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Abstract 
Social epidemiologist Davey Smith (2011) argues that epidemiologists should accept a 

gloomy prospect: considerable randomness at the individual level means that they 

should keep their focus on modifiable causes of disease at the population level.  The 

difficulty epidemiology has had in moving from significant population-level risk factors to 

improved prediction of cases at an individual level is analogous to the lack of success in 

the search for systematic aspects of the non-shared environmental influences that 

human quantitative genetics claims overshadow common environmental influences 

(e.g., the family’s socioeconomic status which siblings have in common).  This article 

responds to the argument and analogy, aiming to draw three audiences—social 

epidemiologists, human quantitative geneticists, and philosophers of science—into a 

shared discussion that centers not on randomness, but on heterogeneity in various 

forms.  The first half undercuts the analogy, providing a critical account of human 

quantitative genetics that explains why its estimates are unreliable and typical 

interpretations, such as that of non-shared environmental influences, unjustified.  In the 

process, attention is drawn to the possibility of underlying heterogeneity—when similar 

responses of different types in a species or of different groups of people are observed, it 

need not be assumed that similar conjunctions of genetic and environmental factors (or, 

in epidemiology, risk and protective factors) have been involved in producing those 

responses.  The second half introduces several additional forms of heterogeneity and 

captures their potential significance for epidemiology in four conceptual themes.  The 
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themes complicate Davey Smith’s advice for epidemiologists not to seek improved 

prediction of cases at an individual level and his view of the limited prospects for 

personalized medicine. 
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1. Introduction 
In the John Snow Lecture to the World Congress of Epidemiology, George Davey Smith 

(2011) addressed the difficulty epidemiology has had moving from significant 

population-level risk factors to improved prediction of cases at an individual level.  The 

gloomy prospect of his account is that epidemiology is concerned with the mean of the 

group and has to discount random variation around that mean.  Epidemiologists should, 

he advises, accept considerable randomness at the individual level and keep their focus 

on modifiable causes of disease at the population level. 

In making his case, Davey Smith draws an analogy from human quantitative 

genetics, a field that revolves around partitioning variation in a trait into a heritability 

fraction and other components.  The field claims that non-shared environmental 

influences overshadow common environmental influences—the former corresponding to 

differences among siblings raised together; the latter to influences such as 

socioeconomic status that the siblings in a family usually have in common.  Davey 

Smith notes that the search for systematic aspects of the non-shared environmental 

influences has been unsuccessful, which he sees in the same terms as the lack of 

success by epidemiologists who seek individual-level risk prediction.   

This article takes the use of this analogy by an epidemiologist as an opportunity 

to address three audiences: social epidemiologists, human quantitative geneticists, and 

philosophers of science—especially those who have examined debates about 

heritability of human traits.  My goal is to draw the different audiences into a shared 

discussion that centers not on randomness, but on heterogeneity in various forms.  The 

first half (sections 2-5) undercuts the analogy by providing a critical account of human 

quantitative genetics that explains why its estimates are unreliable and typical 

interpretations, such as that of non-shared environmental influences, are unjustified.  In 

the process, attention is drawn to the possibility of underlying heterogeneity—when 

similar responses of different types in a species or of different groups of people are 

observed, it need not be assumed that similar conjunctions of genetic and 

environmental factors have been involved in producing those responses.  The second 

half (sections 6-7) extends underlying heterogeneity to include risk and protective 

factors in epidemiology, introduces several additional forms of heterogeneity, and 
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captures their potential significance for epidemiology in four conceptual themes.  The 

themes complicate Davey Smith’s advice for epidemiologists not to seek improved 

prediction of cases at an individual level and his view of the limited prospects for 

personalized medicine. 

 

2. Genetic is not genetic is not genetic 
The first step in developing a critical account of quantitative genetics is to identify three 

conceptually and empirically distinct senses of “genetic,” pertaining to: statistical 

partitioning of variation in measurements on a trait; relatedness in terms of the fraction 

of variable part of genome shared; and the statistical association of a trait with 

measurable genetic factors that underlie the development of that trait.  (There are other 

senses of genetic, such as “runs in the family,” but these will not be the focus here.)  

Before elaborating on the significance of the different senses of genetic, two 

terminological notes are in order: 

1. “Factor” is used throughout the article in a non-technical sense to refer simply 

to something whose presence or absence can be observed or whose level can be 

measured.  Measurable genetic factors include the presence or absence of alleles at a 

specific locus on a chromosome, repeated DNA sequences, reversed sections of 

chromosomes, and so on.  Measurable environmental factors can range widely, say, 

from mean daily intake of calories to degree of maltreatment that a person experienced 

as a child. 

2. An agricultural variety or breed is a group of individuals whose mix of genetic 

factors can be replicated, as in an open pollinated plant variety, or any group of 

individuals whose relatedness by genealogy can be characterized, such as offspring of 

a given pair of parents. A location is the situation or place in which the variety is raised, 

such as a specific experimental research station. 

In regards to statistical partitioning of variation in measurements on a trait, Figure 

1 depicts the ideal case, namely, an agricultural evaluation trial where each of a set of 

varieties is raised in each of set of locations, and there are two or more replicates in 

each variety-location combination.  The means for each variety across all locations and 

replicates can be estimated; the variance of these variety means is the so-called genetic 
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variance of classical quantitative genetics.  The term genetic variance here is a 

contraction of genotypic variance, where genotype is a synonym for an agricultural 

variety and does not refer to pairs of alleles.  Genotypic variance is shorthand, in turn, 

for variance of the genotypic values, i.e., the variety means just described.  The figure 

makes clear that partitioning or analysis of variation for a given trait neither requires nor 

produces knowledge about the genetic or environmental factors that underlie the 

development of that trait in the different variety-location combinations. 
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Figure 1.  Partitioning of variation for a given trait in the ideal agricultural evaluation trial 

where each of a set of varieties is raised in each of set of locations, and there are two or 

more replicates in each variety-location combination.  The bars next to the varieties and 

locations indicate the average value of the trait for, respectively, each variety and 

location. The variation between replicates within variety-location combinations is 

indicated by the size of the curly brackets.  The non-systematic shading of the brackets 

indicates that the variation between replicates is not correlated from one variety-location 

combination to another.  (For graphic clarity, the average values for each variety-

location combination after allowing for the variety and location averages are not shown.)   

 

Broad-sense heritability (hereon: heritability) is by definition is the ratio of the 

variance among variety means (i.e., genotypic values) to the variance of the trait across 

the whole data set.  In the agricultural evaluation trial of Figure 1, this quantity can be 

readily estimated.  Similarly, for estimation of the fraction of variance due to differences 

among location means, otherwise called the environmental variance (where 

environment here is a synonym for location), and for the fraction due to variety-location 

interaction, otherwise called genotype-environment interaction. (This last term, 

confusingly, has no conceptual or empirical relationship to gene-environment 

interaction, a concept introduced in section 6). 

Relatedness in terms of the fraction of variable part of genome shared comes 

into play when the data set is not as complete as in the ideal agricultural trial.  In the 

field of quantitative genetics the estimation of heritability and other fractions of the trait’s 

overall variance typically makes use of the genealogical relatedness of the varieties or 

genotypes.  For example, as is common in studies of humans, the similarity of pairs of 

monozygotic twins, which share all their genes, can be compared with the similarity of 

pairs of dizygotic twins, which share most of their genes, but only around half of the 

genes that vary in the population.  An estimate of heritability can be derived using a 

formula or a Structural Equation Model that takes into account the extent to which the 

mean similarity of monozygotic twins raised in the same family exceeds the mean 

similarity of dizygotic twins raised in the same family (Rijsdijk and Sham 2002) (Figure 

2).  (The estimation of the location or environmental fraction of the variation, its division 
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into shared and non-shared components, and other details are taken up in section 5.)  

 

 
Figure 2. The basis for a comparison of the similarity of monozygotic twins raised 

together in the same locations or families (MZT) with the similarity of dizygotic twin pairs 

(DZT). The variation between twins in a pair is indicated by the size of the curly 

brackets.  In contrast to the agricultural evaluation trial in Figure 1, the replicates of any 

twin pair are raised in only one household per twin pair. 

 

Another terminological note is in order: From hereon, the agricultural terms 

“variety” and “location” are used even when referring to human studies whenever the 

entity or situation can be identified without reference, respectively, to measurable 

genetic and environmental factors.  For humans, a location is typically the family of 

upbringing.  The more common terms for variety and location, genotype and 

environment, invite conflation with genetic and environmental factors and confusion 

about what is and is not entailed (Keller 2010). 
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Classical quantitative genetics, like the statistical partitioning of variation from the 

agricultural trials, makes reference neither to the measurable genetic factors that 

underlie the development of that trait nor to the underlying environmental factors.  

(Models of hypothetical genes are required to generate the traditional formulas of 

quantitative genetics [Falconer and Mackay (1996), Lynch and Walsh (1998)], but this is 

a conceptually distinct matter—one that is taken up in section 5.)   In contrast, the 

statistical association of a trait with measurable genetic factors that underlie the 

development of that trait has received increasing attention in the era of genomics (even 

though detecting such associations has been possible since the rediscovery of 

Mendelian genetics at the turn of the last century).  The implications of such 

associations are discussed in sections 6-7. 

 

3. Underlying heterogeneity 
As described in the previous section, the estimation of heritability is associated with 

analysis of variation in traits, not transmission of heritable factors.  Moreover, the 

analysis of variation for a given trait does not produce knowledge about the genetic or 

environmental factors that that underlie the development of that trait.  This last point is 

widely recognized, yet it is commonplace for researchers and commentators to describe 

estimates of heritability for a trait as the fraction of variation “due to genetic differences” 

or “due to differences in genetic factors” (albeit factors yet to be identified).  By 

implication, the genetic and environmental variances are held to capture the relative 

influence of, respectively, genetic and environmental factors. 

The unwarranted construal of heritability in terms of genetic factors seems to 

have two sources: conflation with the commonplace term heritable as meaning 

transmitted through genes from parent to offspring; and use of the shorthand “genetic 

variance” to refer to the variance among genotypic values or, in the terms of this article, 

variance among variety means.  More recently, the construal of heritability in terms of 

genetic factors has been reinforced by use of the term missing heritability when a 

conceptually distinct quantity—the fraction of variation for a trait associated with 

genomic variants identified in GWA studies—is much lower than the heritability 

estimated by classical quantitative genetics (Manolio et al. 2009).  



 9 

Three observations about the agricultural trial and the quantitative genetics study 

of relatives help counteract the common muddying of the distinction between heritability 

as derived from analysis of variation in traits and the transmission of heritable factors.  

The third observation—about underlying heterogeneity—is the most important for the 

subsequent sections of the article. 

1.  The variety means (or genotypic values) are means over the trait as it has 

developed in a specific range of variety-location (genotype-environment) combinations.  

The variance of those means thus reflects differences in the ways those variety-location 

combinations—and not simply the varieties in themselves—influence the trait 

development.  

2. The partitioning of variation could, in principle, be undertaken even if the trait 

measurements were of varieties from different species, classes, or even kingdoms. This 

thought experiment implies that the variation among the variety means need not 

correspond to some gradient in genetic factors.  Nothing in the method of partitioning 

variation, even within a species, requires that such a gradient exists.  This observation 

also applies to the variation among location means or environmental variance. 

3. Even if the similarity among twins or a set of close relatives is associated with 

similarity of yet-to-be-identified genetic factors, the factors may not be the same from 

one set of relatives to the next, or from one location (environment) to the next.  In other 

words, the underlying factors may be heterogeneous.  It could be that pairs of alleles, 

say, AAbbcbDDee, subject to a sequence of environmental factors, say, FghiJ, are 

associated, all other things being equal, with the same outcome as alleles 

aabbCCDDEE subject to a different sequence of environmental factors FgHiJ (Figure 

3).  

The possibility of heterogeneity of underlying genetic and environmental factors 

has not been widely acknowledged by quantitative geneticists.  Heterogeneity in the 

genetic factors underlying traits might explain the limited success GWA studies have 

had identifying causally relevant genetic variants behind variation in human traits with 

moderate to high heritability values.  The possibility of underlying heterogeneity is 

consistent with, but more nuanced than, the standard view that most medically 

significant traits are associated with many genes, each of quite small effect (McCarthy 
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Figure 3.  Factors underlying a trait may be heterogeneous even when monozygotic 

twins raised together (MZT) are more similar than dizygotic twins raised together (DZT).  

The greater similarity is indicated by the smaller size of the curly brackets.  The 

underlying factors for two MZT pairs are indicated by upper and lower case letters for 

pairs of alleles (A-E) and environmental factors to which they are subject (F-J).  

 

et al. 2008, Couzin-Frankel 2010).  Moreover, considering heterogeneity of underlying 

factors is a matter of attention to environmental as well as genetic factors. 

 

4. What is to be done? 
What can researchers do on the basis of knowing that a trait’s heritability or another 

fraction of variance is high when the factors underlying that trait might be 

heterogeneous?  As will become evident, the range of options for human studies 

becomes very limited.  Perspective on this can be gained by examining what is and is 
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not possible in an agricultural trial, in which control over varieties and locations is far 

greater than with human variation.  This example, in turn, provides food for thought if we 

move beyond Davey Smith’s advice that epidemiology is concerned with the mean of 

the group and has to discount random variation around that mean (see section 7). 

Typically, in an agricultural trial there is variety by location interaction (i.e., 

genotype by environment interaction) in the analysis of trait variation, which means that 

for the trait in question the ranking of varieties varies across locations; the best variety 

in one location is not the best in other locations.  The possibility of heterogeneity 

underlying the variation in trait means can, however, be reduced by grouping varieties 

that are similar in responses across locations using techniques of cluster analysis (Byth 

et al. 1976), or in other words, by grouping according to similarity in variety means 

together with variety by location interaction means.  (Similarly, locations can be grouped 

by similarity in responses elicited from varieties grown across those locations.)  

Varieties in any resulting group tend to be above average for a location in the same 

locations and below average in the same location (Figure 4). 

Now, the wider the range of locations in the measurements on which the 

grouping is based, the more likely it is that the ups and downs shared by varieties in a 

group are produced by the same conjunctions of underlying measurable factors.  This 

gives researchers more license to discount the possibility of underlying heterogeneity 

within a group.  They can then hypothesize about the group means—about what factors 

in the locations elicited basically the same response from varieties in a particular variety 

group that distinguishes them from other groups.  Of course, knowledge from sources 

other than the data analysis is always needed to help researchers generate any 

hypotheses about genetic and environmental factors. 

For example, imagine a group of plant varieties that originated from particular 

parental stock more susceptible to plant rusts, a form of parasitic fungi, and that these 

varieties yielded poorly in locations where rainfall occurred in concentrated periods on 

poorly drained soils.  The obvious hypothesis about genetic factors modulated by 

environmental factors is that these varieties share genes from the parental stock that 

are related to rust susceptibility and this susceptibility is evident in the measurements of 

yield in locations where the rainfall pattern enhances rusts.  Through additional research  
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Figure 4.  Yields for 5 groups of wheat varieties grown in 13 groups of locations (from 

Byth et al. 1976; reproduced with permission).  The x-axis is the mean over all varieties 

for that location.  The individual varieties (not shown) were clustered into these 5 groups 
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by similarity of response across locations.  These groups were then clustered into two 

groups as shown in the two plots.  

 

comparing the variety and parental genomes, it may be possible to identify specific sets 

of genes that are shared, to investigate whether and how each one contributes to rust 

susceptibility in certain environmental conditions, and to use that knowledge in 

subsequent research or in planting recommendations (Taylor 2006).  (Of course, plant 

breeders can make informed decisions about what varieties to cross even in the 

absence of knowledge about the specific genetic factors and environmental conditions 

involved.) 

What role does heritability play in research that groups varieties, thus reducing 

underlying heterogeneity and facilitating the generation of hypotheses about underlying 

genetic and environmental factors?  Answer: Very little.  Clustering ensures that the 

variation among the means for groups of varieties is much higher than the average 

variation among variety means within groups.  The low within-group variation allows the 

selective breeder to select from the variety group without being very concerned about 

whether any one variety is the best within that group across all the locations.  In other 

words, heritability within the variety group is not so important.  At the same time, even if 

variation among variety group means is smaller than variation among location means or 

variation among variety by location interaction means (that is, between-group heritability 

is small), researchers can still hypothesize about the group means.  In short, the size of 

the fractions of variance is not key to hypothesizing about the underlying genetic and 

environmental factors. 

 Grouping varieties by similarity of responses across locations becomes more 

difficult when varieties are observed in only a few locations or when the locations are 

not the same from one variety to the next.  This is the case, of course, for variation 

among traits in humans.  It should be noted, however, that reduction of underlying 

heterogeneity, although helpful, is not essential to agricultural and laboratory breeding.  

Breeders know, by the very definition of heritability, that a high value means that 

differences among the mean values for the varieties make up much of the total variation 

for the trait in question.  So the breeders can mate or cross individuals with the desired 
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values for the trait, expecting that this will lead to offspring with similar, desired values, 

and thus to improvement in the overall average compared with the previous generation.  

Now, if there is underlying heterogeneity, the reassortment of genes from parents may 

well lead to some far-from-expectation offspring, even when the offspring are raised in 

the locations of their parents (in the example given in Figure 3, AabbCcDDEe subject to 

the factors FghiJ or FgHiJ).  Yet, such outcomes are not troubling to breeders because 

they can compensate when the results do not meet their expectations.  They discard the 

far-from-expectation offspring and select only those offspring that do have the desired 

values. 

In the study of human traits, selective mating and discarding of defectives is 

obviously not acceptable.  Nor is it possible to replicate human genetic material together 

with the environmental conditions of many defined locations.  It is impossible to have 

the level of control needed to obtain data for grouping varieties that are similar in 

responses across locations.  In short, as noted earlier, human studies involve 

substantially less control over materials and conditions than agricultural and laboratory 

trials.  Researchers should expect, therefore, to gain correspondingly less insight about 

genetic and environmental factors from partitioning of variation for a human trait into the 

various fractions. 

Returning then to the question with which this section began: What then can 

researchers do once they acknowledge that similarity among human twins or a set of 

close relatives may well be associated with similarity of yet-to-be-identified genetic 

factors but the factors may not be the same from one set of relatives to the next, or from 

one location to the next?  Researchers have three options for proceeding on the basis 

of knowing that a trait’s heritability is high when the factors underlying that trait might be 

heterogeneous: 

1. Undertake research to identify the specific, measurable genetic and 

environmental factors without reference to the trait’s heritability or the other fractions of 

the total variance.   (e.g., Moffitt et al. 2005, Davey Smith and Ebrahim 2007, Khoury et 

al. 2007). 

2. Restrict attention to variation within a set of relatives.  For example, even if the 

underlying factors are unknown, high heritability still means that if one twin develops the 
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trait, e.g., type 1 diabetes, the other twin is more likely to as well.  This information might 

stimulate the second twin to take measures to reduce the health impact if and when the 

disease starts to appear.  However, notice that this scenario assumes that the timing of 

getting the condition differs from the first twin to the second.  Researchers might well 

then ask: What factors influence the timing?  How changeable are these?  How much 

reduction in risk comes from changing them?  To address these issues they would have 

to identify the genetic and environmental factors involved in the development of the trait, 

but to do so requires larger sample sizes than any single set of relatives allows.  In any 

case, the question would then arise as to whether the initial results would carry over 

from one set of relatives to others.  Resolving this question is an empirical matter, but it 

is obvious that carry over becomes less likely the more heterogeneity there is in the 

factors underlying the development of the trait.  Researchers have to be prepared, 

therefore, for the possibility that the proportion of fruitful investigations will be low 

compared to those confounded by factors not carrying over well from the initial set of 

relatives. 

3. Use high heritability as an indicator that “the trait [is] a potentially worthwhile 

candidate for molecular research” to identify the specific genetic factors involved 

(Nuffield Council on Bioethics 2002, chap. 11) and hope that for some traits a gradient 

of a measurable genetic factor (or composite of factors) runs through the differences 

among variety means.  Such traits might be worth finding even if, in the course of doing 

so, researchers end up conducting many fruitless investigations of other high-heritability 

traits for which it turns out there is no such gradient.   

Equivalent options apply to proceeding on the basis of knowing another fraction 

of a trait’s variance is high but the factors underlying that trait might be heterogeneous.   

In particular, when a high value for the among-location-means (or “shared 

environmental”) fraction of variance is used to decide when to search for the specific 

environmental factors involved, the hope is that for some traits a gradient of a 

measurable environmental factor (or composite of factors) runs through the differences 

among location means.  Again, this option involves the possibility of fruitless 

investigations of traits for which there is no gradient in underlying factors.  Similarly, if 
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the researcher chooses to look for specific measurable factors underlying high fractions 

of non-shared environmental variance and variety-location interaction variance. 

The possibility of fruitless investigations of traits for which there is no gradient in 

underlying factors is not the only concern researchers should have about being guided 

by high estimates of heritability or other fractions of variance in the traits.  As the next 

section explains, there are more serious problems about estimates and interpretation of 

fractions of variance for human traits.  (Appendix A is provided to counter the response 

that, given decades of debate among methodologically sophisticated scholars, it is 

implausible that some fundamental problems in quantitative genetic estimation could 

have been overlooked [Kendler 2005].  The appendix describes some of the 

background that has allowed the author to see the study of heredity and variation 

differently from most researchers and philosophers of science who have contributed to 

debates about classical quantitative genetics.) 

 

5. Unreliable estimates of fractions of variance for human traits 
The reliability of the established methods of estimation of fractions of variance for 

human traits can be checked by considering a hypothetical agricultural trial where every 

variety is raised in every location and replicated twice and where the replicates for each 

variety-location combination are either monozygotic or dizygotic twins (Taylor 2012).  

The analysis of variance allows one to estimate the trait’s actual heritability in that trial, 

that is, the fraction of the trait’s variance associated with differences among the means 

for the varieties, where these means are taken over all locations and replicates.  

Similarly, the actual fractions can be estimated for the among-location-means variance, 

the among-variety-location-interaction-means fraction, and the residual or “error” 

variance, that is, the average variance within variety-location-combinations.  At the 

same time, given that the replicates are twins, one can also estimate the fractions of 

variance using the standard formulas of human quantitative genetics (Rijsdijk and Sham 

2002).  If the standard formulas do not yield estimates that match the correct values 

from the analysis of variance, something must be wrong with those formulas. 

That the standard formulas of human quantitative genetics do not, indeed, match 

the correct values can be demonstrated theoretically and through analysis of simulated 



 17 

agricultural trials (Taylor 2007, 2012).  To appreciate why the standard formulas, as well 

as their generalization as Structural Equation Models, do not yield reliable values, it is 

helpful to note the following features of those formulas: 

1. The standard formulas and Structural Equation Models do not separate a 

variety-location-interaction variance fraction, but subsume it in the among-variety-

means variance fraction, that is, in the so-called heritability estimate. 

2. Empirical estimation of the variety-location-interaction variance fraction is 

nevertheless possible, but only if the appropriate classes of data are available; that is 

not often the case.  For example, it is not common to have data about monozygotic 

twins raised in separate locations in which there is no correlation from one twin’s 

location to the other. 

3. Partitioning of trait variation into components rests on models of hypothetical, 

idealized genes with simple Mendelian inheritance and direct contributions to the trait.  

Given that the data are about traits, an analysis of trait variation that makes no 

reference to theoretical, idealized genes must also be possible (Taylor 2012).  Such a 

gene-free analysis affirms the distinction made in section 2, that estimation of heritability 

is associated with analysis of variation in traits, not transmission of heritable factors. 

4. The derivation of the standard formulas and models assumes that, all other 

things being equal, similarity in traits for relatives is proportional to the fraction shared 

by the relatives of all the genes that vary in the population.  For example, fraternal or 

dizygotic twins share half of the variable genes that identical or monozygotic twins 

share.  However, plausible models of the contributions of multiple genes to a trait can 

be shown to result in, all other things being equal, ratios of dizygotic similarity to 

monozygotic similarity that are not .5 and that vary considerably around their average 

(Taylor 2007).  This point here does not depend on the validity of any particular 

hypothetical model of multiple genes contributing to the trait.  The assumption is 

unreliable because the relevant correlations need to be based on observed traits and, 

as such, cannot be directly given by the proportion of shared genes involved in the 

development of those traits.  For the same reason, heuristic values of the similarity of 

relatives of other degrees, which are ubiquitous, are also unreliable.  (Identifying the 
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exact fraction of genes shared by relatives [Visscher et al. 2006] does not address the 

problem that similarity in traits for relatives need not be proportional to this fraction.) 

5.  Empirical estimation of a parameter to take degree of relatedness into 

account depends on the appropriate classes of data being available.  Data about 

unrelated individuals raised in the same location are especially valuable. 

6.  The residual variance, or the sub-fraction of that variance not related to 

measurement error, has been interpreted as a “non-shared environmental effect," where 

a large value means that within-family or "non-shared environmental differences" are 

large relative to the effects due to the members of a family growing up in the same 

location or "shared environmental differences" (Plomin 1999; see critical review by 

Turkheimer and Waldron 2000).  The more careful interpretation is that residual 

variance corresponds to the variation of trait differences among replicates within variety-

location combinations that has no systematic relation to variation among variety means, 

among location means, or among variety-location combinations.  Now, to interpret the 

unsystematic variation of a trait in terms of differences in the underlying factors is not 

warranted in the first place (see first paragraph of section 4).  However, if one were to 

go ahead and attempt to do just that, the interaction of genetic as well as environmental 

factors in specific variety-location combinations would need to be included in the 

picture. 

When Davey Smith, the epidemiologist, invokes human behavioral genetics, he 

cites the work of Turkheimer, a researcher on the more critical wing of his field.  

Turkheimer (2004) emphasizes, as this article does, that a heterogeneity of pathways 

can lead to the traits measured.  The implications for human sciences that he and 

Davey Smith attach to heterogeneous pathways are, however, colored by an 

insufficiently critical interpretation of human quantitative genetic estimates.  In particular, 

following point 6 above, those estimates can provide no warrant for the claim they make 

that the non-shared environmental influences overshadow common environmental 

influences.   Moreover, a corollary of the discussion so far is that none of Turkheimer’s 

(2000) three laws of behavioral genetics is reliable; nor is an oft-cited addition (labeled 4 

in Table 1).  
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Table 1.  Laws of behavioral genetics, recast 

Laws of behavioral genetics Revised statement 

1. All human behavioral traits are 

heritable. 

1. All human behavioral traits show heritability, but: 

a. estimation methods are not reliable; and b. 

heritability does not mean that the “genetic” 

(among-variety-means) variance translates into 

differences in genetic factors across the population 

studied. 

2. The effect of being raised in 

the same family is smaller than 

the effect of the genes. 

2. This effect has not been established, because a. 

estimation methods are not reliable; and b. fractions 

of variance do not translate into differences in 

genetic and environmental factors across the 

population studied.  

3. A substantial portion of the 

variation in complex human 

behavioral traits is not accounted 

for by the effects of genes or 

families. 

3. The residual fraction of the variation in complex 

human behavioral traits is often substantial, but the 

interaction of unknown genetic as well as 

environmental factors specific to the particular 

variety-location combinations underlies this 

unsystematic variation. 

4. Heritability tends to increase 

over people's lifetimes, that is, 

genetic differences come to 

eclipse environmental differences 

(Plomin 1999). 

4.  Unless the estimation method separates the 

interaction fraction from heritability and it is shown 

to be negligible, this trend could equally well 

indicate that the interaction component increases 

over time. 

 

The critical account provided above and in previous sections calls into question 

the interpretation from human quantitative genetics that “non-shared environmental” 

influences among siblings overshadow shared environmental influences.  (Appendix B 

can be referred to for responses to the critical account and counter-responses.)  Yet, if 

the analogy that Davey Smith draws to the lack of success in the search for systematic 

aspects of those “non-shared environmental influences” has been undercut, we are still 
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left with the difficulty epidemiology has had in moving from significant population-level 

risk factors to improved prediction of cases at an individual level.  To address that issue, 

the next section extends the possibility of underlying heterogeneity raised in sections 3 

and 4, and reviews several additional forms of heterogeneity.  The final section captures 

in four conceptual themes the potential significance for epidemiology of various forms of 

heterogeneity. 

 

6.  Heterogeneity of heterogeneities 
 
It is quite simple to extend the possibility of underlying heterogeneity to epidemiology: 

when similar responses of different groups of people are observed, it need not be 

assumed that similar conjunctions of risk and protective factors have been involved in 

producing those responses.  One difference, however, is that, whereas in quantitative 

genetics the different varieties or locations are not distinguished by some measurable 

genetic or environmental factors, in epidemiology the different groups of people are 

typically characterized by reference to measurable factors, such as socio-economic 

status, gender, or even genetic factors.  The following example, in which researchers 

detected associations of a trait with a combination of measurable genetic and 

environmental factors, serves to illustrate this distinction and, at the same time, point to 

various other forms of heterogeneity.  (The example is also used to illustrate conceptual 

points in section 7, but no endorsement of the importance or generality of the results 

should be read into this choice; see Wasserman 2004 and Morris et al. 2007 for critical 

commentaries.)   

Figure 5 depicts a reported association of behavior with enzymatic activity related 

to a single-locus genetic variant, MAOA, and with the social or environmental factor, 

childhood maltreatment (Caspi et al. 2002).  The association of MAOA and childhood 

maltreatment with anti-social behavior is an instance of gene-environment interaction, a 

term that refers to the statistical interaction between measured genetic factors and 

measured environmental factors (Moffitt 2005).  In other words, the association of the 

trait with the genetic factor is modified by the value of the environmental factor, and vice 

versa.  (Such interaction, confusingly, has no conceptual or empirical relationship to 
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“genotype-environment interaction” or variety-location interaction, as discussed in 

sections 2-6.)  The example involves a single genetic variant, but Genome-Wide 

Association (GWA) studies are now able to quantify the mean effect of each of a wide 

array of variants across the human genome on a trait, such as mean height differential 

(Weedon et al. 2008), and relative risk for type 1 diabetes (Barrett et al. 2009). 

 

 

  
Figure 5. Mean adult composite anti-social behavior score in relation to levels of 

MonoAmineOxidaseA and Level of Childhood Maltreatment for a sample from Dunedin, 

New Zealand (Caspi et al. 2002, 852; reproduced with permission). 
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Epidemiologists should be familiar with heterogeneity of various forms that 

complicate the statistical association of a trait with measurable factors.  Consider the 

MAOA-maltreatment example:  

1. The points plotted in Figure 5 represent a mean value, around which there is 

variation (which is the simplest form of heterogeneity) in the measure of antisocial 

behavior.   

2. The binary of high-versus-low MAOA activity is a simplification of the many 

variants in the MAOA gene and related regulatory regions (Di Giovanni et al. 2008, 

84ff).   

3. Similarly, childhood maltreatment varies in nature, degree, and timing, as well 

as in its meaning to the child.   

4. The trait in question, anti-social behavior, can be assessed in different ways 

(indeed, Figure 3 plots a composite index derived from various assessments).   

5. Even for any one assessment of anti-social behavior, different individuals may 

have arrived at similar values through different pathways of development (in the same 

way that is clearly the case for development of human height). 

Equivalent considerations pertain to the effects associated with multiple genetic variants 

exposed through GWA studies (although the number of GWA studies of interactions 

between genetic and environmental factors is still small).  In short, there is a 

heterogeneity of heterogeneities. 

 

7. What is to be done?—Part II 
Should epidemiologists follow Davey Smith’s advice to accept considerable 

randomness at the individual level and keep their focus on modifiable causes of disease 

at the population level?  Or are there other courses of action?  In particular, when 

researchers find a statistical association of a trait with measurable risk or protective 

factors, what can they do given the potential for various forms of heterogeneity to 

complicate the association?  These questions are viewed in relation to four conceptual 

themes in the sub-sections to follow.  The cases used are presented with a view to 

motivating the conceptual themes, not to surveying the literature on any of the cases. 
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7.1 The push for individualized or personalized medicine can lead to more population-

level treatment or treatment according to the mean of one’s group.  

Consider population-level approaches in the MAOA-maltreatment case.  As the 

authors conclude, their results "could inform the development of future pharmacological 

treatments" (Caspi et al. 2002, 853).   By implication, if low-MAOA children could be 

identified, prophylatic drug treatment could reduce their propensity to anti-social 

behavior as adults, or, more strictly, their vulnerability to childhood maltreatment insofar 

as that increases their propensity to anti-social behavior as adults.  Reciprocally, if 

severe childhood maltreatment could be identified and reduced or stopped early, this 

action could nullify the influence of a child’s MAOA level on undesired adult outcomes.  

The risk reduction for anti-social behavior produced by each population-level approach 

would depend on whether the threshold for unacceptable anti-social behavior is set high 

or low.  

Of course, with only 3% of the population in the low-MAOA plus severe-

maltreatment category, epidemiologists might not recommend any population-level 

action based on the reported association.  Moreover, they may wait to see if the results 

in this case apply to populations other than that of the original study (Wasserman 2004, 

Morris et al. 2007).  Indeed, some meta-analyses have cast doubt on the generality of a 

similar study by Caspi, Moffitt and collaborators (Risch et al. 2009).   Suppose, 

however, for discussion purposes, that something analogous to the MAOA-

maltreatment result is replicated and the proportion in the high-risk category is sufficient 

to stimulate action.  The population-level approaches could still run into troubles, in the 

following manner. 

Notice that Figure 3 presents the means; around any mean there will be 

variation. From other figures in the study (Caspi et al. 2002) it can be seen that some of 

the high-MAOA individuals end up with higher anti-social behavior scores than some of 

the low-MAOA individuals.  Moreover, depending on the threshold, a substantial fraction 

of the low-MAOA plus severe-maltreatment category does not end up as anti-social 

adults.  Yet, in practice, once the resources were invested to screen children for MAOA 

levels, the attention of parents, teachers, social workers, and so on would be focused 

on all low-MAOA children.  Indeed, how could treatment on the basis of group 
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membership be avoided if such adults do not know from a childhood MAOA assessment 

whether any particular individual is one who would go on, after childhood maltreatment, 

to become an antisocial adult?  (Of course, adults would take other traits into account in 

how they treated any child, but what is relevant here is how information about MAOA 

status influences treatment.) 

Now, some of the parents of low-MAOA children might resist their children being 

treated according to the mean of the MAOA group.  They might also balk at years of 

prophylatic drug treatment or of maltreatment monitoring by social workers.  These 

parents—together with others concerned about the same issues—could push for 

additional research to identify other characteristics that differentiate among the low-

MAOA children (and perhaps also help predict who among the high-MAOA children are 

vulnerable).  It may be that no systematic characteristics would be found; variation 

within the low- and high-MAOA subpopulations would then fit Davey Smith’s view of 

unavoidable randomness.  Nevertheless, it would have been understandable that 

researchers had sought a more refined account of risk factors than given by the 

population-level approaches. 

To understand the need for more refined risk accounts is not, however, to 

endorse the pursuit of personalized medicine customized to the individual.  Indeed, the 

scenario played out above points to a serious shortcoming of that very endeavor.  In its 

simplest form, personalized medicine involves the use of genetic information to predict 

which patients with a given condition (e.g., heart aryhthmia) will benefit from a particular 

drug treatment (e.g., beta blockers).  More ambitiously, personalized medicine promises 

to inform people of their heightened vulnerability or resistance to specific environmental, 

dietary, therapeutic, and other factors early enough so they can adjust their exposure 

and risky behaviors accordingly. 

If the MAOA analogy holds, the path to personalized medicine would often 

involve a phase in which large numbers of people are treated according to their group 

membership.  Consider, however, which kinds of medical conditions would receive the 

necessary investment in pharmaceutical and sociological research, screening, and 

preventative treatment or monitoring to address the conjunction of genetic and 

environmental factors involved.  Some well-organized parental advocacy groups may 
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secure funding to address the prenatal or neonatal diagnosis and post-natal treatment 

of rare debilitating genetic disorders (Panofsky 2011, Terry et al. 2007), as happens 

with phenylketonuria.  However, public and corporate policy would more likely focus on 

conditions with a large value for the average benefit of ameliorating the effect of the 

genetic difference multiplied by number of people considered vulnerable. 

For high-average-benefit conditions, taking the MAOA case as a guide, if the 

effect of the genetic difference depends on identified social or environmental factors, 

and if variability within the groups that have on-average high and low vulnerability 

produces a problem of misclassification, then pressure would arise for researchers to 

differentiate among individuals within the groups.  However, until distinguishing 

characteristics were found, parents, teachers, doctors, social workers, insurance 

companies, policy makers, friends, and the individuals themselves could make no better 

use of the genetic information than to treat individuals according to which genetic group 

they belonged to.  (Again, some people listed in the previous sentence would take other 

traits into account in how they treated any individual, but what is relevant here is how 

the genetic information influences that treatment.)  Moreover, if the additional research 

were not conducted or were not successful, or if the cost of differentiating among 

individuals were too high, we might never get beyond treating individuals according to 

their genetic-group membership.  In short, an under-acknowledged danger in the pursuit 

of personalized medicine lies, ironically, in genetic information being used to treat 

people according to the mean of their genetic group—a population-level approach—

leaving variation around that mean accepted as unavoidable noise. 

 

7.2  It can be quite reasonable to try to differentiate among individuals so as to improve 

risk prediction, even though finding ways to do so may not be straightforward. 

Consider the modifiability in practice of any given population-level risk factor and 

take the MAOA-maltreatment scenario as a thought experiment.  Population-level 

measures would require more than finding a safe and effective prophylatic drug 

treatment.  MAOA screening would need to become routine, compliance with the 

treatment achieved, and so-called side-effects addressed—including the effects of 

considering all low-MAOA children as incipiently anti-social.  On the maltreatment side, 
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the detection and prevention of childhood maltreatment might entail intrusions into many 

households, surveillance or mandatory reporting, monitoring and intervention by state 

agencies, diversion of government budgets from other needs, and so on.  In short, even 

if reduced childhood maltreatment were seen as a positive outcome, the means might 

not be unconditionally positive to all (Wasserman 2004). 

What the example illustrates is that, for the population-level approach to make 

sense, the population-level risk factor has to be modifiable in practice.  This depends on 

the political, economic, and cultural circumstances around public health measures, as is 

well illustrated by the uneven implementation of laws in the United States requiring seat 

belt use in cars (Wikipedia 2011).  Moreover, the effects of shifting the distribution of 

that factor should not disadvantageous to individuals who are not high risk.  Unless both 

of these conditions hold, it makes sense to search for risk factors that differentiate 

individuals within a population.  For some traits such a search might reveal no 

systematic characteristics; variation within the populations would then fit Davey Smith’s 

view of unavoidable randomness.   However, for other traits the within-population risk 

factors might be identifiable; some of these factors might be easier to modify than the 

population-level factors. 

The population-level approach, advocated most famously by Rose (1985), is well 

illustrated by the case of smoking and lung cancer.  The relative and absolute risks of 

smoking are high; there is a dose-response curve (Bjartveit and Tverdal 2005); and the 

historical trends after allowing for latency match smoking rates.  Moreover, population-

level policies, such as cigarette taxes and indoor smoking bans, are not 

disadvantageous for the health of those smokers who turn out to be less susceptible to 

lung cancer.  Nor are the policies disadvantageous to others outside the population in 

question, i.e., non-smokers.  In short, there seems to be little incentive now that 

smoking-reduction policies are gained traction, to find ways to screen for high-risk 

individuals and focus resources on treating them. 

 Most cases are, however, not like smoking and lung cancer; the justification for 

de-emphasizing within-population risk factors is usually far less clear.  Consider 

cardiovascular disease.  Lynch and colleagues reported that for a population of Finnish 

men, “94.6% of [coronary heart disease] events occurred among men exposed to at 
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least one conventional risk factor” (smoking, hypertension, dyslipidaemia, and 

diabetes).  They concluded that the focus of efforts to reduce coronary heart disease 

should be on reducing these factors, not on further refinement of psychosocial or other 

risk factors (Lynch et al. 2006).  Yet, focusing on the conventional risk factors could 

translate variously to population-level efforts for smoking reduction, to screening for and 

treatment of individuals at high risk for hypertension, dyslipidaemia, and diabetes, or to 

some hybrid effort in which anti-smoking efforts highlighted the special risk, say, to 

people with high blood pressure.  In short, it would be very reasonable for anyone 

promoting or subject to the screening and treatment approach to be interested in 

improved prediction of who is at high risk. 

In this vein, Ridker et al. (2007) noted that the conventional risk factors for heart 

disease in women (as combined in the Framingham score) misclassify many women as 

of intermediate risk who were actually higher or lower risk.  Ridker et al’s refined 

Reynolds Risk Score performs better primarily, it seems, by including the risk marker 

cReactive Protein (CRP).  Health policymakers might examine the ratio of benefits from 

improved risk determination to the increased cost from measuring CRP levels.  

Biomedical researchers might see inclusion of CRP in the Reynolds Risk Score as 

grounds for examining mechanisms around a rise in CRP levels for an individual.  They 

might hope for eventual improvement in therapy and prevention—perhaps targeted at 

high-risk individuals, but perhaps also yielding population-level interventions. 

It turns out that CRP is almost surely a marker, not a direct cause or valid 

candidate for therapeutic reduction (C Reactive Protein Coronary Heart Disease 

Genetics Collaboration 2011).  Yet the point remains:  Focusing on modifiable causes of 

disease at the population level is a choice for epidemiologists that is not dictated solely 

or primarily by considerable randomness at the individual level.  There are situations in 

which it is quite reasonable to be interested in improved prediction of cases at an 

individual level.  The value of any such improvements, however, depends on the 

economics of health policy as well as on whether a richer picture of risk factors 

translates through biomedical research into improvements in therapy and possibly 

prevention. 

Suppose researchers decide neither to discount nor to give blanket acceptance 
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to randomness at the individual level.  What they then face is not unbridled exploration 

of risk factors that might differentiate individuals or sub-groups within the population.  

Rather, it is the challenge of exposing possible risk factors and assessing which ones 

are worth considering for insertion into refined risk equations for screening and 

treatment.  And for this challenge there are no off-the-shelf guidelines.  Consider the 

following contrasting cases.  The pathway seems straightforward in the “changing view 

of pathophysiology” underlying atherothrombosis, which led Ridker et al. (2007) to 

assay a large number of biomarkers then compare a range of new risk prediction 

equations that included CRP and other markers.  The role of refined within-population 

distinctions has, however, been more subtle in the research and discussions of Lustig 

and his colleagues around the association of sugar (i.e., fructose-glucose) with 

metabolic syndrome of diabetes, hypertension, lipid problems, and cardiovascular 

disease (Lustig et al. 2012).  They end up advocating a population-level policy of 

reducing availability of sugar, but the path to that position is more complex.  Arguments 

over epidemiological associations—after all, countries with high sugar consumption also 

have high fat consumption—are combined with physiological research to unravel 

mechanisms of metabolism under various conditions.  The latter research takes note, 

among other things, that “20% of obese people have normal metabolism and… up to 

40% of normal-weight people develop the diseases that constitute the metabolic 

syndrome” (Lustig et al. 2012).  This observation led to epidemiological comparisons 

among countries that controlled for physical activity and being overweight or obese, 

which have shown that “[d]ifferences in sugar availability statistically explain variations 

in diabetes prevalence rates at a population level” (Basu et al. 2013). 

Now, even if it turned out that approaches other than limiting sugar consumption 

for the population were more feasible or effective in reducing coronary heart disease, 

juxtaposing the Ridker and Lustig examples suffices to make the point that no simple 

guidelines can be expected for research and policy for risk factors that differentiate 

among individuals.  That, however, is no argument against trying to differentiate among 

individuals so as to improve risk prediction.   
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7.3  When researchers think about the causal dynamics underlying patterns in data, 

such as associations with risk factors, it may be helpful not to see deviations from 

patterns as noise and to pay attention to heterogeneity in forms such as there being 

multiple paths to the “same” trait.   

The observation that CRP improves risk prediction even though it is not a causal 

factor points to a further challenge.  The conventional way to think about risk factors is 

to distinguish the modifiable (e.g., blood pressure) from the non-modifiable  (e.g., 

gender).  We envisage modifying the former so as to change the risk; for the latter 

clinicians screen more vigilantly or researchers investigate further with a view to 

exposing what modifiable risk factors underlie them.  There is, however, an alternative 

way of thinking about both kinds of risk factors, namely to see them as patterns 

detected in data generated by some unknown causal dynamics.  Then, when 

researchers envisage modifying a risk factor, they are hoping that the causal dynamics 

generating past data persist into the current situation and that modification of a factor 

does not restructure those dynamics—or, at least, not very much.   

To modify factors without restructuring dynamics would mean, for example, that, 

if low income is a risk factor for a condition (e.g., stress as measured by some 

biomarker), an experiment in which some families get a lump sum increase in income 

would be expected to lead to a lower rate of that condition.  If this expectation seems 

crude, it is because we are not surprised by results that indicate greater complexity in 

the causal dynamics that generated the patterns as well as in the modified dynamics 

emerging under the experiment.  Ludwig et al. (2012), for example, showed that for 

families joining an experiment in which some were randomly chosen to move “from a 

high-poverty to lower-poverty neighborhood,” moving “leads to long-term (10- to 15-

year) improvements in adult physical and mental health and subjective well-being, 

despite not affecting economic self-sufficiency.”  The challenge that such examples 

pose for epidemiologists is to expose the causal dynamics generating patterns in data, 

moreover to do so in ways that provide expectations for how the dynamics might be 

modified by interventions.  Such interventions might be at a population level or they 

might be only among high-risk individuals. 

Exposing underlying causal dynamics may strike data analysts as an elusive 
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goal, but it is instructive to at least entertain the quest.  First, to avoid setting off in the 

wrong direction, researchers might find avoid using the term “risk factor” because its 

causal connotations invite confusion—perhaps “risk-associated variable” instead?  They 

should also put aside the contrast between modifiable causes of conditions at the 

population level and randomness at the individual level.  That framing leads us to see 

deviation from a risk equation as noise whereas it could indicate the gap between the 

fitted equation and the causal dynamics generating the data.  Then researchers might 

pick up the possibility of heterogeneity in genetic and environmental factors underlying 

heritability and other fractions of the variation for a trait.  Attention to this possibility can 

be readily extended so that, when similar responses of different individual types are 

observed, researchers do not assume that similar conjunctions of risk or protective 

factors have been involved in producing those responses.  There may be multiple 

pathways to the same trait value.  In this vein, the data analyses of Kendler et al. (2002) 

and Ou (2005) in psychology and education are notable for exposing alternative 

pathways—as well as admirable for their reserve about how to interpret their fitted 

models causally.  

Attention to heterogeneity may lead us to reconceive the trait being analyzed as 

a heterogeneous mix of traits.  Tilley (2000) provides a striking exemplar of this in his 

discussion of evaluations of the effect of Closed Circuit television (CCTV) on crime in 

parking lots.  Such evaluations could mix together studies of situations in which different 

mechanisms (or a mix of mechanisms) and different contexts apply.  The different 

CCTV-crime studies might be subject to a meta-analysis, but no meaningful 

recommendation would be likely, even if all results were in the same direction (see also 

Cartwright and Hardie 2012).  Even though not all phenomena are like CCTV and crime, 

key variables in epidemiology, such as socioeconomic status, admit to substantial 

heterogeneity.  As Davey-Smith et al. (2000) note: “socioeconomic categories—whether 

based on education, employment, occupational social class or housing tenure—may 

have neither the same nor consistent meanings in different ethnic groups.”  Moreover, 

especially in relation to implications for action, different kinds of heterogeneity can be 

distinguished, ranging from a "cabinet of curiosities" to “participatory restructuring 

through multiple points of engagement” (Taylor 2011).  Discussion of different senses of 
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heterogeneity would require a separate article, but the issue of meaning is picked up in 

the final angle to follow, which brings this article to a close on a speculative note. 

 

7.4  Attention to the meaning of life events and other factors can allow for 

heterogeneous events to be subsumed under single factors.  However, given the labor-

intensive nature of research into meaning, epidemiologists may need the subjects to 

show how they connect knowledge with action to change their lives and communities in 

response to ongoing social changes in specific situations.   

A line of research initiated by the sociologists Brown and Harris in the late 1960s 

has investigated how severe events and difficulties during people's life course influence 

the onset of mental and physical illnesses Harris (2000).  Brown and Harris use wide-

ranging interviews, ratings of transcripts for the significance of past events in their 

context (with the rating done blind, that is, without knowledge of whether the person 

became ill), and statistical analyses.  Because what might be recorded as the same 

event, e.g., death of a spouse, might have very different meanings and significance for 

different subjects according to the context, Brown and Harris’s methods accommodate 

events with diverse meanings.  At the same time, apparently heterogeneous events can 

be subsumed under one factor, such as, in explanation of depression, a severe, 

adverse event in the year prior to onset.  In sum, their Life Events and Difficulties 

methodology integrates “the quantitative analyses of epidemiology and the [in] depth 

understanding of the case history approach” (Brown and Harris 1989, x). 

 The methodology of Brown and Harris is labor intensive; many who have been 

trained in it have tried to streamline the case-history component and eventually shifted 

to different lines of research.  Suppose, however, that researchers took as starting 

points the labor intensity of methodology that exposes diversity of meanings and the 

possibility of underlying heterogeneity.  One way forward might be to allow the subjects 

in specific situations that continue to change to show how they connect knowledge with 

action.  That is, researchers could depart from the traditional emphasis on exposures 

impinging on subjects and, instead, observe communities where people are resilient 

and reorganize their health, lives and communities in response to social changes 

(Sampson et al. 1997).  Although the patterns and variation among people exposed by 
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those studies might not extrapolate readily over time, place, and scale, they could 

provide a point of departure for research and policy engagements in subsequent 

situations the researchers study. 

Such agent-oriented epidemiologists would need to be conversant with studies of 

resilience and reorganization in communities.  They would need to train in participant 

observation and qualitative methods for research on population health changes that 

arise through grassroots and professional initiatives and then grow into loosely knit 

social movements, e.g., around innovations in short-term therapy for depression (e.g., 

Griffin and Tyrrell 2007, White 2007).  In return, they—or anyone following the other 

three conceptual themes in this section—need not accept Davey Smith’s conclusion 

that considerable randomness at the individual level requires epidemiologists to focus 

on modifiable causes of disease at the population level.  There are pathways to explore 

that take us beyond the gloomy prospect of epidemiology limited in its power to 

generate reliable and useful associations of multiple factors with a disease.  
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Appendix A 
Getting beyond the implausibility response 

This article’s primary goal is to promote wider discussion of heterogeneity, in 

various forms, among genetic and epidemiological researchers and philosophers of 

science.  Yet, to undercut the analogy invoked by Davey Smith I take a radical path, 

explaining how the estimates made in human quantitative genetics are unreliable and 

typical interpretations, including interpretation of non-shared environmental influences, 

are unjustified.  Some readers may deem it implausible, given decades of debate 

among methodologically sophisticated scholars, that some fundamental problems in 
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quantitative genetic estimation have been overlooked (Kendler 2005).  With a view to 

moving readers beyond the implausibility response, let me describe some of the 

background that has allowed me to see the study of heredity and variation differently 

from most researchers and philosophers of science who have addressed quantitative 

genetics. 

My initial research work in the mid-1970s involved the statistical analysis of large 

plant breeding trials, in which many cultivated varieties would be tested in each of many 

locations around the world.  A first step in the analysis was to partition the variation in a 

given trait, say, yield of wheat plants, into components related to the averages or means 

of the varieties (across all locations), the means of the locations (across all varieties), 

and so on (see Figure 1).  (Indeed, agricultural breeding was where partitioning of 

variation and measuring heritability originated.)  The challenge for the plant breeders 

with whom I worked was to go beyond the partitioning and hypothesize what it was 

about any variety that led to its pattern of response across locations and what it was 

about any location that led to the varieties’ responses in that location compared to 

others.  Knowing what aspects of, say, the pedigree of the variety or of the environment 

conditions in the location could inform subsequent breeding or cultivation decisions.  

Yet, hypothesis generation was not easy even though we had large and complete data 

sets to work from.  A lesson I took from that research was that the limits to 

hypothesizing about genetic and environmental factors must be even greater when 

researchers partition variation for human traits.  In human studies any genetically-

defined type is, at best, replicated twice—as identical twins—and different genetic types 

cannot be systematically raised across the same range of “locations”—families, socio-

economic conditions, and so on. 

Fast forward to a decade ago: I was learning about three disparate areas of 

quantitative research that attempt to make sense of the complexity of biological and 

social factors that build on each other in the development of the given trait over the life 

course (Taylor 2004).  I was impressed by what had been accomplished, but had some 

reservations about the models used in one of the areas, namely, Dickens and Flynn’s 

(2001) attempt to resolve the IQ paradox, in which researchers find large generation-to-

generation advances in IQ test scores even though the trait is held to have high 
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heritability.  I explained my reservations to Dickens, digested his responses, and 

explained my reservations about his subsequent responses.  In the course of this I 

found myself digger deeper into the conceptual foundations of heritability estimation and 

partitioning of variation.  In order to present a picture that differed from what Dickens, 

Flynn, and others accepted without second thought, I was explicating first principles, not 

disputing specialized models or mathematics or pointing to new data. Making extensive 

use of perspectives and examples from the earlier plant breeding research, my 

exposition took a pedagogical, build-from-the-foundations style (Taylor 2006, 2007, 

2010). 

Meanwhile, my investigation continued of the other two areas—life events and 

difficulties research (Brown and Harris 1989) and developmental origins of chronic 

diseases (Barker 1998).  Barker’s work led me to life-course epidemiology (Kuh and 

Ben-Shlomo 2004), so I spent time with Ben-Shlomo and the active social epidemiology 

research group at Bristol University.  Davey Smith is a leading figure in that group and 

co-edits the International Journal of Epidemiology based at Bristol.  While visiting in 

2007 I gave a talk on “new and old debates about genes and environment,” which 

touched on some of the questions about heterogeneity raised in this article.  Davey 

Smith’s spoken response was along the lines of his subsequent “gloomy prospect” 

article: epidemiologists have to accept considerable randomness at the individual level 

and keep the focus on modifiable causes of disease at the population level.  In his 

ensuing article, Davey Smith links this perspective to claims from quantitative genetics, 

thus providing me an opportunity to address social epidemiologists and human 

quantitative geneticists at the same time as I responded to his account.  In bringing my 

interest in heterogeneity to the attention of those audiences, this article extends the first-

principles emphasis of the other recent work and thereby speaks to philosophers of 

science.  My contribution to philosophy takes the form, however, of articulating 

conceptual themes, not dissecting specific cases on empirical, analytical, bioethical or 

policy grounds.  The expository approach reflects the background, with its roots in plant 

breeding trials, that I have sketched in this Appendix, as well as the idea that 

contributing to the conceptual toolbox of readers will prepare them to make their own 

contributions to wider discussion of heredity, variation, and heterogeneity. 
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Appendix B 
Table of objections to critiques of heritability studies and counter-responses 

Response Counter-Response 

There are many definitions or formulas for 

heritability other than the ratio of the 

variance among variety means (genotypic 

values) to the variance of the trait across 

the whole data set. 

The justification for calling the other 

definitions heritability is that they 

approximate the original definition or the 

predictions it provides of advance under 

selection. 

In particular, narrow-sense heritability is 

favored over the broad-sense heritability 

above. 

Narrow-sense heritability can only be 

defined when quantitative genetics employs 

models of hypothetical, idealized genes 

with simple Mendelian inheritance and 

direct contributions to the trait.  However, a 

gene-free analysis of trait variation must 

also be possible (Taylor 2012).   

Genotype-environment interaction 

variance (here: variety-location interaction 

variance) has been shown to be 

negligible for humans. 

From Taylor (2012): “Often cited in this 

vein, Plomin et al. (1977) consider a proxy 

for variety-location interaction, namely, the 

interaction of some variable, e.g., average 

educational attainment, averaged for 

biological parents and for adoptive parents.  

How well such proxy results reflect actual 

variety-location interaction and the 

generality of the low values found by 

Plomin et al.”  has not been established.  

Gene-environment interaction is not 

assumed to be negligible—Indeed, there 

is an institutionalized field of research on 

the topic. 

This use of the term interaction in this 

response refers to the statistical interaction 

between measured genetic factors and 

measured environmental factors.  This is 

conceptually and empirically distinct from 
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variety-location (genotype-environment) 

interaction that means that for the trait in 

question the ranking of varieties varies 

across locations. 

The intraclass correlation formulas in 

heritability studies have been superceded 

by calculations that use Structural 

Equation Models.  

Structural Equation Modeling shares the 

features that render unreliable estimates 

made using the formulas  (see points #1-6 

under Unreliable estimates in section 6). 

"Research into the genetics of complex 

traits has moved from the estimation of 

genetic variance in populations to the 

detection and identification of variants 

that are associated with or directly cause 

variation” (Visscher, et al. 2007) 

Classical quantitative genetics… remains 

relevant in several ways, such as indicating 

that “the trait [is] a potentially worthwhile 

candidate for molecular research” to 

identify the specific genetic factors involved 

(Nuffield Council on Bioethics 2002, chap. 

11) and, in turn, the difficulty of identifying 

such genetic factors has led to concerns 

about “missing heritability” (e.g., Manolio et 

al. 2009). [Text adapted from Taylor (2012)] 

It is past time to move beyond debates on 

the existence of genetic influences. 

The problems summarized in this account 

are worth recognizing: they call most 

estimates and interpretations from human 

quantitative genetics into question; and the 

possibility of underlying heterogeneity that 

arises from the more critical account helps 

in clarifying the challenging paths ahead.   

“It is one thing to criticize the 

methodology of specific studies. It is quite 

another to suggest… that we reject the 

results of an entire field of scientific 

inquiry… It is highly unlikely that modern 

psychiatric genetics will be judged by 

“Human quantitative genetics could be 

viewed, contra Kendler, as akin to 

alchemy… a field of inquiry that provided 

observations, questions, tools, debates, 

careers, and institutions which modern 

chemistry built on, but ultimately had to 
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future historians of science to be in such 

company [as astrology and alchemy].” 

(Kendler 2005, 10) 

break away from to make further progress” 

(Taylor 2010). 

Some assumption has to be made that 

connects similarity in traits for relatives to 

the fraction shared by the relatives of all 

the genes that vary in the population; 

Direct proportionality is as good as any 

other assumption. 

No assumption has to be made because, in 

a gene-free analysis of trait variation, 

empirical estimation of a parameter to take 

degree of relatedness into account is 

possible (Taylor 2012).  In any case, 

estimates should indicate the sensitivity to 

any such assumption. 

It is well known that high heritability does 

not show where to look for the variants. 

It is not widely acknowledged that high 

heritability is not a good indicator of which 

traits are worthwhile candidates for 

molecular research. 

Human quantitative genetics is subject to 

various well-recognized, albeit contested 

objections, for example, has zygosity of 

twins been correctly ascertained and 

representatively sampled?; is the 

treatment or experience of the twins or 

unrelated individuals within a location 

unaffected by whether they are 

monzygotic twins, dizygotic twins, or 

unrelated? (Taylor 2012). 

A focus on these technical issues runs the 

risk of missing or even reinforcing the more 

fundamental problems raised in this 

account. 
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