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INTRODUCTION 
The United States offers post-secondary learning opportunities that rival or surpass 

those of any other country in the world. The educational landscape offers 

affordances such as vocational-technical training, community college, public and 

private colleges and universities, for profit institutions and a host of other higher 

education opportunities. Truly motivated high school graduates in this country have 

many options to obtain a skill, certificate or degree despite the opportunity costs 

involved. Furthermore, higher education institutions are making extensive efforts 

to ensure college success. Some of these initiatives include: time-shortened degree 

programs, dual enrollment, experiential course credit, flexible attendance policies, 

credit for military training, learn while you work, and many other adaptations that 

remove or minimize the “you must be on campus full time” requirement. 

Perhaps the most innovative transformation belongs to the online learning 

environment which continually develops new formats such as: fully online, 

blended, flipped, MOOCs and adaptive learning. These initiatives respond to the 

complex lifestyles of students who must manage increasing ambiguity, 

ambivalence, economic demands and uncertainty placed on them by our 

technology-mediated society. Much of this innovation appears to be motivated by 

our increasing understanding of the value-add that comes from certificate or degree 

attainment supporting a healthier society and reducing economic inequality. By 

building human capital we reduce crime rates, stabilize family structures, produce 

more civic minded citizens, and raise those living in poverty into the middle class 

(Becker, 2009). Depending on the discipline in which a student earns a college 

degree, the degree can be worth an average of one million dollars in additional 

lifetime income over a high school diploma; graduate degrees are worth an 

additional million dollars (Carnevale, Cheah, & Rose, 2011). 

Despite these innovations, the educational system in the United States faces 

many challenges that mitigate much of what we hope to accomplish. For instance, 

students living in the bottom economic quartile in this country -- those anyway who 

do not receive additional support -- have an approximate 10% chance of obtaining 
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a college degree; the odds against them are 9:1: however, students living in the top 

economic quartile in this country are 90% sure of college graduation; their odds of 

success are 9:1 (Sherman, 2015). These data regarding an unacceptable inequality, 

sometimes referred to as the Mathew effect (Saleh, & Sanders, 2014), confirm the 

prosperity advantage in our educational system. The economics of attending 

college compound the impacts of disproportionate opportunity. Burgeoning loans 

are crippling students with long term pay back responsibility. Unfortunately, those 

living in poverty who can least afford this kind of financial support have to borrow 

the most (Mitchell & Hackman, 2019). This creates the scarcity phenomenon 

described by Mullainathan and Shafir (2013) in which students living in poverty 

are overwhelmed by the many circumstances they have to juggle in their lives. They 

may be holding down two part-time jobs such that full course loads are not possible.  

Health care becomes a significant financial problem in addition to the costs of 

tuition, textbooks, transportation, and additional expenses. Most often these 

students are forced to borrow money because, unfortunately, they simply do not get 

the information about how to apply for scholarships. The demands and stresses in 

their lives create a fragile balancing act. If a student fails in the attempt to respond 

to any one of these scarcity demands and stresses, that student’s whole life structure 

can come tumbling down. Mullainathan and Shafir (2013) describe it this way: 

What happens when, loaded and depleted, a client misses a class? What 

happens when her mind wanders in class? The next class becomes a lot 

harder. Miss one or two more classes and dropping out becomes the natural 

outcome, perhaps even the best option, as she really no longer understands 

much of what is being discussed in the class. A rigid curriculum – each class 

building on the previous - is not a forgiving setting for students whose 

bandwidth is overloaded. Miss a class here and there and our student has 

started a slide from which she is unlikely to recover. (p. 170)  

Linear classes that must not be missed can work well for the full-time 

student; they do not make sense for the juggling poor. (p. 171) 

However, scarcity appears in circumstances other than underserved 

neighborhoods. Consider working adults who feel pressures from their employers 

to obtain additional skills and academic credentials in order to progress or receive 

promotions. In contemporary society it is not feasible for them to take a hiatus from 

their work and go back to school, full time. Most face arduous time demands in the 

workplace, often compounded with travel requirements that, in many cases, 

interfere with family obligations. These working professionals have no flexibility 

in their lives so even taking courses online over a 16-week semester is simply not 

feasible. They need a compressed educational agenda. For these individuals, time 

is a scarce commodity.  
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Higher education is not immune to scarcity. For instance, faculty and 

administrators must cope with time demands that come from burgeoning 

requirements for communication, interaction, research, publication, community 

service, teaching, and many other aspects of the academic life. Therefore, most 

academics do what Mullainathan and Shafir (2013) label tunneling. They exclude 

other demands and concentrate on the thing that must be completed immediately, 

abandoning all other responsibilities. As Brene’ Brown (2012) found, exhaustion 

is becoming a status symbol in our society. 

There is an additional problem in higher education that prevents capable 

students from obtaining a degree. Anthony Jack (2019) in his book The Privileged 

Poor documents how doubly disadvantaged students (those who have not received 

scholarships to preparatory schools primarily serving the wealthy) face a culture 

that unknowingly and unintentionally excludes them from the opportunities of 

higher education. His research shows that elite schools especially, although making 

every effort to give students from underrepresented neighborhoods access, force 

them into a culture that denies them inclusion. The Mathew effect tells these 

students that they don’t really have a place in what Jack calls “Renowned College.” 

Wealthy students operate with a sense of agency and empowerment. Poor students 

feel isolated, alone, disenfranchised and frustrated; experiences that greatly diminish 

their chances of success. In many instances a wonderful opportunity is lost. 

THE STUDY 

Given these simultaneous opportunities and challenges in American higher education, 

two innovations offer promise: adaptive learning and learning analytics. In this study 

we investigate their interaction for helping students succeed in college Algebra, a 

course that continues to be a challenge for students. We investigate the interaction of 

adaptive learning and learning analytics at two contextually different institutions whose 

members have worked in partnership with the research unit of their common adaptive 

learning platform partner, Realizeit: the University of Central Florida, a large 

metropolitan institution and Colorado Technical University, a primarily online for-

profit institution. The cooperative partnership closely resembles the model proposed 

by Feldstein’s Empirical Educator initiative in which universities and technology 

providers contribute intellectual resources to identify and evaluate effective practices 

in education (Feldstein, 2018). Exploring our own partnership in this work, we 

address the question of whether or not adaptive learning, with its variable time 

learning framework, provides a platform for finding actionable analytics variables 

that predict student success in Algebra and that also are responsive to instruction.  

The phrase “responsive to instruction” refers to our hope that, if we were able to 

identify actionable analytics variables that correlate with positive learning outcomes, 

we also would be able to identify possibilities for teaching curriculum designers and 

instructors how to manipulate these analytics variables to engineer student success.  
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ADAPTIVE LEARNING AND LEARNING ANALYTICS 

 
ADAPTIVE LEARNING 

Throughout the past several years, the implementation of adaptive learning has 

developed rapidly. However, in spite of significant funding by several national 

organizations (Bill & Melinda Gates Foundation, 2014; Association of Public & 

Land-Grant Universities, 2016; Online Learning Consortium, 2016), research 

results have been mixed with a 2016 meta-analysis (Yarnell, Means & Wetzel, 

2016) finding only limited improvement in outcomes at 4 of 15 institutions that 

received funding from the Bill & Melinda Gates Foundation. Much of this research 

is institution centric, focusing on such things as student experience and perception 

of adaptive technology, its integration with mobile learning, or the efficacy of using 

these tools within an online or flipped classroom. 

Nakic, Granic & Glavinic (2015) argued that adaptive learning can facilitate 

improvements in student retention, satisfaction, and the achievement of student 

outcomes. Dziuban, Moskal, Johnson and Evans (2016) found positive reactions to 

adaptive learning technology among students from two different student 

populations, traditional 18-22 year old students attending the University of Central 

Florida and adult students with an average age between 30–39 attending Colorado 

Technical University. Students reported that adaptive learning personalized their 

instruction, helping them learn the material better and increasing their levels of 

engagement (Dziuban, Moskal, Cassisi & Fawcett, 2016). Additionally, adaptive 

learning allowed the student and the faculty members to shift time to learning areas 

that may not get addressed in a traditional classroom setting (Dziuban, Moskal & 

Hartman, 2016). 

Johnson and Zone (2018) and Cavanagh, Chen, Lahcen and Paradiso, 

(2020) discussed the importance of faculty engagement and training as fundamental 

to the utilization and scaling of adaptive learning technology to support data-driven 

decisions. Development challenges included what faculty perceived as the daunting 

number of components, patterns and sequences required to adapt course content 

meaningfully (Panicker, Kumar, Joohn & Srinivasam, 2018). Adaptive learning 

design can vary based upon content. For instance, courses with a linear structure, 

characterized by having one concept following sequentially after another with little 

hierarchical structure are easier to adapt (Cai, 2018). 
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LEARNING ANALYTICS 

With today’s advanced modeling and computing expertise, many universities are 

investigating learning analytics in an attempt to solve the higher education challenge 

of improving student success and retention. As students’ progress through the college 

experience, models are formed using analytics to “predict” which students might be 

at risk. In fact, “technologies for improving analysis of student data” was listed as 

one of the top 10 strategic technologies in the 2019 EDUCAUSE Horizon Report as 

were “learning analytics for student success (institutional level),” highlighting the 

influence of these approaches today (Alexander et al., 2019). 

The examination of the learning analytics national landscape conducted by 

Association for Institutional Research (AIR), NASPA-Student Affairs 

Administrators in Higher Education, and EDUCAUSE found that 91% of 

institutions are investing in analytic studies that are primarily descriptive. These 

efforts focus on describing the student environment and identifying high risk 

courses, although 89% of institutions were engaged in some predictive studies that 

examined factors influencing retention, persistence, and student GPA. Larger 

institutions are more likely to engage in such research. Such institutions use data-

informed models to create early alerts, primarily for academic and faculty advisors 

(Parnell, Jones, Wesaw, & Brooks, 2018). Initiatives such as the Bill & Melinda 

Gates funded and EDUCAUSE led Integrated Planning and Advising for Student 

Success (iPASS) developed guidance and roadmaps for institutions by providing 

financial, technical, and change-management support to these colleges and 

universities (“Integrated Planning and Advising,” 2013). 

Much of the research in learning analytics has focused on work utilizing big 

data methods to help identify effective models that have a high degree of accuracy 

for predicting those students who are most likely to be at risk for not completing 

college (Moskal, Cavanagh, Wang & Zhu, 2020; Simanca, González Crespo, 

Rodríguez-Baena & Burgos, 2019; Smith, Lange & Huston, 2012; Wladis, Hachey 

& Conway, 2014; Miguéis, Freitas, Garcia & Silva, 2018). Algorithms have varied 

widely based on educational context, data at hand, and analyses used, but most have 

incorporated university data captured and stored in the student information system 

(SIS), forming the topics of conferences and journals devoted to learning analytics 

(Society for Learning Analytics Research, 2020; Moskal, Cavanagh, Wang & Zhu, 

2020; Journal of Learning Analytics, 2020). 

This learning analytics research is often institutionally specific examining 

single-use initiatives for prediction of students at-risk; such research can be difficult 

to scale and transport beyond the home institution. As a result, universities that 

incorporate these “big data” initiatives into their plans often rely on outside 

platforms such as those available from the Education Advisory Board (EAB) to 

provide the predictive results in easy-to-use dashboard form Georgia State 
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University is one such school where the Graduation and Progression Success (GPS) 

initiative provided an early warning system that updated students’ grades and 

records nightly, pushing notifications to advisors in cases in which a student was 

flagged as being at risk. The initiative increased graduation rates by 10%, 

decreasing the time to degree, closing the graduation gap for low-income, first 

generation, and minority students; the initiative also increased STEM major success 

(Kamenetz, 2016; Bailey, Vaduganathan, Henry, Laverdiere, & Jacobson, 2019). 

The University of South Florida increased its 6-year graduation rate from 48% to 

73% from 2008-2018 by integrating learning analytics into a cross-functional plan 

to address persistence and graduation rates (Dosal, 2019). However, because these 

initiatives have incorporated learning analytics along with a suite of other 

university-wide tools and initiatives to address student success, it can be difficult 

to determine the direct gains due specifically to the learning analytics tools. 

Politico referred to this use of big data as the “Moneyball” solution for 

higher education (Hefling, 2019). Eduventures reported that these efforts have 

developed into a $500 million market for the learning analytics industry, with 

colleges typically paying hundreds of thousands of dollars to the more than 30 for-

profit companies that sell learning analytics tools (Barshay & Aslanian, 2019). 

We have found an alternative approach through our research using 

Realizeit, an approach that bridges the worlds of adaptive learning, learning 

analytics, and institutional context. Because adaptive learning platforms can 

generate detailed and real-time data regarding student behaviors, engagement, and 

performance in a course, these platforms can provide a rich source of information 

that can help “predict” students’ levels of success. The challenge is predicting 

students’ performance early enough to intervene prior to students having too little 

opportunity to correct their behaviors. 

 

THE PARTNERSHIP 

The University of Central Florida (UCF) is one of 12 universities in Florida’s State 

University System. Over 69,000 students attended during the Fall 2019 semester. 

UCF is a diverse, Hispanic serving institution with 50% first time in college 

students, 48% minority enrollment and an average age of 23.7 (UCF Facts, 2019). 

Colorado Technical University (CTU) is a for-profit university providing 

industry-relevant programs to approximately 25,000 students. Students within 

CTU’s diverse student body are mostly online learners with an average age of 36. 

Both UCF and CTU have extensive support for faculty members who are 

utilizing adaptive learning, including instructional designers who help faculty focus 

on the pedagogy for utilizing various technologies. Both universities use Realizeit, 

with CTU beginning in Fall 2012 and UCF beginning in Fall 2014.  
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Realizeit is an adaptive platform that allows existing content to be integrated 

within, or new content to be created within the framework of the platform. The 

platform can adapt to incorporate distinct characteristics of each instructor, course, 

or institution’s instructional design schema, an outcome the platform achieves by 

separating content from curriculum (Howlin & Lynch, 2014). Realizeit creates a 

map (the Curriculum Prerequisite Network) that provides students many alternative 

pathways to move through the course concepts based on students’ real-time 

knowledge. 

 

 

HOW COLLEGE ALGEBRA BECAME ADAPTIVE AT UCF 

College Algebra at the University of Central Florida (UCF) requires students to sit 

for a mathematics placement examination. Should they not meet the department 

requirement, a noncredit intermediate Algebra (IA) course becomes prerequisite.  

Despite that precondition, at the time of this data analysis, nonsuccess in Algebra 

(a grade of less than C or better) for students enrolling directly or through IA was 

approximately 41%. Students’ odds of success are favorable but only marginally 

(about 1.4:1). Therefore, improving the potential for success motivated UCF to adopt 

the Realizeit adaptive learning platform as the structural foundation for the course. 

Realizeit is content agnostic; therefore design within Realizeit requires that 

course learning materials be created or imported from previously published works. 

UCF’s decision to create the adaptive college Algebra course content provided the 

institution with an opportunity to personalize the learning materials in a manner 

that addressed the common student complaints regarding textbook readability, 

course relevance, and rising textbook costs. The course was designed to incorporate 

objectives-based learning, alternate content for each of the lessons, and 

procedurally generated (algorithmic) questions. These course characteristics, along 

with the adaptive features of the Realizeit platform, collectively fulfil the UCF 

Adaptive Learning Design Framework (Figure 1). 

 

 

 

Figure 1. The UCF Adaptive Learning Design Framework 
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When creating the materials for college Algebra, UCF faculty, instructional 

designers and support staff broke down each course objective to a consistent 

granular level to form the associated learning bits (lessons). For example, 

operations on functions, one of the course topics required as a mandate imposed by 

the Florida State University System , was organized into lessons on finding the sum 

of functions, difference of functions, product of functions, quotient of functions, 

and composition of functions. Each lesson was designed to take between 20 and 30 

minutes; each lesson was followed by a short formative assessment (check of 

understanding). In an effort to make the content understandable, course designers 

insured that the lesson vernacular was stated simply, and that pop-ups were 

embedded within each lesson to provide vocabulary definitions, mathematical 

properties, and formulas, when appropriate. 

At the start of each assignment, students were called upon to complete a set 

of targeted questions (determine knowledge) that represented the objective-based 

lessons contained in the assignment. Based on the results of the answered questions, 

the student settings, and their previous work, the adaptive platform delivered 

personalized content and assessments to the individual student. While personalized 

assessment and content is often based on the results of pretest(s) and/or graded 

assessment(s) (Essa, 2016), the level of personalization in the UCF college Algebra 

course is unique because the content is personalized to UCF as well as to the 

student. Examples unique to UCF were mentions of notable locations, events, and 

programs specific to the University in the lesson examples and exercises. Because 

UCF has a diverse student population, name banks were used in examples and 

exercises that proportionally were representative of student demographics and 

gender were used. To address student concerns regarding course relevance, the 

application problems (word problems) included in practice exercises and 

assessments were personalized to the individual student’s program of study. This 

was accomplished by a two part process. During the question build, nine versions 

of each application problem were created. The mathematics were consistent across 

the nine versions, but each of the versions were tailored to have a scenario 

representative of each of the nine identified programs of study (Arts & Humanities, 

Business Administration, Education & Human Performance, Engineering & 

Computer Science, Natural Sciences, Nursing & Healthcare, Hospitality 

Management, Social Sciences, and Public Affairs). The second part of the process 

required each student to identify with one of the nine programs of study in their 

personalized settings. When the student was delivered an application problem, the 

scenario of the problem was related to that student’s identified program of study.  

In a sense, the result was a sense of increased value-add, since the context presented 

to each student related the content of the mathematical problem to the student’s 

planned future career.  
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Students enrolling in college Algebra at UCF have varying levels of 

understanding and different knowledge sets. In any given class, some students need 

only a quick review of the learning objective content while others benefit from a 

full review of prerequisite material prior to attempting the associated content. The 

adaptive learning pathway includes prerequisite learning materials and an 

acceleration or remediation capability that adapts to students’ knowledge level. 

Utilizing an accelerated timeline, students were able to complete multiple courses 

within one semester thereby reducing time to graduation. The platform also 

provided learning analytics while recommending personalized interventions that 

the instructor could review at the course, lesson, and student level. 

When creating the lessons, designers included alternative adaptive content 

presentation types (text, pencast, and video). Students were delivered the initial 

presentation type based on learning performance and learning characteristics but 

also were provided the option to request an additional presentation, if desired. 

Given that some students repeated a lesson multiple times, the learning content was 

designed to be algorithmic. 

The last of the five features included in the course were procedurally 

generated questions.  Algorithmic, worked-out examples were built to include 

every step of a problem solution, with associated explanations. Similar algorithmic 

examples were created by removing the trivial steps and then providing associated 

explanations. The adaptive platform used preset conditions to deliver very detailed, 

step-by-step, worked-out examples to the struggling student, in hopes of preventing 

at-risk students from becoming lost, whereas the platform delivers to the stronger, 

higher performing students a similar example with the trivial steps and explanations 

removed. 

 

THE SEARCH AT UCF: ACTIONABLE VARIABLES 

Realizeit assembles many student performance and engagement indicators ‘under 

the hood’ and makes them freely available to clients. Because the data are 

uniformly collected, verified, and scaled in a readily usable manner, organizations 

such as the Research Initiative for Teaching Effectiveness (RITE) at UCF have 

experienced a cooperative advantage when in engaging in developing effective 

learning analytics models. The objective of this study was to find through use of 

the Realizeit suite the most effective and actionable variables for predicting and 

facilitating student success in college Algebra.  The indices used for modeling 

development are defined in Table 1. 
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Table 1. Realizeit Metrics - Explanation of Variables 

 

Variable Explanation 

Knowledge State (KS) 

A measure of student ability. The mean level of 

mastery that the students have shown on topics 

they have studied. 

Knowledge Covered (KC) 

A measure of student progress. The mean 

completion state of each of the course 

objectives. 

Calculated (CA) 

An institution-defined combination of several 

metrics, mainly KS and KC, used to assign a 

grade to students. 

Average Score (AS) 
The mean result across all learning, revision, 

practice, and assessment activities. 

Determine Knowledge (DK) 
The percentage objectives on which the student 

completed a Determine Knowledge operation. 

Knowledge State Growth 

(KSG) 

The extent by which a student’s KS has changed 

from the start of the course. Can be positive, 

negative, or zero. 

Knowledge Covered Growth 

(KCG) 

The extent by which a student’s KC has changed 

from the start of the course. Can be positive or 

zero. 

Interactions (IN) 
The engagement level of the instructor(s) with 

the student. The total number of interactions. 

Total Time (TT) 
The total time spent on non-assessment 

activities started by the student. 

Number Revise (NR) 
The total number of node-level activities that are 

classified as revision. 

Number Practice (NP) 
The total number of objective-level practice 

activities. 

 

 

 

The first step in the modeling development process was to configure the 

relationship among the eleven Realizeit indices in a scaled visual space using the 

multidimensional scaling process (Borg, Groenen, & Mair, 2018). This approach 

facilitates interpretation of viable latent clusters, their relationships, and how this 

configuration ___ might inform further procedures. 

The results of that analysis are presented in Figure 2.  
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Knowledge vs. Growth 

Knowledge State  

     Knowledge Covered Knowledge State Growth 

   Calculated Score Knowledge Covered Growth  

 Average Score 

 

 

     Total Time  

 Interactions           Number Revised 

              Number Practiced                              Determine Knowledge 

    

 

R² = .98 

Stress = .003 

Figure 2. Smallest Space Configuration of Realizeit Indices 

 

For the two-dimensional solution, one cluster (upper left) of variables 

reflected knowledge acquired while another configuration (upper right) depicted 

student growth.  A third group of indices (center position) assessed student 

engagement with the learning platform. The single variable “determine knowledge” 

(lower right) measured students’ baseline standing.  The configuration produced 

low stress (.003) on the system and a high squared multiple correlation (.98), 

meaning that the two-dimensional portrayal produced a close approximation to the 

ordered pairwise Euclidian distances in the entire variable set.  The horizontal 

dimension illustrated the counterpoised relationship between acquired knowledge 

and growth. The vertical dimension demonstrated a similar oppositional relationship 

between prior status (determine knowledge) and growth as well. The engagement 

variables were located equidistant from the achievement and growth clusters as 

well, being equidistant from the baseline status of the students, impacting each to a 
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similar degree. This scaling validated the measurement proposition that pretests are 

negatively related to gain scores and that students entering the course at the highest 

levels gain the least (Harris, 1962). This solution was initially encouraging because 

it suggested that students requiring the most predictive analytic assistance (low 

pretest and least knowledge acquired) might have the most to gain.  Furthermore, 

this procedure identified the possible influencing variables independently from 

other considerations such as academic history. However, because research suggests 

that grade point average exerts a strong mediating influence on these procedures 

(Moskal, Cavanagh, Wang, & Zhu, 2020). Therefore, UCF grade point average was 

included within subsequent analysis procedures. 

 

THE NEXT STEP: A SUGGESTED MODEL 

The study continued with a two-level procedure designed to identify which of the 

Realizeit indices mediated by GPA best predicted student success and to obtain some 

indication of the predictive accuracy of the Realizit indices. The first step 

incorporated classification and regression trees (CRT), (Breiman, Friedman, Olshen, 

& Stone, 1984), a data-mining technique that pinpoints classification rules for 

identifying which variables best predict success. To deal with missing values, the 

user does not have to impute values because decision trees have built-in mechanisms, 

such as floating category approaches. Decision trees are excellent methods for 

studying problems such as the problem under considering because decision trees 

determine which variables do the “prediction heavy lifting” for success. 

The follow-up analysis used the variables identified in the decision tree process 

in a logistic regression for dichotomous (binary) success in which one or more of 

the predictors are nominal, ordinal, interval or ratio-level independent variables. 

This was a screening process intended to give some direction for further 

development of the predictive models. The CRT procedure identified three 

variables that were most effective at predicting success in college Algebra at UCF: 

• Grade Point Average (GPA) 

• Total Number of Items Revised (Number Revised) 

• Total Time Spent in the Course (Total Time) 

Those three variables had an overall prediction accuracy rate of 77%. Using those 

three indices in the logistic regression model yielded a 77% prediction accuracy as 

well (Osborne, 2014).  Therefore, GPA, revision, and total time form the foundation 

for this study.  However, in order to build more effective classification models, the 

three identified variables were converted to quartiles so that the gain for analytic 

cohorts might be more accurately identified. In addition, this process permitted a test 

of greatest predicted gain for the lowest performing students versus those that 

demonstrated an initially high achievement level. We sought to determine if what we 

developed would help those in most need by improving their odds of success. 
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Table 2. Algebra Success by GPA, Total Time and Number Revised Quartiles 

 
Q1 Q2* Q3* Q4 

 

GPA 

 

26% 

 

59% 

 

63% 

 

88% 

Total Time 29% 61% 64% 78% 

Number Revised 17% 64% 71% 78% 

     

*Q2-Q3 N.S. for all three variables. 

Table 2 presents the success rates in college Algebra (independently) for the 

GPA, Total Time and Revision quartiles. The patterns appear similar for all three 

indices. Quartile one achieves significantly lower (p=.001) success rates. Bonferroni 

pairwise post hoc comparisons identified non-significant contrasts. Cast in odds ratio 

context, the odds of a student in GPA Q1 not succeeding is almost 3:1 where 

conversely, a student in the top quartile has a 7:1 chance of succeeding. Total time 

conveys the same story: students in Q1 had 2.4:1 odds of nonsuccess but students in 

Q4 had a 3.5:1 chance of success. Number Revised follows similarly. In Q1, students 

had 5:1 odds of nonsuccess, while those in Q4 enjoyed a 5:1 chance of succeeding. 

The reader should remember that the impact of these indices was assessed in 

isolation. Their interaction was not considered; rather, analyzing them independently 

showed the dominant impact of the external variable GPA on student success. 

Using the variables identified in the screening process, the authors used 

CRT to develop a set of predictive rules for determining the likelihood of 

nonsuccess in the college Algebra course. Noting the strong influence of GPA, 

GPA was used a mediator throughout the process. The results of those analyses are 

presented in Tables 3 through 6. Table 3 depicts the decision rule that emerged with 

all three variables as predictors, confirming the strong influence of GPA, with the 

percent of non-success independent of each rule included in the table heading. 

Table 3. Nonsuccess in UCF College Algebra (41%) 

 

 Q1 Q2 Q3 Q4 

                                           If 

Number Revised  ● ● ● 

GPA    ● 

                                            Then 

Nonsuccess= 7%                        n=495 
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Given that the general non-success rate was 41%, the rule indicates that if 

students are in Q2 through Q4 for revision and Q4 for GPA, their chance of 

nonsuccess decreases to 7%. Their odds of succeeding rise to 13:1 (Table 3). 

Responding to the mediating impact of GPA, the decision rule using revision and 

total time for those students in GPA Q1 is presented in Table 4. 

 

Table 4. Nonsuccess for Q1 GPA in Algebra 1 (74%) 

 

 Q1 Q2 Q3 Q4 

                                            If 

Number Revised  ● ● ● 

Total Time    ● 

                                            Then 

Nonsuccess= 39%                        n=124 

 

If students in GPA Q1 can obtain a revision placement Q2 through Q4 and 

a total time of Q4 then their chance of nonsuccess drops from 74% to 39%, 

changing their odds of non-success from about 3:1 to a change of success of 1.5:1, 

better than even and comparable to the class as a whole. This is a dramatic 

improvement from almost certain failure.  What this means is that even students 

with low GPAs can improve their chances of success if they revise a greater number 

of answers and spend a lot more time in the adaptive courseware. 

Table 5 presents similar results for students in GPA Q2-Q3. 

 

 

Table 5. Nonsuccess for Q2, Q3 GPA in College Algebra (39%) 

 

 Q1 Q2 Q3 Q4 

                                       If 

Number Revised  ● ● ● 

Total Time    ● 

                                       Then 

Nonsuccess= 24%                        n=248 
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Remembering that the Bonferroni procedure showed these two quartile 

GPA success rates to be non-significantly different from one other, they were 

treated as a combined group. Their non-success rate was 39%, roughly equivalent 

to the overall value for the class (41%).  However, the rule indicated that if students 

in this group achieved Q2 through Q4 for revision and Q4 for total time, that their 

non-success rate decreased from 39% to 24%. Originally, their chance of success 

was 1.5:1. However, under the rule those odds rise to 4:1. 

The final rule is presented in Table 6 and shows the change in odds for 

students in GPA Q4. 

 

Table 6. Nonsuccess for Q4 GPA in Algebra (12%) 

 

 Q1 Q2 Q3 Q4 

                                        If 

Number Revised  ● ● ● 

Total Time    ● 

                                       Then 

Nonsuccess= 4%                        n=123 

 

From the screening we learned that there was an independent 12% chance 

of non-success for these students.  However, this rules states that if they obtain Q2 

through Q4 for revision and Q4 for total time, then the non-success percentage 

drops to 4%. The odds of success go from 7:1 to 24:1, virtual certainty. 

Table 7 presents the rule-based percentage lift in success chances for each 

of the GPA quartile groups. 

Table 7. Rule-Based Success Gains by GPA Quartiles Based on Number 

Revised and Total Time Quartiles 

 

GPA Quartile Q1 Q2-Q3 Q4 

 

Gains 

 

35% 

 

15% 

 

8% 

 

There is a 35% lift for students in GPA Q1, substantially increasing their 

chance of success. There is a moderate but helpful lift (15%) for students in Q2-Q3 

and very little lift for those individuals in Q4 (8%). The rules were most effective 

for those who needed assistance the most, but, relatively ineffective for those who 

needed it least.  
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HOW COLLEGE ALGEBRA BECAME ADAPTIVE AT CTU 

In 2012, Colorado Technical University (CTU) began researching adaptive learning 

as a tool to improve the academic experience for students and faculty in an open 

enrollment institution. CTU students are predominantly adults with an average age 

in their mid-thirties. As a result, they have varying degrees of work experience and 

training knowledge in subject areas. These varying levels of prior knowledge 

provide a unique challenge for instructors because these instructors teach students 

with diverse skill sets who may not have been in college for long periods of time. 

Adaptive learning provided a method to determine the knowledge level of students 

in a course so that content could be personalized. Dashboards included in adaptive 

learning tools also provided instructors visual insight into progress of students 

taking a particular course. 

CTU programs are taught in an accelerated model; courses are 5.5 weeks in 

length and a full-time course load is considered 2 courses every 5.5 weeks or 4 

courses in an 11-week quarter. Students are able to study part-time as an option to 

accommodate other obligations including employment, family obligations, and 

military commitment. When reviewing adaptive learning vendors, CTU set as 

priority the ability to implement adaptive learning in a number of courses. Realizeit 

provided faculty members the ability to create learning maps specific to course 

objectives as opposed to being provided maps for a particular subject, featured in 

several adaptive courseware platforms. Faculty at CTU created course content with 

the assistance of a curriculum design team led by a Vice President of Technology, 

who was actively engaged in the initial search for a vendor and engaged in the 

development of courses in collaboration with the Provost and Dean of General 

Education. Math and English faculty indicated a desire to participate in a pilot with 

Realizeit and MAT 102 (College Math) and ENG 104 (English Composition) were 

chosen as test bed courses for an initial implementation that included two course 

sections. 

As noted previously, CTU is an open enrollment institution and students are 

required to take up to three math courses depending upon their program of study. 

MAT 102 is a basic math course with wide participation, often taken as a precursor 

to college Algebra. In 2012, college math faculty opted to pilot a fully online, fully 

adaptive college math course. The Realizeit adaptive platform provided CTU math 

faculty with the opportunity to develop content in the course based upon 

predetermined objectives. Faculty worked with curriculum designers to create 

adaptive learning maps including hundreds of questions and problems for students 

to review and complete during the course. 
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The processes of developing the learning maps was similar to those 

described by UCF; specifically, course objectives were broken down into granular 

concepts. A difference in the course development protocols at CTU was the 

inclusion of five top math faculty in the process to ensure that the perspectives of 

multiple faculty members were included in the course development. What made 

course development at CTU substantially different was the fact that courses were 

to be conducted totally online and at an accelerated pace when contrasted with the 

blended format and semester timeframe at UCF. CTU students addressed their 

knowledge of concepts and content determined appropriate to their level of 

achievement in the assessment index (determine knowledge) components of the 

course. Initially, remedial content was not included in the learning maps; however, 

tutoring was available to students through an online math tutoring provider.  

Results from the pilot studies provided improvements in DFW rates in both 

the MAT 102 and ENG 104 courses over several course sessions and the Provost 

worked with colleges and programs to expand the use of adaptive learning into the 

general education program. CTU made a commitment provide faculty with the 

ability to work with CTU’s curriculum design team to create content that was 

specific to course outcomes. At CTU, faculty created a master class that has been 

provided to all students, resulting in hundreds of participants taking the same course 

in a 5.5-week time period. The engagement of the Provost and Vice President of 

Technology in adaptive learning strategies was largely attributable to the perception 

that, overall, adaptive technology could have a substantial positive impact on students 

and faculty once the technology was implemented at scale. 

 

CTU – A TIME-CRITICAL SETTING 

The UCF data suggested an approach to predictive modeling that provides learners 

with concrete and learnable actions that impact their odds of success positively. 

While a UCF course typically lasts 16 weeks, a CTU course lasts just 5.5 weeks. 

The short length of the terms at CTU produces a much more challenging 

environment for any predictive model. In this section of the study, we explore the 

impact of this time constraint on the effectiveness of predictive models.   

 

MODELING 

With the CTU data, we built a sequence of models that provided close to a real-

time prediction of a student’s changing chances of success in a course. This was 

enabled by building a framework that utilizes accumulated learning data at regular 

time slices throughout the course. Traditional approaches that build models based 

on the data at the end of the course are effective for setting expectations of the effort 

levels needed to give students the best chance of success, but are not particularly 

useful for setting incremental metrics or providing guidance based on a student’s 
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current progress. A sequence of models can overcome this shortcoming by 

providing a regular update on the student’s real-time chances of success. 

For this analysis, data were gathered from over 5,000 students across seven 

terms in a math course at CTU. The C5.0 algorithm, an improved version of C4.5 

(Quinlan, 1993), was used to build models using some of the same Realizeit variables 

as those used the UCF study, augmented by additional indicators. The models attempted 

to predict the binary outcome of course success, defined as reaching the required grade 

set by the institution. CTU bases the final math course grade predominately on the final 

Calculated Score metric provided by Realizeit at the end of the term. 

Table 8 explains the variables used in this analysis. Note that the models 

use only behavioral and attainment-based metrics that can be gathered by the 

platform because demographic-based data are generally not available. 

Table 8. Variables Used in the CTU Models 
 

Variable Explanation 

Total Time (totalTime) The total time spent on learning 

Number of activities 

(numActivities) 
The total number of activities started 

Nodes Attempted (numNodes) The number of nodes attempted  

Node Completed (numComp) The number of nodes completed 

Mean Knowledge Covered 

(meanKC) 

The average KC across all objectives 

started  

Start Day (startDay) 
The number of days into the term on which 

the student started learning 

Objectives Attempted 

(numObjectives) 
The number of objectives attempted 

Objectives Completed 

(numObjComp) 
The number of objectives completed  

The analysis addressed two specific questions: 

1. At what point in the course is enough data available to make informed and 

accurate predictions? 

2. How do the models change from one time slice to the next? 

 

ENOUGH DATA 

Adaptive platforms gather data on users as they interact with platform services. 

Realizeit collects highly granular logs of all student interactions with the platform 

and content. As the data grow, the platform builds a picture of how the student learns 

and uses that information to personalize and customize the learning experience.  
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Some interactions and usage types will be more informative than others, 

and some students will generate more data than others. For example, one student 

may answer practice questions, while another may engage in passive reading. The 

platform will gather information on each at differing rates and will, therefore, learn 

to make more effective recommendations and predictions for one student much 

sooner than another. This also will be true for the time slice-based predictive 

models, leading to the question of how much data is needed when building an 

accurate model that can surpass baseline models. 

This analysis used the C5.0 algorithm to build a predictive model for each 

week of the CTU math course. Data generated by the students from the beginning 

of the course up to and including the split point such as mid-course were available 

for each model. The accuracy of all models, including both the C5.0 and simple 

majority class model, was measured using data from the following term. 

The majority class model takes the most common outcome from the 

previous terms and uses it as the predicted outcome for all students in the 

subsequent term. If a course has very high or very low success rates, then this 

baseline model can be accurate. However, it may not be a particularly informative 

model because it does not provide insights into why students are successful or not. 

Figure 3 demonstrates the predictive improvement of the decision tree over 

the baseline. 

 

Figure 3. The Improvement Made by the Decision Tree Model over the 

Baseline Majority Class Model 
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The ratio of the accuracy of the two models provides a single measure of 

the improvement of the decision tree model over the simple majority class model. 

Another way of viewing this is as the payoff for the increased effort of building a 

decision tree. 

For the first two weeks, there was virtually no improvement or payoff. The 

decision tree model gains no advantage over the majority class approach. Not until 

week three are there enough data available to beat the baseline. This is the point at 

which the data have sufficient signal in order to distinguish features that separate 

those students who will go on to be successful from those who will not. At this 

point, the model becomes not just accurate but also increasingly informative. 

Requiring three weeks of data poses a considerable challenge in the CTU 

context because it leaves just two and a half weeks before course completion to 

intervene with students predicted to be unsuccessful. This three-week requirement 

of data is also present in the UCF context, however, with 16-week courses there is 

usually sufficient time to intervene. 

 

VARIABLE IMPORTANCE 

As seen above, there is a critical threshold at Week 3, after which, on average, there 

is enough signal compared to noise to make possible a determination with a high 

level of accuracy the prediction of which students will go on to be successful in the 

course. Therefore, we can expect the models and variables on which these models 

rely to vary considerably with an increasingly stronger signal, as the course 

progresses. 

Predictor Importance (Kuhn & Johnson, 2013) allows us to measure how 

important each variable is to each model. This metric provides a measure of how 

much signal is present in each of the variables in the model when predicting an 

outcome. This information is useful for identifying which variables should be 

monitored most closely by educators to ensure a student is on track for success. 

Comparing the time slice-based models enabled the measurement of the 

change in the predictor importance over time. To simplify the analysis, importance 

ranking was used rather than raw importance scores. The variables were ranked 

from most to least important or by strongest to weakest signal, using the raw scores. 

Examining the results, there are several noteworthy outcomes. First, several 

variables, such as the number of objectives completed (numObjComp), start day 

(startDay), and the number of active days (numActiveDays) remain unimportant 

across all models/time slices. Those last two are interesting as they could be viewed 

as seat-time measures but contain little or no signal for course success. Figure 4 

summarizes the change in variable ranks. 
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Figure 4. The Ranking of Variables for Importance over Time 

Second, measures that capture the quantity of engagement, total time 

(totalTime), and the number of activities (numActivities) start as important but then 

decrease in rank over time, being replaced by the metrics that capture the quality of 

engagement. The number of nodes attempted (numNodes) captures the breadth of 

the engagement, the number of nodes complete (numComp), and the mean 

knowledge covered (meanKC) capture how much has been learned. 

For educators, the variables that need to be monitored change as the course 

progresses. Metrics related to the traditional seat-time view were not predictive of 

student success. While at the beginning of the course, it is important to monitor 

effort levels, as the course progresses, it becomes more important to monitor the 

quality of the engagement and the level of progress of students. 

 

CONCLUSION 

The results of this study in two universities with considerably different 

infrastructures and student populations, conducted with their common platform 

provider, indicated that combining adaptive learning and learning analytics offers 

promise for helping students achieve successful outcomes in college Algebra. The 

adaptive framework advantage lies in its ability to personalize the educational 

experience, customize the content, and provide continuous assessment. Learning 

analytics in its most effective configuration finds outcome variables that identify 



63 

the likelihood of student success early in a course. Ideally, those variables will lend 

themselves to training, instruction, or orientation. When combined, both 

approaches to education create a value-added model that benefits students; 

especially those who, without assistance, are likely to struggle and eventually fail. 

Early work by Carroll (1963) paved the way for adaptive analytics, although 

at the time he proposed his model, learning analytics was yet to be developed or 

implemented. Consider the fundamental equation in which Carroll (1963) defined 

learning as the ratio of time spent and time needed. 

 

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 =  𝑓 (
𝑇𝑖𝑚𝑒 𝑆𝑝𝑒𝑛𝑡

𝑇𝑖𝑚𝑒 𝑁𝑒𝑒𝑑𝑒𝑑
)  (Carroll, 1963, p. 6).  

 

His expanded notion was: 

 

𝑓 (

𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦 (𝑇𝑖𝑚𝑒 𝐴𝑙𝑙𝑜𝑤𝑒𝑑) 
 𝑃𝑒𝑟𝑠𝑒𝑣𝑒𝑟𝑎𝑛𝑐𝑒   

𝐴𝑝𝑡𝑖𝑡𝑢𝑑𝑒

𝑇𝑖𝑚𝑒 𝑁𝑒𝑒𝑑𝑒𝑑
)  (Carroll, 1963, p. 7).  

 

The three terms in the numerator are key issues for predicting success and can be 

written in their Venn format as seen in Figure 5. 

 

Figure 5. An Intersected Adaptive Analytics Model 

Adaptive 
Analytics 

Time Needed 
and Allowed 

Mediated 
Expectations 

Perseverance 

Aptitude 

Likelihood 
of Success 

Potential 
Progress 



64 

The major components of the Carroll model, intersections of aptitude, 

perseverance, and time (needed and allowed) interact to form the meta-components. 

Mediated expectations shows that aptitude is not the only determinant because 

perseverance (engagement) can be an augmenting factor. Aptitude and time interact 

to provide a better indication of success likelihood. Perseverance and time combine 

as an indicator of potential progress.  In his methods Carroll intimated the construct 

of learning analytics forming the proposition: If time allowed is constant then 

knowledge acquired will be the variable. However, if learning is the constant 

(approximately) then time allowed must be the variable. Put another way, if 

students spend exactly one 16- or 5.5-week semester in college Algebra then how 

much they learn, depending on their circumstances, varies. Students have different 

aptitudes, engage differently, and require different amounts of time to reach 

mastery. 

The question becomes can we develop predictive methods and responsive 

models that compensate for the many different abilities and engagement 

idiosyncrasies students bring to their education? If so, what are the mediating 

student characteristics and behaviors, and is it possible to accommodate them in 

our instructional approaches? From these two questions, then, a third question 

emerges: Can an effective system of adaptive analytics be developed with 

responsive and actionable variables that can function in different contexts such as 

the University of Central Florida and Colorado Technical University?  Further, 

what role can an adaptive learning platform provide in the support required by 

universities?  Finally, it becomes incumbent on us to identify the level of 

granularity for which our methods will be most effective. Can we develop learning 

analytics that are effective for individual students or must we find like-cohorts and 

make some estimate of the odds of improvement in a general way, attempting to 

identify the most homogeneous groups possible? This frames the problem of 

individual versus prototype groups. 

The UCF component of this study indicated that the suite of Realizeit 

indices contain two variables that account for most of the variance in student 

success: number of question or items revised and time spent engaged in the course. 

However, in the presence of entering grade point average their effectiveness 

diminishes. Because of this, UCF chose to use GPA not as a predictor but as a 

mediator by forming quartile cohorts. In order to be consistent, that declassification 

scheme was used on revision and time as well. The results from UCF indicate that 

such a declassification scheme compromises some individual precision but 

increases effectiveness of finding indicators that can be integrated into instructional 

protocols, thereby increasing the chances of student success. The best indicator of 

that outcome is that the UCF model gives students with virtually no chance of 

succeeding in college Algebra better than even odds. Certainly, there is variability 

for individuals regarding their chances, but as a whole, to some degree, UCF is able 
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to ameliorate the academic Mathew effect that comes from being in the top GPA 

quartile. When GPA is used as a surrogate “treatment effect” it greatly reduces the 

uncertainty about helping students succeed. Time and revision have fellow travelers 

that can be effective as well. For instance, revision and practice are highly related 

and for the most part would accomplish the same outcomes. Revision just happened 

to emerge as the prime variable in the CRT analysis. There are any number of 

surrogates for time as well, such as a number of activities, nodes attempted and 

completed, and objectives attempted and completed, all of which are highly 

correlated with each other and with time. No variable in this system is unique and 

one variable effectively can be replaced by another with minimal loss of 

information. However, the encouraging part is that both revision and time lend 

themselves to instruction during the course, and can be monitored and 

incrementally improved. Finally, for the UCF study one should remember that this 

model was post hoc with index measures harvested at the conclusion of the course. 

However, the greatest lift for success was achieved for the group that needed it the 

most. In a more compressed time frame those opportunities diminish considerably. 

In fact, the CTU study confronted the problem of time compression full on 

by, capitalizing on cumulative effect information. As emphasized in this work, end-

of-course models (UCF) are excellent for determining prerequisites but are 

ineffective for continuous student status updates. This corresponds to the 

fundamental difference between summative and formative evaluation. The CTU 

work used a different variable configuration from UCF that was amenable to 

continuous time lag modeling. Given that the CTU course is 5.5 weeks in duration, 

it might be speculated that some of the indices do little to reduce uncertainty about 

student success. Secondly, given the compressed nature of the course, it might be 

further hypothesized that initially informative measures may not sustain their 

validity as the course progresses. In the CTU study, cross comparing the predictive 

accuracy of term end outcomes with the dynamic cumulative model indicates a 

relative informational standoff between the two for the first two weeks of class. In 

contrasting baseline and cumulative approaches, the information gain doesn’t 

emerge until about 36% of the course is completed. After that point the information 

gain is accelerated and steep but there are most certainly exaggerated time pressures 

for helping students who have encountered difficulties so late in the course. 

The second component of the CTU work identified a possibly more 

challenging aspect of comparing static (UCF) versus dynamic (CTU) predictive 

analytic models. The information they provide over time changes. So what 

predicted well at the beginning of the course diminished its importance over time, 

suggesting that, like the fundamental principles of adaptive learning, an effective 

adaptive analytics model will require continuous feedback.  Although this 

phenomenon was identified in a 5.5-week course, there is every reason to believe 

that this will happen in a 16-week semester as well. However, both the UCF and 
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CTU models point to the fact that some form of time management and engagement 

through such things as revision activity are fundamental to effective prediction of 

success in college Algebra, independent of institutional context. 

Metaphorically, this study used the “digital learning dust” that the Realizeit 

platform provides as a matter of course. These data, although assessment based, can 

be integrated into the instructional paradigm, not only providing predictive power, 

but also providing opportunities for students to overcome the challenges they 

encounter. In addition, by choosing the title “Adaptive Analytics: It’s About Time” 

we make a double entendre that first, emphasizes the importance of proper time use 

in the learning process. Carroll (1963) and others (Adam 2008; Norberg, Dziuban 

& Moskal, 2011) have demonstrated how time can be a major contributor to 

variations in human behavior, including learning. Therefore, the bottom line of this 

work is that, when mediated by prior achievement, genuine course engagement, 

combined with time needed, form the fundamental components for learning. The 

encouraging aspects of these two studies are that those elements identified are 

treatable student characteristics that can respond to instruction and intervention 

making a case  for giving this approach serious future consideration, now that the 

concept of adaptive analytics viable, and provides the real possibility of actionable 

and continuing real-time information.  Truly it’s about time. 
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