3-21-2002

Genetic Testing: A Cautionary Tale of Foster and Pre-Adoptive Children

Janet Farrell Smith
University of Massachusetts Boston

Follow this and additional works at: http://scholarworks.umb.edu/nejpp

Part of the Bioethics and Medical Ethics Commons, and the Genetics Commons

Recommended Citation
Available at: http://scholarworks.umb.edu/nejpp/vol17/iss2/6

This Article is brought to you for free and open access by ScholarWorks at UMass Boston. It has been accepted for inclusion in New England Journal of Public Policy by an authorized administrator of ScholarWorks at UMass Boston. For more information, please contact libraryuasc@umb.edu.
What values will guide policy and practice for children in the new genetic era of the twenty-first century? How does the situation of foster and adoptive children illuminate the intersection of health policy and social policy? The research presented here takes foster and adoptive children as a test case for potential conflict between healthcare benefits and social uses of genetic information, arguing that genetic testing of children in general and of adoptive and foster children in particular should be approached with great caution. The potential social disadvantages to children from the unrestricted and unreflective use of genetic testing must be weighed against putative medical advances. Public policy needs to make a continual re-evaluation of balance of risks and benefits of genetic testing for this vulnerable population. Medical use of genetic information will change in the fast-approaching genetic era.

Janet Farrell Smith is a faculty member in the Public Policy Ph.D. Program and the philosophy department at the University of Massachusetts Boston. Her research focuses on justice issues in healthcare and social policy. She is a Research Fellow in Medical Ethics at Harvard Medical School and a Faculty Associate with the Center for Adoption Research.
make an informed consent on behalf of the child when the child has no permanent legal parents? Each profession — law, medicine, social services, and family and healthcare policy — needs to be informed about the other, especially when considering the impact of the new genetics on the status of children.

One might ask, why is this issue important now, if genetic testing is not common practice nor widespread? The answer is that we as a society need to articulate the value structure that should guide testing of children, before incidents of genetic testing increase. Foresight, not hindsight, should guide practice and policy, especially with vulnerable groups of children. It is important to create ethical and policy guidelines based on values that feature children’s interests. Within the domain of children’s best interests we find that privacy, equal opportunities for all children, informed consent for medical testing, and diagnostics and treatment are all in the child’s best interest. Of course, one purpose of this analysis is to educate the public about the social impact of testing on children as well as about ethical issues in the information gathered and made available to the prospective adopters.

Distinguishing Medical and Social Uses of Genetic Information

The distinction between the medical and the social applications of genetic testing information is heightened for foster and adoptive children in an instructive way. From a medical viewpoint, very few conditions detectable by genetic testing can be prevented, aided, or cured. Many of these conditions are included in mandatory newborn screening policies, now required in most of the fifty states. The most dramatic are metabolic disorders for which special diets can be applied at birth to prevent developmental delays and other serious medical conditions. Other conditions include rare childhood genetic diseases such as Canavan’s Disease, for which an enzymatic medication is available.

From a social viewpoint, the potential range of genetic testing is broader. First, those in charge of children’s education and health are invested in predicting future tendencies. Knowledge of genetic tendencies or susceptibilities may be thought to facilitate the management of childrearing and planning. For adoptive children, the desire to compensate for missing medical and family histories is an added incentive to perform genetic testing. Family medical histories may have medical implications, as in monitoring for susceptibility to heart disease. Or they may have social applications, as in cautioning a child with a family history of heart disease in athletic activity. In addition, for children being placed for adoption, prospective parental demand for information may put pressure on adoption and social service agencies to obtain and reveal maximal information about children in the pre-adoptive stage. Because of these factors, social service observers predict increased social pressures to administer genetic tests to this group of children.

On the other hand, there are social risks to genetic testing of children. The genetic information may be used in a way to stigmatize the child or to reduce equal life opportunities in education and employment and even in healthcare insurance, since insurers share large data bases of medical information on clients. These risks are magnified for foster and adoptive children who lack permanent, legal parents, the traditional gatekeepers and protectors of children’s rights, interests, and opportunities.
Genetic Testing: A Cautionary Tale of Foster and Pre-Adoptive Children

Genetic information has the power to help or to hinder opportunities for children. Children with permanent legal parents who also have access to quality healthcare programs may be protected from the social ill effects of stigma and discrimination that may come through misuse of genetic testing information. Children in permanent, economically stable families may benefit from genetic testing, diagnostics, and medical procedures. Children who lack permanent parents and family support and who lack stable healthcare plans of high quality may be severely disadvantaged in attaining equal opportunities if genetic testing information is entered on their medical and social charts. Due to obstacles in the pathways of opportunity described in this paper, adding genetic information to the picture may exacerbate existing inequalities.

Since children are vulnerable to healthcare policy at the outset of the life course, their position with regard to genetic diagnostics and medicine is especially significant. What happens to children who lack permanent legal parents may signal future risk patterns for children generally, and even for adults. These for children illuminate in general the trade-offs between putative healthcare benefits and risks of social harm in discrimination and loss of equal opportunity.

Social Justice and Structural Inequalities in Children’s Status

Questions of social justice, equality of opportunity, and freedom arise for all children and for foster and adoptive children in particular. The facts show that poverty, inadequate access to healthcare, lack of equal housing, and substandard educational benefits are suffered disproportionately by children in the U.S. The questions explored here illuminate these structural social factors regarding the socially vulnerable group of foster and adoptive children. Studies also show that children of color are disproportionately represented in foster care, in poverty, and in lack of access to healthcare and educational opportunity. As welfare reform exacerbates these problems, and as foster care statistics continue to rise around the country, the problem of equal opportunity for children without permanent legal parents will expand, highlighting this vulnerable sector within an already structurally disadvantaged group of children.

Will a new genetic era bring eugenic assumptions, covertly or overtly, into social policy? Historians of eugenics and genetic policy experts observe the prevalence of eugenic assumptions in social policy in the first half of the twentieth century. They worry that contemporary genetic social practices will raise eugenics in another form. Eugenics has special relevance to adoption. Historians of adoption have recorded how, in the U.S. of the early 1900s, certain children were deemed unadoptable due to bad heredity or “feeblemindedness,” that is, suspicion of mental health problems and general lack of a “normal” profile. Many experts in adoption policy worry that history will be re-created in contemporary concern over genetic defects or mental health problems in adoptees. Such presumptions could work against adoption and stigmatize adoptive families.

One major concomitant of genetic disadvantage and social stigma is deepened inequalities. This is especially the case for children, whose major life-task is to grow and develop capacities so as to function as productive adult citizens and workers. One very helpful social justice framework for dealing with children can be found in
Amartya Sen’s stress on development of capabilities or capacities as a pre-condition to utilizing social opportunities. Sen and others argue that it is not sufficient to distribute goods and services equitably or to ensure formal equality of opportunity in law. In Sen’s view we must ensure that persons receive what they need to develop their capabilities to act in the economy and in the social-political sphere. Without these enabling conditions, we are more likely to find powerlessness rather than power; a series of failures rather than a series of steps culminating in full agency.

Social policies using genetic technologies need to be weighed against principles of social justice and equal opportunity in order to see their impact on children’s development. Growth proceeds by laying down one foundational building block, which serves as the grounding for the next. For example, consider how private healthcare insurability relates to employment. We can see a domino effect of one action in childhood leading to diminished opportunity in successive life stages. Social stigma often attends children without parents, including adopted and foster children. Compounding this stigma, genetic testing information indicating a risk of a certain disease may be entered on the medical chart of a young child. Later, the child may be denied health insurance or given very high premiums. Since most healthcare benefits are tied to employment, and most employers share healthcare costs, employers are less likely to hire or promote one whom they see as a high-cost worker. Genetic testing information that signals a “pre-existing condition” is still a legally valid reason to raise health rates or to deny health insurance.

Hence, genetic testing in childhood, which may seem to be socially indicated at one stage, may, at a later stage, diminish opportunities; for example, genetic testing information may signal a red flag to employers when the child enters the job market. Employability is tied to both healthcare access and housing so a child who matures into a high risk category in health insurability carries a distinct disadvantage. That child does not face a level playing field in the effort to attain adult functioning.

Discrimination due to genetic conditions is prohibited by both federal and state law. Genetic privacy legislation now passed in thirty states attempts to eliminate these problems. In Massachusetts, for example, such legislation was passed in July 2000. But, the Massachusetts law does not cover life insurance. Its scope regarding children, whose medical records follow them from cradle to grave, is not yet clear. The protections sanctioned in these laws depend strongly on individual patients’ rights to privacy and informed consent, but in the case of many foster children and those awaiting adoption, these “gatekeeper” conditions are insecure at best and non-existent at worst. A legal guardian (proxy or surrogate decision maker in place of parents) makes medical decisions on behalf of children without permanent legal parents. Sometimes the consent process is skipped entirely with these children.

U.S. Professional Societies’ Policy Guidelines on Genetic Testing of Children

The predominant message of both genetic policy task forces and U.S. professional genetic associations is one of caution on testing children. Exceptions are made for cases where an effective medical treatment could be applied in the immediate period of childhood. For example, a task force was commissioned by the Institute of Medicine in conjunction with the National Institute for Human Genome Research, the
government research entity which has now successfully mapped the human genetic code. Because of the risk for social or psychological harm, this Committee recommends that

in the clinical setting children generally be tested only for disorders for which a curative or preventive treatment exists and should be instituted at that early stage. Childhood screening is not appropriate for carrier status, untreatable childhood diseases, and late-onset diseases that cannot be prevented or forestalled by early treatment.¹⁰

Should these criteria apply to children awaiting adoption? For example, should genetic testing be expanded when social service agencies or prospective parents feel they need information in order to make appropriate placement? Legal expert Lori Andrews argues that no state requires a “duty to investigate” that would entail genetic testing of children being placed for adoption. She gives a careful analysis of legal precedent and state laws to support her conclusion. Ethical reasoning arguing against expanded genetic testing for children awaiting adoption, in a “pre-adoptive” stage, has been articulated by child welfare specialist Madelyn Freundlich.¹¹ The position argued herein agrees with their position and gives expanded reasoning on the ethical and policy levels. Both Freundlich and Andrews consider the above position consistent with an agency’s responsibility to divulge current information under a statutory “duty to disclose” to prospective parents existing medical status, records, and family history of any child awaiting adoption. In other words, adults considering the adoption of a child have a right to past and current medical information about that child. Agencies responsible for the adoption have a duty to reveal existing information. Yet these duties need not entail a pro-active duty to investigate, gathering additional information, in ways that might potentially harm the interests of both the child and the birth parents in terms of privacy rights or insurability issues.¹²

Leading U.S. medical professional societies concur with this general position. The American Society for Human Genetics (ASHG) and the American College of Medical Genetics (ACMG) have been an influential voice in the U.S., cautioning against testing a child for genetic conditions unless an existing (not experimental) medical treatment can be applied in the child’s minority. In 1991 and again in 2000, they affirmed this standard for adoptive children, adding in 2000, that the standard for biological and adoptive children should be the same.¹³ The ASHG/ACMG position forestalls pressure from society or from prospective adopters’ request to test children for non-medical reasons, for example, as a method of screening out undesirable conditions to satisfy adoption matching requirements. If social service agencies and adoption agencies were to test children before adoption on a wide scale, this would involve expanding the domain of children’s testable conditions for a social, not medical reason. It would expose a wider range of information about the child to public view before any decision is made to adopt. But if the standard for biological and adoptive children is the same, then the primary criterion for testing would be some medical care applicable during childhood, not social purposes. Foster and adoptive children would not be subject to greater testing just because they did not have parents.

Differing views have been voiced. Some practicing physicians and pediatricians in the United States argue that there must be very strong reasons not to comply with parental requests for tests on children. They find it reasonable to defer to parent wishes where the medical benefit may be marginal or where U.S. professional guidelines are not definitive.¹⁴ In these cases, some physicians argue, there must be a
very strong justification not to give the parents information on their child, that is, to refuse to go ahead and test at the parents’ request. This dilemma raises the ethical question: Is the pediatrician’s primary duty to the child? To parental decision-makers? What imperative takes priority when the child has no permanent parents and stands in limbo between parents, awaiting adoption, or in foster care? Social service professionals face similar quandaries: Which takes priority, the future interests of the child or the interests of prospective adopters?

Gathering medical and family histories during the time a child is released for adoption is of key importance in providing quality healthcare, both during childhood and later, when an adoptee reaches reproductive age and maturity. The prevailing view among adoption experts, medical advisors, and social service agencies stresses the importance of gathering full medical information for foster and adoptive children including hereditary conditions in family histories. Those who observe that all persons have some genetic susceptibilities argue that all citizens are therefore potential targets of genetic discrimination, inferring that the risk of “genetic discrimination” is falsely posed. In rebuttal, critics such as George Annas see dangers in the social consequences of such discrimination regardless of the scientific status of “genetic” or “non-genetic.”

Medical Best Interest and Healthcare Best Interest

A key distinction for genetic policy made by this author lies between a child’s medical best interest and healthcare best interest. A child’s medical best interest may be defined as that set of medical procedures that maximizes the child’s welfare. The main criteria for assessing medical best interest are scientific, diagnostic, and current standards of care. What stands in a child’s medical best interest, though, may not be available on the child’s current healthcare plan. Access depends on whether a child’s parents or guardians have the money to provide that set of procedures. Therefore, the medical best interest states an ideal, not necessarily an existing reality, in a particular patient or population.

Healthcare best interest may be defined as those actions that maximize a child’s access to the best quality healthcare, in both the short- and long-term. Economic and social factors, as well as long-term psychological consequences of genetic testing, could undermine a child’s ability to obtain care. Therefore, access is key in healthcare interest, whereas medical best interest is defined scientifically and does not factor in social or economic access. Both medical best interest and healthcare best interest should be factored into decision-making about children’s medical treatment, especially considering when to undertake genetic testing. Ideally, medical and healthcare best interests coincide, simultaneously enhancing the child’s access to healthcare, as when a genetic test leads to an immediately beneficial medical treatment, accessible to the child on her healthcare plan. Yet in some cases, the two interests may diverge. This is especially so for children whose long-term future is clouded by poverty, substandard educational opportunities, and lack of permanent parents. In these cases, for example, genetic testing information, even if it revealed some medically meaningful data, might, by being recorded in the child’s permanent medical chart, undermine the child’s insurability. Such testing would therefore undermine the child’s healthcare best interest.
The distinction between the child’s interest in medical treatment and the child’s interest in healthcare access has not been made in the guidelines of medical professional societies. Nor has it received much attention in ethical or policy analysis. For example, several guidelines permit genetic testing when an existing medical treatment or prevention can be applied in childhood-onset conditions. Presumably they refer to the relevant medical treatment apart from the question of whether or not the child has access to it. Of course, it is always possible to raise monies through charities or advocacy in order to gain access for a given child. From a social policy perspective, though, such actions do not have system-wide impact and are not realistic options for the vast majority of children in poverty whose parents cannot afford healthcare, and especially for children awaiting adoption or residing in foster care. These children, especially if they remain unadopted, lack the protection of permanent legal parents, who remain the major providers of healthcare access.

At the general policy level, what may serve the child’s medical best interests may not be available on the government-provided healthcare plan or on other plans. Actual healthcare delivery to foster children or those awaiting adoption in the “pre-adoptive” stage may not be equivalent to the standard of care extant in the privately insured healthcare system. A child’s permanent legal parents carrying private healthcare insurance are more likely to have access to the best medical treatment, whereas a child awaiting adoption or in foster care may not have access to state-of-the-art monitoring technology such as CAT scans or MRIs.

So, having revealed a condition, genetic testing information recorded in the child’s permanent medical record might actually end up undermining the child’s ability to receive the healthcare to treat that very condition. Information-gathering about something that merits treatment under the child’s medical best interest may not enable increased healthcare access, but its direct opposite, diminished access. This unfortunate paradox ought to be publicized to those who make policy and health plans for children. Social service professionals in child placement, adoption agencies in both the private and public sectors, and attorneys and legal professionals arranging independent adoptions all need to be aware of the long-term social consequences. Medical primary care givers, genetic specialists, and pediatricians need to be informed.

In sum, policy evaluations often assume that what stands in a child’s medical best interest also stands in their healthcare best interest, that is, securing access to healthcare on a continuous, life-long basis. In a universal healthcare system without deep inequalities, neither of these distinctions might assume great ethical or policy importance. But because of the insecure basis of current U.S. healthcare delivery for children and the numbers of uninsured children, it follows that genetic testing, which ostensibly stands to benefit the child’s medical best interest, may not further, but may actively undermine, the child’s current or long-term interest in healthcare access.

Another distinction needs to be kept in mind. The term “adoptive child” used, for example, in policy and professional societies’ guidelines, is ambiguous, referring to (a) the “pre-adoptive” child in temporary or foster care awaiting adoption but lacking permanent legal parents with the rights and responsibilities for that child’s medical care or (b) the child who has gone through a finalized adoption, including what is termed the “post-placement” stage, in which the social worker monitors the child and family for a healthy adjustment. Distinct ethical, policy, and social contexts
apply in each stage, especially regarding the potential harms and benefits of genetic testing. During the pre-adoptive stage, assignment of decision-making power, that is, the person responsible for informed consent for medical procedures, including genetic testing, may be socially and legally indeterminate. Under the post-adoptive stage, the permanent legal parent has the right and responsibility to serve the child’s best interest. Children in the pre-adoptive stage are especially vulnerable but both groups might lack family medical histories, which might be an incentive to administer genetic tests.

A Cautionary Approach to Genetic Testing

The thesis presented here is that professionals in social services and medicine should take a cautionary approach in genetic testing: Err on the side of caution concerning genetic testing of foster and adoptive children, as well as children generally. There should be a presumption against genetic testing while respecting the statutory requirements of “duty to disclose” to prospective adoptive parents. In other words, one can and ought to disclose the medical information gathered on an initial medical exam to prospective parents and placement case workers. But this does not require, from a legal or ethical viewpoint, an affirmative “duty to investigate” by gathering genetic testing data that goes beyond the existing medical record. In other words, the burden of proof should lie on proceeding with testing. Acceptable reason to test should reveal information helpful to the child’s current medical needs for treatment. Furthermore, any testing should meet the additional criterion advanced here: the child’s healthcare interest. Any testing should support, not diminish, the child’s current and future potential for healthcare access.

My basic position agrees with the standards in the guidelines of the major government policy task forces and professional medical societies, affirmed for both biological and adoptive children, that no testing of children be done unless there is an existing medical treatment for a disease manifesting in childhood. Genetic testing for presymptomatic conditions (asymptomatic testing), carrier conditions (carrier testing) or adult onset conditions (predictive testing) remains ethically unacceptable for children. It is neither necessary nor helpful from a medical viewpoint. For example, the following are situations where it is ethically unacceptable to administer genetic tests: testing a child for Cystic Fibrosis when no symptoms are present, or carrier testing for Cystic Fibrosis to see if the child will pass the condition to future offspring, or testing for a condition which manifests in adulthood, such as Huntington’s Disease. None of these provide diagnostic or treatment information necessary from a medical viewpoint during the child’s minority.

Challenges to a Cautionary Approach

The first challenge to the above thesis argues for expanded genetic testing based on the prospective parents’ right to know information about the child’s status before permanent adoption. Some critics of the “consensus position,” as Dr. Lainie Ross calls it, refer to the existing system of “matching” children and prospective parents in state-sponsored child placement. As long as adoptive matching is a placement procedure, she argues, genetic information should be gathered and disclosed to pro-
spective adopters. Genetic testing information amplifies information needed for matching appropriate children to appropriate parents.

Second, some critics argue for a principle of family autonomy, justifying parental right over genetic testing of children. This position argues against medical or social standards or regulation directed solely towards children. To emphasize a child’s privacy or future autonomy interests over parental ones, it can be argued, weakens the institution of the family. Under a principle of family, or parental, autonomy, arguments can be given that genetic knowledge of a child’s future adult medical conditions do strongly influence ethically justified parental care of children. For example, on this view, it is ethically permissible for parents to use such information in family planning or other decisions. Parents need such information in order to anticipate, for example, educational or support resources that a child may need.

Third, while professional guidelines may agree on the ideal standards, we frequently find gray areas. Even when medical and legal experts place high priority on the child’s privacy interests, they may disagree about which cases ought to be subsumed under those standards. For example, there is no curative treatment for Duchenne Muscular Dystrophy, a degenerative condition that develops in childhood. The most that medicine can offer is palliative or supportive care to ease symptoms. Some experts would allow testing a very young child for Duchenne Muscular Dystrophy in order to inform prospective adoptive parents to be better prepared both emotionally and financially to deal with the condition. Others would refuse it on the grounds the child’s privacy interests are paramount and thus neither pre-adoptive children nor biological children ought to be tested for it. Furthermore, genetic policy experts have underscored the striking difference between public expectations and actual scientific results. The Duchenne case illustrates a generalized phenomenon: The “therapeutic gap” between the number of testable genetic conditions and ability to treat or cure them has not closed.

Fourth, some experts justify expanded genetic testing for pre-adoptive foster children by appealing to the interests of special needs children in adoptive child placement. These cases require a different framework from that of normal children. They ought to work from the model of HIV+ status or substance abuse cases, where agencies are required to disclose information on HIV or previous alcohol or drug exposure to prospective adoptive parents. Given full information, prospective parents can decide whether or not they can handle the financial and emotional challenges of such children. Disclosing such information will, in the view of some experts, facilitate responsible decision-making by parents on whether they can handle a particular child and therefore reduce the rate of “disrupted” or “dissolved” adoptions, where the parents return the child to the state after discovering a condition they cannot handle. Finally, providing more rather than less information to prospective adoptive parents can reduce the prospect of wrongful adoption suits.

Current Status of Genetic Testing

How prevalent is genetic testing of foster and adoptive children? At the start of the twenty-first century, some incidents of genetic testing of children in general and of foster and pre-adoptive children in particular have come to the attention of professionals in social service and medicine. The number, however, is expected to rise, since the production, marketing, and distribution of genetic tests has skyrocketed in
the past two years. Tests are increasingly available to pediatricians and primary care physicians, so their use may expand from testing for rare genetic disease to diagnostic susceptibility testing for common diseases. Since genetic testing is also becoming known to the public, prospective adopters may increasingly express a demand for such testing.

For example, one independent adoption attorney recommended that a pregnant woman, intending to release her future child for adoption, test the fetus for Huntington’s Disease, an adult onset disease. In another case, an agency wanted to give genetic tests to a boy in foster care whose family history included developmental delays, but who showed no problems. His case social worker protested, and the boy was adopted. Later this case worker found the boy happily ensconced in his new adopted family, at the top of his class in school.20

In one recent case a West Coast state social service department, in order to facilitate adoptive placement, considered testing two foster siblings for Cystic Fibrosis (CF). Although they had a family history of CF, the children did not manifest symptoms of the disease, which appears soon after birth. The children did not now, nor would they ever, have the disease, but they may have inherited the gene as carriers to pass on to their heirs. In this case, social workers were persuaded by colleagues in the state genetic department that there was no compelling medical need to test. Nor were they required by law to investigate to uncover information other than that existing already in the children’s charts. The author found in interviews that increasing numbers of prospective adopters consulted medical geneticists for a physical or genetic testing examination that was done privately, independent of adoption agency screening procedures. In some of these cases, the genetic information from the consultation was not entered on the child’s permanent medical record, so it had little impact on the child, positive or negative, other than affecting the immediate adoption decision by those prospective parents.

Limits of the Law

The law does not offer definitive answers to the question of whether or not to administer genetic testing. Most professional policy guidelines recommend against testing children unless there is an immediate medical treatment for a manifest childhood disease. These, however, are not legally binding. For example, if a social service agency wanted to test a foster child for Cystic Fibrosis, even though there was little chance of it manifesting in childhood, there would be little legal sanction against such testing.

Even if the law gives no direct answers on testing questions, legal and economic incentives to test or over-test may operate in the background, affecting the children’s interests in indirect ways. “Wrongful adoption” suits, based on fraud and neglect, have been successfully brought against adoption agencies that withheld medical information on a child adopted by a parent who subsequently had difficulties in raising the child. Specific cases have demonstrated that the agencies can be negligent in disclosing medical information. But adoption agencies, fearful of capricious but still costly legal suits brought by dissatisfied adoptive parents, may be overly cautious about liability, and consequently tend toward testing children. Thus, social results of liability pressures may bring over-testing, initiating a chain of social consequences. Repeated testing may signal problems to healthcare insurers even if actual test results indicate no difficulties. Tests may discourage prospective adopters.
Genetic Testing: A Cautionary Tale of Foster and Pre-Adoptive Children

Brief History of U.S. Genetic Testing and Screening Policy

Genetic testing and screening on children in the U.S. is of two types. Newborn infants are subject to state-mandated screening in almost all of the fifty states. Experts judge that the balance of benefits outweighs the risks, since revealed conditions, such as PKU (phenylketonuria), allow immediate treatment to prevent harm. Special diets and enzymes administered immediately to newborns can prevent mental retardation. So the rationale for mandatory PKU screening presents a paradigm case, giving an ethical and policy justification for mandatory genetic testing.

In older children, however, there is currently no federal or state policy requiring genetic screening or testing of children. For this age group, governmental and professional attitudes have been more cautious. Caution remains the policy position of most professional organizations. As explained above, the American Society of Human Genetics (ASHG) and the Institute of Medicine note, for example, that “Because of this potential for psychological and financial harm, a growing number of commentators and advisory bodies are recommending that genetic testing not be undertaken on minor children unless there is an immediate medical benefit.”

It is important to keep in mind the balance of public interests and private rights in current policy reasoning, especially as this applies to populations under state care. If state interest in gathering personal private information is deemed compelling, as it is in the military, which obtains a genetic profile of every member, then state agencies acting in the public interest may override the individual right to privacy to gather genetic information. A parallel reasoning for foster and pre-adoptive children might emerge. The fact that the state has custody of them and functions as their guardian, in place of legal biological parents, implies that the state has an obligation to manage this population for their best interest as well to maintain public health and safety. Although social opinion recently quashed the prospect of genetic screening for markers such as an extra Y chromosome, allegedly associated with criminal behavior, the technological possibility for such testing remains. It is possible that some experts might recommend genetic testing or screening of foster care children in care of the state, for example, to predict socially problematic costs or behavior. As argued below, however, environmental factors, such as reduced social and economic opportunities for foster children, are primary factors in undermining equal rights and opportunities. So the question of privacy rights for those under state care remains an important consideration.

Race and ethnicity are especially controversial classifications which are bound to affect foster and adoptive children. The fact that African-American children are over-represented in foster care sounds a note of caution. Since genetic testing and screening policies began, the issues of race and ethnicity have raised serious questions of stigma and discrimination. These have not had a favorable history in the U.S. An example is the former discriminatory U.S. Air Force policy of not allowing African-Americans carrying the Sickle Cell Anemia’s gene to pilot, under the mistaken impression that they might black out in flight. The policy mistakenly conflates carrier status and the actual presence of disease. Government-sponsored mass screening for Sickle Cell Anemia in the 1970s was believed by some to have stigmatized the black community and added a component of biological or genetic prejudice to existing racial disparities. The screening was quickly stopped and has become an infamous example of stigmatizing genetic policies.
The statistically higher prevalence of Tay Sachs in the Jewish Ashkenazi community, the prevalence of Sickle Cell Anemia in those of West African descent, of Thalassemia in those of Eastern Mediterranean or Asian descent, of Cystic Fibrosis in those of Northern European background, all raise the question of how to balance appropriate diagnosis and treatment with the possibility of group stigma. To neglect cultural attitudes that condition the delivery of healthcare is to underserve certain populations, as Berkeley sociologist Troy Duster has observed in a special report on ethnicity and genetic disease. The issue needs to be raised and addressed for foster and adoptive children, especially since these are often children of distinct ethnicity, whether from domestic or international origin.

Advantages of Genetic Testing for Foster and Adoptive Children

Medical Best Interest of the Child
In some cases there is a dramatically effective medical treatment that needs to be applied immediately to prevent harm to the child. Genetic testing reveals which children will be helped. The classic instance illustrating medical best interests supporting genetic testing is PKU, or phenylketonuria, which requires a special diet avoiding proteins in order to prevent mental retardation. All newborns are screened for PKU by state law in most of the fifty U.S. states. In some cases genetic testing has predictive value with no immediate medical intervention. Dispute arises over medical benefit in Duchenne Muscular Dystrophy, where, as noted, no cure exists and only palliative care can be given. Other examples of medical benefit might be found in testing for the P53 mutation associated with childhood cancers. If a family history exists and genetic test reveals the mutation in a particular child, physicians may monitor aggressively for tumors in the brain or lymph systems. But, the fact of false negatives shows that genetic testing is not always completely reliable.

Child Placement
According to some social service professionals, a clear medical profile and family history facilitates appropriate placement of children in permanent adoptive or foster homes. The case for expanded genetic testing has been made by child welfare experts who point to the model of special needs children, children with disabilities or specialized diseases which would severely burden prospective parents. Adoptive or foster parents need to be fully informed of the heightened responsibilities incurred by providing healthcare for these children.

Prospective Adoptive Parental Interests and Informed Consent
Adoptive parents have a right to know as much about the child they adopt as they possibly can. This principle can be argued from a general parental right to know, from equity principles drawing on the analogy between prenatal and pre-adoptive genetic testing, and finally, from a principle of parental responsibility. The best interest of the child is effectively served by placement with parents who are informed of conditions they are financially and emotionally prepared to handle. To facilitate responsible parenting, full genetic information is required. It is also required to fulfill the conditions of informed consent by prospective adoptive or foster
parents to take on the responsibility of a particular child. Parental right to know, with as full as possible information, can be inferred from both responsibility and informed consent.

Advances in Genetic Medicine
Genetic profiling may produce major advantages for children whose genetic profiles have been carefully assembled. These benefits, discussed in detail below, include the possibility of tailoring medications to those individuals. Genetic medicine will also identify susceptibilities by genetic testing and then administer strategies to prevent diseases from arising in the first place or to lessen the risks.

Disadvantages of Genetic Testing for Foster and Adoptive Children
Currently, many policy experts, professionals in medicine, law, and bioethics, as well as the general public, are cautious about the consequences of genetic testing for the following reasons: The risk of genetic discrimination constitutes the first reason of concern to healthcare experts, to the public, and to some advocacy groups. Healthcare insurance can be lost entirely or premiums increased due to what insurers deem a “pre-existing condition.” Loss of insurance in one case can mean loss of insurability generally because private healthcare insurers share massive databases covering national populations. Records are also accessed by employers who assess costs of healthcare, since, as noted above, the majority cost of private healthcare insurance is borne by employers. Legislation in thirty states currently prevents genetic discrimination in health insurance and employment on the basis of genetic testing data.

New privacy laws have devised heightened protections. But whether current legislation will adequately enforce these protections is an open question. Medical records are stored electronically and are easily available to many parties, a technological reality that challenges the time-honored ethical principle of patient-physician confidentiality. It is also unclear how protections will apply to children generally or to children without legal parents, since much legislation assumes patients are adults. Because of patients’ cradle-to-grave electronic medical records, information recorded in childhood—seemingly innocuous then—may have very different effects during adulthood. Genetic testing information may constrain opportunities by undermining a person’s economic security and social status within families and within communities.

From an ethical principle of avoiding unnecessary harm, the prospect of genetic discrimination puts genetic testing of children in a cautionary light. The medical ethical injunction “Do No Harm” signals a need to scrutinize social, psychological, and economic effects of gathering genetic information. From the vantage point of justice, under a principle of fair equality of opportunity, if genetic testing information undermines equal future life opportunities for a child, then it is unjustified, unless some immediate medical procedure serves the child’s interest.

Stigma, both within families and communities, is a form of prejudice or disregard that goes beyond legal categories of discrimination. For example, children within a family who test positive for a disease may be “preselected” for vulnerability or negatively stigmatized by family members. On the other hand, if a family is
strongly identified with and even politically active around a given familial disease, and one sibling tests negative, a child may feel marginalized or like a “outlier” in relation to family unity. Instances of survival guilt are also common in persons who receive negative test results; for example, in families that have a history of breast and ovarian cancer with the BRCA1 mutation. A women who tests negative must rationalize her status in relation to an affected sister. So, a negative genetic test result does not necessarily guarantee human well-being or contentment.

Within communities, individuals who are known to be carriers are sometimes stigmatized. For example, a retired army colonel who was known to carry a reproductive genetic disease was forced to leave the town he lived in. The problem is exacerbated in Sickle Cell Anemia, which could stigmatize the African-American community, or Tay Sachs, the Jewish community.

Mental health conditions are especially vulnerable to stigma. This stigma may increase with the prospect of genetic testing, but there is currently no genetic test, for example, for a “schizophrenia gene.” No such single genetic alteration has been identified. Scientists consider schizophrenia to be multi-factorial, not a mono-genic disease. But, if scientists discover even mildly predictive genetic markers, then many experts anticipate a large potential for stigma associated with such testing, for example, in prospective parents who are particularly worried about mental health conditions in children they adopt.25 In addition, genetic testing may be used in the future to track children into educational niches, as in special needs or learning disability classrooms. Adopted and foster children, historically subjected to eugenic scrutiny, may be considered eligible for such testing.26 Each of these types of stigma could result in social tracking or an increase in the population of un-adoptable children that some experts are worried might become one social consequence of genetic testing.

Privacy Interests
Privacy interests apply to all children and also to those in the foster care or adoptive process. They also apply to the birth parents and birth families of these children, and to the prospective adoptive parents and eventual adoptive families. Although children do not enjoy full legal rights, their interests should be protected during their minority and for the future, to preserve their options in adulthood. Informational privacy can be defined as others not having access to one’s personal information without one’s consent, or the consent of a proxy, surrogate decision-maker. This decision-making role, for a minor child, is usually served by the legal parent. But such “gatekeeper” protections are difficult to assure for children in limbo between birthparents and adoptive parents, or children in the foster system. Privacy interests need to be connected with healthcare systems in realistic ways. In the ideal, children’s privacy interests are explicitly defined and strongly asserted in the model legal code, “The Genetic Privacy Act,” authored by Annas, Glantz, and Roche, health law professors at Boston University.27

Informed Consent Based on the Child’s Best Interest
Each medical diagnostic or treatment procedure must receive the informed consent of the patient. This principle, firmly embedded in U.S. law and ethical foundations of medicine, is based on the autonomy of the individual. For children, an adult proxy makes a surrogate decision based on the child’s best interest. The legal parents have the prima facie right to be decision-maker for their children. As some clinical
geneticists and pediatricians have observed, the decision-maker and the target to whom genetic information is disclosed are both ambiguous in the case of foster and pre-adoptive children. Is this decision-maker the state, the social service worker, or the adoption agency?

Child’s “Open Future” and Future Autonomy Rights

A child’s future right to make a decision could be violated if testing for a non-essential medical purpose is conducted on the child; for example, carrier testing or testing for an adult-onset condition that lacks any relevant treatment or prevention in childhood. Philosophers Joel Feinberg and William Ruddick have proposed that every child ought to have an “open future” where the child’s options for opportunities or to make decisions, under a principle of liberty or autonomy, are preserved as far as possible. Testing to serve a current need has a permanent effect on the child’s future: The information is placed in the child’s chart forever. Moreover, not all knowledge of the future is beneficial, even if it predicts truly. Experience in genetic testing for Huntington’s Disease, which arises in a person’s later life, has shown the psychological ill effects of a “genetic prophecy” that can hang over a person’s life, clouding hope and the enjoyment of living life in the present. In effect, taking action precludes options in the child’s open future and possibly robs the child of autonomy to decide what risks and benefits to undertake. Of course, when immediate medical benefit exists, a surrogate ought to make a decision for the child based on a reasonable assessment of what best preserves the child’s survival and health interest.

Creation of a Pool of Un-Adoptable Children or a ‘Biologic Underclass’

One major worry lies in the possible social consequence of genetic testing, namely, enlarging a pool of unadoptable children. This concern is expressed by child welfare professionals, who already face the difficulties of placing foster children, as well as by legal and policy experts. Historically, stigma has attached to adoptive children. To many people, a child not a product of “one’s own” bloodline takes on a secondary or suspect status. One source of adoptive children has been out of wedlock births which has historically brought the stigma of “illegitimacy.”

Suppose genetic testing of foster and adoptive children becomes widespread. Then this whole population of children may come to be viewed as “in need of screening.” Professional and public perception may regard these children as presumptively inferior, as happened at the height of the 1920s eugenics movement. Even if all genetic test results are positive for a given child, the social presumption against normality risks harm and diminished opportunity. Genetic tests create a hierarchy of acceptable to undesirable children, which adds another layer of stigma. Ironically, many of these children suffer only from the condition of needing parents. Yet the rise of genetic testing and screening may function in public perception to discourage prospective adopters. Finally, those whose genetic profiles reveal “problems” may revolve in foster care as a socially rejected class.

Trade-Offs on Genetic Testing of Foster and Adoptive Children

The following dilemma arises in public policy, given rapidly advancing genetic technologies. Either alternative — testing or failing to test — may bring harm to
children in the future, so genetic testing itself may be a double-edged sword. On the one hand, testing may put a child at social risk of genetic discrimination. On the other hand, as genetic medicine advances into the field of pharmacogenomics, medical experts and pharmaceutical industry researchers predict that, within five to ten years, genetic medicine will use genetic profiles to tailor medications to the individual patient. Failing to test may put a child at a disadvantage in receiving particularized healthcare treatments. Thus, when pharmacogenomics becomes the standard of care, we may find that the failure to gather genetic profiles of foster and adoptive children will prove to be a healthcare disadvantage.32

Also, future applications of genetic medicine will make advances beyond the narrow model of testing for monogenic disease associated with one gene marker. The situation will become more complex. For example, if hormonal treatment for irregular menses is indicated, a teenage girl might benefit from knowing whether she carries a BRCA1 marker for early onset breast or ovarian cancer, since hormones exacerbate the risk of breast cancer.33 Hence, as genetic profiles become part of routine standard care, failure to test certain sub-populations could also disadvantage children.

Here we have a clear illustration of how the case of foster and adoptive children serves to delineate public policy issues. Consider the following double bind: Because of heightened risk to future equal opportunity (due to risk of discrimination and stigma), it is in the child’s best interest to avoid genetic testing. However, because technology is revising the medical standard of care and subsequent vulnerability to unequal healthcare access, it is in the foster and adoptive child’s best interest to gain genetic information. Thus, equally with others, they can benefit from genetic medicine early in their life. However, each point of this bind is also fraught with difficulties. The gatekeepers who give informed consent, who weigh the risks of harms and benefits, are often not clearly identified or may be absent. On the other side, questionable access to healthcare for foster and adoptive children calls into question whether expert genetic profiling and diagnostics will be applied. So, the bind is compounded by the prospect of the child facing risks on each point.

Medical experts predict a new focus on children and even infants. Preventive treatments delivered early in the human life-span may be more effective in changing the developmental trajectory of the patient and consequently more advantageous in avoiding chronic conditions or illness. Genetic profiles will reveal these susceptibilities, the earlier the better, and the child will be preventively treated. The upshot is a risk of deepened inequalities in healthcare under what promises to become a technologically transformed standard of care. If healthcare delivery for foster and adoptive children falls below the standard of care, due to lack of genetic testing profiles, then we may see a divide between those who have permanent parents, with means, and those who do not; those who have private and those with public health care. The foster and adoptive group of children may then enter adulthood with comparative healthcare disadvantages. Ultimately, the fact that either policy, testing or not testing, might turn out to harm this group of children or subject them to unequal opportunities, points out the depth and complexity of possible trade-offs between healthcare and social policy.

Conclusion

The best response to these complex dilemmas is continuous vigilance and scrutiny by parents, agencies, legislators, and professionals who deal with child welfare. Current
professional guidelines for testing children, such as the ASHG/ACMG guidelines affirmed here, limit testing to conditions for which an immediate benefit exists in childhood. All children will be protected, including foster and adoptive children, if these are followed. In addition, a “healthcare access condition,” as proposed by this paper, must be added to the calculation of the child’s best interests in each case. It is not enough to test on the supposition that a medical procedure exists: A child must be capable of realistic access to the medical procedure and that access not undermined by gathering genetic information. In addition, already adopted children should enjoy the same medical and ethical standards for testing as do foster and pre-adoptive children, so as to avoid a double standard.

Overall, public policy needs to examine the social consequences of applying new medical and genetic technologies, especially regarding children, who may become the prime patients in the future. Unequal access to social opportunities falls especially hard on children in U.S. society. The prospect of widespread genetic testing or screening threatens to reinforce the cycles of poverty, adding layers of differential access and unequal opportunity to existing patterns. For children, equal opportunity in the present means permanency, stable family life, as well as parental protection and access to healthcare. Equal opportunity in their future means entering adulthood with equal prospects for employment, housing, healthcare, and economic security. These challenges fall especially hard on pre-adoptive and foster children. That increasing numbers of children stay in foster care is a profound national problem. Many foster children exiting the system at eighteen, the age of majority, are thrust out into society with little support and have trouble finding jobs and housing; a pattern that reinforces cycles of poverty and unequal opportunities.

Some experts are worried about a “biologic underclass” arising in the genetic era that adds unequal healthcare access and genetic stigma to already existing inequalities. Children are located at the key developmental stage for grounding adult functioning and equal opportunity through three factors: family, education, and healthcare. Foster and pre-adoptive children comprise an especially vulnerable class of children precisely because they lack legal parents and stable families to lay the groundwork for these future options.

A cautionary tale to guide policy formation is offered here. As technology advances, genetic testing, diagnosis, and treatment will perform different roles. Not all medical or social consequences can be predicted, so the normative standards discussed here will be re-evaluated as new procedures become the standard of care, for example, in the predicted rise of pharmacogenomics. Under new paradigms of healthcare, the lack of genetic testing profiles may leave certain groups of children without equal healthcare. At each stage of this rapidly evolving technology, we need to ask how the health and development of children without permanent parents will be protected both in the short and long term. We need to ask what promotes equity for their future life chances. We need to find ways to support these children in finding stable, nurturing families. Their life prospects in society are lessons to society and are instructive for us all.

The McCormack Institute and the Center for Adoption Research co-sponsored a two-day conference on the Ethics of Adoption organized by Professor Smith at the University of Massachusetts Boston. One day was devoted to the Ethics of Genetic Testing for Foster and Adoptive Children and other to Multi-Cultural Families in Adoption.
NOTES

5. Guggenheim notes: “Close to half the children who live in poverty conditions are African American; only about 16% are white.” See Renny Golden, *Disposable Children*, 68. For additional sources and analysis of how these factors relate to the relative lack of societal supports for U.S. families, see Martin Guggenheim’s review of “Nobody’s Children” by Bartholet, *Harvard Law Review* 113 (May 2000): 1739.

Genetic Testing: A Cautionary Tale of Foster and Pre-Adoptive Children

14. The British Society for Clinical Genetics gives guidelines which specify testing for conditions that arise in childhood, a standard that may give more leeway to parents in cases where there is a need to know. See Angus Clarke, “The Genetic Testing of Children: Report of a Working Party of the Clinical Genetics Society,” Journal of Medical Genetics 31(10) (October 1994): 785–797. See http://www.bshg.org.uk. However, the British Society guidelines urge caution on genetic testing and strongly recommend a thorough evaluation of psychological and social risks. The risk of higher premiums or loss of healthcare insurability, resulting from genetic discrimination, currently an issue in the U.S., needs to be compared with the British society’s universal healthcare coverage in the United Kingdom.

15. This practice of taking family histories, which are entered into the hereditary (now regarded as genetic) information part of the medical record, adds another scientific policy controversy to the present set of issues. Those who oppose a special category for genetic testing information or specific legislation for “genetic discrimination” criticize what they call “genetic exceptionalism” or the view that genetic information can be distinguished from other types of medical information on a patient. The controversy over “genetic exceptionalism” engages the scientific theory that every disease includes some genetic mechanism or can be described partially in genetic terms, even if its causation is not hereditary. For a view affirming the special status of genetic information, see George Annas, “Privacy Rules for DNA Databanks: Protecting Coded Future Diaries,” Journal of American Medical Association 270 (1993): 2346–2350. For a critique see Thomas Murray, “Genetic Exceptionalism and Future Diaries: Is Genetic Information Different from Other Medical Information?” Rothstein, Genetic Secrets. For analysis of privacy in healthcare policy, see Phyllis Freeman and A. Robbins, “The Health Data Privacy Debate: Can We Achieve Comprehension Before Closure?” An Occasional Paper, John W. McCormack Institute of Public Affairs (Boston: University of Massachusetts, 1998).

16. Committee for the National Institute of Human Genome Research and the Institute of Medicine, headed by Lori Andrews. Also the American Society for Human Genetics and the American College of Medical Genetics. See footnote 14 on professional guidelines.

17. See comments of panel members Lanie Ross M.D., Madelyn Freundlich, J.D., Janet Farrell Smith, Ph.D., in the transcript of the forthcoming proceedings “The
Ethics of Genetic Testing in Adoption” from a Colloquium on The Ethics of Adoption, John W. McCormack Institute of Public Affairs (Boston: The University of Massachusetts, 2002).

19. Two legal experts have differed sharply on these issues, Cf. the exchange between Madelyn Freundlich, J.D., MSW, and Leonard Glantz, J.D., Transcript of the Proceedings “Ethics of Genetic Testing,” 36–50.

33. See commentary by Katherine Sims, M.D., Director of the Neurogenetics Clinic at Massachusetts General Hospital, in Transcript of the Proceedings “Ethics of Genetic Testing,” 70–80.