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Abstract: 

2-piperidinone (δ-lactam), a bio-interesting nitrogen-containing six-membered ring 

compound, has attracted much interest from researchers both in synthetic and medicinal 

chemistry. Polysubstituted piperidine derivatives, such as the δ-lactam, serve as a synthon for 

numerous biologically relevant structures and pharmaceutical agents. A novel one-pot 

asymmetric Michael/Mannich/Lactamization sequence promoted by recyclable fluorous 

bifunctional cinchona alkaloid–thiourea organocatalysts is introduced for the synthesis of 

polysubstituted 2-piperidinones bearing four contiguous stereocenters, one of which is a 

fluorinated quaternary chiral center with excellent stereoselectivities (ee up to >99%, dr up to 

>20:1). 
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Introduction: 

Ever since their discovery, heterocyclic compounds have been widely synthesized as the 

building blocks for numerous natural products and pharmaceuticals. Among the bio-interesting 

nitrogen-containing six-membered heterocycles, 2-piperidinone (δ-lactam) has especially 

attracted much attention both in synthetic and medicinal chemistry. Polysubstituted piperidine 

derivatives, such as chiral 2-piperidinones,[1] serve as substructures for numerous biologically 

relevant structures and pharmaceutical agents. Examples of compounds containing the δ-lactam 

moiety include natural products awajanomycin 1,[2] tedanalactam 2,[3] and meloscine 3 (Figure 

1).[4] Other biologically active compounds containing δ-lactam are MDM2 inhibitor AM-8553 

4,[5] prostaglandin agonists 5,[6] and HIV protease inhibitors 6 (Figure 1).[7] In the synthetic 

endeavor of drugs and more natural products, chiral polysubstituted 2-piperidinone has been 

utilized as an efficient fundamental adduct for the synthesis of antimalarial (+)-febrifugine, 

antibiotic and anesthetic prosopis alkaloid (+)-prosophylline, and clinical agent (+)-CP-99,994, 

which is involved in several biological mechanisms such as neurogenic inflammation, pain 

transmission, and regulation of the immune response.[8] With its extensive use as a synthon for 

the synthesis of medicinally interesting compounds, further developments of novel asymmetric 

syntheses of polysubstituted 2-piperidinones are a highly desirable topic of study in both 

synthetic and medicinal chemistry. 
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Organocatalysis is becoming an increasingly important tool for asymmetric synthesis, as 

it possesses the capability to construct complex frameworks with multiple stereogenic centers in 

a highly stereoselective manner from simple substrates. Compared to metal catalysis, 

organocatalysis has the advantages of being free from toxic heavy metals, having mild reaction 

conditions, and possessing easy structural modifications. However, high catalyst loading (up to 

20 mol%) coupled with the difficulty in catalyst recovery is the major drawback of 

organocatalysis. Appropriately, organocatalyst recycling is highly desirable. Among related 

organocascade catalyses, the Michael-initiated cascade reactions play a significant role in the 

sequence, in which the chiral Michael adducts could efficiently serve as synthons for subsequent 

reactions of Michael, Aldol, Darzen, Mannich, Henry or for triple cascade reactions like 

Michael-aldol, Michael-Henry and Mannich-Cyclization.[9] 

In the development of organocatalytic asymmetric synthesis of 6-membered carbon and 

nitrogen-containing heterocycles,[9] there have been numerous reports detailing such reactions. 

Recently, bis-nucleophilic 1, 3-dicarbonyl compounds were found to be versatile Michael donors 

Figure 1. Biologically active 2-piperidinones 
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for nitroolefines resulting in Michael adducts that are capable of undergoing intermolecular 

triplecascade reactions to afford polysubstituted compounds with multiple stereogenic 

centers.[9],[10] The Enders group, in 2012, were the first to introduce a series of highly diastereo- 

and enantioselective one-pot 1,3-dicarbonyl compounds-initiated cascade reactions[10] that 

entailed a consecutive three-component sequence, such as the Michael/Michael/aldol sequence, 

for the synthesis of hexasubstituted cyclohexanols 1[11] and spirocyclohexanepyrazolones 2 

(Scheme 1).[12] In 2014, P. Chauhan and coworkers also introduced a Michael/aza-

Henry/cyclization sequence to make tetrahydropyridines 3.[13] Some other compounds that were 

created using cascade reactions involving Michael, Mannich, Henry, and Aldol reactions[14] are 

 

 

Scheme 1. Previous work by Enders group. 

dihydropyridinones,[15] piperidinones,[16] and dihydroquinolinones.[17] To the best of our 

knowledge, the asymmetric synthesis of chiral polysubstituted 2-piperidinones via Michael-

initiated reactions between 1, 3-dicarbonyl compounds and nitroolefines followed by 

intermolecular cascade reactions is not known. With organofluorine chemistry also being an 
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active topic in medicinal and agricultural chemistry,[18] we would like to introduce here a 

recyclable fluorous organocatalyst-catalysed one-pot Michael/aza-Henry/lactamization 

sequence for the synthesis of fluorinated 2-piperidinones 4 bearing four stereogenic centers 

(scheme 2).   

 

Scheme 2. 1,3-Dicarbonyl compounds for asymmetric cascade reactions 

Atom and step economic one-pot synthesis, toxic transition metal-free 

organocatalysis, and catalyst recycling are important green synthetic techniques. As part of 

our continuous efforts to develop recyclable fluorous organocatalysts[19] for the asymmetric 

synthesis of organofluorine compounds,[20] we have recently reported one-pot fluorination 

and Michael addition reactions for the synthesis of α-fluorinated and alkylated 1,3- 

dicarbonyl compounds.[20c] The reactions were promoted by fluorous bifunctional cinchona 

alkaloid–thiourea organocatalyst cat-1, which was recovered by fluorous solid-phase 

extraction (F-SPE) with >98% purity. Since the fluorinated carbon of the 1,3-dicarbonyl 

compounds is more nucleophilic and thus favourable for the Michael addition, we 

envisioned that such compounds could be used in the development of Michael/aza-

Henry/lactamization sequence for the synthesis of fluorinated 2-piperidinones. 
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Experimental Method: 

 A solution of fluorous catalysts (0.025 mmol) in toluene (0.5 mL) and trans-β-

nitrostyrene (0.25, mmol) was stirred at room temperature for 20 min., and then 

fluorinated 1,3-diester (0.3 mmol) was added. The reaction mixture was stirred for 24 h 

followed by the addition of ethanol (1 mL), benzaldehyde (0.25 mmol), NH4OAc (0.3 

mmol) as well as 4 drops of piperidine. The reaction mixture was stirred for 24 h at 40 oC. 

The purification by Yamazen AI-580 flash column system with Agela silica gel columns 

(EtOAc/CH2Cl2) afforded fluorinated 2-piperidinone. 

 The chemicals and solvents used for the reactions were purchased from 

commercial sources and used as received. 1H and 13C NMR spectra were recorded on a 

300 MHz Varian NMR spectrometer. The ratios of the diastereomers were determined by 

1H NMR. Only the peaks from the major diastereomer are given below. LC-MS was 

performed on the Agilent 2100 system with a C18 column for separation. Mass spectra 

were recorded in APCI (atmospheric pressure chemical ionization). Flash 

chromatography separations were performed on Yamazen system with Agela silica gel 

columns. High-resolution mass spectrometry (HRMS) was performed using an ESI-

TOF/MS instrument. 
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Results and discussion: 
 

 

 

 

 

By following our previous study on the asymmetric Michael addition between α-fluoro β-

ketoesters and nitroalkenes in the presence of recyclable fluorous thiourea catalysts, we 

synthesized the Michael adduct 7a. We first explored the asymmetric aza-Henry and 

sequential lactamization reactions using enantiomerically pure Michael adduct 7a (99% 

ee),[20a,b] benzaldehyde 8a, and NH4OAc as substrates and previously reported recyclable 

fluorous bifunctional cinchona alkaloid–thiourea cat-1 as a catalyst (Table 1).[20c] During 

our initial study and condition optimization, it was found that carbonates (entry 1 and 2) 

could not serve as effective bases to promote this cascade reaction and a more basic NaOH 

afforded the product to only 23% yield after 48 h with three diastereomers in a ratio of 5:5:1 

Entry Base (equiv) Solvent T (oC) Yield (%)b drc ee (%)d 
1 K2CO3 (0.5) EtOH 25 trace ND ND 
2 Cs2CO3 (0.5) EtOH 25 trace ND ND 
3 NaOH (0.5) EtOH 25 23 5:5:1 ND 
4 piperidine (0.5) EtOH 25 42 6:1 98 
5 piperidine (0.5) EtOH 40 72 6:1 98 
6 piperidine (0.25) EtOH 40 36 6:1 98 
7 piperidine (0.75) EtOH 40 68 6:1 98 
8 piperidine (0.5) EtOH 0 75 1.25:1 93(89)[e] 
9 piperidine (0.5) EtOH 60 75 1.25:1 ND 
10 piperidine (0.5) MePh 40 27 5:1 98 
11 piperidine (0.5) CH2Cl2 40 12 ND ND 
12 piperidine (0.5) MeCN 40 10 ND ND 
13f piperidine (0.5) EtOH 40 68 5:3:1 25 
a Reaction of 0.25 mmol 7a in 1.0 mL of solvent, 1:1:1.2 of 7a:8a:NH4OAc. b Yield of isolated product. c 
Determined by 1H NMR. d Determined by HPLC on Venusil Chiral OD-H column with 90:10 hexane/i-PrOH as the 
eluent. e ee of the minor diastereoisomer. f Without catalyst 

Table 1. Optimization of aza-Henry and lactamization reactions a 
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(entry 3). When piperidine was screened, a product with an excellent 98% ee and a good 6:1 dr 

was achieved with 42% yield (entry 4) making it an effective choice of base for the reactions. 

When the effects of temperature were examined in entries 4, 5, 8, and 9, reactions at lower 

temperatures (25 oC) led to reduced yields, but good disatereoselectivity (6:1) (Table 1, 

entry 4), while higher temperatures (50 or 60 oC) increased product yields to 75% but 

decreased the diastereomeric ratios to 1.25:1 (entries 8 and 9). It was found that a moderate 

temperature of 40 oC (entry 5) could give both good stereoselectivities and yield. A reaction 

with MePh as a solvent gave the product in high dr and ee but low yield (entry 10). Further 

optimization for solvents indicated that EtOH was the best choice and the desired product was 

obtained in excellent diastereo- and enantioselectivities (entry 4). A control reaction without 

using a catalyst afforded 68% product yield, but gave three diastereomeric products (5:3:1) 

in low ee (25%) (entry 13). After screening bases (K2CO3, Cs2CO3, NaOH, and piperidine), 

solvents (EtOH, MePh, CH2Cl2, and MeCN), and reaction temperatures (25-60 oC), we 

found that the reaction with 0.5 equiv. of piperidine as a base and EtOH as a solvent at 40 oC 

for 48 h gave fluorinated 2-piperidinone 4a in 72% yield with a good diastereoselectivity 

(6:1) and excellent enantioselectivity (98% ee) (Table 1, entry 5). 
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With the optimized reaction conditions for the successful aza-Henry and sequential 

lactamization reactions, we started to develop an organocatalytic asymmetric one-pot process 

for the synthesis of 2-piperidinones by combining the aza-Henry reaction with the Michael 

addition of the fluorinated dicarbonyl compounds to the nitroalkenes.[20c] Commercially 

available 2-fluoro-1,3-diester 5 was used as the Michael donor and the same fluorous 

bifunctional cinchona alkaloid–thiourea cat-1 was used as a catalyst for the cascade 

reactions. The solvent for the one-pot reaction had to be modified because while MePh was 

effective for the Michael addition,[20c] EtOH displayed the best results for the aza-Henry 

reaction. We found that after the Michael reaction was carried out in MePh, EtOH could be 

added to the reaction mixture for the sequential aza-Henry reaction. The best ratio of 

solvents was 1:2 MePh:EtOH (Table 2, entry 8) and the best ratio of reactants was 

Entry 5:6a MePh 
/EtOHb 

Yield (%)c drd ee 
(%)e 

1 1:1 1:0 22 5:1 98 
2 1:1 1:0.5 39 5:1 98 
3 1:1 1:1 47 6:1 99 
4 1:1 1:1.5 65 6:1 99 
5 1:1 1:2 67 6:1 99 
6 1:1 1:2.5 65 6:1 99 
7 1.25:1 1:2 72 6:1 99 
8 1.5:1 1:2 78 6:1 99 
9 2:1 1:2 69 6:1 99 
a Reaction of 0.25 mmol of 6a in 0.5 mL of MePh. b Ratio of solvents for the 2nd reaction. c Yield of 
isolated product 4a. d Determined by 1H NMR.e Determined by HPLC on Venusil Chiral OD-H column 
with 90:10 hexane/i-PrOH as the eluent 

Table 2. Optimization of Michael/aza-Henry/lactamization reactions a 
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1.5:1:1:1.2 5:6a:PhCHO:NH4OAc for the one-pot cascade reactions. The time for the aza-

Henry and lactamization reactions could be reduced from 48 h to 24 h. 

   

 

 

Entry Product R1 R2 Yield  (%)c drd ee (%)e 
1 4a C6H5 H 78 6:1 99 
2 4b C6H5 4-F 85 8:1 98 
3 4c C6H5 4-Br 87 10:1 96 
4 4d C6H5 4-NO2 83 10:1 96 
5 4e C6H5 4-CF3 85 15:1 97 
6 4f C6H5 4-tbutyl 35 4:1 97 
7 4g C6H5 4-OMe 30 4:1 95 
8 4h C6H5 2,3-Cl 55 3.5:1 90 
9 4i C6H5 4-F,3-OMe 62 2:1 93(90)f 
10 4j 3-ClC6H4 H 65 3:1 90 
11 4k 4-BrC6H4 H 68 3.5:1 93 
12 4l 4-MeC6H4 H 55 5:1 95 
13 4m 4-OMeC6H4 H 69 3:1 91(90)f 
14 4n 2-Furyl H 62 3.5:1 99(99)f 
15 4o 4-BrC6H4 4-Br 67 4:1 99 
16 4p 4-OMeC6H4 4-Br 65 3:1 98(99)f 
a Reaction of 0.25 mmol of 6 in 0.5 mL of MePh. b Add 1.0 mL of EtOH for the aza-Henry reaction, 1.5:1:1:1.2 of 
5:6:8:NH4OAc. c Yield of isolated product. d Determined by 1H NMR. e Determined by HPLC on Chiral column 
with hexane/i-PrOH as the eluent. f ee of the minor diastereoisomer 

 

  A variety of nitroalkenes 6, as well as benzaldehydes 8 were tested to explore the 

scope of the one-pot Michael/aza-Henry/lactamization reactions (Table 3). The 

employment of both electron-donating and -withdrawing (entries 2-9) groups at the para-

position of the aryl rings in	
  benzaldehydes showed little effect on the enantioselectivities 

of the products. Benzaldehydes with electron-withdrawing groups (F, Br, NO2, CF3) at 

the para-position gave products 4b-e in 83-87% yields with >8:1 dr and >96% ee (Table 

3, entries 2-5). These higher product yields may be attributed to easy formation of imines 

Table 3. Scope of one-pot Michael/aza-Henry/lactamization reactions a, b 
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of theses aldehydes with NH4OAc. On the contrary, benzaldehydes with an electron-

donating group, such as t-Bu and OMe or disubstituted groups, gave products 4f-i with 

reduced yields (30-62%) and dr (2:1 to 4:1) due to unfavourable electronic and steric 

effects (Table 3, entries 6-9). Reactions with nitroalkenes bearing different R1 groups 

resulted in the desired products 4j-m in good and consistent yields (55-69%) and dr (3:1 

to 3.5:1) (entries 10-13), while keeping excellent ee values. Furthermore, a reaction with a 

nitroalkene bearing a furyl ring gave product 4n in good yield and enantioselectivity 

(entry 14). Similar results were obtained from the reactions with 4-bromobenzaldehyde 

and other substituted nitroalkenes (entries 15-16). A reaction using formaldehyde and 

vinyl amine was also attempted. Highly reactive formaldehyde reduced the time for the 

aza-Henry reaction to 3 h and gave N-vinylated 2-piperidinone 4r in 57% yield with a 

good dr and ee (Scheme 3). 

 

 

 The relative configuration of the final products was determined by NOE contacts 

between the concerning hydrogen atoms, whereas the absolute configuration of the four 

stereogenic centers of 2-piperidinone products was assigned by investigating the 

configurations of related Michael addition and 6-membered products reported in 

literature[15]-[17],[21] and also by obtaining the single X-ray crystal structure of 4c (Figure 2). 

Scheme 3. One-pot synthesis of 4r 
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In the Michael/aza-Henry/lactamization reaction process, fluorous cat-1 with a (S)-C9 

stereogenic center induces the formation of a (S)-2 stereogenic center in the Michael 

addition product (Scheme 4). This compound undergoes the aza-Henry reaction with 

benzaldehyde and NH4OAc to form compound 5 and is then cyclized to form 2-

piperidinone 4 bearing four contiguous stereogenic centers. The results in Table 3 and 

Scheme 2 indicated that fluorous cat-1 is a good catalyst that is responsible for excellent 

product stereoselectivities. 

 

 

 

 

 

	
  

 

 

 

 

Figure 2. X-ray crystal structure of 4c 

Scheme 4. Stereochemistry of the one-pot reactions 
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We tested the efficiency of fluorous catalyst recovery by performing fluorous 

solid-phase extraction (F-SPE).[22] After the completion of the reaction, the concentrated 

reaction mixture was loaded onto a fluorous silica gel cartridge. The cartridge was first 

eluted with 80:20 MeOH/H2O for the product and other non-fluorous components. The 

fluorous catalyst remained on the cartridge until it was eluted with MeOH. The catalyst 

was recovered in 94% yield and 98% purity, and could be reused without further 

purification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   16	
  

Conclusion: 

Using recyclable fluorous bifunctional cinchona alkaloid–thiourea as a catalyst, which 

was recovered in 94% yield and 98% purity, a protocol optimized with green techniques was 

introduced for the one-pot asymmetric synthesis of 2-piperidinone. In summary, we have 

developed a recyclable fluorous bifunctional cinchona alkaloid–thiourea promoted one-pot 

asymmetric Michael/Mannich/Lactamization triple cascade reaction of fluorinated 1,3-

dicarbonyl compounds, β-nitro-olefins, aldehydes and amines to provide potentially bioactive 

fluorinated poly-substituted 2-piperidinones in very good yields and up to high diastereo- and 

excellent enantioselectivities. 
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Analytical Data of Products: 

Ethyl -3-fluoro-5-nitro-2-oxo-4,6-diphenylpiperidine-3-carboxylate (4a): 

 
White solid, yield: 32 mg (78%), 6:1 dr, 99% ee. The enantiomeric excess was determined by 

HPLC on on Venusil Chiral OD-H with hexane/i-PrOH (90:10) as the eluent. Flow rate: 1.0 

mL/min, λ = 254 nm: tminor = 28.90 min, tmajor = 16.90 min. 1H NMR (300 MHz, DMSO-d6): δ 

9.28 (s, 1H), 7.47–7.28 (m, 8H), 7.26–7.11 (m, 2H), 5.53 (d, J = 3.7 Hz, 1H), 5.43 (t, J = 3.6 Hz, 

1H), 4.57 (dd, J = 33.0, 3.4 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 1.11 (t, J = 7.1 Hz, 3H). 19F (282 

MHz, CDCl3): δ 162.88 ppm. MS (ACPI) m/z: 416.1 (M+1). HRMS (ESI): calcd. for 

C20H19FN2O5[M+Na]+ 409.1176; found 409.1170. 

 

Ethyl 3-fluoro-6-(4-fluorophenyl)-5-nitro-2-oxo-4-phenylpiperidine-3-carboxylate (4b): 

 
White solid, yield: 34 mg (85%), 8:1 dr, 98% ee. The enantiomeric excess was determined by 

HPLC on on Venusil Chiral OD-H with hexane/i-PrOH (80:20) as the eluent. Flow rate: 1.0 

mL/min, λ = 254 nm: tminor = 11.66 min, tmajor = 8.50 min. 1H NMR (300 MHz, CDCl3) δ 7.48-

7.19 (m, 7H), 7.13 (d, J=4.6 Hz, 2H), 6.10 (s, 1H), 5.35 (t, J = 9.1 Hz, 1H), 5.21 (d, J = 9.9 Hz, 

1H), 4.39 (dd, J = 30.6, 12.3 Hz, 1H), 4.22 (q, J = 7.2 Hz, 2H), 1.15 (t, J = 7.1 Hz, 3H). 13C NMR 

(75 MHz, CDCl3): δ 13.91, 50.19, 50.44, 59.93, 62.98, 87.71, 116.75, 117.04, 128.81, 128.92, 

129.03, 129.17, 129.59, 215.98 ppm. 19F NMR (282 MHz, CDCl3): δ 110.22, 162.80 ppm. MS 

(ACPI) m/z: 405.1 (M+1).  
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Ethyl 6-(4-bromophenyl)-3-fluoro-5-nitro-2-oxo-4-phenylpiperidine-3-carboxylate (4c): 

 
White solid, yield: 40 mg (87%), 10:1 dr, 96% ee. The enantiomeric excess was determined by 

HPLC on on Venusil Chiral OD-H with hexane/i-PrOH (90:10) as the eluent. Flow rate: 1.0 

mL/min, λ = 254 nm: tminor = 25.62 min, tmajor = 19.97 min. 1H NMR (300 MHz, CDCl3): δ 7.59 

(d, J = 11.1 Hz, 2H), 7.38 – 7.04 (m, 7H), 6.46 (s, 1H), 5.35 (t, J = 9.1 Hz, 1H), 5.17 (d, J = 9.9 

Hz, 2H), 4.37 (dd, J = 30.7, 12.4 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 1.13 (t, J = 7.1 Hz, 3H). 13C 

NMR (75 MHz, CDCl3): δ 13.81, 49.85, 50.37, 59.92, 63.04, 87.72, 124.82, 128.46, 129.02, 

129.59, 132.90, 133.96, 162.63, 164.43, 178.44, 215.96 ppm. 19F NMR (282 MHz, CDCl3): δ 

162.83 ppm.MS (ACPI) m/z: 467.1 (M+1). HRMS (ESI): calcd. for C20H18BrFN2O5[M+Na]+ 

487.0281; found 487.0293. 

 

Ethyl 3-fluoro-5-nitro-6-(4-nitrophenyl)-2-oxo-4-phenylpiperidine-3-carboxylate (4d): 

 
White solid yield: 35 mg (83%), 10:1 dr, 96% ee. The enantiomeric excess was determined by 

HPLC on on Venusil Chiral OD-H with hexane/i-PrOH (90:10) as the eluent. Flow rate: 1.0 

mL/min, λ = 254 nm: tminor = 97.22 min, tmajor = 67.28 min. 1H NMR (300 MHz, CDCl3): δ 8.31 

(d, J = 8.8 Hz, 2H), 7.58 (d, J = 8.8 Hz, 2H), 7.45 – 7.04 (m, 5H), 6.76 (s, 1H), 5.45–5.15 (m, 

2H), 4.59–4.26 (m, 1H), 4.18 (q, J = 7.2 Hz, 2H), 1.11 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, 

CDCl3): δ 215.96, 201.71, 141.94, 129.76, 129.12, 128.08, 124.99, 87.65, 63.22, 60.03, 50.30, 

50.05, 13.97 ppm. 19F NMR (282 MHz, CDCl3) δ 163.09 ppm MS (ACPI) m/z: 432.1 (M+1)  
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Ethyl3-fluoro-5-nitro-2-oxo-4-phenyl-6-(4-(trifluoromethyl)phenyl)piperidine-3-

carboxylate (4e): 

 
White solid, yield: 38 mg (85%), 15:1 dr, 97% ee. The enantiomeric excess was determined by 

HPLC on on Venusil Chiral OD-H with hexane/i-PrOH (90:10) as the eluent. Flow rate: 1.0 

mL/min, λ = 254 nm: tminor = 26.56 min, tmajor = 12.73 min. 1H NMR (300 MHz, CDCl3): δ 7.71 

(d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 7.40–7.10 (m, 5H), 5.44–5.11 (m, 2H), 4.40 (dd, J = 

30.7, 11.7 Hz, 1H), 4.18 (q, J = 7.2 Hz, 2H), 1.11 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, 

CDCl3): δ 164.58, 164.25, 163.10, 162.81, 129.66, 129.37, 129.14, 129.11, 129.06, 127.41, 

126.72, 126.67, 88.05, 63.30, 60.31, 50.34, 50.10, 13.84 ppm. 19F NMR (282 MHz, CDCl3): δ -

63.75, -163.34 ppm. MS (ACPI) m/z 455.1 (M+1)  

 

Ethyl 6-(4-(tert-butyl)phenyl)-3-fluoro-5-nitro-2-oxo-4-phenylpiperidine-3-carboxylate (4f): 

 
White solid, yield: 15 mg (35%), 4:1 dr, 97% ee. The enantiomeric excess was determined by 

HPLC on on Venusil Chiral OD-H with hexane/i-PrOH (90:10) as the eluent. Flow rate: 1.0 

mL/min, λ = 254 nm: tminor = 19.42 min, tmajor = 13.77 min. 1H NMR (300 MHz, CDCl3) δ7.44 

(d, J = 8.3 Hz, 2H), 7.34–7.06 (m, 7H), 6.91 (s, 1H), 5.80 (dd, J = 12.3, 6.2 Hz, 1H), 5.48–5.18 

(m, 1H), 4.42 (dd, J = 30.9, 12.3 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 1.31 (s, 9H), 1.20 (t, J = 7.1 

Hz, 3H). 13C NMR (75 MHz, CDCl3): δ 164.90, 163.54, 153.13, 131.11, 130.28, 128.93, 128.62, 

128.60, 126.99, 126.53, 126.17, 125.86, 83.69, 62.98, 57.03, 44.76, 44.52, 34.70, 31.16, 

13.92.ppm. 19F NMR (282 MHz, CDCl3): δ -63.75, -163.50 ppm MS (ACPI) m/z: 443.1 (M+1)  
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Ethyl 3-fluoro-6-(4-methoxyphenyl)-5-nitro-2-oxo-4-phenylpiperidine-3-carboxylate (4g): 

 
White solid, yield: 12 mg (30%), 4:1 dr, 95% ee. The enantiomeric excess was determined by 

HPLC on on Venusil Chiral OD-H with hexane/i-PrOH (85:15) as the eluent. Flow rate: 1.0 

mL/min, λ = 254 nm: tminor = 52.40 min, tmajor = 25.26 min. 1H NMR (300 MHz, CDCl3) δ 7.37–

7.21 (m, 7H), 6.95 (d, J = 8.7 Hz, 2H), 6.00 (s, 1H), 5.35 (t, J = 9.1 Hz, 1H), 5.16 (d, J = 10.1 Hz, 

1H) 4.38 (dd, J = 30.7, 12.4 Hz, 1H), 4.23 (q, J = 7.2 Hz, 2H), 3.83 (s, 3H), 1.16 (t, J = 7.1 Hz, 

3H). 13C NMR (75 MHz, CDCl3): δ 201.69, 129.49, 129.16, 128.98, 128.22, 118.72, 114.53, 

63.21, 60.59, 55.13, 50.30, 13.82, 8.01 ppm. 19F NMR (282 MHz, CDCl3): δ -163.09 ppm MS 

(ACPI) m/z: 417.1 (M+1)  

 

Ethyl 6-(2,3-dichlorophenyl)-3-fluoro-5-nitro-2-oxo-4-phenylpiperidine-3-carboxylate (4h): 

 
Colorless oil, yield: 25 mg (55%), 3.5:1 dr, 90% ee. The enantiomeric excess was determined by 

HPLC on Venusil Chiral OD-H with hexane/i-PrOH (80:20) as the eluent. Flow rate: 1.0 

mL/min, λ = 254nm: tminor = 13.62 min, tmajor = 11.28 min. 1H NMR (300 MHz, CDCl3) δ 7.57 

(dd, J = 7.8, 1.7 Hz, 1H), 7.49–7.15 (m, 7H), 6.30 (s, 1H), 5.84 (d, J = 10.0 Hz, 1H), 5.70–5.46 

(m, 1H) , 4.42 (dd, J = 31.0, 12.4 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 1.14 (t, J = 7.1 Hz, 3H). 13C 

NMR (75 MHz, CDCl3): δ 216.15, 201.46, 132.45, 129.80, 129.32, 129.29, 129.24, 128.71, 

86.00, 63.21, 57.57, 50.34, 50.10, 13.99 ppm. 19F NMR (282 MHz, CDCl3): δ -164.16 ppm. MS 

(ACPI) m/z: 456.1 (M+1). 
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Ethyl 3-fluoro-6-(3-fluoro-4-methoxyphenyl)-5-nitro-2-oxo-4-phenylpiperidine-3-carboxy- 

late (4i): 

 
White solid, yield: 27 mg (62%), 2:1 dr, 93% ee. The enantiomeric excess was determined by 

HPLC on on Venusil Chiral OD-H with hexane/i-PrOH (95:5) as the eluent. Flow rate: 1.0 

mL/min, λ = 254 nm: tminor = 25.02 min, tmajor = 6.36 min. 1H NMR (300 MHz, CDCl3) δ 7.46–

7.22 (m, 5H), 7.11 (dd, J = 10.7, 8.3 Hz, 1H), 7.02–6.74 (m, 2H), 5.45–5.22 (m, 1H), 5.17 (dd, J 

= 9.9, 2.7 Hz, 1H), 4.37 (dd, J = 30.8, 12.4 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.92 (s, 3H), 1.13 

(t, J = 7.1 Hz, 4H). 13C NMR (75 MHz, CDCl3): δ 164.57, 163.09, 155.16, 152.21, 129.57, 

129.49, 129.12, 129.01, 128.56, 119.60, 119.50, 117.13, 116.88, 111.37, 87.70, 63.03, 60.39, 

56.42, 50.41, 50.16, 13.86 ppm. 19F NMR (282 MHz, CDCl3): δ -131.85, -132.67, -162.56, -

164.68 ppm. MS (ACPI) m/z: 435.1 (M+1). 

 

Ethyl 3-fluoro-6-(3-fluoro-4-methoxyphenyl)-5-nitro-2-oxo-4-phenylpiperidine-3-carboxy- 

late (4i): 

 
White solid, yield: 27 mg (65%), 3:1 dr, 90% ee. The enantiomeric excess was determined by 

HPLC on on Venusil Chiral OD-H with hexane/i-PrOH (90:10) as the eluent. Flow rate: 1.0 

mL/min, λ = 254 nm: tminor = 31.12 min, tmajor = 23.62 min. 1H NMR (300 MHz, CDCl3) δ 7.50–

7.40 (m, 3H), 7.33 (dd, J = 6.7, 2.8 Hz, 2H), 7.29–7.23 (m, 2H), 7.23–7.16 (m, 1H), 7.14–7.06 

(m, 1H), 6.55 (s, 1H), 5.79 (dd, J = 12.3, 6.2 Hz, 1H), 5.43 (d, 1H), 4.59 – 4.14 (m, 3H), 1.25 (t, 

J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 134.88, 133.16, 130.51, 130.23, 129.95, 129.51, 
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129.38, 129.32, 128.94, 127.66, 127.19, 126.74, 126.72, 83.46, 63.29, 57.29, 44.53, 44.28, 

13.97.ppm 19F NMR (282 MHz, CDCl3): δ -163.19 ppm. MS (ACPI) m/z: 421.1 (M+1). 

 

Ethyl 4-(4-bromophenyl)-3-fluoro-5-nitro-2-oxo-6-phenylpiperidine-3-carboxylate (4k): 

 
White solid, yield: 32 mg (68%), 3.5:1 dr, 93% ee. The enantiomeric excess was determined by 

HPLC on Venusil Chiral OD-H with hexane/i-PrOH (80:20) as the eluent. Flow rate: 0.6 

mL/min, λ = 254nm: tminor = 22.54 min, tmajor = 13.57 min. 1H NMR (300 MHz, CDCl3) δ 7.45 

(dd, J = 8.5, 5.5 Hz, 5H), 7.32 (dd, J = 6.7, 2.6 Hz, 2H), 7.08 (d, J = 8.3 Hz, 2H), 6.78 (s, 1H), 

5.77 (dd, J = 12.4, 6.3 Hz, 1H), 5.41 (d, J = 6.5 Hz, 1H) , 4.54 – 4.08 (m, 3H), 1.24 (t, J = 7.1 Hz, 

3H). 13C NMR (75 MHz, CDCl3) δ 134.32, 133.09, 132.62, 129.78, 129.62, 129.31, 129.21, 

128.66, 124.82, 87.90, 63.23, 60.37, 50.56, 50.31, 14.07.ppm 19F NMR (282 MHz, CDCl3): δ -

164.83 ppm. MS (ACPI) m/z: 466.1 (M+1). 

 

Ethyl 3-fluoro-5-nitro-2-oxo-6-phenyl-4-(p-tolyl)piperidine-3-carboxylate (4l): 

 
White solid, yield: 22 mg (55%), 5:1 dr, 95% ee. The enantiomeric excess was determined by 

HPLC on Venusil Chiral OD-H with hexane/i-PrOH (85:15) as the eluent. Flow rate: 0.5 

mL/min, λ = 254nm: tminor = 13.38 min, tmajor = 10.54 min. 1H NMR (300 MHz, CDCl3) δ 7.46–

7.41 (m, 2H), 7.35–7.28 (m, 2H), 7.07 (s, 5H), 5.78 (dd, J = 12.4, 6.2 Hz, 1H), 5.39 (d, J = 5.8 

Hz, 1H), 4.56– 4.11 (m, 3H) , 1.21 (t, J = 7.1 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H). 13C NMR (75 

MHz, CDCl3): δ 138.80, 133.53, 129.94, 129.65, 129.17, 128.42, 127.81, 127.24, 118.50, 83.76, 
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62.96, 57.18, 44.37, 44.12, 21.06, 13.92 ppm. 19F NMR (282 MHz, CDCl3): δ -164.85 ppm MS 

(ACPI) m/z: 401.1 (M+1).  

 

Ethyl 3-fluoro-4-(4-methoxyphenyl)-5-nitro-2-oxo-6-phenylpiperidine-3-carboxylate (4m): 

 
White solid, yield: 28 mg (69%), 3:1 dr, 91% ee. The enantiomeric excess was determined by 

HPLC on Venusil Chiral OD-H with hexane/i-PrOH (90:10) as the eluent. Flow rate: 1 mL/min, 

λ = 254nm: tminor = 45.22 min, tmajor = 39.45 min. 1H NMR (300 MHz, CDCl3): δ 7.43 (dd, J = 

6.5, 3.6 Hz, 2H, 7.39 – 7.29 (m, 2H), 7.21 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.9 Hz, 2H), 6.31 (s, 

1H), 5.32 (dd, J = 12.2, 10.1 Hz, 1H), 5.18 (dd, J = 9.9, 2.7 Hz, 1H), 4.47 – 4.10 (m, 3H), 3.76 (s, 

3H), 1.17 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3): δ 164.65, 163.18, 162.88, 160.42, 

135.43, 130.51, 129.83, 127.19, 127.00, 121.58, 114.55, 88.36, 63.13, 60.85, 55.37, 49.95, 49.70, 

14.17. ppm. 19F NMR (282 MHz, CDCl3): δ -163.30.MS (ACPI) m/z : 417.1 (M+1).. 

 

Ethyl 3-fluoro-4-(furan-2-yl)-5-nitro-2-oxo-6-phenylpiperidine-3-carboxylate (4n): 

 
White solid, yield: 23 mg (62%), 3.5:1 dr, 99% ee. The enantiomeric excess was determined by 

HPLC on Venusil Chiral OD-H with hexane/i-PrOH (95:5) as the eluent. Flow rate: 1 mL/min, λ 

= 254nm: tminor = 24.66 min, tmajor = 22.90 min. 1H NMR (300 MHz, CDCl3): δ 7.44 (dd, J = 8.3, 

4.9 Hz, 4H), 7.36–7.27 (m, 2H), 6.40 (s, 1H), 6.33 – 6.29 (m, 1H), 6.23 (d, J = 3.3 Hz, 1H), 5.76 

(dd, J = 11.8, 6.1 Hz, 1H), 5.40 (d, J = 5.8 Hz, 1H), 4.65 (dd, J = 29.2, 11.9 Hz, 1H), 4.39 (q, J = 

7.1 Hz, 2H), 1.35 (t, J = 7.2 Hz, 3H) 13C NMR (75 MHz, CDCl3): δ 215.55, 201.27, 143.95, 

143.40, 134.78, 130.46, 129.68, 126.89, 110.81, 86.64, 73.17, 63.32, 60.41, 44.36, 41.60 ppm. 
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19F NMR (282 MHz, CDCl3): δ -161.22, -170.03. MS (ACPI) m/z: 377.1 (M+1). HRMS (ESI): 

calcd. for C18H17FN2O6[M+Na]+ 399.0968; found 399.0978. 

 

Ethyl 4,6-bis(4-bromophenyl)-3-fluoro-5-nitro-2-oxopiperidine-3-carboxylate (4o): 

  
White solid, yield: 36 mg (67%), 4:1 dr, 99% ee. The enantiomeric excess was determined by 

HPLC on Venusil Chiral OD-H with hexane/i-PrOH (90:10) as the eluent. Flow rate: 1 mL/min, 

λ = 254nm: tminor = 49.20min, tmajor =22.47 min. 1H NMR (300 MHz, CDCl3): δ 7.58 (d, J = 8.5 

Hz, 2H), 7.47 (d, J = 8.6 Hz, 2H), 7.29 – 7.01 (m, 5H), 5.32 – 5.21 (m, 1H), 5.16 (dd, J = 8.7, 3.8 

Hz, 1H), 4.35 (dd, J = 30.4, 12.2 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 1.16 (t, J = 7.1 Hz, 3H). 13C 

NMR (75 MHz, CDCl3): δ 199.78, 164.57, 162.66, 133.87, 132.91, 132.49, 132.30, 132.24, 

130.70, 130.21, 128.80, 128.43, 124.82, 124.03, 87.53, 63.24, 60.05, 49.80, 49.55, 13.93. 19F 

NMR (282 MHz, CDCl3): δ -163.05, -164.70 ppm. MS (ACPI) m/z: 545.1 (M+1). HRMS (ESI): 

calcd. for C20H17Br2FN2O5[M+Na]+ 564.9386; found 564.9384. 

 

Ethyl 6-(4-bromophenyl)-3-fluoro-4-(4-methoxyphenyl)-5-nitro-2-oxopiperidine-3-carbo- 

xylate (4p): 

 
Colorless oil, yield: 28 mg (65%), 3:1 dr, 98% ee. The enantiomeric excess was determined by 

HPLC on Venusil Chiral OD-H with hexane/i-PrOH (90:10) as the eluent. Flow rate: 1 mL/min, 

λ = 254nm: tminor = 30.16 min, tmajor = 20.45 min. 1H NMR (300 MHz, CDCl3): δ 7.58 (d, J = 8.3 

Hz, 2H), 7.21 (d, J = 8.5 Hz, 2H), 7.12 (d, J = 8.6 Hz, 2H), 6.82 (d, J = 8.6 Hz, 2H), 6.35 (s, 1H) 

, 5.76 (dd, J = 12.4, 6.3 Hz, 1H), 5.38 (dd, J = 6.3, 3.1 Hz, 1H), 4.47 – 4.15 (m, 3H), 1.24 (t, J = 
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7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3): δ 134.22, 132.91, 132.55, 132.47, 130.34, 129.80, 

129.61, 128.80, 128.45, 124.61, 121.23, 118.54, 114.41, 87.97, 63.02, 60.12, 55.20, 49.71, 49.47, 

13.97. 19F NMR (282 MHz, CDCl3): δ -165.28 ppm. MS (ACPI) m/z: 435.1 (M+1). 

 

Ethyl 1-allyl-3-fluoro-5-nitro-2-oxo-4-phenylpiperidine-3-carboxylate (4q): 

 
Colorless oil, 20 mg (57%), 5:1 dr, 92% ee. The enantiomeric excess was determined by HPLC 

on Regis (R,R)-Whelk-O1 with hexane/i-PrOH (80:20) as the eluent. Flow rate: 1 mL/min, λ = 

254nm: tminor = 12.34 min, tmajor = 9.52 min. 1H NMR (300 MHz, CDCl3): δ 7.62–7.03 (m, 5H), 

5.79 (ddd, J = 12.5, 10.4, 5.3 Hz, 1H), 5.45 (ddd, J = 11.4, 8.4, 6.2 Hz, 1H), 5.32 (dd, J = 21.1, 

5.5 Hz, 2H), 4.43 – 4.11 (m, 3H), 4.10 – 3.82 (m, 4H), 1.13 (t, J = 7.1 Hz, 3H). 13C NMR (75 

MHz, CDCl3): δ 131.16, 130.95, 130.37, 129.27, 129.19, 129.01, 128.10, 120.15, 81.29, 62.81, 

49.64, 49.41, 48.39, 13.87. 19F NMR (282 MHz, CDCl3): δ -158.92, -165.17 ppm. MS (ACPI) 

m/z: 351.1 (M+1). HRMS (ESI): calcd. for C17H19FN2O5[M+H]+ 351.1356; found 351.1354. 
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X-Ray Report of 4c: 
	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Crystallographic data (excluding structural factors) for compound 4c also has been deposited at 
the Cambridge Crystallographic Data Centre under the deposition number CCDC 1043112. 

Bond precision c-c=0.0097 Å  Wavelength=1.54184 
Cell a=22.744(3)  b=7.5503(4)  c=16.0634(18) 

α=90 β=131.075(18) γ=90 
Temperature 173K 

 
 Calculated Reported 
Volumn 2079.5(7) 2079.5(6) 
Space group C 2 C 1 2 1 
Hall group C 2y C 2y 
Moiety formula C20 H18 Br F N2 O5 C20 H18 Br F N2 O5 
Sum formula C20 H18 Br F N2 O5 C20 H18 Br F N2 O5 
Mr 465.26 465.27 
Dx,g cm-3 1.486 1.486 
Z 4 4 
Mu (mm-1) 3.073 3.073 
F000 944.0 944.0 
F000’ 944.14  
h,k,lmax 27,9,19 27,9,19 
Nref 4027[ 2174] 2972 
Tmin,Tmax 0.541,0.782 0.398,1.000 
Tmin’ 0.232  
 
Data completeness= 1.37/0.74   Theta(max)= 71.104 
R(reflections)= 0.0511( 2872)   wR2(reflections)= 0.1329( 2972) 
S = 1.079    Npar= 264 
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LC-MS, 1H, 13C, 19F NMR Spectra of Products: 
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Chiral LC of Products: 
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