8-2010

Beef, Mutton, Pork, and a Taste of Turtle: Zooarchaeology and Nineteenth-Century African American Foodways at the Boston-Higginbotham House, Nantucket, Massachusetts

Michael Andrew Way
University of Massachusetts Boston

Follow this and additional works at: http://scholarworks.umb.edu/masters_theses

Part of the African American Studies Commons, Archaeological Anthropology Commons, and the United States History Commons

Recommended Citation

This Open Access Thesis is brought to you for free and open access by the Doctoral Dissertations and Masters Theses at ScholarWorks at UMass Boston. It has been accepted for inclusion in Graduate Masters Theses by an authorized administrator of ScholarWorks at UMass Boston. For more information, please contact library.uasc@umb.edu.
BEEF, MUTTON, PORK, AND A TASTE OF TURTLE:
ZOOARCHAEOLOGY AND NINETEENTH-CENTURY AFRICAN AMERICAN FOODWAYS AT THE BOSTON-HIGGINBOTHAM HOUSE, NANTUCKET, MASSACHUSETTS

A Thesis Presented
by
MICHAEL A. WAY

Submitted to the Office of Graduate Studies,
University of Massachusetts Boston,
in partial fulfillment of the requirements for the degree of

MASTER OF ARTS

August 2010

Historical Archaeology Program
BEEF, MUTTON, PORK, AND A TASTE OF TURTLE:
ZOOARCHAEOLOGY AND NINETEENTH-CENTURY AFRICAN AMERICAN FOODWAYS AT THE BOSTON-HIGGINBOTHAM HOUSE, NANTUCKET, MASSACHUSETTS

A Thesis Presented

by

MICHAEL A. WAY

Approved as to style and content by:

David B. Landon, Senior Scientist, Fiske Center for Archaeological Research
Chairperson of Committee

Stephen A. Mrozowski, Professor of Anthropology
Member

Heather B. Trigg, Research Scientist
Member

Stephen W. Silliman, Program Director
Historical Archaeology Program

Stephen A. Mrozowski, Chairperson
Department of Anthropology
ABSTRACT

BEEF, MUTTON, PORK, AND A TASTE OF TURTLE:
ZOOARCHAEOLOGY AND NINETEENTH-CENTURY AFRICAN AMERICAN
FOODWAYS AT THE BOSTON-HIGGINBOTHAM HOUSE, NANTUCKET,
MASSACHUSETTS

August 2010

Michael A. Way, B.A., University of California Berkeley
M.A., University of Massachusetts Boston

Directed by David B. Landon

In 1774, nearly ten years before slavery was abolished in Massachusetts, an emancipated African American weaver named Seneca Boston purchased a tract of land in the Newtown section of Nantucket, Massachusetts. It is here that over the next thirty years Seneca Boston and his Wampanoag wife, Thankful Micah, would build a house, now known as the Boston-Higginbotham House, and raise six children. The Boston-Higginbotham House was home to the descendents of Seneca Boston and Thankful Micah for over one hundred years. Throughout the 19th century a vibrant and active African American community was developing in Newtown, and several generations of the Boston family played an integral role in this community’s development. This thesis
utilizes foodways as an entrée into the lives of these individuals through a
zooarchaeological analysis of faunal remains deposited as trash from the meals they
consumed. Focusing specifically on the animal components of their diets, this thesis
considers the role that the foods they consumed may have played in constructing,
reconstructing, and negotiating social and economic statuses and ethnicity and in
challenging racist stereotypes and ideologies.
DEDICATION

For my Grandmother, Helen S. Fink,
for her love, support, encouragement,
strength, and enduring spirit.
ACKNOWLEDGEMENTS

Just as folk wisdom has it that it takes a whole village to raise a child, it takes a whole community to produce a thesis. I would like to thank Dr. David B. Landon for his support, advice, encouragement and reassurance throughout the process of writing this thesis, in addition to his helpful commentary and keen insight that were integral to producing a better thesis. I would also like to thank Dr. Heather B. Trigg and Dr. Stephen A. Mrozowski for their willingness to serve on my thesis committee and for their insightful and helpful comments. Thanks are also due to Teresa Dujnic Bulger for inviting me to be a part of the fieldwork and for her encouragement and support throughout the thesis process. Also, the Nantucket field crew – Kate Descoteaux, Kate Johnson, Marisa Patalano, and Ashley Peles, – deserve a shout-out for recovering the bones analyzed in this thesis and for their help and encouragement throughout the analytical and interpretive processes.

I would like to thank the Museum of African American History, Boston, particularly L’Merchie Frasier, and the Andrew Fiske Memorial Center for Archaeology at UMass Boston for their dedication to the preservation of the Boston-Higginbotham House and for allowing me the opportunity to be a part of such a meaningful and important project. I would also like to extend my gratitude to Barclay Simpson and the Simpson Strong-Tie Corporation for their support through the “Put Something Back” (PSB) Scholarship, which was integral to making this experience and this thesis possible. Thanks are in order for my cohort, especially Meagan Conway, Kelly Ferguson, Nicki
Hise, Johann Furbacher, Craig Brown, and Martha Sulya in addition to Laura Ng for always listening and being calming influences throughout this process.

I would also like to thank my friends and family who have been so supportive throughout the process of producing this thesis. Infinite thanks and gratitude are due to Seth Lippincott, my roommate and friend, for tolerating my moodiness and for always listening to my ideas, triumphs, and pitfalls. If it weren’t for your patience and friendship I never would have made it through this process. I would also like to extend a special thank-you to Marisa D. Patalano, whose calming words of wisdom, sense of humor, willingness to listen, encouragement, and hugs helped me through this process, especially in the most stressful and difficult of times. Additionally, thanks are due to my family for tolerating my absence for these past two years and for ensuring that I still feel like part of the family. Without the support and encouragement of my father, Joseph M. Way, none of this would have been possible. Thanks are also due to my grandmother, Helen Fink, my Aunt Carol, my Uncles Dave and Lee, my cousins Joey and Cori and their families, and to Aunt Estelle and Cousins Claire, Kayla, and Deena for all of their support and encouragement.

Finally, a big thank-you is due to all of my friends, but especially Aniela Travers, Eric Piper, Seth Lippincott, Jessica Beckham, Zain Chini, Pete Bonebakker, Mary Hauser, and Dr. Laurie Wilkie for their friendship, encouragement, for reminding me to relax and enjoy the process, and for providing many enjoyable distractions. Finally, thanks to Robyn Read for her friendship, for tolerating my absence, and for providing me with the inspiration to carry on even when things were tough.
TABLE OF CONTENTS

DEDICATION .. vi

ACKNOWLEDGMENTS .. vii

LIST OF FIGURES ... x

LIST OF TABLES .. xi

CHAPTER

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. RESEARCH CONTEXT</td>
<td>9</td>
</tr>
<tr>
<td>3. SOCIAL AND HISTORICAL CONTEXT</td>
<td>25</td>
</tr>
<tr>
<td>4. MATERIALS AND METHODS</td>
<td>40</td>
</tr>
<tr>
<td>5. SUB-ASSEMBLAGE SUMMARIES</td>
<td>55</td>
</tr>
<tr>
<td>6. COMPARATIVE ANALYSIS</td>
<td>85</td>
</tr>
<tr>
<td>7. CONCLUSION</td>
<td>123</td>
</tr>
</tbody>
</table>

APPENDIX

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. LINE DRAWINGS OF BUTCHERY MARKS</td>
<td>130</td>
</tr>
</tbody>
</table>

REFERENES CITED ... 134
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>New England Map</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Nantucket Map</td>
<td>33</td>
</tr>
<tr>
<td>3.</td>
<td>Boston-Higginbotham House Site Map</td>
<td>42</td>
</tr>
<tr>
<td>4.</td>
<td>Total Assemblage Biomass</td>
<td>58</td>
</tr>
<tr>
<td>5.</td>
<td>Cattle Skeletal Recovery by NISP</td>
<td>78</td>
</tr>
<tr>
<td>6.</td>
<td>Cattle Skeletal Recovery by Percent Expected in an Individual</td>
<td>78</td>
</tr>
<tr>
<td>7.</td>
<td>Caprine Skeletal Recovery by NISP</td>
<td>79</td>
</tr>
<tr>
<td>8.</td>
<td>Caprine Skeletal Recovery by Percent Expected in an Individual</td>
<td>79</td>
</tr>
<tr>
<td>9.</td>
<td>Pig Skeletal Recovery by NISP</td>
<td>80</td>
</tr>
<tr>
<td>10.</td>
<td>Pig Skeletal Recovery by Percent Expected in an Individual</td>
<td>80</td>
</tr>
<tr>
<td>11.</td>
<td>Cattle Expected/Recovered Percentages</td>
<td>81</td>
</tr>
<tr>
<td>12.</td>
<td>Caprine Expected/Recovered Percentages</td>
<td>81</td>
</tr>
<tr>
<td>13.</td>
<td>Pig Expected/Recovered Percentages</td>
<td>81</td>
</tr>
<tr>
<td>14.</td>
<td>Kitchen Midden Sub-Assemblage Biomass</td>
<td>82</td>
</tr>
<tr>
<td>15.</td>
<td>North Yard Sheet Midden Sub-Assemblage Biomass</td>
<td>82</td>
</tr>
<tr>
<td>16.</td>
<td>Midden/Garden Fill Sub-Assemblage Biomass</td>
<td>83</td>
</tr>
<tr>
<td>17.</td>
<td>Trash Pit Sub-Assemblage Biomass</td>
<td>83</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Total Assemblage Summary by Taxonomic Class</td>
<td>56</td>
</tr>
<tr>
<td>3. Taxonomic Representation by Sub-Assemblages</td>
<td>59</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

In October of 2008, two months before the election of the first African American President of the United States of America, a California Republican group released a newsletter containing an inflammatory image depicting then Senator Barack Obama on a ten dollar food stamp surrounded by what degrading racist stereotypes have perpetuated as typical African American fare. When Diane Fedele, the president of Chaffey Community Republican Women, Federated, the group responsible for creating and distributing the image, was questioned about its overtly racist nature, Fedele reportedly told a local newspaper that “[She] never connected” and that “It was just food to [her]. It didn’t mean anything else” (Salon.com 2008).

Fedele may have been telling a half-truth by declaring that the foods depicted in the image did not mean anything more to her, as she is an affluent white person unaffected by the perpetuation of such derogatory stereotypes. However, her statement belies the fundamental notion that food can and \textit{does} mean something more than simply subsistence (Franklin 2001; Kalčík 1984; Mintz 1996; Singleton 1995; Twiss 2007). As Franklin (2001:103) astutely observes, “That degrading representation of blacks eating
watermelon and fried chicken persist in the minds of white Americans underscores the symbolic power of foodways in projecting our notions of race, culture, and identity.” Beyond fulfilling a biological requirement to eat, foods and foodways can represent powerful and significant familial and cultural traditions, serving as indicators of individual and collective identities, but they can be used to marginalize people and to perpetuate racist stereotypes and ideologies as well (Franklin 2001; Kalčík 1984; Mintz 1996). Foodways can also be mobilized as part of overt social and political displays, or they can be used to provide a measure of familiarity and comfort in the form of favorite foods, or dishes that remind one of his or her childhood; comfort food. As such, foodways studies based on archaeological and zooarchaeological analyses have the potential to illuminate many aspects of the daily lived experiences of the people of the past, including those of marginalized individuals and communities living in highly racialized and segregated societies.

The racial stereotypes surrounding the foods displayed in the 2008 newsletter in California probably have their roots in racial ideologies that developed in the 19th century or perhaps even earlier. This was a time when racialization, discrimination, prejudice, and inequality came to dominate America’s socio-political climate, and this accurately characterizes the social environment that New England’s African American communities were forged in, actively fought against, and had many successes in changing. This thesis takes us roughly two hundred years into the past and across the country to 19th-century Nantucket, Massachusetts in a study of the foodways of free African Americans living at
the Boston-Higginbotham House, which housed members of the Boston family and its descendents for over one hundred years (Figure 1).

For African American New Englanders, the late 18th and 19th centuries were a time of intensifying discrimination, segregation, and struggles against social and institutional inequalities perpetuated by racist ideologies. Yet for many of these African American communities, such as the one in Newtown on the island of Nantucket, Massachusetts, this was also a time of emancipation with the abolition of slavery in Massachusetts in 1783, community-building, community activism, and dramatic social and political changes that allowed some individuals and families that were once treated as chattel to form their own communities and to rise to economic and social prominence.
within them (Kaldenbach-Montemayor 2006:29). The story of Seneca Boston of Nantucket, an emancipated African American weaver who through his own enterprise procured land and commissioned the building of the Boston-Higginbotham House is a prime example of this transformation from property to prominence. Stories such as Seneca Boston’s, however, are more of the exception rather than the rule precisely because opportunities for free African Americans were tempered by the development and deployment of racist ideologies that had significant negative impacts their lives throughout the 19th and well into the 20th century.

However, Massachusetts’ African American communities actively fought against the racism that sought to minimize their social, political, and economic power. They fought for the integration of public schools. They also argued eloquently and fought valiantly and effectively against the enslavement of their counterparts in the South, playing a key role in rallying both black and white people to fight for abolition (Horton and Horton 1979; Jacobs 1993; Levesque 1994). Through the development of close-knit communities and institutions including churches, schools, and meeting houses such as the African Meeting Houses of Boston and Nantucket, Massachusetts’ African Americans were able to question and counter racism and prejudice, to fight for abolition in the South, to demand educational equality, and to argue for their acceptance as equals in a segregated and inherently unequal society (Curry 1981; Horton and Horton 1979; Hayden 1983; Kendrick and Kendrick 2004).

An investigation of the foods consumed at the Boston-Higginbotham House can help us understand how its residents created, expressed, recreated, and maintained their
identities with and through the preparation and consumption of particular foods. Such an investigation can also contribute to deeper and fuller understandings of African American foodways in Massachusetts and the Northeast. Though as in any household guests would probably have been invited to dine at the Boston-Higginbotham House on various occasions, it is likely that most of the meals consumed at this private residence were consumed by the families residing in the house, perhaps sometimes including other family members living in the area as well. As a result of the Boston-Higginbotham House’s function as a private residence of a prominent African American family, the foodways reconstructed here are indicative of their quotidian food preferences, demonstrating the foods that were prepared and consumed on a regular basis, thus providing insight into the relationship between foodways and identity formation.

Research Approach

What can the foodways at the Boston-Higginbotham House tell us about the formation and maintenance of individual and family identities? Do the foodways at the Boston-Higginbotham House reflect uniquely African American foodways in the Northeast? Are there factors other than ethnicity that can account for the foodways of the Boston-Higginbotham House residents? Is ethnicity, including the ethnicity of the Boston-Higginbotham House residents, accessible through faunal remains in areas where market systems largely determine food availability?

To answer these questions, this thesis provides a comparative analysis of the faunal remains recovered from Nantucket’s Boston-Higginbotham House, reconstructing the faunal component of the diet of its residents, investigating the breadth and depth of
animal species consumed, assessing the frequency of particular regions associated with particular cuts of meat, and determining the probable sources of these animals. These data are then compared with data from other sites, including Boston’s African Meeting House and the neighboring 44 Joy Street tenement; the Narbonne House of Salem, Massachusetts; and the Casey/Carr site of Saunderstown, Rhode Island. Ultimately this thesis assesses how these foodstuffs represent choices made by free African Americans at the Boston-Higginbotham House within the context of larger market and provisioning systems. In choosing certain foods over others, these individuals were able to express, define and redefine certain aspects of their identities.

In addition to the analysis of faunal remains, documentary evidence pertaining to the acquisition, preparation, consumption, cultural influences, and perceptions of food in both the free African American and the European American communities of Boston and Nantucket is incorporated to provide a fuller and more contextual understanding of the foodways these faunal remains represent. These documents include cookbooks; a servant’s guide; the logbooks of grocers and provisioners; documents including probates, wills, and contracts that mention livestock or farming; and other forms of media relating to the acquisition, preparation, and consumption of food, particularly meats. Faunal remains constitute the primary artifact group in this analysis, however, other categories of material culture are included to facilitate a more complete and accurate analysis.

Chapter Layout

This thesis is designed to orient the reader to the research context that situates this project, and subsequently provides a relevant social and historical background to
understanding free African American foodways in 19th-century Nantucket before presenting the zooarchaeological analyses of the faunal assemblage and the interpretation made from these data in concert with data from the documentary record.

The second chapter analyzes some of the more significant works and trends in African American archaeology, with particular focus on the development of African American foodways and identity studies. This includes an engagement with some of the issues that researches in these fields have encountered in their studies.

The third chapter establishes an historical context for 19th-century Nantucket by looking at the formation of its African American community in Newton and the development of the social, political, educational, and religious institutions created to facilitate their advancement and social cohesion and to fight against racism, injustice, and inequality. It also considers the prominent role the Boston family had in establishing, supporting, and leading this community.

The fourth chapter describes the archaeological excavation methods, the division of the Boston-Higginbotham House into more meaningful sub-assemblages, the faunal analysis methods, and dating techniques used to establish terminus post querns (TPQ’s) for the deposits.

The fifth chapter summarizes and compares the findings from the zooarchaeological analysis of the Boston-Higginbotham House sub-assemblages, providing detailed descriptive and quantitative data derived from these sub-assemblages.

The sixth chapter brings together the results of the sub-assemblage analyses and the documentary data to present interpretations of the foodways reconstructed at the
Boston-Higginbotham House. These data are subsequently placed in a comparative framework with other 19th-century Massachusetts and New England sites to provide a richer and more nuanced analysis, as well as to identify similarities and differences that may help explain the foodways patterning observed at the Boston-Higginbotham House. In this comparative analysis, the issues of what factors influence foodways patterning and whether ethnic foodways can be delineated in market-dominated provisioning systems is addressed. Finally, this analysis considers how foodways may have contributed to the construction, maintenance and reproduction of identities of the free African American residents of the Boston-Higginbotham House during the 19th century.
CHAPTER 2

RESEARCH CONTEXT

This thesis is situated in the larger theoretical context of African American historical archaeology, particularly in the subfield of African American historical zooarchaeology. This chapter highlights some theoretical trends in African American archaeology and zooarchaeology relevant to this thesis. African American archaeology today continues to develop alongside an increasing interest in African American history and the roles, contributions, and influences of African Americans in the broader field of American history.

The scholarly legacy of African American history can be tracked back to some of the great African American scholars and activists of the 19th century, including Booker T. Washington (1965) and W.E.B. Du Bois ([1939] 1975, [1897] 1999). For example, Du Bois’ ([1897] 1999:11) notion of “double consciousness,” originally published in an 1897 edition of *Atlantic Monthly*, still bears great scholarly significance and interpretive power in understanding how African Americans and other ethnic groups are forced to reconcile two conflicting identities: an American identity that posits equality for all, yet also a racialized one based on physical characteristics, namely skin color, that propagates
unequal treatment, discrimination, and harassment that modifies the supposed equality of all Americans.

Interest in African American archaeology grew rapidly during the 1960’s and 1970’s in conjunction with Civil Rights movement, in part in response and resistance to racism, as a form of social activism, and as a way to bring voices to those silenced in much of the documentary record (Dujnic 2005:10; Mintz and Price 1992:vii-ix; Singleton 1995, 1999:1). Alongside this growth in African American history came the development of African American archaeology, which focused on the materiality of enslaved populations in the American South. One example of earlier African American archaeology is Ascher and Fairbanks’ (1968) multi-sensory study of a slave cabin located on Cumberland Island in Georgia. Though this and similar studies tended to focus on finding African material culture elements, which proved to be a difficult task, and were more descriptive than interpretive, they laid the intellectual groundwork for the more nuanced and interpretive studies that would eventually develop, and they also brought to attention slavery, an issue that was at risk of slipping out of America’s collective memory (Dujnic 2005:10; Mintz and Price 1976; Orser 2001b:5-6, 2004:17; Singleton 1995:134, 1999:2).

As interests in class and socio-economic status developed in archaeology, they developed in African American archaeology as well. Much of the earlier work on class and socio-economic status within African American archaeology was focused on the material disparities between the enslaved and planting classes (Dujnic 2005:10; Orser 2001b:6; Singleton 1995:126-8). Some of these works sought to identify change in
material culture over time, and to use these changes as a proxy for detecting changing social relations.

For the most part, archaeologists at this time explained social change using the acculturation model that was then popular in the disciplines of anthropology and sociology (Singleton 1999:4-5). An anthropological example of the acculturation model applied to African American history can be found in Herskovits’s (1958) The Myth of the Negro Past, in which the author attempted to explain African American culture as the product of selective retention and rejection of certain behaviors resulting from cross-cultural interactions between peoples of African and European descent. This sort of change would appear in the archaeological record, since the degree of presence of African and European traits would be expressed directly through artifacts, and so “African-ness” and “European-ness” could potentially be quantified (Dujnic 2005:10; Singleton 1999:2, 1995:130). Eventually the acculturation model became outmoded because of it did not account for change over time, it did not adequately address the significance of the retention or rejection of particular cultural traits, and it lead to an overly simple, problematic, and unnecessary dichotomy between African and European material culture (Dujnic 2005:11; Howson 1990). As Howson (1990:81) states, “Acculturation is an inaccurate, passive model for a dynamic process … [that] rests on an inadequate definition of culture, one which emphasizes complexes of traits rather than peoples’ ongoing interpretation, evaluation, and creative response, the strategies and symbolic revaluing that form the basis of cultural process.” The inadequacies of the acculturation model spurred the development of more dynamic models for understanding
cultural change and identity formation, and one such model focused on the notion of creolization.

The creolization model could be used to explain shifting forms of African traditions in new contexts, such as in the New World (Deetz 1996:213; Dujnic 2005:11; Mullins 1999a:33; Orser 2004:19-22; Singleton 1999:5). A notable example of the creolization model in action can be found in Leland Ferguson’s (1992) *Uncommon Ground*, in which he explores the link between African American made colonoware and African cultural traditions. In Ferguson’s (1992) work and others, the creolization model allows for agency, innovation, and creativity in the development of novel cultural forms in spaces of cross-cultural interaction. The creolization model also allowed for the understanding of some aspects of culture to be obdurate while others were mutable; that some aspects of African culture would survive, sometimes in modified form, but still retaining cultural significance nonetheless (Dujnic 2005:11). As Mullins (1999a:33) points out, the creolization model shows that “Even with the leverage of overwhelming oppression, society can never utterly rob individuals of agency and cultural integrity.” This model translates well into the realm of interpreting material culture, as the meanings behind material culture are understood to be multiple, perspectival, and situational, and it continues to influence archaeological interpretations today, including this thesis.

As models for cultural change developed, so did notions of ethnicity and ethnic identity, which have had directly impacted and influenced the development of African American archaeology. Broadly speaking, ethnicity has come to be understood as “all those social and psychological phenomena associated with a culturally constructed group
identity” while ethnic identity is understood as “that aspect of a person’s self-conceptualization which results from identification with a broader group in opposition to others on the basis of perceived cultural differentiation and/or common descent.” (Jones 1997:xiii; Orser 2004; Scott 2001). Like the creolization model, these understandings of ethnic identity allow for it to be at once rigid and fluid, as some aspects are obstinate while others are more readily changed (Jones 1999; Orser 2007; Singleton 2001:207). As Jones (1999:226) states, “The cultural practices and beliefs which become reified as symbols of ethnicity are derived from, and resonate with, people’s habitual practices and experiences, as well as reflecting the immediate conditions and interests which characterize particular situations.” In other words, ethnic identities can be actively mobilized to different ends, and as such individuals exhibit agency over this aspect of their individual identity (Dujnic 2005:12; Orser 2004:78-82). Jones (1997:120; 1999:224-227) astutely observes that all aspects of identity, including ethnic identity, are actively constructed within the realm of social, political, economic, and power relations, that material culture plays an important role in the reproduction, “recognition and expression of ethnicity,” and that ethnicity and ethnic identities must be understood as praxis in order to capture their contextual and dynamic nature; they can unite or divide, include or exclude, and they have real-world impacts on daily social relations (Dujnic 2005:12; Singleton 1999:5; Twiss 2007:2). Identities are never concrete or monolithic; they are always multiple and constantly acted, negotiated, and renegotiated through practice (Jones 1997, 1999; Twiss 2007:2).
As archaeological interest in ethnicity and ethnic identity grew, so did interest in
the role of power relations affecting these and other aspects of identity in the form of race
and racialization (Dujnic 2005:12; Epperson 1999; Kalčik 1984; Mullins 1999a,b; Orser
2001b, 2007; Singleton 1995:128-130). While ethnic identity is generally understood as
an ascribed identity involving self-identification and to a certain extent group acceptance,
race can be understood as a prescribed status, “a label that asserts the identification of
individuals based upon real or perceived physical differences” (Orser 2004:ix; Scott
2001; Mullins 1999b). Many scholars argue that race and racialization are important for
understanding the formation and maintenance of ethnic identities because these identities
are circumscribed within unequal power relations and systematic inequalities experienced
by individuals and communities in everyday life, and as such they should be discernable
in the archaeological record (Epperson 1999:159; Orser 2001b:2-3, 2007; Mullins
1999b). As such, many archaeological studies concerned with identity focus on
intersections of ethnic identity, ethnicity, race, the process of racialization, and the power
dynamics involved in shaping these processes (Epperson 2001, 2004; Orser 2001b, 2007;
Mullins 1999a, 1999b; Wilkie 2000, 2003). Some, such as Orser (2007:44-52) also
integrate considerations of class into these studies to investigate relationships between
class and race, while others, such as Mullins (1999a) explore the ways in which consumer
culture was impacted by race and racism. It is important to recognize the constraints
resulting from race and racialization, but we must also resist deterministic interpretations
that strip power and agency away from African Americans and reduce the significance of
cultural traditions in the formation of ethnicities and identities (Epperson 2001, 2004;
Singleton 1995; Wilkie 2000). Researchers must find an interpretive balance between affording too much and too little power and agency to those subjected to vastly unequal and discriminatory power relations based on racialization (Epperson 2001).

Race and ethnicity, while distinct aspects of identity, are inseparably intertwined, and considerations of either of these aspects alone do not constitute the whole of any individual or community identity (Orser 2004). As Orser (2004:81) states, “If we define ethnicity in its simplest terms as a self-imposed anthropocentric category and race as an imposed category, we may well imagine the interaction between ethnicity and race.” Identity is multifaceted, simultaneously ascribed and prescribed, personal and public, determined both from within and without, and is always being defined and redefined through practice in a constant state of becoming. Thus, the formation and reformation of identities occurs at intersections of ethnicity, race, material culture, and consumption in addition to many other factors (Orser 2007; Mullins 1999a,b). For African Americans, the formation and reformation of racial and ethnic identities have had significant impacts on both the past and the present (Mullins 1999a,b).

The development of studies of race and ethnicity in anthropology and archaeology brought to light how studying past identities, and especially aspects such as race and ethnicity, is always inherently political and has intellectual and emotional influence and significance in the present. As a result, it is often recognized that as researchers we have a duty to respect both the people of the past and our peers and colleagues who form their descent communities (La Roche and Blakey 1997; Singleton 1995, 1999). This entails working with descent communities to form research priorities and objectives, meeting
community needs and expectations, and engaging communities in ways that ensures that their needs and expectations are met in the process of archaeological investigations (La Roche and Blakey 1997; Singleton 1995, 1999). An example of this kind of archaeology is voiced by Epperson (1999; 2001:68-70) in his argument for critical race theory, “a critically engaged archaeology of race and identity” that brings to the fore the voices of racially oppressed people, encourages their participation in all stages of analysis, and unseats whiteness as the norm. Such critical engagement can help ensure that the inequalities perpetuated in the past are countered in the present.

In addition to interest in individual identities, interests in collective or community identities has grown in African American archaeology, and these group identities provide interesting insights into how ethnicity and race are involved in a dialogic process in community identity formation (Orser 2001). Communities, such as the African American communities of 19th-century Boston and Newtown in Nantucket, were formed in response to racialization and racialized discourses. While other aspects of identity, such as class and occupation, held some significance, ethnicity and racial aspects seem to have been more significant factors in structuring everyday life for these communities. As Dujnic (2005:16) points out, racialization made community formation necessary for the survival and promotion of free African Americans in highly racialized environments.

Foodways and Identities

Foodways studies based on faunal remains, botanical remains (e.g., Mrozowski 2006; Patalano 2009; Trigg 2004), and combinations of these (e.g., Trigg, Landon, Newman, and Hancock 2003) and other lines of archaeological evidence coupled with
insights from contemporary anthropological and sociological foodways studies have provided frameworks for investigating past identities, ethnicities, and socio-economic statuses based on the foods that people consumed and how they prepared, presented, and consumed them (Twiss 2007). On the most basic level, food is important for understanding identities because “People use food to present themselves to the world, utilizing the cultural connotations of particular food habits to express or to assert personal traits and thereby to construct identities” (Twiss 2007:3). In other words, food plays an integral role in individual and group constructions and negotiations of identity (Twiss 2007:3-4).

It is important to note that the notion of consumption proffered by Mullins (1999a:28-29) in his explorations of racism and consumer culture as “an idealized, situational vision of social possibilities and personal pleasures that consumers believe can be realized or entertained by possessing material goods” is somewhat different from the version used in this thesis (Fedore 2008:5). The definition of consumption employed in this thesis refers more simply to the processes of acquisition, preparation, and ingestion of foodstuffs, and through these processes demonstrate how “people consume what is meaningful to them within the universe of what they can afford,” and may even reflect a desire to improve their social standing, they often do so in a more immediate, transitory, and quotidian way than many other forms of durable material culture (Orser 2007:13; Mullins 1999a,b; Twiss 2007).

Anthropological foodways studies became common during the 1980’s (e.g., Farb and Armelagos 1980), and interest in modern ethnic foodways flourished as well, as
evidenced by Brown and Mussell’s (1984) seminal edited volume entitled *Ethnic and Regional Foodways in the United States*. In this work, Susan Kalčik (1984) looks at ethnic foodways and food consumption as the performance of identity. Kalčik (1984:38) argues that “food remains one viable aspect of the folkways of American ethnic groups and a significant way of celebrating ethnic and group identity,” and foodways can be mobilized through the maintenance or rejection of certain aspects of ethnic foodways are integral to delineate ethnic group boundaries and community identities (Franklin 2001:102; Orser 2004:86; Singleton 1995:126; Twiss 2007). As markers of ethnic identity, foodways are understood to be “charged with emotion and significance” for old and new generations as group identity and heritage is shared with preceding generations (Bower 2007; Kalčik 1984:44; McKee 1999; Mintz 1996; Twiss 2007).

In community or ethnic group settings, communal food consumption and those cultural customs surrounding it have the dual function of maintaining group cohesion within the context of the larger society and delineating the relationship of individuals to the groups and also to the larger society as well (Bower 2007; Dietler and Hayden 2001; Franklin 2001; Kalčik 1984:47; Mintz 1996; Twiss 2007). As Dietler and Hayden (2001:3) point out, it is important to differentiate between “food-consumption events from both everyday domestic meals and from the simple exchange of food without communal consumption” in order to better understand the meanings behind communal food consumption and the roles it plays in group and individual identity formation. These communal events are integral to “the creation or maintenance of important social relationships” (Hayden 2001:30). Often as a result, as Kalčik (1984:53) states, “Because
foodways encode so much about social events and interactions and the groups involved in them, specific foodways often come to be associated closely with the groups that practiced them.” In other words, the old adage “you are what you eat” applies not only on an individual level, but on a community level as well, as food is embedded with history, meaning, symbolism, and significance (Bower 2007; Kalčik 1984; Mintz 1996; Twiss 2007). Also, as Twiss (2007:2) states, “Food is an unusually powerful symbol of identity because foodways involve both the performance of culturally expressive behaviors and the literal incorporation of a material symbol” as food consumption practices are influenced by social, economic, and political factors, and when food is consumed it becomes part of a person’s embodiment, thereby “endowing the individual with the symbolic association of the food and reinforcing the food as a metonym of the self” (Twiss 2007:2).

Particularly relevant to this thesis is Bower’s (2007a) edited volume African American Foodways: Explorations of History and Culture, which explores “the powerful ways food and food customs have shaped group and individual identities and the economic, political, and social organization of society” (Bower 2007b:8). As Bower (2007b:2) points out, several other issues, including class, race, health, culinary traditions, women’s roles, economic and social influences, and African American ethnic identities are served up with many meals, and these issues are explored in a modern context in this work. In a similar vein, Whit (2007) analyzes the significance of commensality at African American churches, where communal meals or feasts “provided
an opportunity for group members to congregate and reaffirm their sense of corporateness and their bonds of rights and obligations” (Whit 2007:54).

Studies such as those described above have demonstrated the link between foodways and identities for the most part using studies of modern populations. In order to access the foodways of the people of past, archaeologists look to subdisciplines including zooarchaeology to reconstruct these foodways, in this particular arena based on faunal remains.

Historical Zooarchaeology

During the 1950’s and 1960’s, zooarchaeology began emerging as a distinct subdiscipline that sought to identify the diets of past people (Landon 2005:2; Jolley 1983; Robison 1987). As the discipline developed, some zooarchaeologists turned their sights toward faunal assemblages from historic period sites. Many historical zooarchaeological studies since this time have focused on correlations between foodways and status using faunal remains based on the principle that the foods people consumed would be indicative of their social status and access to foods of varied desirability (e.g., Benes 1984; Bowen 1992; Franklin 2001; Landon 1987, 1989; Mudar 1978; Mrozowski, Ziesing, and Beaudry 1996; Schulz and Gust 1983; Pendery 1984; Scott 2001b). This is evidenced by the works of scholars such as Mudar (1978) and Schulz and Gust (1983), which combine documentary evidence of butchery practices and meat cut prices to develop relative desirability rankings that allow zooarchaeologists to evaluate the relative desirability of meats based on the data recovered from faunal assemblages, including the identification of the animal, the skeletal element represented, and the butchery marks
exhibited by the bones. These data, in turn, are then interpreted to get at the social status of the individuals who consumed these meats, in essence equating the presence of more-desirable cuts of meat in greater frequency with higher status individuals, though this direct correlation has been called into question, as discussed below.

Moving beyond issues of status correlation, zooarchaeologists such as Joanne Bowen (1975, 1986, 1992, 1998) and David B. Landon (1991, 1993, 1996, 1997, 2008) have carried out research on animal husbandry practices, food distribution systems, seasonality, and agricultural practices and foodways in New England and the Chesapeake. Many of these studies, which focus on New England, provide insight into provisioning practices for New England from the 17th through the 19th centuries, bettering our understanding of food acquisition and production and its shifting nature with the rise of urbanization and an urban market system. For example, Landon’s (1996) seminal work investigates food supply and distribution systems in Boston from around 1630 to 1835 by exploring the differences between urban and rural supply systems, and the connection between urban and rural areas in the developing urban market system through taxonomic representation differences at urban and rural localities (Landon 2005:19).

Many researchers have examined foodways to understand the maintenance and adaptation of dietary practices in different social and physical environments, such as the links between African foodways and African American subsistence in North America, and much of this research has focused on plantations in the American South (e.g., Crader 1990; Ferguson 1992; Franklin 2001; McKee 1999; Otto 1984; Scott 2001b; Yentsch 1994) (Bower 1991:55; Landon 2005:15; Samford 1996:95-96; Singleton 1995:124-126,
1999:12-14). These works investigate social, and class differences between enslaved and planting classes through reconstructing diets based on faunal remains, questioning provisioning practices vis-à-vis the quality and quantities of meat allotted to the enslaved, suggesting possible rankings among enslaved people, and assessing the impact of wild versus domestic species on enslaved and planter diets (e.g., Franklin 2001:94; McKee 1999; Scott 2001b) (Orser 2007:86-88).

African American zooarchaeology in the Northeast is still a growing field, as many zooarchaeological analyses have yet to be published or made accessible to a wider audience, but there appear to be significant differences in the diets of enslaved and free African Americans in the Northeast versus those of their southern counterparts, especially in terms of the reliance primarily on domesticated animals as food sources in the Northeast, with more subtle variations depending upon one’s status as free or enslaved and his or her socioeconomic status as well (Landon 1997a; 2005:16; Sportman 2003). However, some important studies of African American foodways in the Northeast have been conducted, such as Bowen’s (1986, 1992) comparative analysis of the role of the urban market provisioning system in shaping faunal patterning at two 19th-century urban sites in Massachusetts, one of which is associated with Boston’s African Meeting House, and one by European-Americans. In this study, Bowen (1986, 1992) compared an assemblage from a tenement near the African Meeting House and the Narbonne site, the home of a European-American family in Salem, Massachusetts, and concluded that it was difficult to delineate ethnic differences in urban faunal assemblages because socioeconomic status and ethnicity affect food consumption and assemblage patterning in
relatively subtle ways. Bowen (1986, 1992) concluded that the urban market was a major factor in structuring the assemblages and the diets of both of these groups of people (Landon 2005:20).

Bowen’s (1986, 1992) analysis is significant to the study of African American zooarchaeology because it demonstrates some of the problems with associating particular cuts of meat to particular social statuses without additional contextual information. As Bowen (1992:279) states,

To understand the ways in which differences were manifest, we must look to the elements in diet, cuisine, and meal formats that anthropologists and culinary historians claim are significant: quantity and variety as well as the quality of different animals and cuts of meat; consumption of preserved and fresh foods; cooking techniques, the presence or absence of imported spices and specialty foods; characteristic dishes, their ingredients, and the way that they are combined; and rules guiding the presentation and consumption of food.

In addition to the need for broader contextual information in reconstructing foodways, Bowen (1986:16-17; 1992:276) also warns against projecting modern notions of desirability onto the past, which has the potential to blur ethnic markers. This, in addition to considerations of food choice, preparation, consumption, and discard should be integrated into research on the creation and definition of identities, economic status, and ethnicity (Bowen 1986:17-18; Franklin 2001:97; Huelsbeck 1998; Landon 1996:2, 2005:22-23; Scott 2001b). In her study of dietary change over time under shifting contexts of ethnic tensions, racism, and racialization at Fort Michilimackinac in Michigan, Scott (2001a:15) highlights the fact that “within the structure of available
foods, people’s food consumption both reflected and created their identity.” Thus, even though the market may have been a large-scale structuring mechanism as Bowen (1986, 1992) points out, there is still room within that structure for the expression of individual and group identities, though such differences might be subtle and nuanced.

Just as foodways can be mobilized to delineate ethnic identity and ethnicity, they can also be racialized through racist caricatures and stereotypes, including the one presented in the introduction of this thesis, and as a result, foodways may be modified to resist or counter such stereotypes (Franklin 2001; Mullins 1999a, b; Orser 2007:29; Singleton 1995; Twiss 2007). As Franklin (2001:98) states, “the transformation of foodways may signify a concurrent move toward a shared group identity,” perhaps a group identity that explicitly and intentionally flies in the face of racist stereotypes and caricatures, simultaneously challenging and responding to them. This also exemplifies how foodways might be modified to highlight certain aspects of individual and collective identities, and to dispel others, especially those aspects that were racialized.

This thesis is situated in a research context that draws on several different aspects of African American historical archaeology, anthropology, and history to reconstruct the faunal portion of the foodways at Nantucket’s Boston-Higginbotham House in order to gain a better understanding of how the free African Americans maintained, modified, and expressed their individual and collective identities through foodways. The following chapter provides an historical context to this research in the form of a concise and relevant summary of African American history in Nantucket.
CHAPTER 3
SOCIAL AND HISTORICAL CONTEXT

The late-18th and 19th centuries were a time of rapid urban growth, profound social changes, and the development of strong, vibrant, and politically and socially active communities for African American New Englanders (Curry 1981). The development of such communities can be linked to many factors, including the emancipation of African Americans in Massachusetts, New England’s rapid population growth, the processes of urbanization that created a demand for free African American labor, and the migration of enslaved and free African Americans from the South (Litwack 1961). A combination of these and other factors created opportunities for the social, economic, and political advancement of some of Massachusetts’ African American population, however, such opportunities were tempered by discrimination and inequalities perpetuated by racist ideologies.

In Massachusetts, the institution of slavery was officially abolished in 1783, however, this did not mean equality or fair treatment for African Americans, and many slaveholders were reluctant to relinquish their slaves into the 19th century (Curry 1981:81; Horton and Horton 1979; Jacobs 1993:6-7; Kaldenbach-Montemayor 2006;
Kendrick and Kendrick 2004:29; Litwack 1961:vii-xi, 3, 15-20; Melish 1998; Saillant 2006). An example of the inequality and harsh treatment endured by African Americans soon after emancipation is readily found in an 1800 incident in which a Boston selectmen tried to have 239 free blacks removed from the city because they lacked proper documentation proving their status as American citizens, and as such had allegedly violated a law allowing non-citizens to stay in Massachusetts for no more than two months (Curry 1981:85).

Such racist and discriminatory actions in post-emancipation Massachusetts seem to be the rule rather than the exception. Civil rights of African Americans such as voting, testifying in court, and receiving public education were usually discouraged through harassment and threats of violence where they were not banned outright by law (Curry 1981:87, 217; Litwack 1961:30-63; Melish 1998:188-189). Educational segregation flourished in the 1820’s not because of any laws prohibiting integrated education, but rather because black pupils were treated unfairly (Curry 1981:147-173; Kaldenbach-Montemayor 2006; Kartunnen 2006; Levesque 1994:165-175; Linebaugh 1978; Litwack 1961:113-117; Melish 1998:188; Parsons and Drew 1990:25-31). Emancipation for African Americans in New England did not secure for them civil rights, liberties, or equal or fair treatment in society or under the law, as they were subjected to racial discrimination in myriad forms. However, this did not inhibit many white New Englanders from claiming a moral high ground, since they were no longer a slaveholding society, in contrast to the still-slaveholding South in the antebellum period (Levesque 1994:238; Melish 1998; Saillant 2006:65-66)
To legitimate such a claim to moral superiority, New England had to reshape its
perception of slavery in the North in order to create a distance and distinction from
slavery as practiced in the South, and this in turn legitimated the antipathy with which the
Melish (1998) describes many of the actions taken to reformulate northern notions of
slaveholding, including negating the lived historical experiences of African Americans,
stressing the idea that African colonization was a moral duty, selectively forgetting those
still enslaved or indentured during the gradual process of emancipation, and claiming that
enslavement in New England was less harsh and laborious and was therefore not as cruel
and inhumane as southern slavery (Melish 1998:3-6, 50-79, 163-223; Saillant 2006:65-
66). These actions also obscured the fact that in New England urbanization,
industrialization, and a smaller reliance on agrarian production as a primary mode of
income meant that enslavement was not always cost-effective, thus casting what was at
least partly an economic consideration as an overtly moral one (Litwack 1961).

Ironically, while white New Englanders of the 19th century touted the presence of
free African Americans as emblematic of their moral superiority, they were
simultaneously developing new ways of representing black people as inferior (Curry
1981:93-94). Some of these tactics included promoting the notion that whites had
somehow been enslaved by slavery, leading to white oppression by blacks because whites
felt a moral imperative to provide paternalistic support for them (Melish 1998:210, 222).
As a result, many whites encouraged African American emigration to Africa and Liberia
in order to free the whites of this supposed burden, and this in turn denied African
Americans the “American” aspect of their identity, instead implying that they were merely Africans in America (Melish 1998; Saillant 2006). In this manner, white New Englander claims of moral superiority to the South were undermined by the development of racist ideologies that presented African Americans as second class citizens if citizens at all. In reality, the pro-abolition stance of many white New Englanders did not mean that they automatically subscribed to notions of racial equality; rather, it seems that though they supported abolition, many were also pro-hierarchy and pro-white superiority.

One major vehicle for the dissemination of racist ideologies in Boston, Nantucket, and other parts of New England was the media, especially in the form of newspaper broadsides that, as Melish (1998:177) states, “ridicule[d] the public activities of free people of color as imitation of citizenship – ridiculous and pathetic efforts to assume the forms of civic participation and a bucolic identity whose substance they were incapable of understanding (Horton and Horton 1979:79; Melish 1998:139-146; Reilly 1993:51-60; Saillant 2006). In addition to such racist caricatures that lampooned African Americans for taking part in supposedly white practices without understanding them, newspapers often carried stories that perpetuated stereotypes of black communities and the troubles they faced, significantly playing up any crimes that occurred in African American communities to legitimate characterization of blacks as inferior and criminal in nature (Kaldenbach-Montemayor 2006; Reilly 1993; Saillant 2006). The media’s unfair and inaccurate portrayal of 19th-century African American communities in New England evinces the complex and contradictory relationship many white New Englanders felt as they were simultaneously supporting abolition and the notion of white superiority.
The racial prejudice and discrimination experienced by African Americans in 19th-century Massachusetts was countered by the establishment of African American communities in cities and towns such as Boston and Nantucket, and by the establishment of many organizations and mutual aid institutions that provided job placement assistance and financial, political, business, and health support to African Americans (Curry 1981:197-215; Daniels 1968:21; Dujnic 2005; Horton and Horton 1979:28-45; Kendrick and Kendrick 2004:27, 30; Saillant 2006:51). A great many of these organizations were promoted by, facilitated by, affiliated with, and hosted in various African American churches and meeting places. (Curry 1981:240-241; Horton and Horton 1979:xi, 39-52; Kendrick and Kendrick 2004:31; Hayden 1983:1). These organizations included the African Society, African Masonic organizations such as the Prince Hall Masons, the General Colored Association of Massachusetts, the African Abolition Free Hold Society, and the African Female Anti-Slavery Society, to name only a few (Curry 1981:225; Finkenbine 1993:175-176; Horton and Horton 1979:65; Saillant 2006:51). In addition to these groups, more informal ones were formed to harbor refugee slaves and to help them journey farther north to safety (Curry 1981:231). These organizations were created to promote the growth and well-being of the community (Dujnic 2005).

For 19th-century African Americans in New England, the church was at the crux of religious, political, economic, cultural, and social aspects of daily life (Curry 1981:174-195; Horton and Horton 1979:39-52; Kendrick and Kendrick 2004:25; Saillant 2006:51; Whit 2007). As evidenced by the plethora of organizations that they facilitated and housed, African American churches were integral to engendering social and
community activism, providing a gathering place for community members to promote and ensure the well-being of their peers in addition to providing a focal point for groups and activities that challenged and ultimately changed the structural inequalities that surrounded them (Curry 1981:174-195; Finkenbine 1993:176-177; Horton and Horton 1979:39-52; Saillant 2006:51). In this way, African American churches during the 18th century fulfilled not only the religious needs of their communities, but their secular needs as well (Daniels 1968:22, 263; Horton and Horton 1979:29; Levesque 1994:265, 317; Saillant 2006:51). African American churches, in addition to fulfilling many spiritual and secular needs, provided a haven from racism in a space created by and for African Americans (Hayden 1983; Horton and Horton 1979:39-52). While many African Americans were barred from participating in local civic organizations and holding offices, the African American churches and community groups provided a place for individuals to express their political aspirations (Horton and Horton 1979:52). In this and many other ways, the African American church filled in the social, political, economic, and religious lacunae caused by the discrimination of a racially charged and structurally unequal society (Horton and Horton 1979:52).

The African American communities of 19th-century New England responded to racism, discrimination, and inequality by forming what Bower (1991:55) has termed a “complex … African American culture actively constructing social institutions, symbolic systems, and material worlds in the persistent context of a complex, shifting white racism.” By developing and promoting a uniquely African American culture replete with its own institutions, customs, and society, African American communities and individuals
provided themselves with the resources and community support not just to ensure their survival, but to promote their well being and challenge the inequalities and racism that they courageously faced on a daily basis (Bower 1991:61; Horton and Horton 1979:39).

The Boston Family and Nantucket’s African American Community

African Americans, both free and enslaved, had been part of Nantucket’s history since around 1710 (Kaldenbach-Montemayor 2006:18). From this time throughout the 19th century, many African American men were employed for themselves or their enslavers in the whaling industry, while many women served as domestic servants (Farr 1983; Kaldenbach-Montemayor 2006:19). It is significant to note that many scholars have suggested that African Americans in the whaling industry could find at sea an escape from racism, or at least a less severe form of racism it, and if enslaved, they could at least for a time escape the direct control of their enslavers (Farr 1983; Kaldenbach Montemayor 2006:19; Saillant 2006:52-53). Thus, the lure of the whaling industry may not have been solely a matter of profit; it was also a means of temporary refuge from the harsh conditions of slavery and racism.

It was partly by virtue of the whaling industry that emancipation took hold on Nantucket before it did in Massachusetts proper. Prince Boston, an enslaved African American man and Seneca Boston’s brother, had signed up to be a member of the crew on the whaler *Friendship*, owned by William Rotch and captained by Elisha Folger (Johnson 2006:3). Upon his return, Prince Boston’s enslaver, John Swain, claimed that he was entitled to all of Prince’s earnings as his master. Folger and Rotch disagreed, and after a long court battle, Prince Boston was awarded all of his earnings in 1773 (Johnson
2006:3). Shortly thereafter, Prince Boston made a petition to the Court of Common Pleas for his freedom, which was granted (Johnson 2006:3). Many have attributed the outcome of this particular case and the early emancipation of many African Americans in Nantucket primarily to its large Quaker population, which had clearly established its moral opposition to slavery (e.g., Macy 1972; Starbuck 1969). However, while some Quakers did play integral roles in facilitating abolition and opposition to slavery, others were not so keen on doing so, as evidenced by the fact that “At least four decades after Nantucket’s Quakers began condemning slavery, Nantucketers were still in possession of black slaves.” (Kaldenback-Montemayor 2006:18). Thus, while many Quakers deserve credit for promoting emancipation, this must be tempered by the fact that not all of them subscribed to such notions, or they were willing to live with the contradiction of opposing enslavement in name or principle but still practicing it.

By the early 1780’s, a nascent free black community in Nantucket was forming in a section of Nantucket called Newtown, also known as Guinea or New Guinea, an area gated and separated by pasture land from the town’s white inhabitants (Beaudry and Berkland 2007:399; Kaldenbach-Montemayor 2006:23; Kartunnen 2002:73-79). Newtown became the home and heart of Nantucket’s African American community, and as Beaudry and Berkland (2007:397) point out, “As the black community grew, its members established institutions that paralleled the white organizations to which they were denied access, including stores, churches, and an abolitionist society.” The Boston family, notably Seneca Boston and his four brothers and one sister, were among the earliest residents and influential members of this community (Kaldenbach-Montemayor
2006:23; Kartunnen 2002:73-75). It was in this area that in 1774, Seneca Boston, an emancipated African American weaver, purchased property nearly ten years prior to abolition in Massachusetts, built a house, and with his Wampanoag wife, Thankful Micah, raised six children (Kartunnen 2002:74-5; John G. Waite Associates 2005:4-5) (Figure 2). This house, the Boston-Higginbotham House, was home to the descendants of Seneca Boston and Thankful Micah for over a century (John G. Waite Associates 2005).

Figure 2. Nantucket Map.
The Boston-Higginbotham House is a two story wooden structure built sometime during the late 18th century located at 27 York Street in the Newtown or New Guinea neighborhood of Nantucket, near the area known as Five Corners, an intersection where York Street, Pleasant Street, West York Lane, Prospect Street, and Atlantic Avenue come together. It was originally accompanied by a few outbuildings, as evidenced by the May 15, 1802 deed of sale from Seneca Boston to his son Freeborn, which names a shop, outhouses, and fences as the other structures standing on the property at the time (Nantucket Registry of Deeds, Book 17, p.18; Waite Associates 2005:5-6). These original outbuildings are no longer standing. Located across the yard just west of the Boston-Higginbotham House is Nantucket’s African Meeting House, located at 29 York Street, which was built sometime during the 1820’s and had similar functions to Boston’s African Meeting House as a school for African American children, a place of worship, a community gathering place, and a venue for entertainment (Beaudry and Berkland 2007:400-2). It seems fitting that Nantucket’s African Baptist Meeting House should be located on the parcel next to the home of the Bostons, as the family’s efforts in the arenas of social, educational, financial, and religious developments were integral to its maintenance and development alongside that of the growing free African American community of 19th-century Nantucket.

The best known of Seneca Boston and Thankful Micah’s six children is Absalom Boston, Nantucket’s only African American whaling captain and the only one to sail with an all-black crew, described by Kartunnen (2002:75, 83-85) as “a Nantucket businessman, community leader, and significant figure in the racial integration of the
island’s public schools.” Though he did not reside in the Boston-Higginbotham House after his childhood, Absalom Boston’s entrepreneurial successes and his social, political, and economic prowess were vital to the development of Nantucket’s free African American community, including the hard-fought battle to integrate Nantucket’s segregated schools in the 1840’s, a battle which the free African American community eventually won (Kaldenbach-Montemayor 2006:28).

Throughout the 19th century, the Boston-Higginbotham House was home to four main occupational groups, all consisting of descendents of Seneca Boston and Thankful Micah (Table 1). These occupants include the original household of Seneca Boston, Thankful Micah and their children (1774-1809); followed by Mary Boston Douglass, her first husband Freeborn Boston and her children from this marriage, her second husband Michael Douglass (1809-1834); then William Boston, Eliza Boston Berry and Charlotte Boston Groves and their families (1834-1883); next Elizabeth D. Stevens and her husband (1883-1914); and finally Caroline B. Talbot and George Groves Hogarth (1914-1919) (John G. Waite Associates 2005). In addition, some of these families rented rooms to boarders (John G. Waite Associates 2005). It is significant to note that many of the men living in the Boston-Higginbotham House throughout the 19th century were employed in the maritime industry, primarily as mariners, but also as traders or laborers, while many of the women were employed as domestics and caretakers (NHA Court 4 pp. 74; Deedbook 17 pp. 18; Deedbook 22 pp. 69; Deedbook 33 p. 469; Probate 16 pp. 47; John G. Waite Associates 2005).
<table>
<thead>
<tr>
<th>Years</th>
<th>Occupants</th>
<th>Relation</th>
<th>Occupation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1774-1809</td>
<td>Seneca Boston</td>
<td>-</td>
<td>weaver</td>
</tr>
<tr>
<td></td>
<td>Thankful Micah</td>
<td>wife</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Freeborn Boston</td>
<td>son</td>
<td>mariner</td>
</tr>
<tr>
<td></td>
<td>Hannah Boston</td>
<td>daughter</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Absalom Boston</td>
<td>son</td>
<td>mariner, yeoman</td>
</tr>
<tr>
<td></td>
<td>Thomas Boston</td>
<td>son</td>
<td>mariner</td>
</tr>
<tr>
<td></td>
<td>Reuben Boston</td>
<td>son</td>
<td>mariner</td>
</tr>
<tr>
<td>1809-1834</td>
<td>Mary (Summons) Boston Douglas</td>
<td>Freeborn’s wife/widow</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Thankful Micah</td>
<td>mother-in-law</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>William Boston</td>
<td>Mary and Freeborn’s son</td>
<td>trader</td>
</tr>
<tr>
<td></td>
<td>Eliza Boston</td>
<td>Mary and Freeborn’s daughter</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Charlotte (Boston) Groves</td>
<td>Mary and Freeborn’s daughter</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Thomas Boston</td>
<td>Freeborn’s brother</td>
<td>mariner</td>
</tr>
<tr>
<td></td>
<td>Joseph Boston</td>
<td>Freeborn’s brother</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Lettice Boston</td>
<td>unknown</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Michael Douglas</td>
<td>Mary’s husband after Freeborn’s death</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Lewis Berry</td>
<td>boarder, then son-in-law w/ Eliza</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Charles Groves</td>
<td>Charlotte’s husband</td>
<td>mariner</td>
</tr>
<tr>
<td></td>
<td>Elizabeth Groves</td>
<td>Charlotte & Charles’ daughter</td>
<td>-</td>
</tr>
<tr>
<td>1834-1883</td>
<td>William Boston</td>
<td>Mary and Freeborn’s son</td>
<td>trader</td>
</tr>
<tr>
<td></td>
<td>Eliza (Boston) Berry</td>
<td>Mary and Freeborn’s daughter</td>
<td>domestic</td>
</tr>
<tr>
<td></td>
<td>Charlotte (Boston) Groves</td>
<td>Mary and Freeborn’s daughter</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Charles Groves</td>
<td>Charlotte’s husband</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Lewis Berry</td>
<td>Eliza’s husband</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Lewis Berry Jr.</td>
<td>Eliza and Lewis Berry’s son</td>
<td>mariner, laborer</td>
</tr>
<tr>
<td></td>
<td>Isaac Berry</td>
<td>Eliza and Lewis Berry’s son</td>
<td>-</td>
</tr>
<tr>
<td>1883-1914</td>
<td>Elizabeth D. Stevens</td>
<td>Eliza (Boston) Berry’s niece</td>
<td>domestic/caretaker</td>
</tr>
<tr>
<td></td>
<td>Ann Turner</td>
<td>Elizabeth’s employer</td>
<td>-</td>
</tr>
<tr>
<td>1914-1919</td>
<td>Caroline B. Talbot</td>
<td>Caroline is Stevens’ niece</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>George Groves Hogarth</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1919-1920</td>
<td>Edward H. Whelden</td>
<td>-</td>
<td>fisherman</td>
</tr>
<tr>
<td>1920-1972</td>
<td>Florence Clay Higginbotham</td>
<td>domestic/caretaker</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>William Higginbotham</td>
<td>Florence’s son</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Evelyn T. Underhill</td>
<td>Florence’s employer</td>
<td>-</td>
</tr>
<tr>
<td>1974-2001</td>
<td>William Higginbotham, owner</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Robert and Eleanor Jones and family</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2001</td>
<td>Museum of Afro American History, Boston</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: John G. Waite Associates 2005
As the Boston family flourished and grew during the early 19th century, so did Newtown’s free African American community, with a population of 185 in 1810 rising to 300 in 1830 (Kaldenbach Montemayor 2006). While the whaling industry continued to provide an important source of jobs for this community throughout the first half of the 19th century in the form of weavers, ropemakers, and seamen, many free African Americans found employment in other areas as carpenters, blockmakers, boardinghouse keepers, shoemakers, leatherworkers, seamstresses, chimney sweepers, domestics, blacksmiths, trades, ministers, barber, yeoman, victuallers, and laborers (Farr 1983; Kaldenbach-Montemayor 2006:31-32). Other African Americans were involved in business, such as Absalom Boston, who opened an inn in the 1820’s and a grocery store in Newton in the 1830’s, bought and sold real estate, and provided loans to the community (Kaldenbach Montemayor 2006). As Kaldenbach-Montemayor (2006:25) has observed, “an explosion of deed records involving blacks also documented an emerging middle class” and evidences the growth and successes of Newtown’s African American community between 1800 and 1850. However, this growth and success did not come easily, as the Newtown community struggled against increasingly bitter racism and vast institutional and social inequalities.

The African American community of Newtown, like those of Boston and elsewhere, formed its own institutions because of the unequal access and prejudicial treatment they received in white institutions such as churches and school. In fact, the African American communities of Boston and Nantucket were similar in the development of their communities and institutions and in their struggles for abolition and
educational and social equality. As Saillant (2006:50) observes, “The social aspirations of most black Nantucketers in the early 19th century were identical to those of most members of African American communities in the maritime centers of the northeastern states – religious congregations, schools, wages, and orderly communities,” and Nantucket’s African American community pursued these aspirations through the development of their own churches, including the one housed at the African Baptist Meeting House established in the 1820’s; school, in the form of the African school which operated from the late 1820’s until 1847, when Absalom Boston and others had successfully integrated the public schools; abolitionist societies, which drew notable speakers such as Frederick Douglass and William Lloyd Garrison; and shops, pubs, boardinghouses, and a dance hall by the 1850’s (Beaudry and Berkland 2007:400-403; Kaldenbach-Montemayor 2006:25; Kartunnen 2006; Linebaugh 1978; Peters 2006; Saillant 2006).

In the 1840’s a recession had hit Nantucket as the whaling industry was plunged into decline by the use of kerosene as a fuel source, larger ships that could not navigate Nantucket’s sandy harbor, and the lure of the mill industries on the mainland, and as a result many people, including a number of African Americans, left in search of better prospects, some traveling as far as California to participate in the gold rush (Alsop 2004:263; Kaldenbach-Montemayor 2006:29). While the whaling industry still employed a number of African Americans throughout the second half of the 19th century, many others left the island in the wake of the Civil War due to hostilities surfacing at the time (Saillant 2006:50). Despite these large emigrations, some members of Nantucket’s
vibrant African American community remained on the island until well into the 20th century. This included a number of the Boston family descendants who resided in the Boston-Higginbotham House until 1919.

The development and success of Nantucket’s African American community during the 19th century is similar to the development of such communities in Boston and other localities across New England. Nantucket’s prominent Boston family was integral to the development, maintenance, and success of Nantucket’s African American community, and archaeological investigations have the potential to shed light on how individuals and the family as a whole expressed and maintained identities through material culture, including through the consumption of edible material culture in the form of foods and foodway practices.
Several field and laboratory techniques were employed in the archaeological investigation of Nantucket’s Boston-Higginbotham House. Excavation at the Boston-Higginbotham House took place in the early summer of 2008. Thorough and careful excavation and laboratory techniques have ensured the most accurate and comprehensive collection of data possible, and interpretation of these data provide better understandings of African American foodways in Nantucket during the 19th century.

Field Methods

Excavations at the Boston-Higginbotham House took place in the early summer of 2008 as a cooperative project between the Fiske Center for Archaeological Research at the University of Massachusetts Boston and the Museum of African American History (MAAH), Boston, under the direction of Dr. David B. Landon. Prior to excavation, remote sensing utilizing ground-penetrating radar (GPR) was conducted on a grid system established in the yard surrounding the Boston-Higginbotham House. The remote sensing results were combined with data from historical documents and surface survey information to determine the location of eight shovel test pits (STP’s) that were
strategically placed in areas that appeared to have high potential for archaeological recovery.

These STP’s led to the discovery of several deposits and features dating to the late-18th and early-19th centuries. These deposits were further investigated by opening thirteen 1-x-1 m, 1.5-x-1 m, or 2-x-1 m excavation units (Figure 3). These units were dug preferencing natural stratigraphy with arbitrary 10 cm levels therein to maintain strict stratigraphic control, and their depths varied on average from about 70 to 100 cm, with artifacts generally clustered at depths above 70 cm. The soil from these units was screened using a 1/4” screen, and soil samples were collected from many of these units. Features were excavated in feature levels preferencing natural stratigraphy divided into arbitrary 10 cm levels and were screened using 1/8” screens, and two- or one-liter float samples were collected from each feature level. These features, including a layered kitchen midden deposit, a sheet midden, a midden with garden fill, a trash pit, postholes, and pipe trenches tended to occur at depths below 40 cm, though some were encountered at shallower depths. Also, many late-18th to early-19th century features were discovered at depths ranging from 60 cm to 100 cm in the yard area north of the Boston-Higginbotham House. These procedures lead to the recovery of a substantial amount of faunal remains in addition to ceramic, glass, and metal artifacts from the 19th century related to the preparation, consumption, and storage of food and to other activities as well.
Figure 3. Boston-Higginbotham House Site Map.
Laboratory Methods

The preparation, processing, and analysis of the faunal assemblage from the Boston-Higginbotham House took place at the University of Massachusetts Boston’s Zooarchaeology Laboratory under the direction of Dr. David B. Landon. Prior to analysis, all of the faunal remains were sorted, washed when appropriate, inventoried, bagged separately, and removed to the Zooarchaeology Laboratory for analysis. The entire Higginbotham House assemblage was analyzed by the author and Dr. Landon.

The analytical and recording methods and procedures utilized in this laboratory ensure that accurate data is produced and that faunal assemblages from various sites can be compared because a standard set of data is recorded from every assemblage using standardized analytical procedures. The data recorded from each bone specimen includes quantity; taxonomic class; taxon, which is the most specific level of identification made, such as family, genus, species, or size range; skeletal part; portion of said skeletal part; fusion states; symmetry or side; evidence of weathering or burning; the presence of butchery marks; rodent or carnivore gnaw marks; weight; and other observations including taphonomic surface discolorations, mend information, tooth wear stage in mammals; and the presence of medullary bone in birds. The butchery marks are defined as cut marks, chop marks, shear marks, and saw marks following Crader (1984). The butchery marks observed on mammal bones were recorded on line drawings adapted from Hemler (1987) and can be found in Appendix A.

Faunal analysis for the Boston-Higginbotham House assemblage proceeded first by separating faunal specimens into taxonomic classes including mammal, bird, fish,
reptile, amphibian, pelecypod (bivalve shell), gastropod (snail), vertebrate, or invertebrate, and then into element and size categories. Mammals that could not be identified more specifically were separated into four main categories: small (smaller than a rabbit), medium (sized between a rabbit and a pig), large (larger than a large pig), and medium-large mammal (sized between a rabbit and a cow). The medium-large mammal was added because some specimens were clearly not from small animals yet it was not easy to distinguish between the medium and large size ranges. From these taxonomic classes more specific identifications were made to the family, genus, and species level when possible. Bones not identifiable to these levels beyond a reasonable doubt were recorded in the general size categories to avoid overspecificity. Bones that could not be identified to the taxonomic class level were simply catalogued as vertebrates or invertebrate, the latter category consisting solely of shellfish. Analysis of the fish and reptile remains was carried out both at the University of Massachusetts and at the Harvard Zooarchaeology Laboratory with the assistance of Peter Burns.

The overall Boston-Higginbotham House faunal assemblage was divided into sub-assemblages based on depositional history, artifact content, and the nature of the faunal remains recovered from distinct areas of the property. For this thesis, four sub-assemblages were chosen for a more detailed analysis: the kitchen midden (EU3, EU11, EU12), the north yard sheet midden (STP1, STP2, EU2, EU5, EU9), the midden/garden fill deposit (EU7), and the late-19th century trash pit (EU1, EU6). These sub-assemblages were chosen because they are representative of the overall faunal assemblage and because they illuminate significant aspects of the foodways of the Boston-Higginbotham House.
residents that might otherwise be overlooked. For each sub-assemblage standard zooarchaeological quantitative calculations were performed. These calculations, including number of individual specimens (NISP), the minimum number of individuals (MNI), and biomass, are standardized analytical tools designed to facilitate analyses of specific aspects of these sub-assemblages (Reitz and Wing 1999). Expected-recovered ratios by anatomical region and by skeletal element were calculated for domestic mammal specimens from the three sub-assemblages that yielded a large enough sample to provide statistically significant results.

The number of individual specimens (NISP) is the sum of all the specimens from a given taxonomic level (Reitz and Wing 1999:191-194). This calculation simply entails counting how many bones came from a particular class, family, genus, or species, and as such provides a basic way of comparing the frequency of bones of certain animals. NISP counts can be somewhat problematic because they can be significantly impacted and skewed by a number of processes. For example, high levels of bone fragmentation can cause the overrepresentation of certain animals and skeletal elements, as can the recovery of many bones from one individual (Klein and Cruz-Uribe 1984; Reitz and Wing 1999:191-192). Other factors influencing NISP counts include “the number of identifiable elements in each animal, site formation processes, recovery techniques, and laboratory procedures,” and these issues must be taken into consideration when analyzing NISP calculations (Reitz and Wing 1999:192). Despite these issues, the NISP provides a basic method of quantifying and characterizing faunal assemblages. In this analysis, the NISP is also used to determine the skeletal element representation and distribution for
cattle, caprines, and pigs for each sub-assemblage. The NISP becomes more meaningful when taken into consideration with other calculations, such as the MNI, biomass, and expected/observed ratios, as these figures provide complimentary information that can temper the biases inherent in the NISP count.

The minimum number of individuals (MNI) is a calculation of “the smallest number of individuals which is necessary to account for all of the skeletal elements (specimens) of a particular species found in the site” (Reitz and Wing 1999:194). As a result, the MNI approximates the minimum number of animals present on a site based on the repetition of skeletal elements and the age of the animal(s) represented based on skeletal fusion stages and tooth eruption and wear data. Observing and recording bone symmetry, fusion stages, tooth wear stages, and bone size is integral to calculating an accurate MNI, as differentiations in the number of individuals can be made based on these criteria. By virtue of being a minimum count, the MNI “should not be interpreted as actual individuals” since “more actual individuals may have been used at the site, or only portions may have been used” (Reitz and Wing 1999:195). In fact, the actual number of individuals on a site should fall somewhere between the MNI as a minimum count and the NISP as a maximum count. Like the NISP, the MNI is subject to the influence of recovery and laboratory procedures as well, however, such influences can be diminished through standardized and careful techniques (Reitz and Wing 1999:196-198). Nonetheless, the MNI does provide a lower-bound estimate of significant analytical value.
Biomass is unique from NISP and MNI in that it is calculated using a mathematical formula based on an observed allometric relationship between skeletal weight and overall animal weight (Landon 2006:9). The formula for biomass calculations is “biomass (kg) = log a + b * log [bone weight (kg)]”, where ‘a’ and ‘b’ are known constants derived from observations of various classes, families, and species of animals, and the observed bone weight is the sum of the weight of a given class, family, or species in the collection (Reitz and Wing 1999:222-225). It is important to note that the biomass calculations pertain only to vertebrates. Like the MNI, biomass does not necessarily give the actual weight of the individuals represented in the faunal assemblage; rather, “It is an interpretive unit, used as a proxy for relative dietary importance of different taxa” (Landon 2006:9). Thus, its value comes from its use in approximating the relative dietary contributions of animals by virtue of the bones recovered from a site, even if this requires a certain amount of postulation about how much meat was present on the bones (Fedore 2005:35).

Observed to expected specimen ratios can be calculated in a variety of ways. For this thesis these ratios were calculated for cattle, caprines, and pigs in two ways. The first method calculated the skeletal recovery rates of specimens based on the anatomical region from which these bones came. Bone specimens from each species of domestic mammal were divided into two categories: head and foot bones, which include all cranial bones and teeth in addition to phalanges, tarsals, carpals, and metapodials; and body and limb bones, which include all vertebrae, ribs, and long bones. Then ratios between these regions were calculated, and these results were compared to the ratios expected in the
complete skeleton of an individual (Kennedy and Landon 2007; Reitz and Wing 1999). Following Crader (1984) and Landon and Kennedy (2007), an individual caprine or cattle skeleton has ninety head and foot bones and seventy-two body and limb bones, and a full pig skeleton has seventy-four body and limb bones and one-hundred-forty-one head and foot bones. It is important to note that these calculations are based upon specimen counts, and mends were taken into consideration when calculating these ratios.

The skeletal recovery rate by anatomical region is useful for determining whether skeletal elements were recovered in ratios close to expected anatomical values, or whether they differ. Ratios showing significant overrepresentation or under-representation of certain anatomical regions may evidence the acquisition of discreet portions of animals that include certain skeletal elements and exclude others (Bowen 1986; Kennedy and Landon 2007; Landon 1996).

The second set of observed to expected recovery ratios was also calculated for domestic mammals by comparing the number of skeletal element specimens observed to the number of skeletal elements expected in an individual. The number of skeletal elements for a single caprine, cattle, and pig were derived from Crader (1984). The skeletal recovery by element ratio further divides the head-and-foot and body-and-limb categories from the first calculation, providing a finer-grained view of the skeletal part representation of each species. It also compensates for some of the inflation in the anatomical region representation caused by the survivability, quantity, and recovery of certain elements, particularly teeth. Teeth are durable, tend to preserve better than most
other bones, are particularly diagnostic of a given species, and are numerous in an individual. For example, there are thirty-two teeth in an adult caprine or an adult cow and forty-four teeth in an adult pig (Crader 1984; Hillson 1986). As such, the skeletal recovery by element ratio is useful for elaborating on the skeletal recovery by anatomical region ratio and for observing the overrepresentation and under-representation of particular skeletal elements.

The data provided by calculating NISP, MNI, biomass, and observed to expected recovery ratios provide a plethora of significant data of much interpretive value, especially when they are analyzed in concert. Together these calculations allow the Boston-Higginbotham House sub-assemblages to be summarized and characterized, and as such they constitute the data sets utilized and analyzed in this thesis.

Documentary Data

Documentary research complements the vast amount of information recovered from the faunal sub-assemblages of the Boston-Higginbotham House. When combined with the faunal analysis, the documentary data provides significant interpretive support and allows for more cogent and nuanced analyses of African American foodways in the Northeast. While African American foodways in Nantucket are not well documented, they can be approached through indirect means. For example, account books that record food transactions provide insight into what foods were available in Nantucket’s markets (e.g., NHA Account Book 327 (1808-1816), NHA Account Book 334 (1707-1808); NHA Farms on Nantucket Folder 2 (1822)). While few of these account books record the transactions of African Americans, at least one probate record shows that members of the
Boston family obtained meat from a butcher (NHA Probate 4, pp. 79-83, 184-185: 1796). Additionally, contracts for labor related to animal husbandry and the classification of some of the Boston family members as yeoman underscore the role that livestock played both in terms of dietary contributions and in the livelihood of Nantucket’s African American community (e.g., NHA 335 Folder 59: 1826; NHA Court 7 pp. 160: 1831).

Other important sources of information on foodways include cookbooks, including *The American Frugal Housewife* (1833) by Lydia Marie Child, *The Virginia Housewife: or, Methodical Cook* by Mary Randolph (1828), and guides for domestic servants such as Robert Roberts’ *The House Servant’s Directory* (1827). Several of the Boston-Higginbotham House residents were domestic servants, so it is likely that they were familiar either with these sources or with many of the modes of food preparation that they describe. Information gathered from these sources reveals not only the perception of the consumption of certain animals, but also the processes involved in their acquisition, preparation, and consumption that are integral to understanding foodways. For example, Child (1833) provides insight into the meats that lower- and middle-class households are consuming during this time, and Roberts (1827) instructs servants on how to discern and purchase the best meats at the market. These documentary sources provide important lines of complementary evidence in the reconstruction and interpretation of African American foodways in 19th-century New England.

The Boston-Higginbotham House Sub-Assemblages

Excavations at the Boston-Higginbotham House produced a wealth of material culture associated with the 19th-century occupation of the house in several distinct areas
of the property. These sub-assemblages were delineated on the basis of the nature of the deposition of faunal remains and other artifacts and by the interpretation of these contexts. The four sub-assemblages analyzed in this thesis are briefly summarized below.

A stratified kitchen midden (EU3, EU11, EU12) located near the northwest corner of the house was particularly productive in terms of artifacts, and this area yielded more bone specimens by count and weight than any other sub-assemblage. Due to the relatively large and intact nature of the material culture recovered from this area, this deposit seems to have been relatively protected from trampling and other taphonomic processes that cause a high degree of artifact fragmentation. This is probably the result of this depositional area underlying a porch, as an elevated door to the kitchen was once located somewhere in this northern area of the house’s west wall.

Terminus post quem dates (TPQ’s) for all sub-assemblages were established using diagnostic artifacts including decorated and undecorated ceramics, coins, glass containers, metal hardware, metal cans, an early-model camping stove, and synthetic materials such as plastics. These artifacts were then assigned TPQ’s based on Miller’s (2000) TPQ list and the DAACS Mean Ceramic Date (MCD) Guide (2006). For the kitchen midden, TPQ dates were derived primarily from 19th-century ceramics and coins dating to 1822, 1880, and 1905. These TPQ’s indicate that kitchen refuse was continuously deposited in this area from around the 1820’s until the end of the 19th century.

The majority of the faunal remains recovered from the kitchen midden are concentrated in levels 5a, 5b, and 6a. These levels are associated with an 1880 penny, a
plate manufactured in 1878, and an 1822 penny in addition to brown transfer-printed pearlware manufactured between 1809-1825, respectively (DAACS MCD Guide 2006; Miller 2000). The results of these TPQ calculations are that the artifacts recovered from level 6a and above must have been deposited no earlier than 1822, while those recovered from level 5b and above must have been deposited sometime after 1878, and those from level 5a must have been deposited sometime after 1880.

As a result of the intact stratigraphy and the TPQ dates, it is possible to associate these deposits with particular households, specifically those of Mary Boston Douglass (1809-1834), William Boston, Eliza Boston Berry, and Charlotte Boston Groves (1834-1883), and Elizabeth D. Stevens (1883-1914) (John G. Waite Associates 2005). Significantly, William Boston (b. 1805, d. 1842), Eliza Boston Berry (b. 1806, d. 1883), and Charlotte Boston Groves (b. 1809, d. 1851) were raised in the Mary Boston Douglass household and resided in the house throughout their lives, so there is a strong possibility that this kitchen refuse was deposited throughout their lifetimes and tenure as residents of the Boston-Higginbotham House (John G. Waite Associates 2005; Kaldenbach 2009).

Faunal sub-assemblages from three additional areas provide valuable information about 19th-century foodways at the Boston-Higginbotham House as well. One of these areas is the north yard sheet midden (STP1, STP2, EU2, EU5, EU9), which contained a large number of faunal remains and other refuse deposited throughout the 19th century as determined by TPQ dates. The terrain of this area naturally slopes downward to the north, so refuse was likely deposited in this area over time in an effort to level out this slope. By virtue of its exposed nature in the Boston-Higginbotham House yard, taphonomic
processes such as landscaping trampling, and carnivore and rodent gnawing have had more of an impact on this sub-assemblage than on the others. However, many small intact bones were recovered from this area, so the taphonomic processes that occurred here did not seem to have a particularly devastating impact on this deposit.

The midden/garden fill deposit (EU7) was located adjacent to a 20th-century cottage that stands to the northwest of the Boston-Higginbotham House. This mixed deposit has to an extent been impacted by landscaping efforts in that some of the faunal material may have been removed, as evidenced by a number of planting holes in this area. Despite the possibility of some bone removal, however, it appears that no recent faunal remains were introduced into this area, and the TPQ data shows that this deposit dates to the 19th century. The survival of smaller and more delicate avian bones and the absence of carnivore and rodent gnaw marks suggests that this deposit has been relatively protected from taphonomic processes outside of landscaping efforts. The large quantity of faunal material in this area show that this was an important location for primary or secondary deposition of faunal remains and other refuse during the 19th century.

The trash pit (EU1, EU6) was located near the southeast corner of the cottage. The bottom of the trash pit contained many metal cans, a milk glass bowl, and an 1880’s model camping stove, which shows that deposition occurred here during the late 19th century. While a relatively small number of faunal remains were recovered from this location, and most of these were smaller than those found in other sub-assemblages, the presence of certain species unique to this deposit provide insight into the more subtle aspects of foodways at the Boston-Higginbotham House.
Conclusion

The separation of the entire site assemblage into four sub-assemblages allows for a finer-grained analysis of foodways at the Boston-Higginbotham House, as similarities and subtle differences become clearer and more recognizable. As a result, the overall analysis becomes more meaningful and nuanced. Now that the field, laboratory, and research methodologies utilized in this thesis have been described, the result of the faunal analyses of the sub-assemblages from the Boston-Higginbotham House is presented in the following chapter.
Overall Assemblage

The total faunal assemblage recovered from the Boston-Higginbotham House consisted of 6451 specimens with a combined weight of 7205.3 grams, indicating that several sizable specimens were recovered during the excavations (Table 2). Of these 4119 specimens, or 64% of the total, were identified to at least the level of taxonomic class, while the remaining specimens were identified either as vertebrate or invertebrate. The invertebrate category consists solely of unidentified shell fragments.

Mammals constituted the majority of the assemblage, accounting for 2508 specimens (39%) and 5381.5 g (75%). Birds totaled 622 specimens or 10% of the total specimens and 254.3 g or 4% of the total weight. Fish contributed 561 specimens, equivalent to 9% of all specimens, and 44.9 g or 1% of the total assemblage weight. Reptiles specimens totaled 3, or <0.1% of total, and weighed in at 0.7 g, also <0.1% of the total weight. One amphibian specimen was identified, counting for <0.1% of the total specimens and its weight was <0.1 g. Pelecypods, or bivalve shells, contributed 401 specimens or 6% of total, and weighed in at 1146.1 g, or 16% of the total assemblage weight.
weight. Gastropod specimens totaled 23, accounting for <1% of all specimens, and weighed in at 52.3 g, or 1% of the total weight. Invertebrates in the form of shell fragments constituted 754 elements or 12% of all specimens, and weighed 209.7 g, or 3% of the total weight. Finally, unidentified vertebrates constituted 1571 specimens or 24% of all specimens and weighed 116 g, or 1% of the total weight. The number of unidentified vertebrate coupled with their total weight shows the highly fragmentary nature of these specimens.

<table>
<thead>
<tr>
<th>Class</th>
<th>NISP</th>
<th>% NISP</th>
<th>Weight (g)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td>2508</td>
<td>39%</td>
<td>5381.3</td>
<td>75%</td>
</tr>
<tr>
<td>Birds</td>
<td>622</td>
<td>10%</td>
<td>254.3</td>
<td>4%</td>
</tr>
<tr>
<td>Fish</td>
<td>561</td>
<td>9%</td>
<td>44.9</td>
<td>1%</td>
</tr>
<tr>
<td>Reptiles</td>
<td>3</td>
<td><.1%</td>
<td>0.7</td>
<td><.1%</td>
</tr>
<tr>
<td>Amphibian</td>
<td>1</td>
<td><.1%</td>
<td>0</td>
<td><.1%</td>
</tr>
<tr>
<td>Pelecypods</td>
<td>401</td>
<td>6%</td>
<td>1146.1</td>
<td>16%</td>
</tr>
<tr>
<td>Gastropods</td>
<td>23</td>
<td><1%</td>
<td>52.3</td>
<td>1%</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>754</td>
<td>12%</td>
<td>209.7</td>
<td>3%</td>
</tr>
<tr>
<td>Vertebrates</td>
<td>1571</td>
<td>24%</td>
<td>116.03</td>
<td>1%</td>
</tr>
<tr>
<td>Totals</td>
<td>6451</td>
<td>100%</td>
<td>7205.3</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 2. Total Assemblage Summary by Taxonomic Class.

Some of these bones demonstrated modification by butchery, burning, weathering, and rodent or carnivore gnawing. Butchery marks were identified on 216 specimens, or 3% of all specimens, and these consisted of 172 cut marks, 104 chop marks, 7 shears, and 134 saw marks. Of the 216 specimens displaying butchery modification, 87% were mammals, 13% were birds, and 1% were vertebrates. Burning was observed on 276 specimens, representing 4% of the total assemblage, primarily on
mammal bones (68%), but also on a few bird (1%) and fish (2%) bones in addition to a number of vertebrates (29%). Weathering equal to or greater than stage 2 as described by Behrensmeyer (1978) was observed on only 35 bones, or 1% of the total assemblage, and these specimens were solely mammals. A similar pattern emerged with rodent an carnivore gnawing. Only 5 specimens (<1%) showed evidence of rodent gnawing, all of which were mammals, and 5 (<1%) specimens showed evidence of carnivore gnawing, 4 (80%) of which were mammal and 1 (20%) was a bird.

The NISP’s, weights, and biomass of each animal in the overall assemblage is summarized in Table 3, and the biomass data will be briefly summarized here (Figure 4). The combined biomass of all animals in the total assemblage is 74.1 kg, and mammals contributed the bulk of this biomass with a total of 69.5 kg, or 94% of the total biomass. Within the category of mammals, cattle (Bos taurus) contributed the majority of this biomass with 34.2 kg (46% of total), followed by caprines (Capra hircus/Ovis aries) with 7.9 kg (11%) and pigs (Sus scrofa) with 6.8 kg (9%). In terms of mammals only identified to a size level, large mammals constituted 8.6 kg (12%), medium mammals only 2.1 kg (3%), medium to large mammals 7.8 kg (11%), and unidentified mammals 2.1 kg (3%). Non-mammals made a small contributions to the overall assemblage biomass. Birds contributed 3.2 kg (4%), turtles added 0.03 kg (<1%), and fish totaled 0.5 kg (1%). Biomass figures were not calculated for commensal animals that were not consumed, specifically the cat and the mouse, and this in addition to the lack of small mammals in the assemblage accounts for their absence in the biomass calculations.
This summary of the overall assemblage shows that domesticated mammals served as the main source of meat for the Boston-Higginbotham House residents, and that domestic birds, wild birds, fish, shellfish, and reptiles were occasional dietary components. Each sub-assemblage is explored in detail below.
<table>
<thead>
<tr>
<th>Family/Genus/Species</th>
<th>Common Name</th>
<th>NSW (g)</th>
<th>Weight (g)</th>
<th>Eggs (eggs)</th>
<th>Males</th>
<th>Females</th>
<th>Total</th>
<th>Males/Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrididae</td>
<td>Locusta</td>
<td>3.5</td>
<td>0.2</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cicadellidae</td>
<td>Cicadellum</td>
<td>1.5</td>
<td>0.1</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hemiptera</td>
<td>Miridae</td>
<td>1.8</td>
<td>0.1</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Orthoptera</td>
<td>Locustidae</td>
<td>3.5</td>
<td>0.2</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Pyralidae</td>
<td>Pyrausta</td>
<td>1.5</td>
<td>0.1</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Sub-Assemblages

<table>
<thead>
<tr>
<th>Sub-Assemblage</th>
<th>NSW (g)</th>
<th>Weight (g)</th>
<th>Eggs (eggs)</th>
<th>Males</th>
<th>Females</th>
<th>Total</th>
<th>Males/Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSW Assemblage</td>
<td>3.5</td>
<td>0.2</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>NSW</td>
<td>1.5</td>
<td>0.1</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>NSW</td>
<td>1.8</td>
<td>0.1</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>NSW</td>
<td>3.5</td>
<td>0.2</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Assemblage

<table>
<thead>
<tr>
<th>NSW (g)</th>
<th>Weight (g)</th>
<th>Eggs (eggs)</th>
<th>Males</th>
<th>Females</th>
<th>Total</th>
<th>Males/Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.1</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1.8</td>
<td>0.1</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3.5</td>
<td>0.2</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Unidentified

<table>
<thead>
<tr>
<th>NSW (g)</th>
<th>Weight (g)</th>
<th>Eggs (eggs)</th>
<th>Males</th>
<th>Females</th>
<th>Total</th>
<th>Males/Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.1</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1.8</td>
<td>0.1</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3.5</td>
<td>0.2</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Site Totals

<table>
<thead>
<tr>
<th>NSW (g)</th>
<th>Weight (g)</th>
<th>Eggs (eggs)</th>
<th>Males</th>
<th>Females</th>
<th>Total</th>
<th>Males/Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.1</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1.8</td>
<td>0.1</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3.5</td>
<td>0.2</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3. Taxonomic Representation with Sub-Assemblages
Kitchen Midden Sub-Assemblage (EU3/EU11/EU12)

Of all the specimens recovered from excavations at the Boston-Higginbotham House, 2502 specimens (40% of total specimens) comprising 3008.6 g (42% of total weight) came from the layered kitchen midden that was in use from around the 1820’s until the turn of the century based on TPQ and ceramic dates. The ratio of specimen count to weight for this feature indicate that larger, less fragmentary bone specimens were recovered from this sub-assemblage. Of the 2502 specimens analyzed from the kitchen midden, 1383 (55%) were identifiable at minimum to the level of taxonomic class. The remainder of these specimens were identified as vertebrate or invertebrate.

The MNI for the kitchen midden totals thirty-eight individuals, consisting of eight domesticated individuals, twenty-nine wild individuals, and one individual that could not be identified as domestic or wild. The wild individuals consist primarily of shellfish in addition to smaller numbers of fish, fowl, and an amphibian. The biomass total of 37.3 kg suggests that these specimens are the remnants of several meals (Figure 14).

Mammals

Mammal remains made up the bulk of kitchen midden sub-assemblage, with a NISP of 1046 (42%) and a weight of 2719.2 g (90%). Mammals also contributed the majority of the biomass calculated for this sub-assemblage at 36.7 kg (98%). The MNI totaled a minimum of eight domestic mammals and one wild mammal. The wild mammal, a rat (*Rattus* spp.), was a pest in the kitchen midden area and was not consumed, and as a result it is not included in the biomass calculation. The three rat
bones recovered from this area weighed 0.6 g, so it added a trivial amount of specimens and weight to the sub-assemblage total.

Cattle (*Bos taurus*) was the most common domesticated mammal recovered, which in part owes to its large size and robust bone structure. The NISP for cattle was 58 (2.3%) , representing 1822.2 g, or 61% of the total sub-assemblage weight. Cattle totaled a biomass of 22.6 kg, or 61% of the sub-assemblage biomass. An MNI of three cattle was determined based on teeth. The size, weight, and amount of meat provided by cattle are much larger than any other domestic species consumed at this site, and these figures represent their relative dietary importance at the Boston-Higginbotham House.

The largest number of cattle specimens recovered were teeth, numbering twenty-two. This is in part because the dense nature of teeth allows them to survive taphonomic processes than other bones (Hillson 2005). Analysis of the tooth types, particularly M₃ (indicative of young adults or adults) and dp₄ (indicative of juveniles) and their wear patterns allowed for the identification of two individuals over three years of age and one juvenile (Hillson 2005). In addition to the teeth, six dentary fragments and three skull fragments were recovered.

The other cattle bones recovered included three vertebrae fragments, six ribs fragments, the inferior portion of one scapula, one ulna fragment, one complete carpal, two innominate fragments, two patella fragments, and the shaft and proximal shaft of a tibia. Many of these bones, including the innominate, patella, and tibia, are associated with the meaty rear-limb of cattle. Since the distribution of cattle elements from this sub-assemblage come primarily from the rear limb and skull, it is possible that these regions
were acquired in large portions from the market. Butchery marks were found on most of these bones in the form of saw marks, chops, cuts, and a couple of shears. These butchery marks indicate the primary processing of the carcass as it is divided down the middle, resulting in many vertebrae being sawn in half, and from its division into smaller parts as evidenced by saws, chops, and shears on limb bones (Landon 1996).

The skeletal recovery ratio calculated for cattle show that the body and limbs and head and feet bones from the kitchen midden are roughly approximate to those expected in a single individual (Figures 5 and 6). The skeletal element by recovery ratio reduces the inflation caused by teeth, since there are 32 expected in a single individual (Figure 11). However, the dentary is overrepresented due to its fragmentary nature; it is possible that these pieces could mend into one or two dentaries. It is significant to note the absence of any foot bones below the carpal and the patella, as this generally indicates that the feet were removed during the butchering process. The presence of cranial bones and the absence of foot bones may evidence a butchery pattern similar to that identified by Landon (1996:121) for urban Boston in the 18th and 19th centuries, in which “only the feet of cattle and caprines were commonly removed from the carcass by the butcher.” It is possible that some cattle were home raised by the occupants of the Boston-Higginbotham House and were taken to a butcher for processing. This notion is supported by a probate record from a white butcher named Henry Clark, which lists accounts due from Seneca Boston and Essex Boston (NHA Probate 4 pp. 79-83, 184-185).

Pig (*Sus scrofa*) was the second most abundant domestic animal in terms of recovery, totaling 84 specimens (3.4%) and 157.2 g (5.2%) of the kitchen midden sub-
assemblage. This accounted for a biomass of 2.5 kg, or 6.7% of the total sub-assemblage biomass. An MNI of 2 pigs was calculated on the basis of two right ulnas and two metacarpals. At least one of these pigs was a juvenile based on the recovery on an M₃ crown that was in the process of formation. A total of twenty one pig cranial bones were recovered, including two skull fragments, two maxilla fragments, and seventeen loose teeth.

The other pig bones included an axis and two other vertebrae fragments, a rib fragment, the distal epiphysis and distal shaft of a humerus, two proximal right ulna shafts without epiphyses, two distal epiphyses of metacarpals and complete metacarpal, one complete second phalange, the proximal epiphysis of one unidentified phalange, two tibia fragments, two complete tarsals, and the distal epiphysis of one metapodial. Of these bones, butchery marks were found on the two humeri in the form of saw and chop marks and down the vertebrae in a manner consistent with splitting the animal down the middle as was discussed for cattle above.

The skeletal recovery ratio of body and limb bones and head and feet bones for the pigs is similar to the anatomical proportion expected in a single individual (Figures 9 and 10). Using the skeletal recovery ratio by element to reduce the inflation caused by teeth reveals a similar pattern (Figure 13). This accords well with the skeletal element representation based on NISP, which shows a relatively even distribution of all of the pig elements. The presence of a small number of pig foot elements including metacarpals, metatarsals, and phalanges suggests that pigs were either home raised or exchanged whole, or that these parts were available for purchase at the market, as has been observed
at contemporaneous sites in Boston (Bowen 1986; Landon 1996). The presence of pigs’ feet for purchase at the markets suggests that they were commonly consumed by New Englanders of diverse ethnic backgrounds (Bowen 1986; Landon 1996).

Caprines (Capra hircus/Ovis aries) constituted the third most abundant domestic mammal of the kitchen midden sub-assemblage, comprising 39 specimens (1.3%) and weighing 130.7 g (4.3%). The biomass for caprines is 2.11 kg, accounting for 5.7% of the total sub-assemblage biomass. An MNI of two caprines was calculated based on the presence of a heavily worn M₃ indicating a two-to-three year old individual and a somewhat worn dp₄ indicating a juvenile. A total of fourteen caprine teeth were recovered in addition to one dentary fragment, and these represent all of the caprine cranial elements recovered in this area.

In addition to the caprine cranial bones, one complete humerus and one humerus shaft, one distal radius, one complete carpal, the proximal shaft of a tibia, and two complete tarsals were recovered. Of these bones, the two humeri, dentary, and one of the tarsals showed butchery marks in the form of cuts and chops. The caprine skeletal element representation clearly shows elements from particular regions, notably the forelimb as represented by the humerus, radius, and carpal, and the hind limb, as represented by the tibia and tarsals. No caprine vertebrae were identified, however, vertebrae can be difficult to distinguish between species of similar sizes, so a number of vertebrae were identified to the taxonomic level of medium mammal may in fact belong to caprines. This is likely a result of the purchase of cuts of meat from these anatomical
regions at the local market, or perhaps a result of the butchering of a home raised animal by a butcher in town, who could sell the offal or dispose of it elsewhere.

The caprine recovery by anatomical region ratio shows an overrepresentation of head and foot bones in proportion to body and limb bones, which are underrepresented (Figure 12). The skeletal recovery by NISP broadly supports this conclusion, as the dentary, loose teeth, carpal, and tarsals outnumber the humeri, radius, and tibia in this calculation (Figure 7). The skeletal recovery by percent expected in an individual also reveals a trend similar to that observed for cattle: no foot bones below the carpals and tarsals were present (Figure 8). This lack of lower foot bones and the presence of cranial bones evidences the removal of carpine feet during the butchering process (Landon 1996).

Birds

Birds accounted for 69 specimens (3%) of the kitchen midden sub-assemblage, with a weight of 19.6 g (0.7%) and a biomass of .31 kg (0.8%). An MNI of four birds was calculated, including one Passeriform, a wild, small feeder bird; one domestic chicken (*Gallus gallus*); one wild or domestic bird belonging to the family Phasianidae, which includes chickens, turkeys, and grouses; and one wild grouse from the subfamily Tetraonidae. The small feeder bird was not consumed and was not included in the biomass calculation. All of the bird remains were represented by vertebrae and long bones, including the tibiotarsus and tarsometatarsus, which are specific to avian species. Few butchery marks were found on these bones except for a few cut marks on long bones associated with either the preparation or consumption of the birds. Though birds
constitute a small proportion of the biomass of this sub-assemblage, they do provide insight into both the diet and the food procurement practices of the residents of the Boston-Higginbotham House.

Amphibian

One small frog tibia from the order Anura was identified from the kitchen-midden sub-assemblage. It contributed a negligible weight to the sub-assemblage total. Due to its size, it was determined that the frog was not consumed and instead represents a form of bioturbation in this deposit.

Aquatic Resources

Fish contributed 235 specimens (9.4%) to this sub-assemblage, with a weight of 12.6 g (0.4%) and a biomass of .31 kg (.82%). An MNI of five fish was established, and all of these were saltwater fish locally available in Nantucket. These fish include one porgy (*Calamus* spp.), one salmon (*Salmonidae*), one sea bass or grouper (*Serranidae*), one bream or porgy (*Sparidae*), and one scup (*Stenotomus chrysops*). These fish were identified on the basis of diagnostic cranial bones and a few vertebrae; most of the unidentified fish remains consisted of vertebrae and vertebral spine fragments. Due to their fragile nature fish bones tend to survive less frequently than the bones of other animals, however, the relatively good preservation of this sub-assemblage did allow for the survival and recovery of some of these diagnostic specimens. Despite their relatively small contribution to the biomass of this sub-assemblage, the saltwater fish recovered show that the Boston-Higginbotham House residents supplemented their diets with a
variety of locally available fish, which could have been obtained from fisherman at the docks, local markets, or by fishing.

Shellfish

Shellfish accounted for 27 specimens (1.1%) with a weight of 153.6 g (5.1%) and an MNI of twenty individuals. The majority of shell specimens were worn, crushed, or fragmentary and so they could not be identified beyond the level of invertebrate. However, twenty-seven individuals were identified, including one scallop (*Aequipecten irradians*), three oysters (*Cassostrea virginica*), sixteen hard-shell clams (*Mercenaria mercenaria*), and seven soft-shell clams (*Mya arenaria*). These are all saltwater species that are locally available in Nantucket, and could have been purchased in the market. The relatively small amount of shell recovered show that shellfish was an occasional dietary component, but it also shows that the Boston-Higginbotham House residents took advantage of the rich variety of aquatic resources available in Nantucket.

North Yard Sheet Midden Sub-Assemblage (STP1, STP2, EU2, EU5, EU9)

The north yard sheet midden sub-assemblage is quite similar to the kitchen midden in terms of its overall biomass and skeletal recovery proportions (Figure 15). This sub-assemblage yielded an NISP of 2136 (33% of the total site assemblage), a weight of 2411.3 g (33%), and a biomass of 25.9 kg (35% of the total assemblage). The MNI for this sub-assemblage is eighty-six, consisting of five domestic individuals, seventy-eight wild individuals and three domestic or wild individuals. The majority of these wild individuals (sixty-five individuals) are shellfish, and the rest are fish and birds. A total of 1475 specimens (69% of the sub-assemblage) were identified at least to the level of
taxonomic class. The ratio of NISP to weight shows that some larger bones were recovered, however, the presence of this sheet midden in an open and relatively unprotected area resulted in more fragmentation in the bones recovered from this area than was seen in the kitchen midden sub-assemblage. As was the case for the kitchen midden assemblage, the biomass calculation supports the idea that these remains represent multiple meals consumed at the Boston-Higginbotham House.

Mammals

Mammals comprised the majority of the north yard sheet midden, totaling 920 elements (43% of the sub-assemblage count), 1703.3 g (70% of the sub-assemblage weight), and a 24.9 kg biomass (96% of the sub-assemblage biomass). Of the seven mammals identified by the MNI calculation, all seven are domestic, however, a cat burial recovered from this area was not consumed and probably represents the burial of a family pet or its offspring. As such, the cat was not included in the biomass calculation.

Cattle provided a large number and volume of the domestic mammal specimens in the sheet midden sub-assemblage, with a NISP of 54 (3% of the sub-assemblage total), a weight of 818.8 g (38%), and a biomass of 11 kg (43% of total). The MNI totaled 1, and this was probably a young adult based on tooth wear data and the fusion states of various skeletal elements. A total of nineteen cattle teeth were recovered in addition to one cranial fragment.

The remaining cattle specimens recovered include eight vertebral fragments, five rib fragments, one sternum fragment, one scapula fragment, one humerus shaft, one proximal ulna, one complete carpal, seven innominate fragments, one distal epiphysis of
a femur, one tibia shaft, one metatarsal shaft, and one intermediate phalange. The ribs, thoracic and lumbar vertebrae, two innominate fragments, humerus, carpal, tibia, and metatarsal specimens all had several butchery marks, the vast majority of which were saw marks associated with dividing the carcass down the middle and subsequently into smaller segments (Landon 1996). The lumbar vertebrae, innominate, humerus, ulna, femur, and tibia are all associated with the meatier portions of the loins, forelimbs, and rear limbs of cattle (Bowen 1992:268). A few cut and chop marks were observed as well, particularly on the ulna and a rib. The ulna shaft also showed evidence of minor carnivore gnawing.

The observed/expected skeletal recovery ratio for cattle in the sheet midden shows a slight overrepresentation of the more meaty body and limb elements and a small under-representation of the head and feet bones as compared to the proportions expected in a single individual (Figure 11). While taphonomic processes favoring the survival of teeth and long bones must be considered, it is possible that this reflects the acquisition of beef in portions that did not include these less-meaty parts. This notion is generally supported by the skeletal recovery by NISP and by the percent expected in an individual calculation, which show a variety of skeletal elements, particularly long bones and vertebrae, associated with the larger meat-bearing regions and relatively fewer bones from the lower-meat bearing areas, including the head and the feet (Figures 11 and 12). As with the kitchen midden, the lower foot bones of cattle are absent from this sub-assemblage, with the exception of the butchered metatarsal that was chopped near its proximal end.
Pig specimens produced an NISP of 60 (3% of the sub-assemblage total) and a weight of 247.3 g (10%) and a biomass contribution of 3.7 kg (14%). The MNI for pig from this sub-assemblage is one, as determined from complimentary tooth formation and wear data in addition to quantities and fusion states determined from long bones. A total of thirty-four pig cranial elements were recovered, comprised of fourteen skull fragments, one maxilla, and nineteen loose teeth. The skull fragments are various elements of a left pig skull, and as such they probably mend together. It is significant, however, that this area produced the largest number of pig skull specimens of any area on the site.

The other pig elements recovered include two vertebrae fragments, two rib fragments, two humerus shafts and one proximal epiphysis of a humerus, one radius shaft, one proximal epiphysis of a femur, one complete tibia and one tibia fragment, one complete fibula shaft, one proximal end of a metapodial, and one intermediate phalange. Butchery marks were observed on one of the humerus shafts, the radius shaft, the two ribs, and the complete tibia. The humerus shaft demonstrated several saw marks and the radius demonstrated one large saw mark, while the ribs had cut and chop marks and the tibia had evidence only of cut marks, and these marks represent various stages of animal dressing and preparation for cooking and consumption.

The proportions of skeletal recovery by anatomical region for pigs in this sub-assemblage generally correlate with the proportions expected in a single individual, though with an overrepresentation of head and foot bones and an under-representation of body and limb bones (Figure 13). The presence of several disarticulated cranial bones suggests that the pig’s head was consumed, obtained from either home raised or
purchased pigs. Interestingly, no pig foot bones below the metapodials were recovered from this sub-assemblage (Figures 9 and 10). This could be the result of taphonomic processes or deposition elsewhere, but it could also be a result of the exchange of pork without the feet attached, broadly supporting the notion that pork was available both whole and in discreet portions from the local market.

Caprines had an NISP of 34 (2% of the sub-assemblage total), a weight of 133.6 g (6%) and yielded a biomass calculation of 2.2 kg (9%). The caprine MNI is two, one adult greater than three years old and one juvenile on the basis of tooth wear and eruption stages of an M₃ and a d₃. A total of twenty-one caprine cranial bones were recovered, including twenty teeth and one dentary fragment.

The remainder of the caprine bones include two vertebrae fragments: one atlas and one lumbar, one humerus shaft and one proximal humerus epiphysis, two radius fragments and one radius shaft, two complete carpals, the proximal epiphysis of a femur, and two proximal tibia shafts without their epiphyses. As was the case in the kitchen midden assemblage, the sheet midden caprine specimens are clearly clustered in regions including the forelimb (humerus, radius, and carpal) and the hind limb (femur and tibia) (Figures 11 and 12). The atlas and other cervical vertebrae are anatomically close to the skull, and they may have been part of a portion of the animal that included the loose teeth and dentary fragments. Butchery modifications in the form of one saw mark, five cut marks, and one chop mark on one of the tibias and one cut mark on the radius were present in addition to chop marks on the atlas and the other tibia.
The caprine skeletal recovery ratio by anatomical region follows the trend of the other domestic mammals from this assemblage in its slight overrepresentation of head and foot bones compared to body and limb bones, however, these ratios are not exceedingly distant from the ratio expected in a single individual (Figure 12). Even when the influence of teeth are reduced (Figure 8), the presence of the dentary in proportions similar to other skeletal elements such as the atlas, humerus, and radius, suggest that caprines were obtained in larger portions including the head, or that the head was available separately, whether these individuals were home raised or purchased at the market. As with the cattle and caprine specimens recovered from the kitchen midden sub-assemblage, no caprine foot bones below the carpal or tarsal were recovered, as these appear to have been removed during the butchering process.

Birds

Birds accounted for 90 specimens (4.2% of sub-assemblage total), weighing in at 22.6 g (0.9%) and constituting a biomass of 0.4 kg (1.5%). An MNI of four was calculated on the basis of diagnostic long bones. These individuals include two ducks (*Anas platyrhynchos* and *Anas spp.*), one chicken (*Gallus gallus*), one turkey (*Meleagris gallopavo*), and one grouse (*Tetraonidae*). The vast majority of these bird bones were long bones, such as the humerus, radius, ulna, tibiotarsus, and tarsometatarsus, with the exception of one phalange and a vertebrae fragment. No butchery marks were identified on these specimens.

Of these species, the ducks may be either wild or domesticated, the chicken is domestic, the turkey may be wild or domestic, and the grouse is wild. Though chicken
was available in the local markets alongside these other birds, it is possible that this individual could have been a home raised chicken.

Aquatic Resources

Fish had an NISP of 265 (12% of sub-assemblage total) with a weight of 23.7 g (1%) and a biomass of 0.6 kg (2%). The MNI for fish is nine, and this was determined primarily by diagnostic cranial elements and to a lesser extent by vertebrae. The seven fish identified include one porgy (*Calamus* spp.), one black sea bass (cf. *Centropristis striata*), one Atlantic cod (cf. *Gadus morhua*), one individual from the family Gadidae (cod, haddock, whiting, and pollock), one individual from the family Moronidae (temperate basses), one bluefish (*Pomatomus saltatrix*), one individual from the family Salmonidae (salmon), one individual from the family Serranidae (sea basses and groupers) and one individual from the family Sparidae (porgies and breams). These are all saltwater species that were locally available in Nantucket, especially by virtue of its fishing industry.

Shellfish

The NISP for shellfish is 192 (9% of the sub-assemblage), weighing 534.8 g (22%) with an MNI of 46 individuals. Two groups of shellfish were identified in this sub-assemblage: aquatic gastropods and pelecypods. The aquatic gastropods included one whelk from the family Buccinidae, and one common slippershell (*Crepidula fornicata*), both of which are found in saltwater environments. These gastropods are edible and their deposition with other food waste suggests that they were in fact consumed by residents at the Boston-Higginbotham House. The pelecypods, or bivalves, include five scallops.
(Aequipecten irradians), three oysters (Cassostrea virginica), twenty four hard-shell clams (Mercenaria mercenaria), and two soft-shell clams (Mya arenaria), and were all locally available saltwater species during the 19th century.

Midden/Garden Fill Sub-Assemblage (EU7)

The midden/garden fill sub-assemblage differs from the kitchen and sheet midden sub-assemblages, and this difference may provide some clues about the home raising of animals, particularly chickens. This sub-assemblage totaled 815 specimens (13% of the entire assemblage total), weighing 776.2 g (11% of the total assemblage weight) and producing a biomass of 7.76 kg (11% of the total assemblage biomass) (Figure 16). An MNI of thirty-three individuals was calculated from this assemblage, including ten domestic individuals, twenty-two wild individuals, and one domestic or wild individual.

Domestic mammals comprised the majority of the weight of this sub-assemblage, weighing in at 312.9 g (40% of sub-assemblage total). The majority of these remains belonged to caprines, which had an NISP of 55 (6.7%), weighed 208.8 g (27%), and produced a biomass of 3.22 kg (41.5%) (Figures 7 and 8). The MNI for sub-assemblage totaled five, consisting of three caprines, one cow, and one pig. Cattle specimens produced a NISP of 7 (0.9%), weighed 14.8 g (2%), and a biomass of 0.3 kg (3.9%). Pig specimens produced a NISP of 10 (1.2%), weighted 25.6 g (3%), and a biomass of .5 kg (6%). The extremely small number of cattle and pig specimens recovered did not lend themselves to statistically significant skeletal recovery ratios either by region or by element, however there were enough caprine specimens to provide a representative sample. The caprine skeletal recovery by region ratio shows an overrepresentation of
body and limb bones and an under-representation of head and feet bones. In terms of element recovery ratios, there is a significant overrepresentation of radii which suggests that some of these bones may have come from distinct cuts of mutton obtained from the market. In contrast to all other sub-assemblages, the midden/garden fill deposit contained several caprine phalanges and a metapodial, demonstrating that caprine feet were occasionally consumed at the Boston-Higginbotham House. The presence of foot bones may be the result of the consumption of a home raised caprine processed on site, or they may have been attached to larger cuts of meat that included these parts.

Though the majority of the weight and biomass was contributed by mammals for this sub-assemblage, birds were more abundant in terms of NISP, biomass, and MNI in this sub-assemblage. Birds specimens constituted a NISP of 387 (47% of the sub-assemblage total) with a weight of 188.8 g (24%) and a biomass of 2.48 kg (32%). The MNI for the birds, calculated on the basis of diagnostic long bones, totaled seven, including five chickens, one turkey, and one grouse (Tetraonidae). A large number of cut marks and a smaller quantity of chops and sheers were identified on 19 of the 152 identified chicken specimens.

The large quantity of fowl recovered from this sub-assemblage was likely a result of the chickens grown and raised by the residents of the Boston-Higginbotham House. Chickens would were available in the local market, however, evidence of a hen house on the Boston-Higginbotham House property suggests that chickens were a home-grown food source, even though they appear to have been consumed much less often than domestic mammals. In addition to providing meat, the eggs produced by hens would have
provided not only a food source but perhaps even an extra source of income if they were taken to market or sold elsewhere.

A small number of aquatic resources were recovered from this sub-assemblage, including two unidentified fish elements, six scallops, two oysters, ten hard-shell clams, and two soft-shell clams were recovered. The fish contributed a statistically insignificant addition to the NISP and biomass, while the shellfish contributed 88 elements (11%) and a weight of 241.7 g (31%).

The large number of caprine specimens recovered in relation to cattle specimens may be the result of a number of factors. One such factor is the removal of some of the faunal material when the planting holes were dug out and its redeposition elsewhere. Another possibility is that deposition and filling of this area occurred over a short period of time, and so these remains represent what was consumed during that time period. One additional possibility is that this fill area was used primarily for the maintenance of the hen house, or was initially used for trash deposition and later primarily for hen house maintenance. Whatever the case, this assemblage provides an interesting insight into some of the food procurement strategies of the Boston-Higginbotham House residents.

Trash Pit Sub-Assemblage (EU1, EU6)

A smaller number of bones were recovered from the late-19th-century trash pit, with a total of 251 (4% of the total site assemblage) specimens weighing 151 g (2%). The MNI of this sub-assemblage totaled ten, consisting of four domestic individuals and six wild individuals. Taken together, the specimen and the weight show that this sub-assemblage is made up of relatively smaller specimens in comparison to the other sub-
assemblages presented above. The biomass of the trash pit is 2.4 kg (3%), also a relatively small amount (Figure 17). The biomass by taxonomic class for the trash pit presents a similar picture to the kitchen midden and the sheet midden sub-assemblies, with the vast majority of the biomass coming from domestic mammals with much smaller additions from birds and fish. However, this deposit is significant because some of the specimens recovered expand our understanding of the breadth of the diet of the Boston-Higginbotham House’s residents.

As was the case in the other sub-assemblages, the trash pit is dominated by domestic mammal remains, with an NISP of 81 (33% of the sub-assemblage total), a weight of 106.5 g (70.5%), a biomass of 2.14 kg (89%), and an MNI of 3, comprised of one cow, one caprine, and one pig. Birds totaled an NISP of 7 (3% of the sub-assemblage total), a weight of 2 g (1.3%), a biomass of 0.04 kg (1.8%), and an MNI of two, consisting of one chicken and one grouse. Fish had a NISP of 49 (20%), weighing 11.1 g (7%) and a biomass of 0.2 kg (8%). None of these fragmentary fish specimens were identified beyond the level of fish. Four shellfish were recovered, including three hard-shell clams and one scallop, and they accounted for a NISP of 10 (0.8%), and a weight of 12.1 g (8%). The most significant animal recovered from this trash pit was a reptile, specifically a turtle belonging to the Emydidae family. The NISP for the turtle was two (0.8%), consisting of two shell fragments weighing in at 0.6 g (0.4%). The biomass for the turtle totaled .02 kg (0.8%). A number of turtle species from the Emydidae family are locally available in Nantucket in riparian environments, and they were probably also available for purchase at the local markets.

79
Figures 16 and 17. Midden/Garden Fill Sub-Assemblage Biomass and Trash Pit Sub-Assemblage Biomass.
Conclusion

The faunal remains recovered from these four sub-assemblages and the entire site assemblage reveal the Boston-Higginbotham House’s residents’ primary reliance on domestic mammals in their diets. Fish, shellfish, fowl, and reptiles made significantly smaller contributions to their diets, however, the breadth and variety of animals they consumed shows that they took advantage of both local livestock and local aquatic resources. The analysis of the Boston-Higginbotham House assemblage and sub-assemblages shows that domestic livestock were an important source of food and income for some members of the Boston family. The following chapter expands upon the results of this analysis and compares the findings from the Boston-Higginbotham House sub-assemblages with those from other 19th-century free African American sites in New England. This provides some context, insights, and depth to the interpretations of the Boston-Higginbotham House assemblages, and it allows for the identification of trends in African American foodways in the Northeast during the 19th century.
CHAPTER 6:
COMPARATIVE ANALYSIS

The Boston-Higginbotham House faunal sub-assemblages provide insight into the foodways of the free African American members of the Boston family residing there throughout the 19th century. They may also represent the continuation and practice of indigenous Wampanoag foodways practices passed down from Thankful Micah and shared over many generations. This is relatively difficult to discern from the faunal remains alone, however, it is an important notion to consider in reconstructing and interpreting the foodways of the Boston-Higginbotham House residents.

The foodways of the Boston family descendents are relatively unique because of the prominence and middle-class status of the Boston family members. However, the reconstruction of the foodways of the Boston-Higginbotham House residents adds both depth and diversity to our understanding of African American foodways practices in the Northeast, which lend themselves to more nuanced and comprehensive understandings of these practices. Additionally, the foodways at the Boston-Higginbotham House demonstrate the complex relationship between food and identity formation for this middle-class free African American family.
The Boston-Higginbotham House sub-assemblages represent unique depositional events, and these deposits highlight important aspects of the foodways of the Boston-Higginbotham House’s residents. The similarities and differences captured in these sub-assemblages provide important clues to the foodways of the Boston-Higginbotham House’s residents and provide insight into how these foodways were expressed, defined, and redefined at the crux of socio-economic and cultural factors (Scott 2001a:30-31).

The relationship between food and identity is complex, and it is particularly difficult to reconstruct from faunal remains (Landon 2005:21-22). Part of the reason for this difficulty is because bones do not allows us to reconstruct some significant aspects of foodways that are influenced by ethnicity such as the acquisition, preparation, or service of particular foods (Bowen 1986, 1992; Franklin 2001:97; Huelsbeck 1988; Landon 2005:21-22; Scott 2001b). Despite these difficulties, faunal remains have great value in that they can be interpreted to understand what was consumed, and when compared with what was available for consumption, this can provide important information for understanding what choosing certain foods over others reveals about the individuals and groups choosing and consuming them, and how these choices may inform and reinforce individual and group identities. As Landon (2005:22) states, “within the structure of available foods, people’s food consumption both reflected and created their identity.” Whether intentionally or unintentionally, identity is always inextricably part of the construction and maintenance of foodways.

Boston-Higginbotham House Sub-Assemblages
This section provides interpretations of the Boston-Higginbotham House sub-assemblages. The following section places these interpretations in a comparative context with other free African American sites in 19th-century New England to provide for a richer and more contextual analysis, and to explore broader trends in African American foodways in this region during this time.

Species Selection

All four sub-assemblages of the Boston-Higginbotham House reveal that domestic mammals, specifically cattle, caprines, and pigs, constituted a vast majority of the meat consumed by its residents. This holds especially true for the north yard sheet midden and the kitchen midden, the two largest assemblages, which reveal a large amount of these three domestic mammals in comparison to all other species. This is demonstrated not only by the NISP, MNI, and weight of the domestic mammals in these sub-assemblages, but also by the biomass calculations that estimate the approximate amount of weight a particular animal may have contributed to the diet. Domestic mammals, including unspecified mammals that likely represent these domestic species, constituted 90% of the biomass of the kitchen midden, 97% of the north yard sheet midden, and 89% of the trash pit sub-assemblage. Also, no wild mammals that may have been consumed were positively identified, and this supports the importance of the domestic mammals evidenced by the large number of domestic mammal remains.

The domestic mammals consumed at the Boston-Higginbotham House were likely purchased from local market, probably at butcher shops, and some animals were probably also home raised. The presence of caprine foot elements in the midden/garden
fill deposit and the cattle foot bone from the north yard sheet midden in addition to the presence of caprine and cattle skull elements in all of the sub-assemblages indicate that larger portions of these animals were consumed, whether they were home raised and slaughtered on site, brought to a butcher for processing, or purchased from the market. The home raising of sheep and goats could also potentially be linked to small-scale wool production (Bowen 1998).

The notion that some of the domestic mammals consumed at the Boston-Higginbotham House were home raised is supported by the involvement of Boston family members in husbandry activities, the presence of a barn on the property throughout the 19th century, and by the recovery of skeletal elements from all portions of these animals. Among his many other enterprises, Absalom Boston was contracted in 1826 to drive cattle every day from May through October, and in an 1841 court record he was identified as a yeoman, or farmer (NHA 335 Folder 59). Though Absalom did not reside in the Higginbotham House during this time, these documents evince the participation of the Boston family in animal husbandry practices during the 19th century. For Absalom Boston and others, home raising livestock allowed individuals to contribute to their own subsistence, however, other animal husbandry practices such as cattle driving provided an extra source of income, and as such contributed to the affluence and success of the Boston family.

The home raising of livestock by the Boston family and other Nantucketers is not surprising given that farming and animal husbandry have been an integral part of Nantucket’s history since the arrival of its first European settlers (Alsop 2004; Macy
1972; Silverman 2003:514; Starbuck 1969:26). For example, a 1784 census enumerated 4268 inhabitants, 267 horses, 693 cows and oxen, and 3000 sheep (Starbuck 1969:657-660). Nantucket’s whaling boom during the late-18th and early-19th centuries decreased the amount of labor that was available for larger scale farming and animal husbandry practices, which caused major concern when the whaling industry declined rapidly during the 1840’s and 1850’s (Alsop 2004). In response to the perceived loss of its agricultural heritage, the Nantucket Agricultural Society, organized in 1856, was designed to “promote the development of a stable, self-supporting society based on agriculture and indigenous industry.” (Alsop 2004:563).

Nantucket was not the only site of small-scale animal husbandry in New England. Home raising of livestock was encouraged elsewhere in Massachusetts, notably in Boston, from the time of European settlement in the seventeenth century throughout the eighteenth century (Bowen 1986; 1998; Landon 1998). However, by 1800 Boston’s rapid population growth meant that the common grazing areas could no longer support the increasing number of cattle, sheep, and pigs that residents raised (Bowen 1992:277). Consequently, many laws aimed at restricting home raising were enacted throughout the first half of the 19th century in urban Boston, culminating in the 1833 law that forbade any resident or farmer from putting any animal to pasture in the commons (Bowen 1992, 1998; Bower 1990). This meant that few residents could raise livestock aside from those residing in the more rural areas of the city.

While residents of urban Boston were being discouraged and forbidden from home raising animals during the 19th century, Nantucket’s residents were being
encouraged to contribute to their own subsistence by home raising animals by organizations such as the Nantucket Agricultural Society. Nantucket’s population did experience a spike during the 19th century as a result of the whaling industry, however, this population does not seem to have outgrown its resources as Boston did. Nantucket was able to maintain its less urban nature and its ample space for farming and agricultural practices even during the height of its population boom, and the fencing off of parcels such as the Boston-Higginbotham House lot may reflect attempts to confine livestock to individual yards (John G. Waite Associates 2005:5-6).

Further evidence of Nantucket’s continued animal husbandry practices during the 19th century are its infamous “Sheep Wars,” a series of heated disputes that arose when the sheep commons were said to be equivalent to individual property rights (Kaldenbach 2009). Also, an article appearing in the Nantucket Inquirer on October 4, 1821 tells of the newly enacted law forbidding people from claiming ownership of sheep by any characteristic other than their ear marks, which had previously been a problem for Nantucket residents raising their own sheep (Kaldenbach 2009). By virtue of its size, available grazing land, and relatively small population, Nantucket was able to support its long tradition of animal-husbandry throughout the 19th century, and the Boston-Higginbotham House residents contributed to this tradition by home raising some of the animals they consumed.

While some of the animals consumed at the Boston-Higginbotham House were home raised, others could have been obtained from local markets or butcher shops known from historical documents to have operated throughout the 19th century (NHA Account
Thus far, only one document pertaining to the Boston family’s transactions with a butcher has been located, and this is a probate record from a white butcher named Henry Clark, to whom Seneca Boston and Essex Boston had accounts due at the time of his death (NHA Probate 4 pp. 79-83, 184-185). This does not illuminate what Seneca Boston and Essex Boston owed money for, however, they probably owed money for meats purchased from the butcher or for the butchery of home raised animals. Though this document dates earlier than the deposits studied in this thesis, it potentially sheds light on the relatively small numbers of cattle and caprine foot bones found in the Boston-Higginbotham House sub-assemblages. As such, it provides a significant line of evidence for determining the sources of the meats by the Boston-Higginbotham House residents. Since none of these 19th-century residents were listed as farmers while residing at the Boston-Higginbotham House, and because several butchers are known to have been in business in Nantucket throughout the 19th century, it is likely that the meats they ate came from a combination of home raised and market sources.

While domestic mammals comprised the majority of the biomass of all four sub-assemblages, the biomass of the midden/garden fill deposit shows that a relatively large contribution of 38% from domestic fowl, from a minimum of five individuals. This is a significantly larger amount of domestic fowl than was recovered from any of the other units, and probably reflects the home raising of chickens. The presence of a hen house on the Boston-Higginbotham House property suggests that raising domestic fowl, much like raising domestic mammals, constituted a relatively small but still important contribution
to the diets of the Boston-Higginbotham House residents (John G. Waite Associates 2005:211-212). Domestic fowl represent a regenerating food source in the form of meat and eggs, and since they require less upkeep than domestic mammals they could be raised and consumed by people in both rural and urban areas (Bowen 1992:278). The raising of chickens during the 19th century was common enough to prompt Randolph (1828:18) to advise people to “Put the fowls in a coop and feed them moderately for a fortnight” in one of her chicken recipes.

However, like domestic mammals, domestic and wild fowl were obtainable from Nantucket markets as well (NHA Account Book 327). This notion is supported by Roberts’ (1827:135-137) advice on how to select the freshest wild and tame fowl at the market in his servant’s guidebook, which is based on his experiences as a servant in early-19th-century Boston. Roberts’ (1827) guide shows that in addition to chickens, turkey and ducks (both wild and domestic) were available in markets as well as wild fowl such as grouses. While grouses could be hunted, it seems probable that the Boston-Higginbotham House obtained such wild fowl from the local market, and that chickens represent the primary home raised domestic fowl.

The other wild species consumed by the Boston-Higginbotham House residents, including fish and shellfish were locally available in the Nantucket markets (Singer 1985). The identified fish species recovered from the kitchen midden and the sheet midden sub-assemblages, including salmon, scup, black sea bass, Atlantic cod, striped bass, and bluefish, were all available from fish markets in the Northeast during the 19th century (Roberts 1827:137-138; Singer 1985:112). In his servant’s guide, Roberts
(1827:137-138) provides advice on how to select the best fish from the market, including these and several other fish species. Once acquired and butchered, these fish could be boiled, fried, made into chowder, pied, slated, fricassee, jellied, stewed, or prepared as ceviche (Child 1833; Randolph 1828). The skeletal recovery of fish bones seems to indicate relatively equal skeletal representation, suggesting that whole fish were brought to the Boston-Higginbotham House (Singer 1985:112). Some of these fish species could potentially have been acquired through fishing, however, it seems that they likely that they were primarily purchased from local fish markets. The diversity of fish species consumed by the residents of the Boston-Higginbotham House supports the notion that fish provided a measure of variety to their diets, if only occasionally.

The shellfish recovered from all four sub-assemblages, consisting of hard-shell clams, scallops, oysters, common slipper shells, and one whelk from the sheet midden were also locally available in Nantucket markets. These shellfish could be prepared in several ways, including by boiling, scalloping, frying, or baking them into loaves (Child 1833:46; Randolph 1828). Like the fish species, these shellfish appear to have been an occasional dietary component, and they could have been gathered by the residents of the Boston-Higginbotham House, but they were more readily obtained from the local markets alongside fish and other seafood. While it was difficult to determine any modifications on the whelk that indicate that it was consumed, its presence in the sheet midden suggests that this is a possibility.

At least three species of turtles would have locally available in 19th-century Nantucket, including the Eastern painted turtle (Chrysemys picta picta) and the spotted
turtle (*Clemmys guttata*) from the Emydidae family and the snapping turtle (*Chelydra serpentina*) from the Chelydridae family. The diamondback terrapin (*Malaclemys terrapin*), also a member of the Emydidae family and the most popularly consumed turtle at the turn of the 20th century in the Northeast, would have been available from nearby Cape Cod and regions further south (Behler and King 2006). Snapping turtle bones are particularly diagnostic, so it is not likely that the turtle bones recovered belong to a snapping turtle; they most likely represent individuals from the Emydidae family. It is important to note that a variety of sea turtles from the family Chelonidae were available from offshore areas in addition to the local terrestrial turtles, though the turtle bones from the Boston-Higginbotham House sub-assemblages appear to be from terrestrial species. The Eastern painted turtle and spotted turtle thrive in moist riparian environments, including rivers, lakes, streams, ponds, and marshy areas. These environments did exist in 19th-century Nantucket as the do today, but not in the immediate vicinity of the Boston-Higginbotham House. Environmental factors rule out the possibility that the turtle in the Boston-Higginbotham House trash pit sub-assemblage was commensal. These species were either collected from local ponds and marshes or acquired from local markets. It is also possible that Nantucket’s importance as a port town meant that other species of turtle from elsewhere could have been imported as well. Whether it was collected locally or purchased from a market, the context from which the turtle bones were recovered and the surrounding local environment suggests that this turtle was a comestible species, providing even more diversity to the diets of the Boston-Higginbotham House residents.
Bone Modifications: Butchery

Many of the bones from the four sub-assemblages had evidence of human modification, primarily in the form of butchery marks on domestic mammals. Saw marks were by far the most commonly identified butchery mark, and this corresponds well with the butchery processes of the time period: “During the first half of the 19th century, butchering techniques began to shift from butchering carcasses with an axe-like tool to sawing.” (Bowen 1992:270). The majority of these saw marks exhibited striations at regular intervals, suggesting that these were the result of the use of a band-saw as opposed to hand saw. This implies that butchers were often involved in dressing and dividing carcasses prior to their preparation and consumption at the Boston-Higginbotham House, though more irregular saw striations and chop marks suggest some on-site processing as well. The prevalence of saw marks at regular intervals may also represent a “shift from butchering carcasses into large roast-like cuts to the smaller, individual-sized cuts of meat we know today.” (Bowen 1992:270). However, saws could also have been used to produce larger roast like cuts, and were undoubtedly part of the butchery process that involved halving cattle and pigs down the middle and dividing them further from there (Landon 2005). Unfortunately, saw marks cannot always reveal where the butchery of an animal occurred, however, the regularity of saw marks observed on several specimens in the Boston-Higginbotham House collection suggest that many of these animals were butchered using a band-saw, and this likely took place at a local butcher shop.
Of the domestic mammals recovered from the Boston-Higginbotham House, cattle and caprine foot bones were seldom recovered, suggesting that these parts were often removed elsewhere, probably by a butcher. However, the presence of a few caprine and cattle foot bones in the kitchen midden and north yard sheet midden shows that these parts did make it to the Higginbotham House, either attached to a larger cut of meat from the butcher or as a result of home butchering. If these specimens do represent home raised and home butchered animals, then they evidence a method of procurement “where the consumer has direct ties to the producer” since “Faunal assemblages excavated from sites located in these systems show proportions of bone elements similar to those found in the complete skeleton.” (Bowen 1992:267). In other words, the more complete recovery of caprine and cattle skeletal elements including these foot bones may be evidence of the Boston-Higginbotham House residents producing and consuming home raised livestock.

Beyond this, the relatively small proportion of caprine and cattle feet recovered from these sub-assemblages may also represent the exchange of these portions as part of the price of butchery. For example, in the Brighton market that supplied Boston’s meat during the 19th century, buyers who purchased livestock from farmers would “pay for the butchering of the animal in currency and the then-undesirable animal parts referred to as offal (which varied from animal to animal)” (Bowen 1992:277-8; Landon 1996:16-17). The offal would then be sold for various uses such as the production of glue and buttons and as feed for pigs (Bowen 1992). A similar system may have been in place in Nantucket, where these elements were collected and sold for purposes beyond human consumption.
Even though there was a demand for offal for more industrial purposes, the feet of cattle and caprines could probably be obtained from local markets connected to larger portions, as discreet cuts, or from home raised animals. Though perhaps not as meaty or desirable as other skeletal elements, the feet of cattle and particularly veal could be used for soups, fried, or fricasseed (Randolph 1828:41). Lamb’s feet, along with their heads, could be prepared into gravy or dressing (Randolph 1828:45). The use of the foot bones of these animal in preparing such dishes was common during the 19th century, as evidenced by their presence in Randolph’s (1828) cookbook *The Virginia Housewife*, especially in regions where animals were home raised and locally slaughtered.

While the feet of cattle and caprines seem to have been removed frequently, the pig remains from these sub-assemblages suggest that pigs were exchanged whole, in large portions, or were home raised. This is evidenced by the relatively even distribution of pig elements compared to those of cattle and caprines, including the presence of several foot bones and cranial bones in the kitchen midden and the north yard sheet midden sub-assemblages. Whole pigs, especially suckling pigs or young hogs, were consumed well into the 19th century, as evidenced by documentary evidence in the form of a Child’s (1828) cookbook and Robert’s (1827) servants guide, which describes the proper manner for carving a whole roasted pig. In *The American Frugal Housewife*, Child (1833:41) provides detailed instructions for roasting a whole pig, including the instructions for processing the head: “Cut off the head, split it open between the eyes. Take out the brains, and chop them fine with the liver and some sweet-marjoram and sage; put this into melted butter, and when it has boiled a few minutes, add it to the gravy.
in the dripping-pan.” The pig skeletal elements recovered from the kitchen midden sub-assemblage may be from a pig prepared in a similar manner.

If the feet of pigs were not part of a whole roasted pig, they may have been purchased separately and “soused” or pickled, as was a common method of preparing them (Child 1833:42; Randolph 1828:50-51). Though Euro Americans also occasionally consumed pig’s feet, the process of preparation and consumption of soused pig’s feet may evidence a continuity with African American foodways that have their roots in the South (Franklin 2001; Kennedy and Landon 2007). If the pig skull elements do not represent the consumption of a whole pig, they may reflect the acquisition and use of the pig’s skull. As Child (1833:38) observes, “Pig’s head is a profitable thing to buy. It is despised, because it is cheap; but when well cooked it is delicious.” Pig’s heads could also have been boiled with the feet or cooked with the heart, liver, and tongue. While pig’s head could probably have been obtained as a discreet cut in the local Nantucket markets, the prevalence of a variety of pig skeletal parts in these assemblages suggest that the pig’s heads were part of larger portions that included the head, and this in turn could have come from home raised pigs.

Several skull elements from cattle were recovered in the Boston-Higginbotham House sub-assemblages. For caprines, the only skull elements positively identified were teeth and dentary fragments. Each sub-assemblage contained a number of cattle and caprine teeth and dentary fragments, while the kitchen midden sub-assemblage contained several other cattle skull elements as well. Though distasteful to our modern palates, calf skull was a fashionable, desirable “high-status dish until well into the 19th century”
Several methods for preparing calf’s skull are recorded in contemporaneous cookbooks and servants guides (e.g., Child 1833:39; Randolph 1828:40-42; Roberts 1827:126). Calf’s skull could be “grilled, roasted, baked, stewed, or hashed, and were often deboned and stuffed, or served whole with garnishes of parsely, mushrooms, and force-meat balls” (Bowen 1992:275). As such, the consumption of a calf skull could represent an expression of the Boston-Higginbotham House’s occupant’s middle class economic status. Additionally, it may represent the thorough use of home raised animals, as it would be economically advantageous to obtain as much meat as possible from these individuals, especially if such parts were fashionable. This is echoed by Randolph’s (1828:43) instructions for removing and preparing a calf’s head and feet for people “who live in the country and butcher their own meats.” However, butchers were active on Nantucket during the 19th century, and seem to have butchered much of the meat consumed by the Boston-Higginbotham House residents, whether the animals providing this meat were home raised or purchased elsewhere. The presence of several cranial elements in each sub-assemblage suggests that these animals were obtained or exchanged in portions that often included such elements, and that they represent meat sources consumed by the Boston-Higginbotham House residents.

The skull and foot bones from the Boston-Higginbotham House sub-assemblages were accompanied by large numbers of bones from the meatier portions of cattle and caprines. These include the lower vertebrae associated with the loin, and upper forelimb and rear limb elements (Bowen 1992:270). In the kitchen midden and the north yard sub-assemblages, a number of bones from the rear limb of cattle were recovered, including
portions of the innominate, patella, and tibia, representing some of the meatier parts of the animal. Caprine element distribution in these sub assemblages shows a number of humerus, radius, and tibia specimens that correspond to the meatier portions of sheep and goats. This shows that meatier portions of cattle and caprine were consumed at the Boston-Higginbotham House in addition to the less meaty head and feet portions, which seem to have been only occasionally consumed.

Contemporaneous documentary evidence provides additional insight into the portions that may be represented by the bones recovered from the loin, forelimbs, and rear limbs of cattle and caprines, and the method in which they might have been prepared. For example, Roberts (1827) instructs servants on how to carve certain meats, and this provides information on what meats and cuts were available in middle and upper class households at this time in the Northeast. Some of the meats that Roberts (1827:126-127) suggests that servants should know how to carve include the breast of veal, calf’s head, the shoulder and leg of mutton, and the fore-quarter of lamb. In suggesting affordable but desirable dishes, Child (1833:37) recommends preparing shoulder of veal, pork shoulder, fore quarter of mutton, and the neck and upper ribs of caprines. Child’s (1833) recommendations reflect what would be available for purchase in the markets in the Northeast, and these portions would undoubtedly had been obtainable in Nantucket as well, either discreetly or in larger portions. In her Southern cookbook, Randolph (1828:24-25) states that the loin of veal is good for roasting, the fillet or leg can be prepared in myriad ways, the knee or knuckle is good for soup or boiling, the breast and rack can be prepared in a number of ways, and the shoulder and neck are good for soup.
The historical data from the guide and the cookbooks demonstrate that mutton was often prepared in larger portions, while beef was probably already somewhat divided since larger portions would be difficult to cook given the size of the preparation facilities and the amount of time it would take to cook such large portions. If mutton and beef were in fact roasted, their bones could have been re-used for what Child (1833:36) describes as “rich soup, full of marrow.” In fact, Child (1833:36) recommends the leg and shin of beef as the “richest piece of beef for a soup.” As such, some of the lower forelimb and rear limb elements recovered from the Boston-Higginbotham House could have provided both roasted meat and marrow and flavoring for soups and stews. While soups and stews were undoubtedly prepared at the Boston-Higginbotham House, roasts and other types of meat were prepared and consumed as well.

The large proportion of domestic mammals consumed by the Boston-Higginbotham House residents in addition to the fowl, fish, shellfish show that the local market and local husbandry practices have an effect on diets: what is consumed is in a broad sense a reflection of what is available in the local markets or home raised (Bowen 1986, 1992; Landon and Kennedy 2007). This, in addition to a number of other factors, can make discerning ethnic foodways quite difficult. For example, ethnicity is not the sole factor influencing foodways: individual tastes and preferences, economic status, and a host of other factors influence food consumption on a daily basis and over time as well. These factors, in addition to the fact that it is difficult to discern ethnic influences in the form of food preparation methods and presentation, suggest that discerning and reconstructing ethnic foodways embedded in market-dominated acquisition systems will
be a study of subtleties rather than overt distinctions (Bower 1992; Kennedy and Landon 2007).

The presence of the turtle remains in the Boston-Higginbotham House trash pit sub-assemblage is an example of the type of subtlety in the faunal record that provides evidence for the reproduction, maintenance, and practice of African American foodways. Though turtle was consumed in the north, it was a more popular and more commonly consumed dish in the Mid-Atlantic and the South (Kennedy and Landon 2007:116). This is evidenced by Randolph’s (1828:20-22) recipe for turtle soup, which describes the proper process of dressing the turtle and making the soup. Interestingly, this recipe suggests augmenting turtle meat with calf’s head meat if there is not enough turtle meat available (Randolph 1828:21-22). In case no turtle meat was available, Randolph (1828:22) also provided a recipe for “mock turtle soup of calf’s head.” Preparation methods are difficult to discern from faunal remains alone, but this provides yet another preparation possibility for the meat represented by the cattle skull bones in addition to the meat represented by the turtle bones from the Boston-Higginbotham House.

The foodways of the Boston-Higginbotham House residents during the 19th century indicate a middle-class dietary pattern based primarily on the consumption of both home raised and market acquired domestic animals, supplemented by other fowl, fish, and shellfish. The presence of turtle in the Boston-Higginbotham House assemblage suggest the practice of African American foodways that sustained and reasserted African American cultural traditions and informed the formation and maintenance of individual African American identities.
Comparative Analysis

The results of the Boston-Higginbotham House sub-assemblage analysis are compared here with the findings from three contemporaneous African American sites in the Northeast, including Boston’s African Meeting House and the neighboring 44 Joy Street tenement, and the Casey/Carr site in Saunderstown, Rhode Island. Additionally, the results of the Boston-Higginbotham House assemblage analysis are compared with Bowen’s (1986, 1992) analysis of faunal remains from the Narbonne House, the home of a white upper-middle class family during the 19th century. This site is included because she utilized it in her original comparative analysis of the African Meeting House assemblage, and because it provides insight into the potential differences between African American and European American foodways in the Northeast. This comparative analysis is intended to provide both context and depth to the analysis of the Boston-Higginbotham House sub-assemblages.

Boston’s African Meeting House and the 44 Joy Street Tenement

During the early 19th century, while Nantucket’s African American community was flourishing, Boston’s African American community had begun to relocate from Boston’s West End to the north slopes of Beacon Hill. An integral aspect of the development of this community on Beacon Hill was the African Meeting House, which provided a church and social center for the community and drew African Americans into the area. Completed in 1806, Boston’s African Meeting House is the oldest standing African American church built by African American craftsmen in the United States.
(Hayden 1983). The African Meeting House is a National Historic Landmark, part of Boston’s Black Heritage Trail, and a significant site for the Museum of African American History.

The African Meeting House was designed as a multi-use space to suit the needs of a growing and active community, and housed many significant social, cultural, political, educational, and religious organizations, serving as a venue for these and other community events. Significantly, a number of these events involved the consumption of food in public in the form of community dining. Boasting a large multi-floor sanctuary that could hold nearly six hundred people, the African Meeting House also housed a schoolroom and a basement apartment intended for the pastor but instead rented out to African American community members during the 19th century (Bower 1994:24-25). This more private, domestic apartment space is distinct from the overtly public spaces of the schoolroom and the sanctuary.

The African Meeting House has been the site of many archaeological excavations (e.g., Bower 1977, 1986, 1990; Bower and Charles 1982; Bower, Cheney, and Rushing 1984; Bower and Rushing 1980). Bowen (1986, 1992) analyzed the faunal remains from the earlier excavations, and Kennedy and Landon (2007) analyzed the faunal remains from excavations that took place in the summer of 2005.

In her study of the African Meeting House faunal assemblage from a sheet midden and a number of feature deposits, Bowen (1986, 1992) compared her results with a faunal sub-assemblage from the Narbonne House in Salem, Massachusetts, the home of a middle class white family that resided there throughout the 19th century. This
comparison was facilitated to determine whether ethnic foodways could be distinguished in urban areas where urban market provisioning systems were the main source of food for its residents. Bowen’s (1986, 1992) analysis revealed several significant similarities between the African Meeting House and the Narbonne House assemblages, including the primary reliance on domestic mammals in the form of cattle, caprines, and pigs, supplemented by a small quantity of fowl and fish. Bowen (1986, 1992:268) noted the presence of “fleshier loins, rear limbs, and forelimbs of the adult-sized cattle, calves, pigs, and sheep/goats are well represented, while adult cattle and sheep/goat heads or feet are conspicuously absent” at both sites, in addition to a more equal distribution of pig skeletal part elements. This more equal distribution of pig elements suggests that pigs were exchanged in larger portions or whole, or that these represent home raised pigs. Bowen (1986, 1992:271) concluded that “there is nothing that could be readily attributed to either an African American or low-status diet” because of the similarities between the African Meeting House assemblage and the Narbonne House assemblages. As Bowen (1992:268) states, “This overall similarity indicates urban regulations controlling animal slaughtering and the distribution of cuts of meat can equally well account for patterning in the faunal record.” In other words, for Bowen the African Meeting House and the Narbonne House assemblages were patterned primarily by the dependence of the occupants of both places on the market for the majority of their food, thus rendering ethnic food ways difficult to discern.

Meeting House. In 2005, excavations took place in the west alley and the south backlot of
the African Meeting House, including an area that was originally part of the neighboring
44 Joy Street property. A number of features were uncovered during these excavations,
including builders’ trenches, a series of drains, a trash midden in the Meeting House
backlot, and a privy associated with the 44 Joy Street tenement. The 44 Joy Street
tenement, owned by white landlady Ann Collins, housed free African Americans from
1819 until 1833 (Bower 1986). The larger deposits were recovered from the African
Meeting House backlot sub-assemblage, which contained over 2000 specimens, and the
44 Joy Street privy, contained 578 specimens. The deposits from these sub-assemblages
date from around 1800-1840.

Archaeological and historical evidence have been used to link the African
Meeting House backlot deposits with the catering operation of Domingo Williams, an
African American caterer who resided with his family in the basement apartment of the
African Meeting House during the 1820’s. As such, the Meeting House backlot deposits
are likely the remains of meals prepared for catered affairs, including some of the
community meals consumed at the African Meeting House. In the privy associated with
the 44 Joy Street tenement, the lower levels include a variety of household and kitchen
trash from its boarders and tenants. Previous analyses of the privy contents including
ceramics, faunal remains, and macrobotanicals have revealed what appear to be the
material markers of people of middle-class status rather than destitute people of very
modest means.
Kennedy and Landon’s (2007) findings were similar to Bowen’s (1986, 1992) demonstrating the dominance of domestic mammals in the range and quantity of animals consumed at both the African Meeting House and the 44 Joy Street tenement. This is reflected in the biomass calculations, which show that over 80% of the biomass for both sites is accounted for by cattle, pigs, and sheep/goats. They also found similarities in the relative absence of head and foot bones of cattle and caprines in comparison to body and limb bones, while pig elements were recovered from both regions in closer to expected anatomical proportions, agreeing well with Bowen’s (1986, 1992) earlier findings. The prevalence of rear limb bones of caprines in the backlot assemblage suggests that leg of lamb or mutton, which were among the most expensive cuts at the time, were common dishes at community meals served at the African Meeting House. Additionally, rabbit bones recovered from the backlot suggest that rabbit may have been included to add a measure of diversity to the domestic mammal-dominated diet.

Bird and fish remains constituted less than five percent of the biomass from either the privy or the backlot, revealing their role as occasional dietary elements. The birds consumed, including chicken, turkey, goose, pigeon, and duck would undoubtedly been available in Boston’s local market. Three fish were identified from the African Meeting House assemblage, including two from the cod family (cod, haddock, pollack) and one bass or perch. As Kennedy and Landon (2007) point out, these are commercially available fish species that were commonly consumed and obtainable from the market.

In addition to these food components, a butchered snapping turtle femur was recovered from the 44 Joy Street privy. Though it seems to have been a relatively minor
dietary component, it did add diversity to the diet of the 44 Joy Street tenement residents. Though it is not possible to tell whether it was caught in the wild or purchased at market, the heavy reliance upon the market for foodstuffs suggests that it was probably obtained from the market.

Overall, both Bowen’s (1986, 1992) and Kennedy and Landon’s (2007) analysis of the African Meeting House and 44 Joy Street privy faunal assemblages reveal a similar pattern in the primary reliance on domestic mammals, namely cattle, caprines, and pigs, supplemented by smaller quantities of fowl, including chicken, turkey, waterfowl, and other birds, some fish. In both the Boston-Higginbotham House and the African Meeting House assemblage, the majority of the biomass was contributed by cattle, followed by pig and caprines. This contrasts slightly with the 44 Joy Street privy assemblage, which had roughly equal biomass contributions from cattle and caprines.

In the African Meeting House assemblage, the under-representation of cattle and caprine head and foot bones in addition to the recovery of pig bones closer to expected anatomical proportions is likely the result of the market system and the regulations and practices associated with exchanging animals in particular portions, whether in discreet cuts, or, as in the case of pigs, in larger portions. Overall, Kennedy and Landon (2007) found the dietary pattern at that African Meeting House and the 44 Joy Street tenement to be indicative of a middle-class economic status in its primary reliance on market-supplied domestic mammals, in contrast to the diets of working-class New York residents in the 19th century that relied primarily on fish, as described by Milne and Crabtree (2001). Kennedy and Landon (2007) concluded that the snapping turtle bone and the pigs’ feet
could be indications of distinctively African American foodways that may have their roots in the American South.

Many similarities exist between the Boston-Higginbotham House assemblage and the assemblages from the African Meeting House, the 44 Joy Street tenement, and the Narbonne House. The most notable similarity is the prevalence of domestic mammals as the main source of meat in the diets of Boston-Higginbotham House residents and in the diets of the occupants of these other sites as well. At the Boston-Higginbotham House as well as the African Meeting House and 44 Joy Street, over 80% of the overall biomass was contributed by domestic mammals. At all four sites, small quantities of fowl and fish provided dietary variation and supplemented the domestic mammals, and at the Boston-Higginbotham House and the 44 Joy Street tenement small numbers of turtle remains suggest that these reptiles provided a small but significant dietary contribution.

All four sites also demonstrated the recovery of pigs elements in numbers that closely matched the expected anatomical proportions, supporting the idea that pigs’ heads and feet were available for purchase at the market, that cuts of meat including these portions were obtainable, or that this skeletal representation is a result of home raising and home butchering of these animals. Bowen (1992) and Kennedy and Landon (2007) have suggested that it is possible that the 44 Joy Street tenement residents may have raised a very small number of pigs after it became difficult if not outright illegal to raise cattle and sheep in urban Boston, but Kennedy and Landon (2007:112) cite spatial constraints as a limiting factor that may have prevented the raising of pigs there. In contrast, the Boston-Higginbotham House lot would have provided enough room for the
raising of a small number of pigs, so it is possible that a few pigs were raised there. Whatever the source, it is clear that all anatomical regions of pigs were consumed at the Boston-Higginbotham House and at the other three sites as well.

The skeletal element representation of cattle and caprines in the Boston-Higginbotham House assemblage is broadly similar to that of the African Meeting House assemblage. At both sites bones correlating to meatier cuts of beef and mutton from the forelimb, rear limb, and loin were recovered with a relative absence of lower foot bones such as the phalanges, with some minor exceptions. This trend also agrees with the findings from the Narbonne House and the 44 Joy Street tenement, which demonstrate a larger number of bones correlating to fleshier portions and fewer relating to the peripheral meat-bearing regions. This seems to indicate that the diet of the occupants of the Boston-Higginbotham House, who were people of some means, was more akin to the catered meals consumed during community events at the African Meeting House than the daily meals of the tenants living at the 44 Joy Street tenement. This in turn may evidence a somewhat higher middle class socio-economic position for the residents of the Boston-Higginbotham House than for the residents of the 44 Joy Street tenement. However, both the Boston-Higginbotham House and the Narbonne House assemblages contained a substantial amount of cattle cranial material. Perhaps some of this cranial material was removed during the process of preparing a calf’s head, which was known to be a delicacy at the time (e.g., Child 1833; Randolph 1828; Roberts 1827) and could have been consumed by individuals at both sites (Bowen 1992).
The similarities in the dietary contribution of domestic mammals and the skeletal part representation in the Boston-Higginbotham House, the African Meeting House, the 44 Joy Street tenement, and the Narbonne House assemblages suggest that Bowen’s (1986, 1992) assertion that the market is a structuring factor is broadly correct, a conclusion that was also supported by Kennedy and Landon’s (2007) findings. As Bowen (1986, 1992) points out, there appears to be relatively little overall difference between the Euro American foodways at the Narbonne House and the African American foodways at the African Meeting house, suggesting that market availability was more influential in assemblage patterning than ethnic differences. This observation holds true on a broad level for the Boston-Higginbotham House assemblage, which overall is quite similar to the Narbonne House and the African Meeting House assemblages.

The market factors structuring the Boston-Higginbotham House assemblage may have been somewhat different than those of urban Boston and Salem, especially considering the less urban (though not entirely rural) nature of 19th-century Nantucket. Home raising of animals in Nantucket would have allowed individuals access to the more peripheral parts of animals that were perhaps less easily obtained elsewhere, especially if they were banned or discouraged from being sold in the market, as offal were known to be in urban Boston (Bowen 1986, 1992; Landon 1996). However, the general absence of foot elements of cattle and caprines in the Boston-Higginbotham House assemblage suggests that if home raised animals provided some meat contribution to the diets of its residents, this was supplementary to the meats that were purchased in discrete portions from the market. There also remains the possibility that home raised animals were
butchered off-site by professional butchers, however, more research is needed to determine whether this is a viable interpretation.

In Kennedy and Landon’s (2007) analysis of the African Meeting House and 44 Joy Street assemblages, they note that the diets of the occupants of these two sites differ greatly from the diets of lower-class individuals residing in New York’s Five Points neighborhood during the 1830’s, as presented in the zooarchaeological analysis by Milne and Crabtree (2001). This assertion holds true for the Boston-Higginbotham House residents as well. Milne and Crabtree (2001) concluded that the diets of working class residents of the Five Points neighborhood consisted primarily of locally available and inexpensive fish supplemented by relatively small amounts of domestic mammals, mostly in the form of inexpensive pork products such as hams. This contrasts greatly with the diet of the Boston-Higginbotham residents, whose primary reliance on cattle, caprines, and pigs is in large part indicative of their middle-class economic status. Kennedy and Landon (2007) also reached this conclusion in their analysis of the African Meeting House and 44 Joy Street privy assemblages, demonstrating a significant similarity between these three sites.

The most intriguing similarity between the Boston-Higginbotham House and the 44 Joy Street tenement is the presence of turtle bones in both of these assemblages. These idiosyncratic dietary elements suggest the possibility of distinctly African American foodways in the Northeast that may have their roots in the diets of enslaved people in the mid-Atlantic or in the South (Franklin 2001; Kennedy and Landon 2007; McKee 1999). Because these elements were found in contexts with what would have been pricier and
fleshier cuts of meat, it is not likely that they were consumed for economic reasons (Kennedy and Landon 2007). As such, these elements may evidence a continuity with and the practice of African American culinary traditions, and they may have been part of meals that emphasized such traditions, or perhaps they were prepared to bring a measure of comfort to African Americans fleeing southern plantations and enslavement upon their arrival in the unfamiliar towns of the Northeast. Considering the central role of Boston’s African Meeting House in the abolition movement and the Underground Railroad, and considering the Boston family’s prominent role in Nantucket’s abolition movement and African American community definite, this remains a distinct possibility.

Kennedy and Landon (2007) suggest that the overrepresentation of pig foot bones in the 44 Joy Street Privy assemblage suggests continuities with African American foodways in the form of the consumption of pigs’ feet. While pigs’ feet were recovered from the Boston-Higginbotham House, they were recovered in ratios closer to expected anatomical proportions. In other words, there was no apparent overrepresentation of pig foot bones in the Boston-Higginbotham House assemblage. In fact, the proportions of pig foot bones from the Boston-Higginbotham House assemblage accords well with the those documented for the Narbonne House by Bowen (1992). Thus, it seems likely that the pigs’ feet present in these assemblages are the result of consuming larger portions of pigs that include these parts rather than procurement of only the feet. The similarities between the Boston-Higginbotham House and Narbonne House pig feet representations and their contrast with that of the 44 Joy Street assemblage suggests that the consumption of such parts at the Boston-Higginbotham House is more likely a result of market procurement
and exchange practices rather than of specific ethnically-patterned foodways. However, the turtle bones recovered from the Boston-Higginbotham House and the 44 Joy Street privy seem to indicate continuities with African American culinary traditions.

The idiosyncratic dietary elements in the form of turtle bones that may evidence distinctly African American foodways recovered from the Boston-Higginbotham House and the 44 Joy Street privy are all but absent from the African Meeting House assemblage and the Narbonne House assemblage. While their absence at the Narbonne House is not surprising considering its faunal assemblage represents the foodways of European Americans, the absence of these elements at the African Meeting House is intriguing. Perhaps the community meals at the African Meeting House, in helping to forge a community identity, presented an image of the African American community that had the potential to counter racist food-related stereotypes circulating at the time. In other words, notions of difference perpetuated by racist ideologies could perhaps in part be countered by the public consumption of foods that defied racist stereotypes and instead demonstrated an adherence to middle- and upper-class foodways that appealed to people across ethnic boundaries: foods palatable and desirable simultaneously to African American and European American sensibilities. In contrast to these meals consumed in public, the meals consumed in the private, domestic spaces such as at the Boston-Higginbotham House and the 44 Joy Street seem to demonstrate continuities in African American foodways and culinary traditions. As a private residence and home to one of Nantucket’s most prominent African American families, the Boston-Higginbotham House appears to have been a place where African American foodways practices and
culinary traditions served to express, strengthen, and reify the ethnic identities and affiliations of individuals and families.

There are also some notable and significant differences between the Boston-Higginbotham House and the African Meeting House, 44 Joy Street Privy, and the Narbonne House. For one, shellfish provided a relatively minor but still significant contribution to the diets of the Boston-Higginbotham House residents; shellfish were not recovered at the other sites. The consumption of shellfish by the Boston-Higginbotham House residents is perhaps unsurprising given that Nantucket is an island and provides access to an abundance of seafood. However, its significance lies in providing variation from the domestic mammals that constituted the majority of the diet of the Boston-Higginbotham House residents.

Also, a larger number of teeth were recovered from the Boston-Higginbotham House than from the African Meeting House, the 44 Joy Street privy, and the Narbonne House. Though teeth were recovered at these sites, they were recovered in relatively small quantities. This is reflected in the expected/recovered ratios by anatomical region calculated for the African Meeting House and the 44 Joy Street privy assemblages, which show a clear overrepresentation of body and limb bones compared to head and feet bones, particularly in cattle and caprines. The Boston-Higginbotham House ratios differ, showing that body and limb bones of cattle and caprines were found in proportions closer to expected anatomical proportions or demonstrating an over-representation of head and foot bones, however, this is largely due to the large number of domestic mammal teeth recovered from the site, since few foot bones from cattle and caprines were recovered.
The large presence of cattle and caprine teeth at the Boston-Higginbotham House can potentially be explained by the consumption of the heads of these animals, whether purchased or home raised. This could also explain the abundance of caprine teeth and dentary fragments, however, no cranial bones other than these were identified, making their appearance in the Boston-Higginbotham House assemblage less clear. It is possible that taphonomic processes caused the selected removal of more delicate and less numerous cranial elements, since they would be relatively vulnerable compared to the skeletal elements of cattle and pigs. Whatever the case, the large presence of teeth suggests that while feet elements were removed from cattle and caprines, skull elements, or at least teeth-bearing skull elements occasionally made their way to the Boston-Higginbotham House and the meat from them was likely consumed. This in turn may reflect a difference in the Nantucket provisioning system in comparison to that of Boston and Salem, and it also potentially represents the consumption of a small number of home raised animals butchered off-site.

Another significant difference is the large number of chickens found in the midden/garden fill sub-assemblage of the Boston-Higginbotham House that indicates the home raising of chickens. Bowen (1986, 1992) has suggested the possibility of the African Meeting House residents raising a few chickens to supplement their diets, however, the relatively small quantity of chicken recovered in that assemblage suggest that this would have been a very small-scale operation. The five individuals identified in the Boston-Higginbotham House’s midden/garden fill sub-assemblage and their significant contribution to its biomass suggests that the home raising of chickens at the
Higginbotham House was significantly more substantial than the home raising of chickens at the African Meeting House. Though the overall dietary contribution of fowl appears to be relatively minor in terms of overall NISP and biomass, the chickens raised at the Boston Higginbotham House undoubtedly contributed both meat and eggs, which could be consumed or perhaps even sold.

The comparative analysis between the Boston-Higginbotham House assemblage and the African Meeting House, 44 Joy Street tenement, and the Narbonne House assemblage provided a useful comparative context in which the conclusions from the Boston-Higginbotham House assemblage analysis could be better interpreted and explained and its nuances more pronounced through the comparative framework. The data from these sites and the Boston-Higginbotham House demonstrate that Bowen (1986, 1992) is largely correct in her assertion that market availability and economic factors are responsible for the majority of assemblage pattern. However, the results of this analysis also support Kennedy and Landon’s (2007) conclusion that ethnic patterning of foodways, especially African American foodways, are subtle since market and economic influences seem to have a major structuring influence on foodways. The presence of the turtle bones at the Boston-Higginbotham House, like those recovered from the 44 Joy Street privy, may be the subtle, infrequent, yet important evidence of the practice and maintenance of African American culinary traditions, revealing their role in the construction and maintenance of the African American identities of the Boston-Higginbotham House residents.
The Casey/Carr Site

The Casey/Carr site in Saunderstown, Rhode Island is a prime site for comparison with the Boston-Higginbotham House assemblage. The Casey/Carr site was the home of Henry Carr, a poor African American tenant farmer who resided there from 1804-1818. The faunal remains associated with Carr’s occupation of the Casey/Carr site were analyzed by Dr. David Landon and presented in a PhD dissertation by Ann-Eliza Lewis (1998).

Based on Landon’s analysis of the faunal remains, Lewis (1998) posits that Carr’s diet consisted primarily of lower-quality food supplemented by foraging and the exploitation of wild species. This is evidenced by the range of animals consumed on the site, including the standard domesticates including cattle, pigs, and sheep/goats, but also wild animals including squirrel and rabbit. Historical documentary data shows that Carr kept some cows and pigs, as well as fowl. In fact, the Casey family provided poultry yards for the raising of domestic fowl which allowed Carr to supplement his rations and perhaps also his income. The faunal assemblage from the Casey/Carr site contained large quantities of head and foot parts, especially teeth, which suggest that the less meaty head and foot parts of mammals were prepared and consumed. Taphonomic processes seem to have played a minor role in the patterning of the Casey/Carr assemblage. The survival of several delicate calf foot bones and the lack of a significant number of long bones in the unidentified mammal categories suggests that the overrepresentation of head and foot bones is not solely the result of taphonomic processes. As such, the faunal remains from
the Casey/Carr assemblage are representative of particular foodway practices. Lewis (1998) posits that the butchery of these animals probably occurred elsewhere.

The Boston-Higginbotham House assemblage differs significantly from the Casey/Carr site. For one, the Boston-Higginbotham House assemblage contains a much larger amount of cattle, caprines, and pigs, and no wild mammals appear to have been consumed there, contrasting greatly with Carr’s reliance on wild species. Additionally, while caprine and cattle heads and feet seem to have been occasionally consumed by the Boston-Higginbotham House residents, these parts made up a much more significant dietary component at the Casey/Carr site. The occasional consumption of the heads and feet of caprines and cattle and the Boston-Higginbotham House was much less frequent than the consumption of the fleshier parts of these animals, as evidenced by the relatively large number of loin, rear limb, and fore limb elements in this assemblage. In general, the feet of caprine and cattle seem to have been removed based on their relatively small recovery rates in the Boston-Higginbotham House assemblage. This differs from their more frequent appearance and consumption at the Casey/Carr site.

Some important similarities are apparent between the Boston-Higginbotham House site and the Casey/Carr site as well. At both sites, the home raising of domestic fowl appears to have supplemented both the diet and perhaps the income of their residents. Also, the home raising of animals known to have taken place at the Casey/Carr site probably took place at the Boston-Higginbotham House as well, though probably on a smaller scale since none of the Boston-Higginbotham House residents were farmers by trade as Carr was. Both assemblages contained a large number of teeth, suggesting that
cattle and caprine as well as pig heads were present on these sites and were undoubtedly cooked and consumed. While the dietary importance of the heads of these animals at these sites differ, it is nonetheless significant that the heads of animals were present at both sites. If butchering took place elsewhere as Lewis (1998) suggests, then the presence of heads at both sites may indicate the purchase of these less-expensive parts or the purchase of larger portions that include the skull. This could potentially be indicative of exurban butchery and meat exchange practices that differ from the urban systems studied by Bowen (1986, 1992) and Landon (1996).

The differences between the Boston-Higginbotham House assemblage and the Casey/Carr assemblage are likely largely influenced by economic factors. The working class economic status of Henry Carr necessitated the supplementation of his diet with wild mammals. The consumption of wild animals seems to be a common dietary practice of people living in rural areas, including members of both the middle and lower classes. In contrast, the diets of middle class urban and semi-urban residents in places like Boston, Salem, and Nantucket incorporated very little to no wild mammals in their diets. The Casey/Carr site provides an interesting point of comparison because it seems to uphold the general notion that market, economic, and location-related factors are more evident in 19th-century foodways patterning in the Northeast than ethnicity. The variation between the assemblages of the Boston Higginbotham House and the Casey/Carr site generally supports this notion.
Discussion

The comparative analysis above shows that African Americans and European Americans in the 19th century Northeast largely relied on the same domestic food sources, namely cattle, caprines, and pigs. The amount of cattle, caprine, and pig consumed seems to vary primarily by economic status rather than by ethnicity, as demonstrated by the similarities between the Boston-Higginbotham House, African Meeting House, 44 Joy Street tenement, and Narbonne House assemblages. The quantity and quality of domesticates consumed, in addition to the amount of fowl, fish, and wild mammals consumed show a strong correlation with economic and market provisioning factors. However, the presence of idiosyncratic dietary elements in the form of turtle bones at the Boston-Higginbotham House and the 44 Joy Street tenement support the notion that ethnic foodways patterning may be discernable through subtleties in the breadth and depth of people’s diets.

The foodways choices made by the Boston-Higginbotham House residents during the 19th century were made at the intersection of many factors, including economic, social, and ethnic ones. The foods that they choose to eat, beyond providing sustenance, also contributed to the formation of their identities, and this occurred both consciously and unconsciously. In the market system where a variety of foods are available, the selection of certain foods represents their agency and the active construction of their identities. The foods that the Boston-Higginbotham House residents consumed may represent a rejection of racial stereotypes and racialized foodways, as has been suggested for the foodways at the African Meeting House (Kennedy and Landon 2007). In choosing
a diet that accorded well with the foodways of other middle-class families across ethnic boundaries, members of the Boston family expressed and reinforced their middle-class social status, and in doing so they simultaneously and perhaps unconsciously challenged racial stereotypes and notions of racial difference. However, this does not mean that members of the Boston family did not also embrace African American culinary traditions. The residents of the Boston-Higginbotham House appear to have constructed and reified both their middle-class and African American identities through the foods they consumed.
CHAPTER 7
CONCLUSION

Reconstructing the meat component of the diets of the African American residents of the Boston-Higginbotham House during the 19th century has provided significant insight into the role that food played in the creation, negotiation, and maintenance of identities for both individuals and the family as an interconnected social group. Information on species selection and representation and bone modifications and butchery provide an entrée into the diets of the free African Americans residing at the Boston-Higginbotham House. These data in turn illuminate the complex interplay between foodways and identity for these individuals.

Overall, the foodways at the Boston-Higginbotham House support the notion that its occupants were people of middle-class status, as evidenced by a dietary pattern that demonstrated a primary reliance on beef, pork, and mutton supplemented by domestic fowl, wild fowl, fish, and occasionally reptiles such as turtles. The domestic mammals consumed – cattle, caprines, and pigs – were probably both home raised and purchased in the local market, from butchers, victuallers, or provisioners known to have operated in 19th-century Nantucket (NHA Account Book 327, NHA Account Book 334). Several
domestic fowl appear to have been home raised as well. In contrast, the fish, shellfish, and even perhaps the turtle were most likely obtained from the market.

The home raising of animals by the Boston-Higginbotham House residence reveals an important connection with livestock not only as a source of food, but also as a potential source of income, as suggested by the contract in which Absalom Boston agreed to drive cattle from May through October. Additionally, the fowl and eggs they raised could have been sold if they produced a surplus. Thus, domestic animals, beyond simply providing nourishment, may also have provided a modicum of income that contributed if only slightly to the maintenance of individual or family wealth. It is important to note that home raising of animals was common in the 19th-century Northeast across ethnic boundaries, and it represents a subsistence strategy that was especially common in semi-urban and rural environments where resources were plentiful enough to allow individuals to raise their own livestock (Bowen 1986, 1992; Landon 1996). Nonetheless, home raised livestock seem to have made an important contribution and supplement to meats purchased from the local market.

One of the original questions that this thesis sought to answer was whether factors besides ethnicity were responsible for assemblage patterning at the Boston-Higginbotham House, and whether ethnicity was discernable in the faunal record. Based on the analysis of the Boston-Higginbotham House collection in concert with support from other studies, the answer to both of these questions is yes.

As Bowen (1986, 1992), Landon (1996), and Kennedy and Landon (2007) have observed, market availability does have a broad structuring impact on foodways. For the
residents of the Boston-Higginbotham House, their foodways seem to have been largely structured by a combination of market availability and the animals that they were home raising. The fact that no wild mammals that were consumed were identified supports this conclusion.

Other factors undoubtedly influence foodways choices as well, including personal tastes and preferences, and perhaps even social, cultural, and political factors (Kalčik 1984; Twiss 2007). Not all factors influencing foodways are apparent or can be reconstructed through the faunal record, and the plethora of factors influencing consumption of certain foods do not influence foodways practices uniformly, and they may change over time (Bowen 1992; Landon 1996). However, some of these factors are accessible through the archaeological record, including the influences of market availability and husbandry that have been identified at the Boston Higginbotham House and elsewhere (Bowen 1986, 1992; Kennedy and Landon 2007; Landon 1996).

While market availability and economic do have a significant influence on foodways patterning, idiosyncratic dietary elements suggest the practice of distinctly African American foodways at the Boston-Higginbotham House. Just as the frequent meals consisting of flesher cuts of beef, veal, mutton, lamb, and pork served to create and maintain their middle-class social status and seem to have at least implicitly countered racist food stereotypes, the occasional meals that included turtles may have served to create, maintain, and reinforce the African American identity of the Boston-Higginbotham House’s residents. They may have even been prepared to bring a measure of comfort to African Americans fleeing southern plantations and enslavement upon their
arrival in the unfamiliar cities and towns of the Northeast. Whatever the case, these idiosyncratic dietary elements seem to indicate the practice of African American culinary traditions, which would have been important in creating and maintaining a distinctly free African American identity for the Boston-Higginbotham House residents. Though the market’s structuring impact is vast, it is still possible to identify potential expressions of ethnic identity through faunal remains, however subtle these expressions may be.

The sites utilized in the comparative analysis of the Boston-Higginbotham House assemblage provided valuable contextual information and support for the interpretations of this assemblage. The high degree of similarity between the Boston-Higginbotham House assemblage, the African Meeting House assemblage, the 44 Joy Street privy assemblage, and the Narbonne House assemblage evidences a continuity in the market and economic factors structuring urban and semi-urban foodways patterns. This is also supported by the differences between the Boston-Higginbotham House assemblage and the Casey/Carr site and Five Points faunal assemblages, as the urban and semi-urban sites do not include the quantity and breadth of wild mammals and fish as these two sites exhibited, respectively. The presence of turtle bones at both the Boston-Higginbotham House and the 44 Joy Street tenement supports the notion that these elements are indicative of the practice of African American foodways, and they could represent the creation and maintenance of foodways practices unique to African American New Englanders that may have their roots in Southern African American culinary traditions.

As one of Nantucket’s most prominent African American families, the members and descendants of the Boston family were integral to the development and success of
Nantucket’s African American community in Newtown during the 19th century. They played important roles in challenging inequalities and establishing uniquely African American organizations and institutions. They bought and sold property, and occasionally rented rooms to boarders and took in family members who needed a place to stay. They were employed as mariners, traders, laborers, and domestics. They also prepared and consumed foods on a daily basis.

When they sat down at the table, they often consumed meats that accorded well with their middle-class economic status, occasionally eating fowl, fish, and shellfish as well. The foods they ate appear to have been standard middle-class fare that appealed to individuals and families across ethnic lines, and the consumption of these foods may have implicitly or explicitly defied racist stereotypes regarding what free African Americans consumed or were thought to consume. Occasionally they would prepare and consume foods that reflected and reinforced their ethnic affiliations, contributing to the development and maintenance of their ethnic identities. The beef, mutton, and pork they consumed was indicative of their economic status and market availability, and perhaps even of their rejection of stereotypes and their aspirations for the future; the turtle bones may evidence the practice of African American foodways that served as a reminder of their ethnic heritage and traditions and the struggles they and other African Americans had overcome.

This thesis began with a modern-day story in which African American foodways were the focus of a derogatory stereotype. This story was presented to show one of the many ways that foodways could be mobilized and to demonstrate the complex link
between foodways and identity. However, this story also demonstrates why foodways studies are particularly important: the derogatory stereotype of African American foodways in no way approximates the diet of the residents of the Boston-Higginbotham House, or the diets of the African Americans studied in the Northeast at the African Meeting House, the 44 Joy Street tenement, or even the Casey/Carr site. This is particularly important because it shows the difference between African American foodways in the Northeast and the South, and it encourages us to break down monolithic notions of racial and ethnic categories such as African American. These differences in regional foodways reflect the fundamental diversity of African American experiences throughout the United States during the 19th century and beyond.

Zooarchaeological studies such as the one presented in this thesis are important for reconstruction past foodways. However, to provide more complete and accurate understandings of these foodways, it is necessary to incorporate other lines of evidence including botanicals, ceramics, metal cooking implements and utensils, and other categories of artifacts related to the preparation and consumption of food. Integration of these and other data sources in addition to historical documents will allow for a more complete understanding of past foodways. African American archaeology in the Northeast is a growing area of research, and its continued growth will ensure that more data is produced and that more complete and accurate interpretations are made. In doing this, free African Americans such as the Boston family and their descendants and their contributions to their communities and beyond will be brought to light. Understanding
how they constructed, negotiated, and maintained their identities is integral to this process, and is integral to producing richer, textured, and more complete histories.
APPENDIX A

LINE DRAWINGS OF BUTCHERY MARKS
SW=Saw, CH=Chop, S=Shear, C=Cut (after Landon 1996).

SW=Saw, CH=Chop, S=Shear, C=Cut (after Landon 1996).

SW=Saw, CH=Chop, S=Shear, C=Cut (after Landon 1996).
REFERENCES CITED

Primary Sources

Nantucket Historical Society Collections

1792 Account Book 330 (1792-1820)
1796 Probate 4, pp. 79-83, 184-185
1797 Account Book 334 (1797-1808)
1802 Deedbook 17
1807 Account Book 9 (1807-1849)
1808 Account Book 327 (1806-1816)
1826 Collection 335 Folder 59
1822 Farms on Nantucket, Folder 2 (1822-1952)
1831 Court 7, pp. 160

Secondary Sources

Alsop, James D.

Ascher, Robert and Charles Fairbanks
1971 Excavation of a slave cabin: Georgia, USA. Historical Archaeology 5, pp. 3-17.

Beaudry, Mary C. and Ellen P. Berkland
Behler, John L. and F. Wayne King

Benes, Peter, editor

Bowen, Joanne

1975 Probate Inventories: An evaluation from the perspective of zooarchaeology and agricultural history at Mott Farm. Historical Archaeology 9, pp. 11-25.

Bower, Anne L., editor

Bower, Beth Anne

Bower, Beth Ann and Sheila Charles

Bower, Beth Ann, John Cheney, and Byron Rushing

Bower, Beth Ann and Byron Rushing

Brown, Linda Keller and Kay Mussell, editors

Child, Lydia Maria

Crader, Diana C.

Curry, Leonard P.
Daniels, John

Deetz, James

Dietler, Michael and Brian Hayden

Du Bois, W.E.B.

Dujnic, Teresa

Epperson, Terrence W.

Farb, Peter and George Armelagos
1980 *Consuming Passions: The Anthropology of Eating.* Houghton Mifflin:
 Boston.

Farr, James
1983 *A Slow Boat to Nowhere: The Multi-Racial Crews of the American
 Whaling Industry.* *The Journal of Negro History*, Vol. 68, No. 2, (Spring,
 1983), pp. 159-170.

Fedore, Michael A.
2008 Consumption and Colonialism: A Zooarchaeological Analysis of Two
 Eighteenth-Century Sites on the Eastern Pequot Reservation. Unpublished
 Masters Thesis. University of Massachusetts, Boston.

Ferguson, Leland.
 Smithsonian Institution Press, Washington, D.C.

Finkenbine, Roy E.
1993 Boston’s Black Churches: Institutional Centers of the Antislavery
 Movement. In *Courage and Conscience: Black and White Abolitionists in
 Boston*, edited by Donald M. Jacobs, pp. 169-190. Indiana University
 Press, Bloomington and Indianapolis.

Franklin, Maria
2001 The Archaeological Dimensions of Soul Food: Interpreting Race, Culture,
 and Afro-Virginian Identity. In *Race and the Archaeology of Identity,*
 Lake City.

Gienapp, William E.
1993 Abolitionism and the Nature of Antebellum Reform. In *Courage and
 Conscience: Black and White Abolitionists in Boston*, edited by Donald M.

Gilbert, B. Miles
1990 *Mammalian Osteology.* Missouri Archaeological Society, Springfield,
 MO.
Hayden, Brian

Hayden, Robert

Hemler, Daniel

Herskovits, Melville J.

Hillson, Simon

Horton, J. O. and L. E. Horton

Howson, Jean

Huelsbeck, David R.

Hume, Ivor Noël.
Jacobs, Donald M.

John G. Waite Associates

Johnson, Robert Jr.

Jolley, Robert L.

Jones, Siân

Kalčík, Susan

Kaldenbach-Montemayor, Isabel

Kartunnen, Frances
2002 The Other Islanders. Nantucket Historical Association, Nantucket, MA.
Kendrick, Stephen, and Paul Kendrick

Kennedy, Ryan, and David B. Landon

Klein, Richard G. and Kathryn Cruz-Uribe

La Roche, Cheryl J. and Michael L. Blakey

Landon, David B.

1996 Feeding Colonial Boston: A Zooarchaeological Study. Monograph issue of *Historical Archaeology* 30(1). Society for Historical Archaeology, California, PA.

2009 Archaeology at the African Meeting House. Museum of African American History and Fiske Center for Archaeological Research, University of Massachusetts Boston.

Levesque, George

Lewis, Ann-Eliza

Linebaugh, Barbara
1978 *The African School and the Integration of Nantucket Public Schools, 1825-1847*. Afro-American Studies Center, Boston University, Boston.

Litwack, Leon F.
Macy, Obed

Mandell, Daniel R.

McKee, Larry

Melish, Joanne Pope

Miller, George L.

Milne, C. and Pamela J. Crabtree

Mintz, Sidney W.

Mintz, Sidney W. and Richard Price

Mrozowski, Stephen A.

Mrozowski, Stephen A., Grace H. Ziesing, and Mary C. Beaudry
1996 *Living on the Boot: Historical Archaeology at the Boot Mills Boardinghouses, Lowell, Massachusetts*. University of Massachusetts Press, Amherst.
Mudar, K.

Mullins, Paul R.

Orser, Charles E., Jr.

Otto, John S.

Parsons, William S. and Margaret A. Drew

Patalano, Marisa D.

Pendery, Steven R.
Peters, Pearlie

Randolph, Mary

Reilly, Bernard F., Jr.

Reitz, Elizabeth J. and Elizabeth S. Wing.

Robison, N. D.

Roberts, Robert

Saillant, John

Samford, Patricia

Schulz, P.D., and S.M. Gust
Scott, Elizabeth M.

Silverman, David J.

Singer, David R.

Singleton, Theresa

Sportman, Sarah

Stapp, Carol Buchalter

Starbuck, Alexander.

Trigg, Heather B.

Twiss, Katheryn C.

von den Driesch, Angela.

Washington, Booker T.

Wheeler, Alwyne and Andrew K. G. Jones.

Whit, William C.

Wilkie, Laurie A.

Yentsch, Anne E.
Yocum, Barbara A.

Electronic Resources

Kaldenbach, Isabel

Salon.com