD mortality was no longer significant among black women when hypertension, total 

cholesterol, diabetes, age and smoking status were controlled (Abell et al., 2007). 

These findings add to the body of literature suggesting that BMI may not be an 

optimal CVD risk indicator, and its effect could be mediated in part by other related risk 

factors such as hypertension and diabetes. Although BMI continues to be widely used as 

the metric for diagnosing overweight and obesity, there is a growing body of literature 

describing its limitations. Whereas BMI is an indicator total body fat, the metric does not 

take into consideration how the fat is distributed within the body (Simon, 2009). From a 

cardiovascular standpoint, abdominal fat is more dangerous than any other fat in the 

body.  

The slightly better performance of the waist hip ratio in the non-LB and LB 

adjusted models also adds to the body of evidence suggesting that measures of central 

adiposity may be more relevant in predicting CVD compared to measures of body mass. 

The strong predictive power of central obesity has been reported by many studies 

including the INTERHEART study where investigators demonstrated a strong link 

between increased waist hip ratio and the risk of heart attack even after controlling for the 

traditional CVD risk factors. In the same study, BMI lost its modest association with 

myocardial infarction after adjusting for traditional risk factors (Yusuf et al., 2005). 
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Despite the growing evidence supporting the significant role of central adiposity 

in predicting CVD, most of the existing non-LB algorithms have not included it as a 

covariate. Possible reasons for this may include the reported difficulties associated with 

assessing and reproducing the waist hip ratio measure (Simon, 2009). Over the last 

decade, waist circumference has been suggested as an alternative measure of central 

adiposity that still has a strong link to the risk of myocardial infarction, but is relatively 

easier to reproduce (Simon, 2009; Yusuf et al., 2005).  

The strong effect of central adiposity on CVD risk in the black population, and 

the superiority of waist hip ratio and circumference in predicting CVD provide insights 

on potential pathways to improve the non-LB Framingham algorithm. Replacing BMI 

with a measure of central adiposity such as waist circumference and testing the model in 

a large homogeneous black cohort could provide important data on the additional value 

of the measure in predicting absolute CVD risk. Other measures which could be helpful 

include the ankle brachial index which is used to diagnose peripheral vascular disease. 

Testing this measure in a homogeneous black cohort with peripheral vascular disease 

included in the CVD variable may provide insights as to whether it has any extra value in 

optimizing risk prediction of the non-LB Framingham algorithm. Evaluating the effect 

and impact of ankle branchial index was not possible in this study since peripheral 

vascular disease was not included in the CVD variable. 

  Comparative performance in risk stratification 

The comparable performance of the published non-LB and LB Framingham 

algorithms in actual risk stratification of the ARIC dataset complements the similarities 

observed in the mathematical performance. The high overall agreement (92.76%) and 
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substantial kappa statistic (0.76) suggest that the two algorithms are very comparable in 

stratification of risk. Stratification of the cohort in the high and very high risk categories 

was essentially the same for both algorithms, but the LB algorithm placed slightly more 

individuals in the low risk category. Both algorithms placed a greater proportion of men 

and blacks in higher risk categories, a trend which is consistent with current published 

CVD epidemiology (Mozaffarian et al., 2015). 

The agreement between the non-LB and LB versions of the recalibrated and the 

adjusted algorithms derived in ARIC were also high. However, the recalibrated and 

adjusted algorithms placed a significantly greater percentage of the ARIC population in 

the low risk category compared to the published Framingham non-LB algorithm. This 

discordance in risk stratification necessitated sensitivity and specificity analysis to 

determine the clinical usefulness of the non-LB Framingham algorithm, and its 

comparison with the alternative algorithms discussed above. 

The comparability of the non-LB and LB Framingham algorithm AUROC curves 

(0.706 vs 0.71 respectively) further adds to the evidence that HDL and total cholesterol 

may not add significant marginal value to CVD risk prediction especially in the black 

population. Since AUROC curves usually depict the percentage of randomly selected 

pairs for which the test correctly classifies as normal or abnormal, the AUROC of the 

non-LB algorithm manifest better performance in the ARIC dataset compared to other 

alternatives. The higher AUROC of the published non-LB Framingham algorithm 

compared to those of the recalibrated and adjusted algorithms suggest that the non-LB 

Framingham algorithm could be ready for use ‘as is’ in the US black population. 
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The suboptimal performance of the calibrated non-LB (AUROC=0.67) and LB 

(AUROC=0.69) based algorithms indicate that ARIC derived survival and mean of risk 

factors are not better substitutes for those generated in Framingham. This could be as a 

result of the unmeasured confounders discussed earlier, which may also have contributed 

to the low performance of the adjusted non-LB (AUROC= 0.68) and LB (AUROC= 0.69) 

based models. It is important to note that inclusion of up to 9 covariates in the adjusted 

algorithm did not make much difference in its predictive ability. 

Sensitivity/specificity analysis also revealed that the non-LB Framingham 

algorithm had a slightly better sensitivity but poorer specificity compared to the LB 

algorithm. For instance, at the high risk threshold (20-30%), the non-LB Framingham 

algorithm had sensitivity/specificity ratios of 0.25/0.95 for women and 0.51/0.73 for men. 

The LB Framingham algorithm sensitivity/specificity ratios were 0.23/0.95 for women 

and 0.50/0.75 for men respectively.  

In the Framingham dataset, the non-LB algorithm was both slightly less sensitive 

and specific compared to the LB algorithm. For example, at 20% risk threshold, 

sensitivity/specificity ratios were 0.58/0.83 for women and 0.48/85 for men versus 

0.60/0.84 for women and 0.49/85 for men in the non-LB and LB algorithms respectfully. 

(D'Agostino RB et al., 2008). These ratios indicate that in the ARIC dataset, preventive 

interventions should be initiated at least at the moderate risk category because more 

individuals who will end up developing events (true positives) was misclassified as not 

at-risk (false negatives) if the high risk category was adopted as the treatment threshold. 

Whereas the tradeoff between sensitivity and specificity are often delicate, a non-

LB algorithm with slightly higher sensitivity could be very important in helping early 
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detection of risk in the black population that carries the highest burden of CVD in the US. 

In fact, depending on availability of resources and the risk/benefit tradeoff of preventive 

treatments, a risk threshold such as the moderate risk category (10-20%) may be more 

beneficial since the non-LB Framingham algorithm would have a better overall 

sensitivity/specificity ratio (0.77/0.57) if selected as the treatment threshold in the black 

population. 

Cost-effectiveness of non-LB Framingham Algorithm 

 In the cost-effectiveness analysis where the individual CVD risk factors approach 

focusing on treating diabetes and/or hypertension was considered as the status quo, the 

non-LB absolute CVD risk approach helped detect more true CVD cases at a lower cost. 

The individual risk factors approach had a 25% higher average cost-effectiveness ratio. 

Over the 12year follow-up period, the discounted costs were 21% greater in the 

individual risk factors approach and 5% fewer CVD cases were identified.   

 Whereas the cost of screening and preventive interventions was higher in the non-

LB approach, the cost of follow-up visits and treating CVD in false negative cases was 

very high in the individual CVD risk factor approach. The high follow-up costs are as a 

result of a higher number of true and false positives, and the ‘one size fits all’ approach 

taken by the individual CVD risk factor strategy. Individuals with hypertension and/or 

diabetes were scheduled for the minimum 2 visits per year recommended by the ADA 

guidelines. Ref The non-LB absolute CVD risk approach grades the number of follow-up 

visits based on the absolute risk score. Individuals with absolute CVD risk core below 20 

are scheduled for a minimum 1 annual visit, while those with higher scores are scheduled 
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for 2 visits per year. The graded approach and the fewer true and false positive cases 

scheduled for follow-up by the non-LB approach makes the approach cost-effective. 

The high number of discounted false negatives associated with the individual risk 

factors approach (13 more) further increased the costs associated with the approach due 

to the downstream expenditure of treating the resultant CVD cases. These downstream 

expenses make a strong case why using a risk assessment approach with high sensitivity 

and specificity is important. As illustrated in the methods section, clustering of multiple 

CVD risk factors is known to have an additive and synergistic effect that is not well 

captured by aggregating individual risk factors. The false negatives associated with the 

individual CVD risk factor approach occur early and are costed using lightly discounted 

treatment costs. 

The higher expenditure for screening and primary prevention interventions 

associated with the non-LB approach manifest a strategic investment in prevention with 

an overall goal of avoiding expensive downstream costs of treating CVD in the false 

negative cases. The lower follow-up costs associated with the approach reflects how the 

absolute CVD risk scores enable directing intensive interventions to those who need them 

most as widely reported in the literature (Beswick et al., 2008; Wan et al., 2009). 

In the cost-effectiveness analysis where the LB absolute CVD risk approach was 

considered as the status quo, the non-LB absolute CVD risk approach also helped detect 

more true CVD cases at a lower cost. The LB absolute CVD risk approach had a 14% 

higher average cost-effectiveness ratio. Over the 12year follow-up period, the discounted 

costs were 9% greater in the LB absolute CVD risk approach and 6% fewer CVD cases 

were identified.   
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 The cost of screening using the LB approach was about three times higher per 

person compared to the non-LB approach, but the cost of preventive interventions was 

comparable for both strategies. The cost of follow-up visits was high in the non-LB 

absolute CVD risk approach since more individuals met the treatment threshold 

(moderate risk category) when screened using this approach.  

The high number of discounted false negatives associated with LB approach (15 

more) increased the downstream expenditure of treating the resultant CVD cases. These 

downstream expenses make a strong case why the high sensitivity associated with the 

non-LB Framingham algorithm makes it superior to the LB approach. Reducing the 

number of false negative cases cuts down expensive downstream costs.  It is important to 

point out that although the false negative cases associated with the LB approach are 

higher than the individual CVD risk factors approach, they occur later and are hence 

costed using heavily discounted treatment costs. 

The higher downstream costs also indicate that the costly screening associated 

with the LB approach was not matched with enhanced sensitivity. The slight 

improvement in specificity may be helpful in cases where false positive cases could be 

subjected to adverse therapies. However, from a cardiovascular standpoint, adverse 

effects from preventive therapies for the most part have less impact than unmitigated 

CVD risk. The lack of significant improvement in sensitivity/specificity with additional 

testing of lipids raises questions about the need for and relevance of these tests in 

predicting CVD. It is important to point out that while absolute CVD risk scores are 

recommended to guide treatment by major evidence based guidelines, caution is given 
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against ignoring individual risk factors (World Health Organization, 2007). For instance, 

screening of lipids and other biomarkers could be helpful based on clinician’s discretion, 

especially in populations which have a tendency towards subclinical dyslipidemia 

without elevations in non-LB indicators such as BMI. 

Implementing the non-LB rather than the LB approach would save about $50,000 

for every extra true CVD case detected. The negative incremental cost-effectiveness ratio 

denotes that the non-LB approach is both more effective, and less costly compared to the 

status quo.  

 Possible relevance to sub-Saharan Africa (SSA) 

Although the global burden of disease statistics have been used to support a 

premise that SSA is exempt from the epidemic of CVD sweeping across developing 

countries, the limitations of the estimates have been detailed in various studies (R. S. 

Cooper, Osotimehin, Kaufman, & Forrester, 1998; Kariuki, Stuart-Shor, Leveille, & 

Hayman, 2015). The few rigorous studies focusing on CVD risk factors in the region 

suggest that the region may not be spared from the epidemiological transition as 

previously thought.   

Results from the STEPwise approach to Surveillance (STEPS) surveys 

commissioned by the WHO indicate that more than 75% of all STEPS participants in 

sub-Saharan Africa have had at least one major risk factor for CVD. The most prevalent 

risk factors observed across the region include: high age-adjusted BMI especially in 

women, elevated systolic blood pressure, low consumption of fruits and vegetables, and 

increased levels of fasting blood glucose (Mensah, 2013). 
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A Malawian national representative survey conducted in 2009 using the STEPS 

approach reported that the age-adjusted prevalence of hypertension was 33.2% in 

participants aged between 25 to 64 years. Seventy-five percent of these participants 

reported never having their blood pressure checked previously, and over 94.9% of those 

with hypertension were not aware of their condition (Msyamboza, Kathyola, Dzowela, & 

Bowie, 2012). Similar observations have been made by other researchers in sub-Saharan 

Africa who have reported high rates of hypertension, sometimes exceeding those 

observed for the same age group in developed countries (Mathenge, Foster, & Kuper, 

2010).  

These data suggest that the epidemiology of CVD in SSA may not well 

understood or appreciated in the current global burden of disease statistics. Ignoring the 

problem, as it is currently happening, would lead to missed opportunities for primary 

prevention which eventually translates to high downstream costs of treating CVD as 

demonstrated in the cost-effectiveness analysis.  

The equivalence of regression coefficients and comparability of performance 

between the blacks and whites in the US suggests that the validated non-LB Framingham 

algorithm may perform well even among groups with varying social determinants of 

health. Therefore, despite the well-known differences in social determinants of health, the 

validated non-LB Framingham algorithm may provide a beginning point for feasible 

CVD prevention in SSA pending validation studies. 

The impressive benefits of primary prevention compared to no intervention has 

been simulated for SSA. For instance, pharmacotherapeutics primary prevention efforts 

targeting populations with more than 25% ten-year absolute risk of CVD were associated 
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with an incremental cost-effectiveness ratio of $771 for each healthy year of life saved 

(QALY) (Gaziano, Opie, & Weinstein, 2006). Despite the current economic constraints 

in SSA, the estimated cost-effectiveness ratios for primary prevention are still considered 

feasible because they are below the WHO threshold which considers an intervention to be 

cost-effectiveness if it costs less than three times the gross national income per head to 

gain a QALY (Murray, Evans, Acharya, & Baltussen, 2000). 

 Conclusion 

Taken in total the results observed in this study demonstrate the validity and cost-

effectiveness of the non-LB Framingham CVD risk assessment algorithm.  The non-LB 

approach could provide a valuable and efficient alternative to the traditional LB-based 

approaches in the ongoing efforts to address the high burden of CVD in underserved 

communities especially the black population in the US. Due to lack of local dataset data 

or locally derived algorithms, the validated non-LB Framingham CVD risk assessment 

algorithm may provide a beginning point for initiating feasible CVD risk surveillance and 

guiding prevention programs in SSA.   

 

 

 

 

 

 

 

 



 
 
 

135 
 

REFERENCES  

Abell, J. E., Egan, B. M., Wilson, P. W., Lipsitz, S., Woolson, R. F., & Lackland, D. T. 

(2007). Age and race impact the association between BMI and CVD mortality in 

women. Public Health Reports (Washington, D.C.: 1974), 122(4), 507-512.  

American Diabetes Association. (2014). Standards of medical care in diabetes--2014. 

Diabetes Care, 37 Suppl 1, S14-80. doi:10.2337/dc14-S014 [doi]  

ARIC Investigators. (1989). The atherosclerosis risk in communities (ARIC) study: 

Design and objectives. the ARIC investigators. American Journal of Epidemiology, 

129(4), 687-702.  

Barr, V. J., Robinson, S., Marin-Link, B., Underhill, L., Dotts, A., Ravensdale, D., & 

Salivaras, S. (2003). The expanded chronic care model: An integration of concepts 

and strategies from population health promotion and the chronic care model. 

Hospital Quarterly, 7(1), 73-82.  

Beswick, A. D., Brindle, P., Fahey, T., & Ebrahim, S. (2008). A systematic review of risk 

scoring methods and clinical decision aids used in the primary prevention of 

coronary heart disease. London: Royal College of General Practitioners. Retrieved 

from http://www.ncbi.nlm.nih.gov/books/NBK55818/pdf/TOC.pdf. (GRA)  

Bodenheimer, T., Wagner, E. H., & Grumbach, K. (2002). Improving primary care for 

patients with chronic illness. JAMA: The Journal of the American Medical 

Association, 288(14), 1775-1779.  



 
 
 

136 
 

Bonow, R. O., Grant, A. O., & Jacobs, A. K. (2005). The cardiovascular state of the 

union: Confronting healthcare disparities. Circulation, 111(10), 1205-1207. 

doi:111/10/1205 [pii]  

Brennan, R. L., Baker, E., & Metzler, M. (2008). Promoting health equity: A resource to 

help communities address social determinants of health. (). Atlanta: U.S. 

Department of Health and Human Services, Centers for Disease Control and 

Prevention.  

Bureau of Labor Statistics. (2014). Occupational employment and wages: 29-1141 

registered nurses. Retrieved from http://www.bls.gov/oes/current/oes291141.htm  

Centers for Medicare & Medicaid Services. (2015a). Clinical diagnostic laboratory fee 

schedule. Retrieved from https://www.cms.gov/Medicare/Medicare-Fee-for-Service-

Payment/ClinicalLabFeeSched/clinlab.html  

Centers for Medicare & Medicaid Services. (2015b). CPT/HCPCS codes included in 

range 99201 - 99205. Retrieved from https://www.cms.gov/medicare-coverage-

database/staticpages/cpt-hcpcs-code-

range.aspx?DocType=LCD&DocID=32007&Group=1&RangeStart=99201&Range

End=99205  

Centers for Medicare & Medicaid Services. (2015c). Physician fee schedule search. 

Retrieved from https://www.cms.gov/apps/physician-fee-schedule/search/search-

criteria.aspx  



 
 
 

137 
 

Chapman, R. H., Liu, L. Z., Girase, P. G., & Straka, R. J. (2011). Determining initial and 

follow-up costs of cardiovascular events in a US managed care population. BMC 

Cardiovascular Disorders, 11, 11-2261-11-11. doi:10.1186/1471-2261-11-11 [doi]  

Cleves, M. A. (2008). An introduction to survival analysis using Stata (2nd ed.). College 

Station, Tex.: Stata Press. Retrieved from 

http://www.loc.gov/catdir/enhancements/fy0917/2009277451-d.html  

Cooney, M. T., Dudina, A. L., & Graham, I. M. (2009). Value and limitations of existing 

scores for the assessment of cardiovascular risk: A review for clinicians. Journal of 

the American College of Cardiology, 54(14), 1209-1227. 

doi:10.1016/j.jacc.2009.07.020  

Cooper, R., Cutler, J., Desvigne-Nickens, P., Fortmann, S. P., Friedman, L., Havlik, R., 

Thom, T. (2000). Trends and disparities in coronary heart disease, stroke, and other 

cardiovascular diseases in the united states: Findings of the national conference on 

cardiovascular disease prevention. Circulation, 102(25), 3137-3147.  

Cooper, R. S., Osotimehin, B., Kaufman, J. S., & Forrester, T. (1998). Disease burden in 

sub-Saharan Africa: What should we conclude in the absence of data? The Lancet, 

351(9097), 208-210. doi:http://dx.doi.org.ezproxy.lib.umb.edu/10.1016/S0140-

6736(97)06512-4  



 
 
 

138 
 

D’Agostino, R. B., & Pencina, M. J. (2016). Cardiovascular disease (10-year risk). 

Retrieved from https://www.framinghamheartstudy.org/risk-

functions/cardiovascular-disease/10-year-risk.php#  

D'Agostino RB, S., Grundy, S., Sullivan, L. M., Wilson, P., & CHD Risk Prediction 

Group. (2001a). Validation of the Framingham coronary heart disease prediction 

scores: Results of a multiple ethnic groups investigation. JAMA: The Journal of the 

American Medical Association, 286(2), 180-187.  

D'Agostino RB, S., Grundy, S., Sullivan, L. M., Wilson, P., & CHD Risk Prediction 

Group. (2001b). Validation of the Framingham coronary heart disease prediction 

scores: Results of a multiple ethnic groups investigation. JAMA, 286(2), 180-187. 

doi:joc10098 [pii]  

D'Agostino RB, S., Vasan, R. S., Pencina, M. J., Wolf, P. A., Cobain, M., Massaro, J. M., 

& Kannel, W. B. (2008). General cardiovascular risk profile for use in primary care: 

The Framingham heart study. Circulation, 117(6), 743-753. 

doi:10.1161/CIRCULATIONAHA.107.699579  

Dahlgren, G., & Whitehead, M. (1991). Policies and strategies to promote social equity 

in health. (). Stockholm: Institute for Future Studies. Retrieved from 

http://www.core.ac.uk/download/pdf/6472456.pdf  



 
 
 

139 
 

Dawber, T. R., Meadors, G. F., & Moore, F. E.,Jr. (1951). Epidemiological approaches to 

heart disease: The Framingham study. American Journal of Public Health and the 

Nation's Health, 41(3), 279-281.  

Drummond, M., & Drummond, M. (2005). Methods for the economic evaluation of 

health care programmes (3rd ed.). Oxford; New York: Oxford University Press. 

Retrieved from http://www.loc.gov/catdir/enhancements/fy0640/2005279427-

d.html; http://www.loc.gov/catdir/enhancements/fy0640/2005279427-t.html; 

http://www.loc.gov/catdir/enhancements/fy0726/2005279427-b.html  

Escarce, J. J. (2007). Racial and ethnic disparities in access to and quality of health care.   

Gaziano, T. A., Opie, L. H., & Weinstein, M. C. (2006). Cardiovascular disease 

prevention with a multidrug regimen in the developing world: A cost-effectiveness 

analysis. Lancet, 368(9536), 679-686. doi: S0140-6736(06)69252-0 [pii]  

Gaziano, T. A., Young, C. R., Fitzmaurice, G., Atwood, S., & Gaziano, J. M. (2008). 

Laboratory-based versus non-laboratory-based method for assessment of 

cardiovascular disease risk: The NHANES I follow-up study cohort. Lancet, 

371(9616), 923-931. doi:10.1016/S0140-6736(08)60418-3  

 

 



 
 
 

140 
 

Golden, S. D., & Earp, J. A. (2012). Social ecological approaches to individuals and their 

contexts: Twenty years of health education & behavior health promotion 

interventions. Health Education & Behavior: The Official Publication of the Society 

for Public Health Education, 39(3), 364-372. doi:10.1177/1090198111418634; 

10.1177/1090198111418634  

Grundy, S. M., Pasternak, R., Greenland, P., Smith, S.,Jr, & Fuster, V. (1999). 

Assessment of cardiovascular risk by use of multiple-risk-factor assessment 

equations: A statement for healthcare professionals from the American Heart 

Association and the American College of Cardiology. Circulation, 100(13), 1481-

1492.  

Hayman, L. L., Helden, L., Chyun, D. A., & Braun, L. T. (2011). A life course approach 

to cardiovascular disease prevention. The Journal of Cardiovascular Nursing, 26(4 

Suppl), S22-34. doi:10.1097/JCN.0b013e318213ef7f; 

10.1097/JCN.0b013e318213ef7f  

IDF Clinical Guidelines Task Force. (2006). Global guideline for type 2 diabetes: 

Recommendations for standard, comprehensive, and minimal care. Diabetic 

Medicine: A Journal of the British Diabetic Association, 23(6), 579-593. 

doi:DME1918 [pii]  

Institute of Medicine. (2001). Crossing the quality chasm: A new health system for the 

21st century. (). Washington, D.C.: National Academy Press.  



 
 
 

141 
 

Institute of Medicine. (2003). Unequal treatment: Report of the institute of medicine on 

racial and ethnic disparities in healthcare. The Annals of Thoracic Surgery, 76(4), 

S1377-81. Retrieved from 

https://www.iom.edu/~/media/Files/Report%20Files/2003/Unequal-Treatment-

Confronting-Racial-and-Ethnic-Disparities-in-Health-

Care/Disparitieshcproviders8pgFINAL.pdf  

Jilcott, S. B., Keyserling, T. C., Samuel-Hodge, C. D., Johnston, L. F., Gross, M. D., & 

Ammerman, A. S. (2007). Validation of a brief dietary assessment to guide 

counseling for cardiovascular disease risk reduction in an underserved population. 

Journal of the American Dietetic Association, 107(2), 246-255. 

doi:10.1016/j.jada.2006.11.006  

Kamble, S., & Boyd, A. S. (2008). Health disparities and social determinants of health 

among African-American women undergoing percutaneous coronary interventions 

(PCI). Journal of Cultural Diversity, 15(3), 132-142.  

Kariuki, J. K., Stuart-Shor, E. M., Leveille, S. G., & Hayman, L. L. (2013). Evaluation of 

the performance of existing non-laboratory based cardiovascular risk assessment 

algorithms. BMC Cardiovascular Disorders, 13, 123-2261-13-123. 

doi:10.1186/1471-2261-13-123; 10.1186/1471-2261-13-123  

 



 
 
 

142 
 

Kariuki, J. K., Stuart-Shor, E. M., Leveille, S. G., & Hayman, L. L. (2015). 

Methodological challenges in estimating trends and burden of cardiovascular disease 

in sub-Saharan Africa. Cardiology Research and Practice, 2015, 921021. 

doi:10.1155/2015/921021 [doi]  

Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., . . . 

American Heart Association Statistics Committee and Stroke Statistics 

Subcommittee. (2010). Heart disease and stroke statistics--2010 update: A report 

from the American Heart Association. Circulation, 121(7), e46-e215. 

doi:10.1161/CIRCULATIONAHA.109.192667; 

10.1161/CIRCULATIONAHA.109.192667  

Lloyd-Jones, D. M. (2010a). Cardiovascular risk prediction: Basic concepts, current 

status, and future directions. Circulation, 121(15), 1768-1777. 

doi:10.1161/CIRCULATIONAHA.109.849166; 

10.1161/CIRCULATIONAHA.109.849166  

Lloyd-Jones, D. M. (2010b). Cardiovascular risk prediction: Basic concepts, current 

status, and future directions. Circulation, 121(15), 1768-1777. 

doi:10.1161/CIRCULATIONAHA.109.849166; 

10.1161/CIRCULATIONAHA.109.849166  

 



 
 
 

143 
 

Mathenge, W., Foster, A., & Kuper, H. (2010). Urbanization, ethnicity and 

cardiovascular risk in a population in transition in Nakuru, Kenya: A population-

based survey. BMC Public Health, 10, 569-2458-10-569. doi:10.1186/1471-2458-

10-569; 10.1186/1471-2458-10-569  

May, M., Lawlor, D. A., Brindle, P., Patel, R., & Ebrahim, S. (2006). Cardiovascular 

disease risk assessment in older women: Can we improve on Framingham? British 

women's heart and health prospective cohort study. Heart (British Cardiac Society), 

92(10), 1396-1401. doi:10.1136/hrt.2005.085381  

Medicaid.gov. (2016). Pharmacy drug pricing. Retrieved from 

https://www.medicaid.gov/medicaid-chip-program-information/by-

topics/benefits/prescription-drugs/pharmacy-pricing.html  

Mendis, S., Lindholm, L. H., Anderson, S. G., Alwan, A., Koju, R., Onwubere, B. J., . . . 

Heagerty, A. (2011). Total cardiovascular risk approach to improve efficiency of 

cardiovascular prevention in resource constrain settings. Journal of Clinical 

Epidemiology, 64(12), 1451-1462. doi:10.1016/j.jclinepi.2011.02.001  

Mendis, S., Lindholm, L. H., Mancia, G., Whitworth, J., Alderman, M., Lim, S., & 

Heagerty, T. (2007). World health organization (WHO) and international society of 

hypertension (ISH) risk prediction charts: Assessment of cardiovascular risk for 

prevention and control of cardiovascular disease in low and middle-income 

countries. Journal of Hypertension, 25(8), 1578-1582. 

doi:10.1097/HJH.0b013e3282861fd3  



 
 
 

144 
 

Mendis, S., Puska, P., Norrving, B., World Health Organization, World Heart Federation, 

& World Stroke Organization. (2011). Global atlas on cardiovascular disease 

prevention and control. Geneva: World Health Organization in collaboration with 

the World Heart Federation and the World Stroke Organization.  

Mensah, G. A. (2008). Ischaemic heart disease in Africa. Heart (British Cardiac Society), 

94(7), 836-843. doi:10.1136/hrt.2007.136523; 10.1136/hrt.2007.136523  

Mensah, G. A. (2013). Descriptive epidemiology of cardiovascular risk factors and 

diabetes in sub-Saharan Africa. Progress in Cardiovascular Diseases, 56(3), 240-

250. doi:10.1016/j.pcad.2013.10.014; 10.1016/j.pcad.2013.10.014  

Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., . . 

. American Heart Association Statistics Committee and Stroke Statistics 

Subcommittee. (2015). Heart disease and stroke statistics--2015 update: A report 

from the American Heart Association. Circulation, 131(4), e29-322. 

doi:10.1161/CIR.0000000000000152 [doi]  

Msyamboza, K. P., Kathyola, D., Dzowela, T., & Bowie, C. (2012). The burden of 

hypertension and its risk factors in Malawi: Nationwide population-based STEPS 

survey. International Health, 4(4), 246-252. doi:10.1016/j.inhe.2012.09.005; 

10.1016/j.inhe.2012.09.005  

 



 
 
 

145 
 

Murray, C. J., Evans, D. B., Acharya, A., & Baltussen, R. M. (2000). Development of 

WHO guidelines on generalized cost-effectiveness analysis. Health Economics, 9(3), 

235-251. doi:10.1002/(SICI)1099-1050(200004)9:3<235::AID-HEC502>3.0.CO;2-

O [pii]  

National Rural Health Association. (2013). Rural health foundation: Caring for the future 

of rural America. Retrieved from http://www.ruralhealthweb.org/  

Pandya, A., Weinstein, M. C., & Gaziano, T. A. (2011). A comparative assessment of 

non-laboratory-based versus commonly used laboratory-based cardiovascular 

disease risk scores in the NHANES III population. PloS One, 6(5), e20416. 

doi:10.1371/journal.pone.0020416; 10.1371/journal.pone.0020416  

Paternoster, R., Brame, R., Mazerolle, P., & Piquero, A. (1998). Using the correct 

statistical test for the equality of regression coefficients. Criminology, 36(4), 859-

866. doi:10.1111/j.1745-9125.1998.tb01268.x  

Pearson, T. A., Blair, S. N., Daniels, S. R., Eckel, R. H., Fair, J. M., Fortmann, S. P., . . . 

Taubert, K. A. (2002). AHA guidelines for primary prevention of cardiovascular 

disease and stroke: 2002 update: Consensus panel guide to comprehensive risk 

reduction for adult patients without coronary or other atherosclerotic vascular 

diseases. American heart association science advisory and coordinating committee. 

Circulation, 106(3), 388-391.  



 
 
 

146 
 

Selvarajah, S., Haniff, J., Kaur, G., Guat Hiong, T., Bujang, A., Chee Cheong, K., & 

Bots, M. L. (2013). Identification of effective screening strategies for cardiovascular 

disease prevention in a developing country: Using cardiovascular risk-estimation and 

risk-reduction tools for policy recommendations. BMC Cardiovascular Disorders, 

13, 10-2261-13-10. doi:10.1186/1471-2261-13-10 [doi]  

Shillinglaw, B., Viera, A. J., Edwards, T., Simpson, R., & Sheridan, S. L. (2012). Use of 

global coronary heart disease risk assessment in practice: A cross-sectional survey of 

a sample of U.S. physicians. BMC Health Services Research, 12, 20-6963-12-20. 

doi:10.1186/1472-6963-12-20; 10.1186/1472-6963-12-20  

Simon, H. (2009). Waisted: Abdominal obesity and your health. Harvard Men's Health 

Watch, 13(6), 1-6.  

Smith, D. H., & Gravelle, H. (2001). The practice of discounting in economic evaluations 

of healthcare interventions. International Journal of Technology Assessment in 

Health Care, 17(2), 236-243.  

Stuart-Shor, E. M., Berra, K. A., Kamau, M. W., & Kumanyika, S. K. (2012). Behavioral 

strategies for cardiovascular risk reduction in diverse and underserved racial/ethnic 

groups. Circulation, 125(1), 171-184. 

doi:10.1161/CIRCULATIONAHA.110.968495  



 
 
 

147 
 

University of North Carolina at Chapel Hill. (2013). Atherosclerosis Risk in 

Communities study: ARIC study design. Retrieved from 

http://www2.cscc.unc.edu/aric/study_design  

Wan, Q., Harris, M. F., Zwar, N., Campbell, T., Patel, A., Vagholkar, S., . . . Denney-

Wilson, E. (2009). Study protocol for a randomized controlled trial: The feasibility 

and impact of cardiovascular absolute risk assessment in Australian general practice. 

American Heart Journal, 157(3), 436-441. doi:10.1016/j.ahj.2008.11.016  

Weber, M. A., Schiffrin, E. L., White, W. B., Mann, S., Lindholm, L. H., Kenerson, J. G., 

Harrap, S. B. (2014). Clinical practice guidelines for the management of 

hypertension in the community a statement by the American Society of 

Hypertension and the International Society of Hypertension. Journal of 

Hypertension, 32(1), 3-15. doi:10.1097/HJH.0000000000000065 [doi]  

Weinstein, M. C., Siegel, J. E., Gold, M. R., Kamlet, M. S., & Russell, L. B. (1996). 

Recommendations of the panel on cost-effectiveness in health and medicine. JAMA, 

276(15), 1253-1258.  

Whitehead, M., & Dahlgren, G. (1991). What can be done about inequalities in health? 

Lancet, 338(8774), 1059-1063.  

WHO. (2015). Cardiovascular diseases fact sheet. Retrieved from 

http://www.who.int/mediacentre/factsheets/fs317/en/#  



 
 
 

148 
 

Will, R., Keydron, G., Cynthia, A., Luis, M., & Zachary, B. (2011). Social determinants 

of Health—Its place in Redefining medicine. Association of American Medical 

Colleges Annual Meeting, Denver, Colorado.  

Wilson, R. (2013, 09/03/2013). Hispanics most likely to go without health insurance. 

Washington Post  

World Health Organization, (2007). Prevention of cardiovascular disease: Guidelines for 

assessment and management of cardiovascular risk. Geneva: WHO.  

Yusuf, S., Hawken, S., Ounpuu, S., Bautista, L., Franzosi, M. G., Commerford, P., . . . 

INTERHEART Study Investigators. (2005). Obesity and the risk of myocardial 

infarction in 27,000 participants from 52 countries: A case-control study. Lancet 

(London, England), 366(9497), 1640-1649. doi:S0140-6736(05)67663-5 [pii]  

Yusuf, S., Hawken, S., Ounpuu, S., Dans, T., Avezum, A., Lanas, F., . . . INTERHEART 

Study Investigators. (2004). Effect of potentially modifiable risk factors associated 

with myocardial infarction in 52 countries (the INTERHEART study): Case-control 

study. Lancet, 364(9438), 937-952. doi:10.1016/S0140-6736(04)17018-9  

 


	External Validation and Cost Effectiveness Analysis of the Non-LB Framingham Cardiovascular Disease Risk Assessment Algorithm in the Atherosclerosis Risk in Communities Dataset
	Recommended Citation

	-

