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   Sinorhizobium meliloti is a Gram-negative alphaproteobacterium and nitrogen-

fixing symbiont, which undergoes a novel cell cycle modification during its’ host-

microbe interaction. I intend to monitor the transcriptional regulation of cell cycle-related 

genes during free-loving growth, in addition to monitoring their expression during 

symbiosis. Using genes known to be regulated by CtrA in C. crescentus or predicted to 

be regulated by CtrA in S. meliloti, I aim to show how certain cell cycle genes are 

regulated in S. meliloti. In C. crescentus, CtrA acts as a transcription factor that is active 

when phosphorylated and inactive when not phosphorylated. In S. meliloti, CbrA is a 

histidine kinase that ultimately inhibits CtrA phosphorylation. Using a ΔcbrA null 

mutant, which leads to increased levels of CtrA in S. meliloti, and the β-glucuronidase 
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(GUS) reporter gene, I can monitor the expression levels of target genes that are 

potentially regulated by CbrA and CtrA. Promoter regions, transcription start sites, and 

translation start sites of target genes have been cloned into the plasmid pVO155 upstream 

of the GUS gene. I measured the GUS enzymatic activity using the 4-methylumelliferyl-

beta-D-glucuronide (MUG) substrate. Additionally, after infecting Medicago sativa 

seedlings with these fusions strains, I used a different GUS substrate to test for the 

presence of target gene expression in root nodules. Results thus far have shown some 

target genes with large differences in expression coinciding with the absence of cbrA and 

increased CtrA levels while some target genes show only slight differences, if any at all. 

Tracking the expression location and patterns of target genes in root nodules has shown 

that some genes are expressed ubiquitously throughout the nodule while other genes are 

expressed in specific locations. These results are significant because no one has looked at 

genes regulated by CbrA or CtrA in S. meliloti, which is more applicable to host-microbe 

interactions than C. crescentus, especially since Agrobacterium tumefaciens and Brucella 

abortus both have a CbrA homologue. Additionally, I will provide critical insight into the 

molecular biology of the S. meliloti host-microbe interaction.  
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CHAPTER I 

INTRODUCTION 

 

 

Rhizobium symbiosis 

 

Soil dwelling rhizobial bacteria have co-evolved with certain leguminous plants to 

form a symbiotic relationship. In this relationship, the rhizobial bacteria invade the host 

plant and live inside plant-made root nodules. Once living inside the nodules, rhizobia 

adapt and gain the ability to perform symbiotic nitrogen fixation. These relationships are 

species-specific and will only ensue in nitrogen-limited soils. Therefore, it is critical for 

the plant to promote this relationship so that it can gain fitness in otherwise nutrient-

deficient environments.  

The signaling events and survival mechanisms utilized by rhizobial cells within 

its’ host provides a powerful model to investigate chronic intracellular infection. This 

model is especially useful since many of the requirements for host colonization are 

shared among related bacteria. Recent advances in genomic sequencing abilities have 

also aided in further characterizing the molecular determinants involved in this 

relationship. Thus, the study of this symbiotic interaction will provide critical insight that 
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will be useful in gaining a greater understanding of intracellular infection of humans by 

virulent microbes. 

 

 

Signaling and host specificity 

 

Bacteria within the Rhizobiales order have the ability to sense flavonoids exuded 

by the Fabaceae plant family in nitrogen-limited soil environments (Figure 1A). The 

Fabaceae family of leguminous plants includes genus such as Medicago (alfalfa), 

Melilotus (sweet clover), and Trigonella (fenugreek). These legumes are able to secrete a 

diverse cocktail of flavonoids and isoflavonoids from their roots (Perret, Staehelin et al. 

2000). Flavonoid derivatives of 2-phenyl-1,4-benzopyrone are specifically produced by 

these leguminous plants and are likely the first signals exchanged between Rhizobium and 

Fabacea (Perret, Staehelin et al. 2000). Rhizobia are able to directly sense these 

flavonoids through their NodD receptor, which is a DNA-binding protein that induces the 

expression of nodulation (nod) genes (Barnett and Fisher 2006). 

The host range of each rhizobium species is determined by the ability of its’ 

endogenous NodD to bind a certain flavonoid or variety of flavonoids (Perret, Staehelin 

et al. 2000). Interactions with flavonoids produced by plants that are not authentic hosts 

to the Rhizobium species have been shown to inhibit expression of nod genes (Peck, 

Fisher et al. 2006). The amount and types of flavonoids produced in the rhizosphere can 

be detected by rhizobia, however it is difficult to determine precisely which flavonoid is 
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compatible with a particular rhizobium species. It is thought that that certain mixtures 

might determine compatibility rather than a single independent flavonoid (Gibson, 

Kobayashi et al. 2008). The Rhizobiaceae family includes bacterial species with both 

limited (recognizing only one or a few flavonoids) and wide (recognizing many different 

flavonoids) ranges of host-specificity. For example, Rhizobium etli is capable of inducing 

nodulation in only one type of legume, Phaseolus (bean), whereas Sinohizobium fredii 

NGR234 can live symbiotically with 232 legumes (Pueppke and Broughton 1999).  

Once the NodD receptor of a rhizobium species has sensed its’ compatible 

flavonoid or mixture of flavonoids, it induces the catalysis of nodulation factors (NF), 

which are secreted by the rhizobium species into the rhizosphere (Figure 1B) (Capela, 

Carrere et al. 2005). These Nod factors are composed of lipochito-oligosaccharides and 

are produced by the enzymes encoded by nod genes, which are under transcriptional 

regulation by NodD (Barnett and Fisher 2006). Therefore, the connection between 

legume and rhizobium is heavily dependent on the interaction between exuded flavonoids 

and NodD responses. The bacterial NFs that are produced as a response to NodD sensing 

compatible flavonoids are required for nodulation and successful host infection by 

rhizobia. Perception of NFs by the host plant stimulates a series of complex 

developmental responses from the plant that results in the formation of a root hair 

structure called a nodule, within which the bacteria are housed (Oldroyd and Downie 

2006).  

In our research we study the alfalfa species Medicago sativa and Sinorhizobium 

species Sinorhizobium meliloti. S. meliloti has a relatively limited host range compared to 
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other rhizobia, which has been attributed to its’ recognition of specific flavonoids (Perret, 

Staehelin et al. 2000). S. meliloti can induce nodulation with three genus of Fabaceae – 

Medicago (alfalfa), Melilotus (sweetclover), and Trigonella (fenugreek) (Gibson, 

Kobayashi et al. 2008). The extremely precise species-specific sensing mechanism 

between a eukaryote and prokaryote is an exquisite example of a symbiotic relationship 

that has evolved over millions of years. This relationship provides a strong model for 

studying the invasion of a eukaryotic host by a prokaryotic symbiont.  

 

 

Nod factors and nodulation 

 

Once communication has commenced between legume and rhizobium through 

flavonoids, NFs serve as a mechanism by which rhizobium species can respond to its’ 

targeted host. Perception of NF by legume roots elicits multiple responses that are 

essential for successful nodulation to occur, just like the interaction between flavonoids 

and NodD (Oldroyd and Downie 2006). Similar to flavonoids produced by the host, the 

type of NF produced by the microbe can vary greatly. The nodABC gene cluster encodes 

proteins which synthesize the core structure of NFs. Different Rhizobium species contain 

additional nod genes that chemically modify NFs, and producing many types of NFs is 

common among Rhizobium species (Perret, Staehelin et al. 2000). The primary response 

of the plant root to NF perception is root hair curling (Figure 1C). Root hair curling is 

dependent on fluctuations in intracellular calcium levels and alterations to the 
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cytoskeleton, both of which are induced as a response to NF sensing (Timmers, Auriac et 

al. 1999, Cardenas, Thomas-Oates et al. 2003, Sieberer, Timmers et al. 2005). This 

process results in an engulfed rhizobium cell that is attached to the root hair as it curls 

(Figure 1D).   

Once the host-microbe interaction successfully completes the signaling process 

through flavonoids and NF, the development of the infection thread (IT) begins. This 

stage of the relationship is absolutely critical – the rhizobia must be internalized before 

they can begin to fix nitrogen (Perret, Staehelin et al. 2000). The ultimate goal of the IT is 

to allow infection of rhizobia cells into the root cortex of the host (Figure 1D). To 

successfully promote IT formation in its’ host, Rhizobium species must produce 

exopolysaccharides (EPS), such as succinoglycan and galactoglucan (Glazebrook and 

Walker 1989, Pellock, Cheng et al. 2000). 

 

Figure 1: (A) A rhizobium cell (orange circle) senses flavonoids (blue diamonds) exuded 
by a leguminous plant species from its roots into the rhizosphere. (B) After flavonoids 
have been sensed by a rhizobium species, the response is the production of nodulation 
factors (red triangles), which are meant as a mechanism to communicate with its’ host. 
(C) Once both the rhizobium cell and host plant have percieved the approriate signals, the 
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response is the capture of rhizobium cells by the root through root hair curling. (D) Once 
the root has curled over and trapped rhizobium cells, the rhizobium cells will be engulfed 
into the developing infection thread (yellow). The infection thread will continue to grow 
and penetrate the underlying cell layers of the host root. 

 

With sufficient production of NFs and EPSs by the rhizobia, cells are trapped in 

the curled root hair, and development begins. New membrane synthesis occurs at the tip 

of the newly formed IT and is thought to be the result of cellular polarity (Gage 2004). 

Within the new IT, the plant produces reactive oxygen species (ROS), which act as 

antimicrobial agents against unwanted invaders (Vandenbosch, Bradley et al. 1989, 

Santos, Herouart et al. 2001, Rathbun, Naldrett et al. 2002). To successfully reach the 

inner plant cortex and fix nitrogen, the rhizobia species must first continuously induce IT 

formation through each successive cell layer of the plant root (Jones, Kobayashi et al. 

2007). The infection thread grows and develops through the plant nodule until it reaches 

the inner plant cortex (Figures 1D and 2). Once the IT reaches the inner plant cortex, the 

plant is required to envelope each individual cell into its’ own “symbiosome,” through 

endocytosis (Brewin 2004). Only then can the cell differentiate into a nitrogen-fixing 

bacteroid. 

 

 

Evasion of the host immune system 

 

 S. meliloti is a powerful model organism for a variety of reasons. One of the most 

compelling reasons to use S. meliloti as a model organism is to elucidate the mechanisms 
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that underlie its’ host-microbe relationship. S. meliloti is closely related to the 

mammalian pathogen Brucella abortus and the plant pathogen Agrobacterium 

tumefaciens, which cause brucellosis in mammals or crown galls in plants, respectively. 

S. meliloti shares a number of homologous proteins with both B. abortus and A. 

tumefaciens that are essential for successful host invasion. One of the largest obstacles for 

the bacteria within these host-microbe interactions is escaping the immune system of the 

host. Once this challenge is overcome, the microbe can more easily proliferate within its’ 

host.  

The invasion of Medicago root nodules by S. meliloti induces the production of 

reactive oxygen species (ROS), which is a common plant response to invading pathogens 

(Abramovitch, Anderson et al. 2006). ROS have been detected in both the IT and the 

infected host cells of developing nodules (Santos, Herouart et al. 2001, Rubio, James et 

al. 2004). ROS play a large role in most plant defenses against invaders; however, this 

oxidative burst does not kill rhizobium cells within the IT or the symbiosome. This is 

intriguing since free-living rhizobia have been shown to be more vulnerable to ROS than 

other rhizosphere-associated prokaryotes (Ohwada, Shirakawa et al. 1999). Since ROS do 

not kill rhizobia during invasion, it is thought that they are instead involved as a signaling 

system between rhizobia and their host. 

 Various genes required for EPS biosynthesis are essential to a successful invasion 

of M. sativa by S. meliloti. It is possible that the combination of EPS, NF, and LPS 

produced by the microbe interact with the ROS produced by the host to create a feedback 

response. (Shaw and Long 2003, Scheidle, Gross et al. 2005). EPS are a type of 
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polysaccharide commonly used by Gram-negative bacteria for protection from the 

extracellular environment. More specific to S. melilot, succinoglycan is the type of EPS 

that is most often associated with symbiosis. Succinoglycan is a polymer of an 

octasaccharide repeating unit modified with acetyl, succinyl and pyruvyl substituents 

(Reinhold, Chan et al. 1994, Jones, Kobayashi et al. 2007). The coupling of 

succinoglycan with galactoglucan contributes to the induction of infection thread 

development upon invasion into Medicago plants (Glazebrook and Walker 1989, Pellock, 

Cheng et al. 2000). As an EPS, succinoglycan potentially serves various roles for S. 

meliloti. Similar to other polysaccharides, succinoglycan protects S. meliloti from stress 

and more specifically the stressful environment of its’ host and the IT (D'Haeze, Glushka 

et al. 2004). A low molecular weight succinoglycan may be more effective at promoting 

symbiosis versus high molecular weight succinoglycan; therefore, it is thought that this 

EPS might function as a signaling molecule (Gibson, Kobayashi et al. 2008). 

Furthermore, it is thought that succinoglycan contributes to species-specific invasion in 

addition to NFs (Simsek, Ojanen-Reuhs et al. 2007). Therefore, succinoglycan may play 

both a traditional protective role in addition to a signaling role, each of which are 

required for successful invasion of roots by S. meliloti. This putative contribution to the 

evasion of the host immune system through a protective and signaling role remains an 

outstanding question. 
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Comparisons of intracellular host-microbe interactions 

 

 S. meliloti shares similarities in the genetic requirements and mechanisms by 

which it establishes its’ host-microbe interaction with other symbiotic bacteria as well as 

pathogens. Intracellular symbionts that invade the cells of insects and mammals undergo 

an analogous process with the same end results – intracellular invasion of a host 

organism. For example, in the S. meliloti/M. truncatula model system, S. meliloti cells in 

the IT are engulfed within symbiosomes and enter the host cells where they establish an 

intracellular infection (Figure 2). The pea aphid is an insect that provides a model for 

studying host-microbe interactions and intracellular infection within insects. The aphids’ 

endosymbionts, Buchnera aphidicola and Ricketssiella, undergo a process analogous to 

S. meliloti and reside within the aphid cells in bacteriomes (Kondorosi, Mergaert et al. 

2013). Certain host cells within Medicago nodules eventually become highly polyploidy 

after full development as do their nitrogen-fixing bacteroids, and this is also the case for 

bacteriomes.  

 Another parallel between these two host-microbe systems is the secreted peptides, 

which induces the filamentous and polyploidy phenotypes of the endosymbiont. 

Medicago secretes “Nodule-specific Cysteine-Rich” peptides (NCR), which induce 

nitrogen-fixing S. meliloti cells, and pea aphids use an analogous peptide, bacteriocyte-

specific cysteine-rich peptides (BCR) to promote its’ symbiotic relationship (Kondorosi, 

Mergaert et al. 2013). These similarities demonstrate that the mechanism by which S. 

meliloti engages in its’ host-microbe interaction and intracellular infection are not novel 
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but rather a shared mechanism with other distantly related bacteria. It has recently been 

shown in vitro that NCRs do in fact have an effect on the cell cycle of S. meliloti cells 

(Penterman, Abo et al. 2014). It would be interesting to test for the same effect on pea 

aphid endosymbionts with BCRs, and whether NCRs and BCRs are similar enough to be 

interchangeable. 

Alphaprotebacteria more closely related to S. meliloti also share analogous 

molecular mechanisms to establish their pathogenic host relationship. Just like S. meliloti, 

the production of LPS in Brucella is critical for successful invasion of their mammalian 

host. Even though these two alphaproteobacteria do not share the same genes for 

producing LPS, both were found ineffective at invasion when the genes encoding their 

LPS core were mutated (Jones, Kobayashi et al. 2007). Additionally, β-glucans are 

critical for the surface interactions that both species use to gain access to their host 

(Dickstein, Bisseling et al. 1988, Arellano-Reynoso, Lapaque et al. 2005). 

CbrA is a cell cycle regulator and sensor histidine-kinase that is required for an 

effective symbiosis between S. meliloti and M. sativa, and is shared between several 

alphaproteobacteria, including PdhS in B. abortus (Sadowski, Wilson et al. 2013). 

However, in B. abortus, PdhS is essential and cannot be tested as a requirement for 

infection (Hallez, Mignolet et al. 2007). Agrobacterium tumefaciens is another closely 

related alphaproteobacterium that encodes a pdhS1 gene within its’ genome. Insight into 

how CbrA influences cell cycle regulation will therefore contribute to the understanding 

of how PdhS might be regulating the cell cycle in B. abortus and A. tumefaciens.  
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Bacteroid development and function 

 

 

Intracellular infection 

 

 A unique characteristic that makes S. meliloti so important and interesting to 

study is the transition between its’ two distinct types of cell cycles. The novel cell cycle, 

discussed later, is only seen within S. meliloti cells that have invaded its host. After free-

living rhizosphere-associated S. meliloti have successfully communicated with its’ host 

and have been engulfed into the symbiosome, the S. meliloti cell must adopt a novel cell 

cycle to maintain this relationship and fix nitrogen.  

The intracellular infection of rhizobia species within Medicago species begins 

when the bacterium travel to the base of the infection thread where they escape into the 

host cell and are thought to undergo an endocytosis-like process (Roth and Stacey 1989). 

The IT mediates this process as it passes through the root hair and into the cortical root 

cells. Once the IT has reached the cortical root cells, it grows through them into the 

nodule primordium (Perret, Staehelin et al. 2000, Gage 2004). Rhizobia are released into 

the nodule primordium, but need protective barriers in order to sustain their intracellular 

persistence (Figure 2A). The result of this endocytosis-like process is the bacterial cell 

being enclosed by a plasma membrane, creating what is known as the symbiosome 

(Brewin 2004). At this point the rhizobia have breached the plant cells and are protected 
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from the cytosol by a membrane known as the peribacteroid membrane (Perret, Staehelin 

et al. 2000). This marks the initiation of an intracellular infection and enables the 

differentiation of the “wild type” rhizobium cells into bacteroid cells. Bacteroids are 

filamentous cells with a high quantity of greater than 1N DNA.  

 

 

Endoreduplication 

 

 Once rhizobia cells have reached the nodule primordium and are residing within 

their symbiosome, more communication between the bacteria and eukaryotic host ensue. 

At this point the host plant, Medicago in this case, is in complete control of the survival 

of the resident microbe. The host creates a microaerobic environment within the 

symbiosome and mediates nutrient exchange with the microbe. An important distinction 

between S. meliloti and other rhizobium species is the type of nodule that develops 

following a successful invasion. Even though the type of nodule produced is a result of 

the plant host, it is still important to differentiate between the two primary types: 

determinate and indeterminate. Determinate nodules lack a persistent meristem, which 

allows the invasive microbes to proliferate, differentiate, and senesce synchronously 

(Mergaert, Uchiumi et al. 2006). This is distinctly different from legumes that produce 

indeterminate meristems, which have a persistent meristem and allows constant invasion 

of new bacteria so that different zones within the nodules represent successive 

developmental stages of infection, differentiation, and senescence (Figure 9A). 
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Indeterminate nodules will continuously grow through the apical meristem in contrast to 

the determinant nodules, which grow to a certain size and stop. Within the indeterminate 

Medicago nodules, a bacterial cell will divide in association with its’ symbiosome 

membrane before differentiating into a bacteroid. This is distinct from bacteria residing in 

determinant nodules, which divide independent of the symbiosome (Prell and Poole 

2006). 

The different zones within indeterminant nodules are critical to understanding cell 

cycle regulation in S. meliloti during symbiosis since they utilize distinctly different 

regulation of their cell cycle at different stages of nodule development. Specifically, in 

the infection thread near the apical meristem (Figure 9A), S. meliloti are thought to 

utilize the same cell cycle program seen in free-living bacteria. In contrast, within the 

nitrogen-fixing zone, cells undergo endoreduplication before exiting the cell cycle into G0 

phase (Figure 9A, Figure 2C).  

 During a normal cell cycle of S. meliloti, the cell will exit S phase after DNA 

replication is completed and enter G2 phase, initiating division into two daughter cells 

with equal DNA content. However, during endoreduplication, S. meliloti will exit S phase 

and reenter G1 phase, skipping G2 phase (Gibson, Kobayashi et al. 2008) (Figure 2C). 

This leads to repeated rounds of genome replication and an increase in cell wall content 

resulting in a filamentous cell with an increased amount of DNA. Once endoreduplication 

is complete, the cell is considered to be terminally differentiated into a bacteroid, which 

is non-reproductive and lacks the ability to revert back to a free-living cell cycle program.  
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 The purpose of endoreduplication is still unclear and the mechanisms required to 

adopt this novel cell cycle program is still under investigation. It is thought that the 

increase in DNA and cell size is necessary to meet the high metabolic requirement for 

proper nitrogen fixation (Galitski, Saldanha et al. 1999, Mergaert, Uchiumi et al. 2006), 

but its role in promoting symbiosis remains unclear. It was recently shown that, despite 

the antimicrobial characteristics of NCRs, they induce this terminal differentiation of 

rhizobia into bacteroids (Van de Velde, Zehirov et al. 2010, Wang, Griffitts et al. 2010). 

In the presence of sub-lethal levels of NCRs, free-living S. meliloti cells will undergo the 

same process of endoreduplication, replicating their genome up to 24N, through a unique 

and not yet understood adaptation to its’ cell cycle (Figure 2C). Perhaps 

endoreduplication leads to efficient nitrogen fixation or contributes to protection within 

the intracellular environment of the host. 

   

 

Figure 2: (A) As rhizobium cells reach the base of the infection thread and enter the cells 
of its’ host, they undergo endocytosis and become engulfed into a symbiosome. (B) Once 
invasion of the host cells is complete, the host produces nodule-specific cysteine-rich 
peptides (red circles) that stimulate the rhizobium cells to undergo endoreduplicaitons. 
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(C) During endoreduplication, rhizobium cells exit S phase, bypass G2 phase completely 
and reinitiate G1 phase. Eventually, after 4-5 rounds of genome replication to create 
~24N genome complement, they will exit the cell cycle and enter into what is known as 
the G0 phase. 

 

 

Nitrogen fixation 

 

 S. meliloti is perhaps most well known for its ability to perform symbiotic 

nitrogen fixation (SNF). This process is thought to be exclusive to microbes and entails 

converting atmospheric dinitrogen, which is inert to eukaryotes, into readily available 

ammonia. This process is critical to agriculture as nitrogen can be limiting in soil 

environments. Having the ability to gain a nitrogen source from atmospheric dinitrogen 

confers great fitness advantages to eukaryotes. Therefore, it should not be a surprise to 

think that eukaryotic hosts favored the evolution of the symbiotic relationship with 

rhizobia species. The gene classes that are generally associated with SNF are nod, nif, 

and fix genes. I have already introduced and discussed the purpose and function of nod 

genes and will not revisit them here. The nif genes, which specifically encode the 

nitrogenase enzyme, and fix genes, which are important for SNF, generally reside in 

distinct clusters within the bacterial genome and tend to be species-specific (Fischer 

1994). In S. meliloti, clusters containing the nif and fix genes both reside on an extremely 

large plasmid known as pSymA or megaplasmid 1 (David, Domergue et al. 1987). 

Certain nif genes such as nifS, and fdxN have been shown to be required for SNF whereas 

the function of other nif genes such as nifB and nifW are not yet known (Fischer 1994). 
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The fix gene class is a little more straight forward, where a mutation to the fixABCX or 

fixGHI genetic clusters will abolish SNF (Earl, Ronson et al. 1987). In S. meliloti, 

mutations to any of the fixNOQP genes will induce defective nitrogen fixation (Fischer 

1994).  

 

 

Two-component systems 

 

 

Purpose and mechanisms 

 

 Bacteria are required to adapt to constantly changing environments so they can 

proliferate in nutrient rich, nutrient poor, or highly competitive environments. For 

bacteria to sense what type of environment they are in, they must sense extra-cellular 

stimuli. Additionally, to utilize energy and resources at the correct time while conserving 

energy at other times, bacteria must maintain strict control over their biological functions. 

To accomplish these two goals, bacteria use two-component systems (TSCs), which are 

abundant throughout the prokaryote kingdom and in their simplest form comprise a 

sensor histidine kinase (HK) and a cognate response regulator (RR) (Figure 3). The 

purpose of the TCS is to sense extracellular stimuli and elicit a specific physiological 

response. The HK component of the TCS is typically a transmembrane protein with an 

extracellular sensor domain (Mascher, Helmann et al. 2006). The second component of 



17 

the TCS is the RR, which receives input from the HK and responds by triggering a 

downstream response, which is usually transcriptional regulation (Mascher, Helmann et 

al. 2006, Gao and Stock 2009). 

The mechanism by which a TCS functions is through an autophosphorylation 

event on the HK in response to a specific stimulus. HKs comprise a C-terminal catalytic 

domain (CA) that will bind ATP and phosphorylate a histidine residue on a dimeric 

helical HK domain (Casino, Rubio et al. 2010). This phosphoryl group is then transferred 

to an aspartic acid residue on the receiver domain (REC) of its cognate RR. After the RR 

is phosphorylated by the HK, the RR will then regulate a specific physiological response, 

often by promoting or suppressing gene expression (Gao and Stock 2009, Casino, Rubio 

et al. 2010).  

 TCSs are typically linear signal transduction pathways that can be altered and 

modified in certain ways. The HK of the TCS not only autophosphorylates itself and then 

phorphorylates its’ specific RR, but it can also act as a phosphatase for its RR (Casino, 

Rubio et al. 2010). Variants of TCSs are known as phosphorelays (Laub and Goulian 

2007). In a phosphorelay, such as the one in S. meliloti or C. crescentus that will be 

discussed later, a hybrid histidine kinase senses specific stimuli, autophosphorylates, and 

then transfers the phosphoryl group to a response regulator-like receiver domain that 

resides within an intermolecular region. Next, the phosphoryl group is transferred to a 

histidine phosphotransferase (HPT) which phosphorylates a specific RR (Laub and 

Goulian 2007) (Figure 3). This raises the question of how TCSs are so specific and avoid 

promiscuous cross talk between multiple TCSs in the same cell. Answering the question 
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of how these cells maintain specificity within their TCSs to prevent promiscuity is 

currently a major focus of research. It is a promising research focus because in nearly 

every sequenced bacterial genome, there are multiple HKs and RRs, with some having up 

to 200 pairs (Laub and Goulian 2007). However, these TCSs have not been found in the 

animal kingdom and show promise as targets for antibacterials (Gotoh, Eguchi et al. 

2010).  

Two-component system specificity 

 

 Although TCSs have been extensively studied, the high fidelity of TCSs is still 

being investigated. The concern for cross talk is due to conservation at the genetic level 

between HKs and RRs. Cross talk as defined by (Laub and Goulian 2007) is the 

communication between two pathways that, if eliminated, would leave two distinct, and 

intact functioning pathways. The majority of in-vivo experiments observed cross-talk 

only after genetic perturbations were induced; however, there are examples of cross talk 

occurring in wild type cells under stressful conditions (Laub and Goulian 2007). Despite 

the few examples of cross talk, there are three mechanisms we know that bacteria use to 

ensure specific signal transduction: molecular recognition, phosphatase activity, and 

substrate competition. Molecular recognition provides a strong means by which a TCS 

can ensure that it will induce the response it intended due to its stimulus. Not only can a 

HK preferentially select for its’ specific cognate RR over other potential targets through 

molecular recognition but there is evidence that HKs phosphorylate this RR with strong 

kinetic preference (Skerker, Prasol et al. 2005). The predetermined molecular recognition 
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is driven by small sets of amino acids in each protein. Initially, the amino acids that are 

required for the recognition of a RR by its HK were identified through computational 

analysis but have been validated through protein-protein interactions as well (Skerker, 

Perchuk et al. 2008, Weigt, White et al. 2009, Capra, Perchuk et al. 2010). Additionally, a  

 
Figure 3: (Left) A basic two-component system (TCS) is comprised of a histidine kinase 
(HK) and a response regulator (RR). The HK will autophosphorylate upon stimulation by 
an extracellular factor and then phosphorylate its’ response regulator to achieve a 
molecular response. The autophosphorylation occurs on the dimerization and histidine 
phosphotranferase (DHp) and is catalyzed by the catalytic and ATPase (CA) domain that 
is also responsible for binding ATP. (Right) A phosphorely TCS is also common, where 
the HK autophosphorylates and then transfers the phosphoryl group to an aspartic acid 
residue on its’ own receiver. The receiver domain phosphorylates a histidine 
phosphotransferase that uses the phosphoryl group to phosphorylate a RR.  
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RR by its HK were identified through computational analysis but have been validated 

through protein-protein interactions as well (Skerker, Perchuk et al. 2008, Weigt, White 

et al. 2009, Capra, Perchuk et al. 2010). Additionally, a RR can be rewired to be 

phosphorylated with high specificity by a non-cognate HK through modification of the 

specific amino acid groups that the non-cognate HK preferentially binds (Bell, Porter et 

al. 2010, Capra, Perchuk et al. 2010). 

 Bifunctional HKs, containing both kinase and phosphatase activity, are more 

effective at preventing cross talk than monofunctional HKs, which contain either kinase 

or phosphatase activity (Alves and Savageau 2003, Laub and Goulian 2007). Bifunctional 

HKs serve two primary purposes: 1) To dephosphorylate the RR after the extracellular 

stimulus that was initially received has subsided or been abolished (Huynh and Stewart 

2011), and 2) To dephosphylate its’ RR after being phosphorylated by a different HK 

(McCleary, Stock et al. 1993, Klein, Shulla et al. 2007, Boll and Hendrixson 2011). 

Competition between RRs for phosphorylation by HKs may prevent cross talk and cells 

may control this by limiting the amount of HK present. Lower quantities of HKs have 

been shown to result in less cross talk (Batchelor and Goulian 2003) whereas over-

expression of HKs show increased crosstalk (Ninfa, Ninfa et al. 1988).  

 

 

 

 

Cell cycle control in Caulobacter crescentus 
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 Two-component signaling is essential for a wide range of life styles throughout 

the prokaryotic kingdom. Since there are so many different TCSs that provide specific 

functions, I will focus on a particular TCS in C. crescentus. C. crescentus is a model 

organism that has been extensively studied to understand asymmetric daughter cell fate 

and precise cell cycle regulation. Through these investigations, a TCS has been found 

that is responsible for cell cycle regulation in C. crescentus and is conserved throughout 

some alphaproteobacteria. Therefore, for the relevance of this thesis, I will provide an 

overview of this TCS, known as the DivK TCS signal transduction pathway or just 

“DivK pathway,” and the proteins that are involved in providing temporal and spatial 

control of the cell cycle. The DivK pathway is currently under investigation within S. 

meliloti, B. abortus, and A. tumefaciens, therefore I will first focus on what is known in 

C. crescentus. 

 When C. crescentus divides, the result is two distinct asymmetric daughter cells, 

one with a stalk, known as a stalked cell, and the other with both pili and a single 

flagellum, known as a swarmer cell. Once cell division is complete, the stalked cell will 

immediately reinitiate chromosome replication while the swarmer cells are inhibited from 

this initiation event, as it is born into G1 phase (Purcell, Boutte et al. 2008). Therefore, C. 

crescentus provides a model that demonstrates how prokaryotes are complex and highly 

organized in their cellular mechanisms. More specifically, C. crescentus is ideal for 

studying how the cell cycle is regulated such that one daughter cell immediately begins 

its’ cell cycle again whereas the other is restricted from doing so. The swarmer cell will 
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eventually shed its’ flagellum and pili, grow a stalk, exit from G1 phase, and initiate 

chromosome replication and cell division. The primary proteins that are involved in this 

tight cellular regulation are CtrA, GcrA, and DnaA.  

DnaA is a transcription factor that is required for chromosomal replication 

initiation and shares redundant regulation of multiple genes required for cell cycle 

progression with CtrA (Gorbatyuk and Marczynski 2001). The DNA-binding protein 

DnaA is required for S phase cells to initiate DNA replication by recruiting the replisome 

complex containing DNA polymerase to the chromosome origin.  However, the cell will 

only initiate chromosome replication once to ensure one replication event per cell cycle, 

leaving both daughter cells with one copy of the genome. To accomplish this, DnaA 

upregulates expression of GcrA, which also functions as a transcription factor to repress 

dnaA expression so that DnaA does not reinitiate chromosomal replication prematurely. 

This is coupled with the upregulation of the DNA-binding protein CtrA, which blocks 

DnaA binding to the origin of replication. The end result is a guaranteed one DNA 

replication event per cell cycle.  

CtrA is an essential response regulator that binds DNA to regulate DNA 

replication initiation and gene transcription. CtrA activity is controlled though the DivK 

pathway and is considered active when phosphorylated. When CtrA is active, it will bind 

DNA at the origin of replication and block DnaA from initiating chromosome replication 

(Quon, Yang et al. 1998). Swarmer cells are blocked at G1 phase and not allowed to enter 

into S phase due to this CtrA activity. During the transition of swarmer cell to stalked 

cell, CtrA activity is inhibited and thereby allows DNA replication to be initiated. CtrA is 
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activated again in late stalked cells when it functions as a transcription factor to regulate 

genes involved in cell division and swarmer cell fate (Quon, Marczynski et al. 1996, 

Biondi, Reisinger et al. 2006). 

GcrA is not a HK or RR, but still plays a primary role in regulating the cell cycle 

in C. crescentus. GcrA is upregulated as CtrA is being down regulated during the G1 to S 

phase transition and has been shown to indirectly activate ctrA in later in stalked cells 

(Holtzendorff, Hung et al. 2004). Additionally, gcrA is negatively regulated by 

phosphorylated CtrA and positively regulated by DnaA (Purcell, Boutte et al. 2008). 

More specifically, GcrA down-regulates the transcriptions of DnaA and affects the 

transcription of many genes other than ctrA (Holtzendorff, Hung et al. 2004). The out of 

phase oscillation of GcrA with CtrA and DnaA is coordinated with the progression of 

different phases of the cell cycle and therefore is implemented in the regulatory system C. 

crescentus utilizes. Contradictory to the redundancy seen between CtrA and DnaA, GcrA 

and DnaA provide a transcriptional feedback system where DnaA positively regulates 

gcrA and GcrA negatively regulates dnaA while positively regulating ctrA. To complete 

the feedback loop, CtrA acts as a transcription factor to negatively regulate dnaA 

(Purcell, Boutte et al. 2008).  
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Conserved DivK pathway 

 

 

Conserved global regulator CtrA 

 

Throughout the alphaproteobacteria class of prokaryotes there is an abundance of 

species that divide asymmetrically. Within this sub-group of alphaproteobacteria that 

divide asymmetrically, there is diversity among phenotypes and functions that are 

associated with the development of asymmetric daughter cells. For a cell to divide into 

two distinct daughter cells, it requires a precise regulatory network to ensure that each 

cell is equipped to fulfill its’ intended function. The benefit of dividing asymmetrically 

for certain alphaproteobacteria is still unknown. Perhaps asymmetric cell division was an 

acquired trait at an early time during the evolution of the genera or families within 

alphaproteobacteria. It may have held certain advantages at the time, which since have 

been lost or adapted. For example, the C. crescentus immobile stalked cell will 

immediately begin to divide again creating a larger population while the swarmer cell 

waits until nutrient levels are ideal before dividing again. However, S. meliloti divides 

asymmetrically into two distinct daughter cells of different sizes, which both seem to be 

motile. There is still no definitive answer for why S. meliloti divides asymmetrically or 

what the benefit might be. 

 There is one common theme amongst asymmetrically dividing 

alphaproteobacteria. The essential response regulator CtrA is generally required for 



25 

successful cell cycle progression and asymmetric cell division. CtrA seems to 

consistently be a transcription factor that is highly conserved, essential for viability, and 

directly or indirectly involved in regulating the majority of genes involved in the cell 

cycle. For the purpose of brevity and the objective of this Thesis, I will primarily focus 

this discussion of CtrA in C. crescentus and S. meliloti.  

 In C. crescentus swarmer cells, which arrest in G1 phase, CtrA is abundant and 

phosphorylated (Domian, Quon et al. 1997). When CtrA is phosphorylated it is 

considered active, and when it is active it binds to the origin of replication and blocks 

DnaA from binding, thereby inhibiting replication initiation (Quon, Yang et al. 1998, 

Bastedo and Marczynski 2009). Additionally, phosphorylated CtrA transcriptionally 

regulates ~100 genes, most of which are involved in the cell cycle (Laub, McAdams et al. 

2000, Laub, Chen et al. 2002). Somewhere between a quarter and half the genes known 

to participate in the cell cycle are thought to be directly or indirectly regulated by CtrA, 

either positively or negatively (D'Ari 2001). 

C. crescentus tightly controls cell cycle progression by regulating the levels of 

phosphorylated CtrA in addition to maintaining specific levels of CtrA through 

degradation. In G1 phase swarmer cells, CtrA is stable and phosphorylated, and thereby 

inhibits DNA replication initiation. In S phase stalked cells, CtrA is dephosphorylated 

and degraded (Domian, Quon et al. 1997). After replication initiation is allowed, as a 

result of CtrA being inactivated, CtrA is	
  then synthesized de novo and phosphorylated so 

that it can regulate expression of its’ target genes (Tsokos and Laub 2012). The 

transcription of ctrA is therefore also cell cycle-dependent and CtrA autoregulates ctrA 
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expression, providing a feedback loop (Domian, Reisenauer et al. 1999).  The transition 

from G1 into S phase as well as the asymmetric division that C. crescentus utilizes to 

produce a G1 phase swarmer cell and an S phase stalked cell is ultimately dependent on 

two HKs, DivK and CckA, which are discussed at length in the next section (Figure 4).  

Although CtrA has not been as extensively studied in S. meliloti as it has in C. 

crescentus, much progress has been made over the past decade in revealing the role of 

CtrA in the regulation of its’ cell cycle. Despite the limitations of cell cycle regulation 

research within S. meliloti due to the lack of a synchronization method, predictive models 

have emerged and new advances show how CtrA regulates the cell cycle within S. 

meliloti. Research has shown that in contrast to C. crescentus regulation, CtrA does not 

bind the origin of replication in S. meliloti. As a guide to potential CtrA binding sites, 

Shluter et al. mapped transcription start sites (TSS) within S. meliloti to provide a 

platform for more experiments (Schluter, Reinkensmeier et al. 2013). Similar to CtrA 

self-regulation in C. crescentus, they found five putative CtrA binding sites upstream of 

the ctrA open reading frame (ORF) in S. meliloti. Position specific scoring matrices 

(PSSM) were used to identify additional CtrA binding sites within S. meliloti upstream of 

known ORFs, and this was compared to the TSS that they had previously mapped.  They 

found putative CtrA binding sites upstream of TSS belonging to cell cycle genes such as 

minC, chpT, rcdA, pleC, ftsE, and rpoD, in addition to others. These results indicate that 

CtrA could bind to and transcriptionally regulate these genes in a cell cycle-dependent 

manner, as has been seen in other alphaproteobacteria such as C. crescentus or B. abortus 

(Bellefontaine, Pierreux et al. 2002, Cheng, Sibley et al. 2007, Brilli, Fondi et al. 2010).  
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In a more recent study, populations of S. meliloti were synchronized by nutrient 

deprivation and position weight matrices were used with the 16 nucleotide CtrA-binding 

motif to identify S. meliloti cell cycle genes that might be regulated by CtrA (De Nisco, 

Abo et al. 2014). De Nisco et al. identified putative CtrA-binding motifs in the promoter 

regions of minC, chpT, pleC, ftsK, and others that were mapped by Shluter et al. (2013). 

To the surprise of De Nisco et al. (2014), they found a high amount of divergence in the 

S. meliloti CtrA regulon when compared to the C. crescentus CtrA regulon. Only eight 

genes were shared between these two species. This lead to a comparison between the S. 

meliloti CtrA regulon and a sampling of the CtrA regulons within alphaproteobacteria 

that are more closely related to S. meliloti, such as B. abortus and A. tumefaciens. The 

CtrA regulon was much more conserved in 11 alphaproteobacteria species more closely 

related to S. meliloti than C. crescentus. The DNA methylase, ccrM, a crucial component 

of chromosomal replication, did not have a CtrA-binding motif in S. meliloti. This was 

another surprise because in C. crescentus, CtrA regulates ccrM in a cell-cycle dependent 

manner (Wright, Stephens et al. 1997, Brilli, Fondi et al. 2010). De Nisco et al. (2014) 

showed that ccrM is cell cycle regulated, but without a CtrA upstream regulatory region.  

These results are intriguing because they suggest that there may be a deviation in 

the role that CtrA plays between C. crescentus and S. meliloti. After predicting that CtrA 

regulation is distinct between S. meliloti and C. crescentus, the next step will be to test 

for direct regulation of predicted CtrA targets. The notion that the direct regulation of 

genes involved in C. crescentus cell cycle by CtrA is different or absent in S. meliloti 

suggests that there is another protein or response regulator that is in direct control of 
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these genes. Perhaps the symbiotic lifestyle that S. meliloti, B. abortus, and A. 

tumefaciens have evolved is also associated with modification to their cell cycle 

regulation.  

 

 

Histidine kinases of DivK kathway 

 

 Molecular control of the cell cycle within C. crescentus is modulated primarily 

through the DivK pathway. The DivK pathway consists of TCS histidine kinases (HK), 

phosphatases, and phosphorelays, as well as transcription factors and proteases. It is 

through this pathway that tight molecular regulation has been shown to control CtrA 

activity and the cell cycle. There is a great amount of overlap between the DivK pathway 

in C. crescentus and the DivK pathway in S. meliloti. I will focus my discussion on the 

DivK pathway in C. crescentus, which has been extensively studied, and point out 

differences in the S. meliloti DivK pathway, which is just starting to be dissected.  

PleC and DivJ are both transmembrane HKs that act in opposite manners on 

DivK. PleC has kinase activity and is able to phosphorylate DivK in vitro, however it is 

the sole phosphatase of DivK in vivo. Therefore, it is thought that DivJ is the kinase that 

acts on DivK in vivo (Wheeler and Shapiro 1999, Matroule, Lam et al. 2004). In C. 

crescentus, DivJ phosphorylates DivK in newly born S phase stalked cells and during the 

transition from G1 to S phase in swarmer cells, leading to dephosphorylation and 

degradation of CtrA and subsequent DNA replication initiation. In contrast, PleC 
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dephosphorylates DivK in newly born swarmer cells and during the transition from S to 

G2 phase, which ultimately allows phosphorylation of CtrA and prevents replication re-

initiation.  

 In S. meliloti and other alphaproteobacteria, there are additional DivJ and PleC 

orthologs that influence the DivK pathway and cell cycle regulation. CbrA and CbrB are 

DivJ orthologs found in S. meliloti. Deletion of cbrA results in defective cell cycle, 

motility and symbiosis phenotypes (Gibson, Campbell et al. 2006, Gibson, Barnett et al. 

2007, Sadowski, Wilson et al. 2013). This novel histidine kinase acts on the DivK 

pathway in a manner similar to DivJ to regulate CtrA activity (Gibson, Campbell et al. 

2006, Sadowski, Wilson et al. 2013). CbrA homologs that are thought to act through the 

DivK pathway were also found in A. tumefaciens (PdhS1) and in B. abortus, (PdhS). 

Since all three of these alphaproteobacteria are host-associated species, it may be that 

these novel DivJ orthologs are involved in their symbiotic life style. Whereas CbrA is not 

essential in S. meliloti, PdhS is essential in B. abortus and shows branching filamentous 

growth and decreased CtrA levels when overexpressed (Bellefontaine, Pierreux et al. 

2002). It seems that PdhS in B. abortus and PdhS2 in A. tumefaciens share the likely role 

of acting as a kinase to DivK whereas PdhS1 is thought to act as a phosphatase to DivK 

in A. tumefaciens (Bellefontaine, Pierreux et al. 2002, Hallez, Bellefontaine et al. 2004).  

 In C. crescentus, DivK regulates CtrA activity indirectly through its effects on 

CckA, an essential hybrid histidine kinase that controls both the phosphorylation and 

proteolysis of CtrA (Jacobs, Domian et al. 1999). When DivK is dephosphorylated by 

PleC during G1 phase, CckA is able to phosphorylate itself. In contrast, when DivK is 
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phosphorylated by DivJ during S phase, it inhibits CckA autophosphorylation. CckA is a 

membrane bound histidine kinase that lacks a periplasmic sensing domain but does have 

a receiver domain, which is used to relay a phosphate to a histidine phosphotransferase 

(Hpt) protein, ChpT (Biondi, Reisinger et al. 2006). ChpT will then continue the 

phosphorelay by phosphorylating two targets: CtrA, activating it for DNA binding, and 

CpdR, which is required for CtrA degradation by the ClpXP protease. 

G1 phase, with its high level of CtrA activity, is maintained through a 

combination of CtrA and CpdR phosphorylation by ChpT. When phosphorylated, CpdR 

is not active in targeting CtrA for degradation by ClpXP. Thus, CckA kinase activity in 

G1 phase allows transfer of its phosphoryl group to CtrA and CpdR through ChpT, 

activating CtrA and inhibiting CtrA degradation through CpdR phosphorylation (Figure 

4). In contrast, during the transition from G1 into S phase, CckA is inactivated and this 

prevents the phosphorylation of CtrA and CpdR, which leads to CtrA deactivation 

through a combination of dephosphorylation and proteolysis. Once CtrA is deactivated, 

DNA replication initiation is allowed to proceed. 

ClpXP is an ATP-dependent protease that degrades CtrA in a CpdR-dependent 

manner (Jenal 2004, Curtis and Brun 2010). Another protein that is required for CtrA 

proteolysis is RcdA. In contrast to the stabilization of CtrA in rcdA mutants, in vitro 

analysis shows that ClpXP alone can degrade CtrA and that RcdA has no effect on the 

rate of proteolysis (Chien, Grant et al. 2007). This suggests that RcdA is an adaptor 

protein and still leaves the function of RcdA in vivo unknown. PopA is a protein found in 

C. crescentus and that is absent from the S. meliloti genome, and is required for CtrA 
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degradation (Duerig, Abel et al. 2009). This is another example of how the DivK 

pathway is plastic between organisms and may differ slightly depending on the lifestyle 

of the organism. 

 The	
  primary	
  function	
  of	
  DivL,	
  a	
  histidine	
  kinase	
  with	
  unusual	
  characteristics,	
  

stumped	
  experts	
  for	
  a	
  long	
  time.	
  Instead	
  of	
  the	
  conserved	
  histidine	
  that	
  becomes	
  

phosphorylated, DivL has a tyrosine residue (Wu, Ohta et al. 1999). It was recently found 

that DivL is required for activation of CtrA since divL mutants lead to decreased levels of 

phosphorylated CtrA (Tsokos, Perchuk et al. 2011). This suggests that DivL modulates 

the activation and phosphorylation of CtrA. The same study found that instead of directly	
  

 

Figure 4. Model of DivK pathway in S. meliloti. Through DivL, DivJ/PleC/DivK 
regulates CckA/ChpT and ultimately CtrA. Additionally, the novel histidine kinase CbrA 
regulates CtrA through DivK. Arrows indicate kinase activity. Dashed arrows indicate 
regulation of CtrA targets that has not yet been shown. 
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regulating the activation of CtrA through phosphorylation, DivL is required to localize 

CckA. CckA localization is required for CtrA regulation, and in divL mutants, CckA does 

not localize properly (Tsokos, Perchuk et al. 2011). Therefore, one function of DivL is to 

bind and localize CckA. This suggests that CckA localization is required for 

autophosphorylation, however, this is not the case. Instead, CckA activity depends on 

whether or not DivK is phosphorylated (Hecht, Lane et al. 1995, Cabantous, Guillet et al. 

2002, Guillet, Ohta et al. 2002). Dephosphorylation of DivK allows CckA kinase 

activation in a DivL-dependent manner (Tsokos, Perchuk et al. 2011). Phosphorylated 

DivK binds to DivL and inhibits CckA; but when DivK is not phosphorylated, DivL 

promotes CckA activity (Tsokos, Perchuk et al. 2011). Thus, through a complex TCS 

network, the HKs DivJ and PleC are able to mediate cell cycle control over CtrA 

phosphorylation and degradation through DivK and thereby regulate the G1 to S phase 

transition as well as asymmetric daughter cell fate. 

 

 

CtrA targeted genes: function and implication for the cell cycle 

 

 I have discussed the general mechanism by which CtrA is cell cycle regulated in 

alphaproteobacteria and will now delve into the genes known to be transcriptionally 

regulated by CtrA, some of the genes thought to be regulated by CtrA, and their 

significance. CtrA is as a transcription factor and has been shown to either directly or 
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indirectly regulate the transcription of certain genes in C. crescentus. Work in S. meliloti 

has shown hypothetical relationships between CtrA and numerous targets based on TSS. 

For my thesis, I chose to focus on genes that function as general cell cycle factors 

involved in either chromosome replication or cell division. Additionally, I chose to 

examine putative CtrA targets that are likely components of the DivK pathway, 

previously discussed, that may provide feedback regulation within the cell cycle. Here I 

will introduce the genes I examined in this thesis and any complimentary genes required 

for their function. I will only discuss genes not already introduced that are likely 

regulated by CtrA and implicated in the cell cycle. 

 I found two genes useful for investigating the role of cell cycle regulators in cell 

division, FtsE and MinC. MinC works with MinD and MinE to form a MinCDE 

complex. Together MinCDE restricts FtsZ at polar sites in cell of Escherichia coli to 

ensure that FtsZ forms a Z-ring at the correct midcell location, allowing for successful 

cellular division into two viable daughter cells (Errington, Daniel et al. 2003, Cheng, 

Sibley et al. 2007). S. meliloti carries a single copy of minCDE on the pSymB 

megaplasmid of its’ genome (Finan, Weidner et al. 2001, Galibert, Finan et al. 2001). The 

location of the min genes, on the megaplamsmid, suggests that they may provide a 

dispensable function, which is supported by the results showing their non-essentiality for 

viability (Cheng, Sibley et al. 2007). In E. coli, deletion of minCDE produces a mini-cell 

phenotype that indicates an aberration in cell division, which is not seen in S. meliloti 

(Errington, Daniel et al. 2003). There seems to be a system in S. meliloti that 

compensates for or is redundant to the min system in localizing the septum for correct 
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cell division. Cheng et al. (2007) looked at ΔminCDE mutants in both free-living cells 

and nodules and found that, in addition to being expressed in free-living cells, the 

minCDE genes are expressed in nodules. However, the min system is also dispensable for 

symbiosis. A previous transcriptome analysis showed that fts genes are down regulated in 

bacteroids (Barnett, Toman et al. 2004), which is consistent with the lack of a 

requirement for min genes and the absence of cell division in bacteroids. Typically the 

min genes will work to prevent the fts genes from catalyzing cytokinesis in the wrong 

location of the cell. Additionally, C. crescentus lacks min homologues, which supports 

the notion that S. meliloti picked up the Min system on the SymA megaplasmid but may 

not need it for cell division (Figge, Easter et al. 2003, Margolin 2003, Cheng, Sibley et al. 

2007). 

 The exact function of FtsE is still somewhat ambiguous despite progress in 

elucidating its role and how it functions in prokaryote cells. FtsZ is primarily implicated 

in cell division, as it is the first known component of the prokaryotic cell division 

apparatus to localize to the site of cellular division (Bi and Lutkenhaus 1991, Addinall, Bi 

et al. 1996). Once FtsZ is in the proper location for cell division it will form a Z-ring, 

providing a scaffold that recruits FtsA, ZipA, FtsE, FtsX, FtsK, FtsQ, FtsL, FtsB, TfsW, 

FtsI, FtsN, and AmiC (Goehring and Beckwith 2005, Margolin 2005, Pichoff and 

Lutkenhaus 2005).  

 Previous studies have shown that FtsE acts alongside FtsX as an ATP-binding 

cassette transporter, where FtsE acts as the ACB component with FtsX in the 

cycoplasmic membrane (Gill and Salmond 1987, de Leeuw, Graham et al. 1999). This 
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FtsEX complex has been shown to localize to the Z-ring (Schmidt, Peterson et al. 2004). 

Depletion of FtsE results in inhibition of cell division and growth (Corbin, Wang et al. 

2007), suggesting that FtsE is an integral component of the divisome in E. coli. Another 

report showed that FtsE interacts directly with FtsZ, providing additional evidence that it 

is an important cell division protein (Corbin, Wang et al. 2007). There is still much work 

to be done to fully elucidate FtsE function. Therefore, it provides an ideal target to 

understand cell division and regulation with S. meliloti since it has an FtsE homologue 

that is predicted to have a CtrA regulatory box (Schluter, Reinkensmeier et al. 2013).  

 The primary function for DNA methylation in prokaryotes is DNA restriction-

modification, which allows the cell to differentiate between self and foreign DNA 

(Wilson 1988, Bickle and Kruger 1993). However, in C. crescentus and S. meliloti the 

CcrM DNA methyltransferase has a different function. CcrM has been found to be 

essential in both C. crescentus and S. meliloti and functions to methylate the adenine 

residue in the sequence GANTC (Zweiger, Marczynski et al. 1994). I used the DNA 

methytransferase, CcrM, to investigate the regulation of chromosome replication. 

Overexpression in either organism causes defective cell division and over-initiation of 

DNA replication, resulting in aberrant cell morphology (Wright, Stephens et al. 1997). 

Wright et al. (1997) also showed that CcrM is so well conserved between S. meliloti and 

C. crescentus that it is interchangeable between the two species. 
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Research goals 

 

 The observation that ΔcbrA leads to a filamentous, branched, and swollen 

morphology suggests that there may be a disruption to the cell division machinery in 

these mutants. Additionally, Sadowski et al. (2013) found the ΔcbrA mutant has ploidy 

defects as indicated by an increase in <1N and >2N chromosome content. These results 

led to my hypothesis that genes involved in cell division and chromosome replication are 

misregulated in the absence of cbrA. My first research goal was to determine how 

expression of cell division and chromosome replication genes are regulated in ΔcbrA. In 

addition to the observations mentioned above, there is no known CbrA DNA binding 

domain. Therefore, if CbrA is contributing to the regulation of cell division or 

chromosome replication, it is doing so through the DivK pathway. I hypothesize that the 

regulatory proteins in the DivK pathway are also misregulated in the absence of cbrA. 

Therefore, my second research goal is to determine how the expression regulatory genes 

in the DivK pathway are altered in ΔcbrA.  

 Using the β-glucuronidase (GUS) reporter system to track transcriptional 

regulation in free-living S. meliloti enabled the investigation of target gene expression in 

free-living and symbiotic cells. My final research goal was to provide qualitative 

evidence showing the location of gene expression during nodule development. The genes 

I used to track cell division and chromosome replication might be utilized during 

bacteroid formation and nitrogen fixation. Additionally, the regulatory genes in the DivK 

pathway might also contribute to bacteroid formation and nitrogen fixation through the 
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regulation of cell division and chromosome replication genes. Large pink nodules have 

all stages of nodule development and allowed me to investigate if these genes were 

involved in nodule invasion, colonization, and nitrogen-fixation simultaneously. 	
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CHAPTER II 

 

 

 

METHODS 

 

 

General techniques 

 

 

Culture and genetic techniques 

 

 Sinorhizobium meliloti cultures were grown in LB medium supplemented with 2.5 

mM each of CaCl2 and MgSO4 (LB/MC) at 30°C unless otherwise specified. Escherichia 

coli strains were grown in LB medium at 37°C unless otherwise specified. When 

required, logarithmic phase cultures of S. meliloti were obtained by diluting overnight 

cultures to an OD600 of 0.1 and allowing cells to achieve an OD600 of between 0.5 and 0.8. 

Relative succinoglycan production was observed by growing S. meliloti strains on 

LB/MC agar supplemented with 0.02% calcofluor (CF), and 10 mM HEPES (pH 7.4). 
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Strains were constructed through triparental mating, which entails transferring plasmids 

engineered in E. coli strain DH5α into either the wild type (WT) laboratory Rm1021 

strain of S. meliloti or the ΔcbrA::cat laboratory strain CSS6000 with E. coli MT616 as 

the helper strain. Where appropriate, antibiotics were added to growth medium at the 

following concentrations: chloramphenicol (20 µg ml
-1

), kanamycin (50 µg ml
-1

), 

neomycin (200 µg ml
-1

), and streptomycin (2 mg ml
-1

).   

  

   

Construction and verification of GUS transcription fusion strains 

 

 Eight genes were chosen to represent cell cycle regulation in S. meliloti (Table 2). 

The promoter region, transcriptional start sites (TSS) and predicted CtrA binding sites 

upstream of each gene was cloned from Polymerase Chain Reaction (PCR) products, 

which were sequenced for verification, into the pVO155 plasmid (Oke and Long 1999). 

The pVO155 vector is a suicide plasmid with a promoter-less β-glucuronidase (GUS) 

open-reading frame (ORF) on it. Each PCR product was inserted into the pVO155 

plasmid using unique restriction digest enzyme cut sites, upstream of the GUS ORF 

(Table 3). These clones (GUS fusions) were then mated into WT strain Rm1021 and 

ΔcbrA strain CSS6000 using triparental mating described previously. The ATG 

translation start codon was also included in the construction of these plasmids. In general, 

approximately 800-1000 bps upstream of the ATG start site and 100-200bps downstream 

of the ATG start site were cloned upstream of the promoter-less GUS ORF. 
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 Each GUS fusion that was mated into WT strain Rm1021 was verified using 

T880RXh and G743FBm primers to amplify the cbrA PAS domain (Table 1, Figure 

5A). The GUS fusions mated into ΔcbrA strain CSS6000 were verified using the cat 1 

and cbra dn primers to amplify the chloramphenicol resistant cassette used to replace 

cbrA (Table 1, Figure 5B).   

 The doubling time of each GUS fusion strain was monitored and quantified. 

Strains were grown overnight, in triplicate, in LB/MC medium and subcultured to an 

OD600 of 0.1. Subsequent OD600 measurements were taken at 2 and 4 hours. Additionally, 

relative succinoglycan production was observed by growing S. meliloti strains on LB/MC 

agar supplemented with 0.02% calcofluor (CF) and 10 mM HEPES (pH7.4).  

 

 

Quantification of β-glucuronidase (GUS) expression 

 

 

GUS assays 

 

 GUS fusions strains were assayed with 4-Nitrophenyl β-D-glucopyranoside in 

order to quantify the amount of GUS enzyme being produced in each strain. Log phase 

cultures of each strain were obtained in triplicate and pelleted by spinning each culture at 

full speed for 5 minutes. The supernatant was removed from the pellet and the pellet was 

re-suspended in a Cell Lysis Buffer (374 uL of B-PERTM Bacterial Protein Extraction 
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Reagent, 50 uL Protease and Phosphatase Inhibitor Cocktail, 1 uL of 34 mg/mL 

chloramphenicol (prepared in methanol), and 6 uL of 10 mg/ml lysozyme), and allowed 

to lyse for 5 minutes on ice, creating cell lysates. In a separate 2 mL eppendorf tube, 200 

uL from each cell lysate was added to 800 uL of GUS Assay Buffer (50 mM NaPO4 pH7, 

1 mM EDTA, .07% β-mercaptoethanol, and 1.25 mM 4-Nitrophenyl β-D-gluco-

pyranoside substrate). Reactions were stopped by adding 100 uL of sample reaction to 

800 uL of .4 M Na2CO3. Measurements were then taken in a spectrophotometer at an 

absorbance of 415nm.  

 

 

Western Blots 

 

 Exponential cultures were centrifuged at 4 °C for 10 min at 5000 x g. Cell pellets 

were re-suspended in 2x Laemmli loading buffer and boiled for 5 min. The volume of 

sample loaded was normalized to OD600, subjected to 4-20% SDS-PAGE with TRIS 

running buffer (250 mM Tris Base, 1.92 M Glycine, 1% SDS) at a constant 100 V for 

100 min, and then transferred onto a low fluorescence PVDF membrane with Tris-

glycine transfer buffer (25 mM Tris, 192 mM glycine, 20% methanol) at a constant 100 

V for 1 h. The membrane was probed with anti-beta Glucuronidase (GUS) antibodies 

(1:200 or 1:500 dilution in Licor blocking buffer and 0.2% Tween) for 16 h at 4 °C, and 

subsequently probed with donkey anti-rabbit IRDye 800 CW (1:20,000 dilution in Licor 

blocking buffer with 0.2% Tween and 0.1% SDS). Cross-reacting proteins were 
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visualized with a Licor Oddysey CLx Infrared Imaging system and images were 

quantified with the Image Study Software.   

 

 

MUG assays 

 

 Log phase cultures were normalized to an OD600 of 0.5 at a final volume of 200 

µL to control for cell density. Cultures were then spun for 5 min at full speed, supernatant 

was decanted, and pellets were re-suspended in 800 µL of Lysis Buffer (.05 M NaPO4 

buffer, .07% beta-mercaptoethanol, .01 M EDTA, 0.10% Sarcosyl, 0.1% Triton). In a 96-

well Dynex Fluorolux HB black flat bottom microplate, 160 µL of each cell lysate was 

added to its’ own individual well. A dilution series of 4-methyumbelliferone (4MU), the 

fluorescent product of this assay, was also included in each plate from 2 µM to 10 µM in 

increments of 2 µM 4MU. The GUS substrate, 4-methylumelliferyl-beta-D-glucuronide 

(MUG), was added in a volume of 40 µL (.005 M MUG ) to make a final concentration 

of 0.001 M (1 mM) of MUG. The plate was assayed at an excitation of 355nm with 

absorbance read at 405nm using a POLARstar Omega BMG LABTECH fluorescent plate 

reader. BMG LABTECH Omega firmware version 1.2 software was used to control the 

machine and settings. A gain of 600 was used to generate the arbitrary fluorescent units 

for each reaction. The optimized protocol used the arbitrary fluorescent unit read at 

minute 30 to determine GUS enzymatic activity. BMG LABTECH Mars Data Analysis 

Software version 1.2 was used to analyze the data after readings were taken. The slope 
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from the 4MU dilution was used to provide the slope and y-intercept to calculate GUS 

enzymatic activity from the arbitrary fluorescent unit read at minute 30. The equation (x 

= y-b/m)/30, derived from y = mx + b, was used where y was the arbitrary fluorescent 

unit from the GUS fusion sample, giving us the corresponding x, or 4MU amount 

produced, divided by 30 (minutes) resulting in the 4MU/minute produced, and thus 

enzyme activity units.  

 

 

Tracking gene expression in nodules 

 

 

Nodules assays 

 

 Gene expression during symbiosis was assayed by inoculating Medicago sativa 

(alfalfa) plants with wild type and ΔcbrA strains on buffered NOD medium (BNM) agar 

(Ehrhardt, Atkinson et al. 1992). Bacteria were grown into log phase, diluted to an 

OD600 of 0.10 at a final volume of 1.0 ml, washed and subsequently re-suspended in 1.0 

ml half-strength BNM (1⁄2 x BNM) before being inoculated directly onto the plants’ 

roots. As a negative control, plants were inoculated with WT strain Rm1021. At 21 and 

35 days post-inoculation, plant root nodules were harvested for histochemical assays.  

 Nodules were sliced in half and added to an eppendorf tube containing 50 µL of 

Nodule Assay Buffer (0.1 M NaPO4 buffer, 0.1% SDS, and 0.001 M 5-Bromo-4-chloro-



44 

3-indolyl-beta-D-glucuronide cyclohexylammonium (X-GUS)). Tubes were then placed 

in a vacuum-sealed chamber for 90 minutes. After 90 minutes, nodules were washed with 

250 µL of 0.1 M NaPO4 Buffer for 5 minutes, three times each. Nodules were then placed 

onto a slide with a minimum amount of NaPO4  Buffer and the slide cover was fixed 

using nail polish. Slides were prepared using a Leica Zoom 2000 microscope. Images of 

nodules were taken using an Olympus BX60 microscope equipped with a SPOT Xplorer 

camera. SPOT software was used to analyze images. 

 

 

Allelic replacement 

 

 Caulobacter crescentus strain YB1804 was used to amplify, through PCR, the 

temperature-sensitive dnaE allele using primers CcDnaE OLD Fwd and CcDnaE OLD 

Rev (Table 1).  S. meliloti dnaE upstream (5’) and downstream (3’) flanking regions were 

amplified using primer pairs Sm5 Fwd/Sm5 OLD Rev and Sm3 OLD Fwd/Sm3Flank 

Rev, respectively. The YB1804 dnaE gene was ligated to the two S. meliloti flanking 

regions, in their respectable position, through overlap-extension PCR. The resulting 

construct included the S. meliloti dnaE upstream region, YB1804 dnaEts, and the S. 

meliloti downstream region. The 5’ end of the S. meliloti dnaE upstream flank and the 3’ 

end of the S. meliloti dnaE downstream flank were constructed with EcoR1 restriction 

digest cut sites. These cut sites were used to ligate this ~4.5kb construct into the ~3.5 

suicide plasmid pK18mobsacB yielding the plasmid, pK18CSH10 (Table 1). The 
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pK18mobsacB vector is non-replicative in S. meliloti and carries the sacB gene, which 

confers lethality when grown on sucrose (Schafer et al. 1994). Transformations were used 

to transfer the plasmid carrying the S. meliloti flanks and YB1804 dnaE into E. coli strain 

DH5α (Kushner 1978). After successful cloning into DH5α, the S. meliloti upstream, 

YB1804 dnaEts, and S. meliloti downstream regions were all sequenced. The sequence 

showed no unintentional mutations in the YB1804 dnaE, and included the T to A point 

mutation, which should cause the V to E amino acid change (Lo, van Der Schalie et al. 

2004). Tri-parental matings were used to conjugate pK18CSH10 into wild type strain 

Rm1021. Homologous recombination with just YB804 dnaE in pK18mobsacB was 

unsuccessful. However, when the S. meliloti flanking regions were included in the 

construct added to pK18mobsacB, homologous recombination into the S. meliloti genome 

proved successful. Successful recombination was indicated by the conferral of Neomycin 

resistance to S. meliloti. PCR primers were used to verify the presence of YB1804 dnaE 

within S. meliloti using the primers CcDnaE OLD Fwd and CcDnaE OLD Rev, with 

positive control, YB1804 genomic prep, and negative control S. meliloti WT strain 1021 

genomic prep.  
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Relevant Characteristics Reference or Source
Strains
MT616 E. coli MM294; pRK600 Cmr T. Finan
DH5α E. coli endA1 hsdR17 supE44 thi-1 recA1 gyrA relA1  Δ(lacZYA-argG) BRL Corp
Rm10210 SU47 Smr F. Ausubel
CSS6000 Rm1021 ΔcbrA::cat C. Sadowski
CSH1001 Rm1021 cbrA::pVO155 This study
CSH6001 CSS6000 cbrA::pVO155 This study
CSH1002 Rm1021 ccrM::pVO155 This study
CSH6002 CSS6000 ccrM::pVO155 This study
CSH1003 Rm1021 cpdR1::pVO155 This study
CSH6003 CSS6000 cpdR1::pVO155 This study
CSH1004 Rm1021 ctrA::pVO155 This study
CSH6004 CSS6000 ctrA::pVO155 This study
CSH1005 Rm 1021 ftsE::pVO155 This study
CSH6005 CSS6000 ftsE::pVO155 This study
CSH1006 Rm 1021 minC::pVO155 This study
CSH6006 CSS6000 minC::pVO155 This study
CSH1007 Rm 1021 pleC::pVO155 This study
CSH6007 CSS6000 pleC::pVO155 This study
CSH1008 Rm 1021 rcdA::pVO155 This study
CSH6008 CSS6000 rcdA::pVO155 This study
CSH2031 Rm1021 YB1804dnaE::pK18mobsacB This study

Plasmid
pVO155 Suicide plasmid with promoter-less β-glucuronidase Oke et al. 1999
pK18mobsacB Allelic exchange plasmid Schafer et al. 1994

Primers
cbrafusion fwd AATCCTAGGAATTCACATACGGTCACTCACAC This study
cbrafusion rev CCGCTCGAGCGGCGATGAAATCGTAGACCGAGGT This study
CcrM fwd AATCCTAGGAATACCCATGAGGCTTTCGAGCAT This study
CcrM rev CCGCTCGAGCGGTCTCCCTTGATGATGTGTC This study
cpdr1fusion fwd AATCCTAGGAATCAGTCGATGAGGATCGACAT This study
cpdr1fusion rev GTCTAGACCATGTCGTTGTCGTCTTCG This study
ctrafusions fwd AATCCTAGGAATTGCATCTTCAGCTCGCGAAT This study
ctrafusions rev CCGCTCGAGCGGCATGAGCTCGATGCTCTGAG This study
FtsE Fwd AATCCTAGGAATTGTCGTTGAACACCGGATAG This study
FtsE Rev CCGCTCGAGCGGCGGAATATCGAATGTCAGGTCC This study
minC Fwd AATCCTAGGAATACCACAAGCTATAGTTGTCG This study
mincfusion rev ACTAGTTCAACTGTTTCCGGTCGATC This study

Table	
  1.	
  Strains	
  and	
  reagents	
  used	
  in	
  this	
  study	
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Table	
  2.	
  List	
  of	
  endonucleases	
  used	
  to	
  clone	
  each	
  strain	
  

 

	
   	
  

plecfusions fwd AATCCTAGGAATTCTCCTATCTCGTCTATGCC This study
plec fusions rev TGCTAGACTGAGATCGCCACGATGAGAAGA This study
rcdafusion fwd AATCCTAGGAATTCTCCTATCTCGTCTATGCC This study
rcdafusions rev CCGCTCGAGCGGAGGGCCATCGAGATAGCTTG This study
CcDnaE OLD Fwd AGAATCGGAGTGCTCATGTCGGACGCGGA This study
CcDnaE OLD Rev TGCTGCATCTCTGTAACGTCTTCCAGCA This study
Sm 3 OLD Fwd TGCTGGAAGACGTTACAGAGATGCAGCA This study
Sm 3 Flank Rev* CCGGAATTCCGGCACCGCTGAATGGCGTATTG This study
Sm5 Fwd* CCGGAATTCCGGACTGAAATAGTCCGGC This study
Sm 5 OLD Rev TCCGCGTCCGACATGGCACTCCGATTCT This study
DnaE1490 GTGTCGATGTTATCCATCGG This study
DnaE1950 AACGTCTCAGCCTGTCTGGA This study
T880RXh ATTATTACTCGAGTTAGGTGATGTCGCGGATGACCGCGCA Sadowski et al. 2013
G743FBm AATTTATGGATCCGGCGCAAGCGAAGCGGAGAAG Sadowski et al. 2013
cat 1 AACTCACCCAGGGATTGGCT Sadowski et al. 2013
cbra dn CAACATTTCCTTACAGCATCG Sadowski et al. 2013

Strain Restriction,Endonuclease,Used,for,Cloning Relevant Characteristics
CSH1001 AvrII,&XhoI Rm1021 cbrA::pVO155
CSH6001 AvrII,&XhoI CSS6000 cbrA::pVO155
CSH1002 AvrII,&XhoI Rm1021 ccrM::pVO155
CSH6002 AvrII,&XhoI CSS6000 ccrM::pVO155
CSH1003 AvrII,&XbaI Rm1021 cpdR1::pVO155
CSH6003 AvrII,&XbaI CSS6000 cpdR1::pVO155
CSH1004 AvrII,&XhoI Rm1021 ctrA::pVO155
CSH6004 AvrII,&XhoI CSS6000 ctrA::pVO155
CSH1005 AvrII,&XhoI Rm1021 ftsE::pVO155
CSH6005 AvrII,&XhoI CSS6000 ftsE::pVO155
CSH1006 AvrII,&SpeI Rm1021 minC::pVO155
CSH6006 AvrII,&SpeI CSS6000 minC::pVO155
CSH1007 AvrII,&XbaI Rm1021 pleC::pVO155
CSH6007 AvrII,&XbaI CSS6000 pleC::pVO155
CSH1008 AvrII,&XhoI Rm1021 rcdA::pVO155
CSH6008 AvrII,&Xhoi CSS6000 rcdA::pVO155
CSH2031 EcoRI Rm1021 YB1804dnaE::pK18mobsacB
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CHAPTER III 

 

 

RESULTS 

 

 

GUS activity in free-living S. meliloti 

 

 

Construction of β-glucuronidase (GUS) plasmids 

 

 Previous data showed that ΔcbrA leads to severe defects in the S. meliloti cell 

cycle and symbiosis, and that CbrA represses CtrA levels through DivK (Figure 3) 

(Sadowski, Wilson et al. 2013). Therefore, my goal is to test whether CbrA affects other 

regulatory genes in the DivK pathway as well cell cycle effector genes targeted by this 

pathway. I hypothesize that the cell cycle and symbiosis defects seen in ΔcbrA are a 

result of excess CtrA levels and I therefore chose to track target gene expression at the 

transcriptional level since CtrA is a transcription factor in C. crescentus. The 

identification of genes whose expression is altered in the ΔcbrA mutant will help provide 
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a molecular explanation for its observed cell cycle defects, as well as identify putative 

CtrA regulatory targets. 

A plasmid utilizing the β-glucuronidase (GUS) reporter system, pVO155, was 

used to track transcriptional regulation of cell cycle genes. GUS activity was used as a 

way to assay transcriptional regulation of specific genes chosen due to their known 

function in S. meliloti or known function in other bacteria (Table 3).  The genes were 

also chosen based on the predication that they belong to the CtrA regulon based on their 

promoter region containing a hypothetical CtrA binding motif (Barnett, Hung et al. 2001, 

Schluter, Reinkensmeier et al. 2013, De Nisco, Abo et al. 2014). 

 

 

 

 

 

Verification of GUS fusion strains 

 

 The slow growth and excess production of succinoglycan by the ΔcbrA mutant 

are phenotypes that likely result from increased CtrA levels (Sadowski, Wilson et al. 

Target Gene Function/Role
cbrA Histidine Kinase/Required for symbiosis
ccrM DNA methylase
cpdR1 Response Regulator/CtrA degradation
ctrA Transcription factor
ftsE Cell wall hydrolysis/Cell division
minC Negative regulator/Inhibitor of septation
rcdA Response Regulator/CtrA degradation
pleC Histidine Kinase/Phosphatase to DivK

	
  	
  	
  Table	
  3.	
  Genes	
  targeted	
  for	
  transcriptional	
  analysis	
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2013). Initial attempts to analyze GUS expression in the ΔcbrA mutant led to the 

observation that some of the fusions allowed faster growth and no longer displayed 

excess succinoglycan production compared to ΔcbrA without the fusion. In particular, the 

ΔcbrA cbrA::GUS strain displayed the exopolysaccharide phenotypes of WT cbrA::GUS 

(Figure 7). Therefore, I performed the following tests to verify the cbrA allele present in 

each fusion strain. 

To verify that each fusion plasmid was integrated into either ΔcbrA or WT, PCR 

was used to amplify either ΔcbrA::cat or the cbrA PAS domain showing the absence or 

presence of cbrA in the genome, respectively (Figure 5). Additionally, growth assays 

were performed using the GUS fusion strains: WT cbrA::GUS (CSH1001), ΔcbrA 

cbrA::GUS (CSH6001), WT ctrA::GUS (CSH1004), ΔcbrA ctrA::GUS (CSH6004), WT 

rcdA::GUS (CSH 1008), and ΔcbrA rcdA::GUS (CSH6008) to test for suppression of 

growth phenotypes typically seen in ΔcbrA strains. The cbrA::GUS strains do not double 

as fast as WT, however, they do double faster than ΔcbrA (Figure 6). 

 

 

Quantification of GUS activity 

 

I hypothesize that increased levels of CtrA caused by the absence of cbrA leads to 

altered expression of genes with functions specific to cell cycle progression. My goal is 

to provide novel data showing how cell cycle effector and regulatory genes are affected 

in free-living S. meliloti when cbrA is absent and CtrA levels are higher than normal. 
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Using the GUS reporter system to track gene expression allowed me to quantitatively 

analyze the expression of specific genes in the absence of cbrA. 

Initial attempts to quantify the amount of GUS being produced in each strain using GUS 

assays and Western Blots proved unsuccessful. GUS assays were performed as 

previously described, with the exception of using 4-Nitrophenyl β-D-gluco-pyranoside as 

a substrate rather than p-nitrophenyl-β-D-glucuronide (Jefferson, Burgess et al. 1986). 

This method proved to be not useful for our strains since WT and ΔcbrA showed similar, 

if not more, activity than the GUS fusion strains. The WT (Rm1021) and ΔcbrA 

(CSS6000) strains are negative controls due to the lack of a GUS fusion and are meant to 

represent background activity. It seems there is an endogenous enzyme produced by S. 

meliloti that will hydrolyze the 4-Nitrophenyl β-D-gluco-pyranoside substrate. 

 Therefore, I turned to using Western Blotting to quantify the amount of GUS 

protein being produced in each strain. Anti-GUS was obtained from Abcam and Western 

blots were analyzed using the Kodak 4000R Image Station camera. These Western blots 

showed promise as a tool for measuring GUS levels as there was not extensive 

background and a distinct band was identified at the correct size for GUS that was 

specific to the fusion strains and not observed in WT negative controls. However, once 

we changed to the Licor Oddysey Clx Infrared Imaging system, and changed the 

solutions and protocol, the background found in each blot dramatically increased. We 

were not able to identify a distinguishable band at the intended size for the GUS protein 

that did not show in the WT negative control. The anti-GUS from Abcam seemed to be 

incompatible with the solutions used for the Licor Oddysey imaging system. 
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A 

 

B 

 

Figure 5. Confirmation of the cbrA allele present in each gene fusion strain. (A) 
Amplification of the cbrA PAS domain using T880Rxh and G743FBm primers, 
indicating presence of the cbrA gene. (B) Amplification of ΔcbrA::cat using cat 1 and 
cbra dn primers, indicating the absence of the cbrA ORF and the presence of the 
antibiotic resistance cassette used to replace cbrA. Strain names listed in black indicated 
WT GUS fusion strains and strain names listed in red indicate ΔcbrA GUS fusion strains. 
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Figure 6. Growth of GUS fusion strains compared to negative controls at 2 and 4 
hours. Growth rates of some of the GUS fusions were measured and compared to the 
isogenic WT (Rm1021) or ΔcbrA (CSS6000) background. Overnight cultures were 
subcultured to an OD600 of 0.1 and measured every two hours. Data is reported as the 
average of triplicates. ΔcbrA ctrA::GUS, ΔcbrA rcdA::GUS, ΔcbrA cbra::GUS grow 
faster than the ΔcbrA strain with no GUS plasmid but not as fast as WT with no GUS 
plasmid. ΔcbrA cpdR1::GUS, ΔcbrA minC::GUS, and ΔcbrA pleC::GUS also grow faster 
than ΔcbrA with no GUS plasmid (data not shown). ΔcbrA ftsE::GUS and ΔcbrA 
ccrM::GUS do grow as slow or even slower than ΔcbrA with no GUS plasmid (data not 
shown).  
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Figure 7. Analysis of succinoglycan production. Calcofluor was used to assay the 
amount of succinoglycan produced by each GUS fusion strain. Only one gene fusion 
resulted in the suppression of the ΔcbrA phenotype of excess succinoglycan synthesis. 
(Left top) ΔcbrA cbrA::GUS does not produce more succinoglycan than (Left bottom) 
WT cbrA::GUS, whereas (Right top) ΔcbrA minC::GUS produces a distinguishably 
excess amount of succinoglycan compared to (Right bottom) WT minC::GUS. 

 

 The next strategy was to use the 4-methylumbelliferyl-beta-D-glucuronide 

(MUG) substrate hydrolyzed by the GUS enzyme into 4-methylumbelliferone (4MU), 

which is excited at 355nm and emits a fluorescent signal at 405nm. To make sure that 

MUG is not metabolized into 4MU in WT, I lysed overnight cultures of WT S. meliloti 

and several GUS fusion strains, added MUG substrate, and checked for fluorescence 

using a handheld 355nm UV light. This verified that, even if left overnight, the mixture 

of WT cells and MUG substrate never produced fluorescent 4MU, but that the fusion 

strains did. Therefore, I optimized a protocol combining components from several 

previously described MUG assay protocols to measure GUS enzymatic activity in S. 

meliloti.  
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 The novel histidine kinase cbrA and response regulator cpdR1 are transcribed at 

extremely low levels compared to all of the other target genes. In addition to being 

expressed at significantly lower levels than every other target gene, there was no 

statistical difference in GUS activity between WT and ΔcbrA. After 30 minutes, these 

two fusions are almost indistinguishable from the background arbitrary fluorescent units 

(FU) read in the negative controls, WT and ΔcbrA with no GUS fusion plasmid. 

However, if the reaction is left to run overnight, there becomes an increased amount of 

FU produced by the cpdR1 fusion strain compared to the negative controls (Figure 8). 

This suggests that, even though there is no statistical difference between these fusions in 

WT and ΔcbrA, they are indeed expressed but at very low levels and in a CbrA-

independent manner. 

The essential DNA methylase, ccrM, is expressed at moderate levels in both WT 

and ΔcbrA (Figure 7). However, the level of ccrM expression in WT versus ΔcbrA is not 

significantly different. 

The pleC, rcdA, and ctrA GUS fusions are each expressed at significantly lower 

levels in ΔcbrA than in WT, whereas the ftsE and minC GUS fusions are both expressed 

at significantly higher levels in ΔcbrA than in WT (Figure 7). Two-tailed unequal 

variance T-Tests were used to determine statistical significance between the WT::GUS 

and ΔcbrA::GUS strains (Table 4). 
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Gus expression in Medicago sativa nodules 

 

 In addition to testing for misregulation of specific genes in ΔcbrA, I also 

aimed to investigate which of the cell cycle target genes are expressed during the 

symbiotic relationship between S. meliloti and M. sativa. Using the WT geneX::GUS 

fusion strains, I can track where within root nodules these genes are expressed during a 

normal symbiosis and try to temporally analyze them as well. I predict that genes 

involved in chromosome replication will be expressed in the infection thread and 

bacteroid differentiation zone, but not the nitrogen-fixing zone and senescent zone 

(Figure 9A). Presumably, cells in the infection thread should be dividing like wild type 

and cells in the bacteroid differentiation zone should be going through endoreduplication, 

which will require the expression of genes involved in chromosome replication. In 

contrast, cells in the nitrogen-fixing and senescent zones are not replicating, thus 

diminishing any need for the expression of genes required for chromosome replication. 

Additionally, I predict that genes required for cell division will be expressed in the 

infection thread but not in the bacteroid differentiation, nitrogen-fixing, or senescent 

zones (Figure 9A). In the bacteroid differentiation zone, during endoreduplication, the 

cells will be growing into a filamentous morphology and not dividing. Therefore, genes 

used to build The GUS fusion strains that were assayed as free-living cells were also used 

to assay gene expression within root nodules. M. sativa (alfalfa) was inoculated with each 

GUS fusion strain and allowed to grow for up to five weeks. Histochemical GUS assays  



57 

 

Figure 8. β-glucuronidase (GUS) enzymatic activity in each of the GUS fusion 
strains. The arbitrary fluorescence unit measured for each strain at 30 minutes was used 
as the Y variable in the slope equation of a standard curve created with 4MU, to find the 
corresponding X value, or 4MU amount. The data reported in this graph is the micromole 
(µM) amount of 4MU hydrolyzed from MUG by GUS per minute. The equation used 
was (Y-B (Y-intercept of standard curve) / M (slope of standard curve) = X (amount of 
4MU))/30 to produce 4MU produced per minute.  
 
were performed on nodules at 3 and 5 weeks to determine the spatial and temporal 

expression of target genes.  There are four distinct developmental zones within a nodule 

(Figure 9A). 
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Table 4. P Value for each WT::GUS fusion versus ΔcbrA::GUS Fusion 

Fusion P Value 

cbrA::GUS 0.8645 

ccrM::GUS 0.2508 

cpdR1::GUS 0.8467 

ctrA::GUS 0.001867 

ftsE::GUS 6.6569E-06 

minC::GUS 0.00143 

pleC::GUS 0.00006246 

rcdA::GUS 0.00008407 

 
 
 Stained nodules were examined under a microscope to identify where within the 

nodule these genes were expressed and if expression changed over the time of the 

symbiosis assay. As in the free-living assay, there was little to no expression of cpdR1 or 

cbrA in nodules (Figure 9A). One pattern observed during these assays was an 

unexpected expression restricted to the periphery of the nodules, starting in the infection 

thread and continuing down to the senescent zone, without expression in the middle of 

the nodule (Figure 9D). The target genes ctrA and ftsE are expressed ubiquitously 

throughout the entire nodule after three weeks (Figure 9B) and tend to slightly shift to a 

more localized expression within the infection thread zone, periphery, and senescent zone 

of the nodules after five weeks (Figures 9D and 10). This peripheral expression pattern 

was observed primarily with pleC and rcdA GUS fusions. Expression of pleC and rcdA 
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was evenly split between ubiquitous expression (Figure 9B) and the peripheral pattern 

(Figure 9D) at three weeks, with the majority of nodules showing the peripheral 

expression pattern after five weeks (Figure 10). 

 

 

Figure 9. GUS enzymatic activity of cpdR1::GUS versus negative controls. Two 
single time points are used to show that cpdR1 is expressed in cpdR1::GUS strains. The 
first reading was taken at 30 minutes and the second at 24 hours. The enzymatic activity 
of WT cpdR1::GUS and ΔcbrA cpdR1::GUS is such that there is no significant difference 
versus the WT or ΔcbrA negative controls at 30 minutes. After 24 hours however, WT 
cpdR1::GUS was statistically different from WT with a p-value of 2.52x10-14 and ΔcbrA 
cpdR1::GUS was statistically different from ΔcbrA with a p-value of  2.77x10-14. 
 

 The last two fusions, minC and ccrM, were found to be expressed mostly in the 

infection thread at three weeks (Figure 9C), with the majority of nodules observed after 

5 weeks showing no expression of these genes (Figure 10). CcrM, which is involved in 

DNA methylation and representing chromosomal replication, showed no expression 
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outside of the infection thread whereas FtsE, usually implicated in cell division and cell 

wall hydrolysis, was expressed everywhere in the nodule. CtrA was expressed 

everywhere in younger nodules and then restricted to the periphery of the nodules in 

older nodules.  

 

 

Figure 10. GUS expression in Medicago sativa root nodules. The nodules shown above 
are representative examples of different bacterial GUS expression patterns seen within 
root nodules of M. sativa. (A) WT nodule showing no GUS expression (negative control) 
is used to illustrate approximate zones within the nodule: I is the apical meristem, II is the 
infection thread zone (IT), II-III is a mid-zone with bacteroid differentiation between the 
IT and nitrogen fixing zone, III is the nitrogen fixing zone and IV is the senescent zone. 
(B) Nodules expressing blue GUS expression ubiquitously. (C) Blue GUS expression 
restricted to the IT. (D) A novel GUS expression pattern in the IT, the periphery of the 
nodule, and in the senescent zone but not in the nitrogen-fixing zone. 
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Figure 11. Expression patterns of GUS fusion strain in Medicago sativa root nodules.           
Pie charts represent the location of GUS expression seen within nodules for each GUS 
fusion strain. Purple indicates expression seen in the IT and periphery of the nodules, as 
seen in Figure 10D, Red indicates expression in the IT as seen in figure 10C, Green 
indicates expression seen everywhere in the nodules, and 4 Blue indicates no expression 
seen at all. Nodules were assayed at three weeks post-inoculation and five weeks post 
inoculation. Each pie chart represents the 8-10 nodules used in each assay.  
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Synchronization of S. meliloti using the YB1804 temperature 

sensitive dnaE allele 

 Further understanding how S. meliloti cell division and chromosomal replication 

is regulated will require in-depth analysis of each cell cycle phase, G1, S, and G2. 

However, this is not achievable without synchronizing a population of S. meliloti cells, 

allowing for the temporal analysis of each cell cycle phase. My goal is to create a 

temperature sensitive strain of S. meliloti, which will allow G1 phase synchronize at a 

restrictive temperature but wild-type growth at the permissive temperature. 

 A successul mating of the plasmid containing the YB1804 temperature sensitive 

dnaE allele into S. meliloti resulted in neomycin resistant (Nmr) S. meliloti. Two Nmr  S. 

meliloti strains, DnaE10 and DnaE12, were obtained to proceed with sucrose selection. 

DnaE 12 was randomly chosen to undergo sucrose selection, using both 5% and 10% 

sucrose in LB/MC. I obtained about 25 Nm resistant strains out of 1000 plated on both 

Nm and Sm after sucrose selection for both the 5% and 10% sucrose selections. 

Therefore, I had about 50 strains out of 2000 that seemed to excise the pK18mobsacB 

plasmid out of their genome. To test temperature sensitivity, I struck each strain onto two 

LB/MC plates and incubated one in 30°C and the other in 37°C. None of these strains 

were temperature sensitive and grew at identical rates at both 30°C and 37°C. 

Additionally, I used PCR to test for the presence of the S. meliloti dnaE or the YB1804 

dnaE. The YB1804 dnaE was not detected in any of the Nm resistant strains.  
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CHAPTER IV 

 

 

DISCUSSION 

 

 

Misregulation of cell cycle genes in ΔcbrA free-living S. meliloti 

 

 The goal of this project is to provide additional insight into how CbrA contributes 

to the regulation of the cell cycle in S. meliloti. We knew that CbrA acts through DivK to 

regulate CtrA protein levels and that loss of CbrA leads to distinctly aberrant changes in 

free-living growth, motility and symbiosis. Previous results showed that in the ΔcbrA 

mutant there is an overall decrease in 1N and 2N genome compliments when analyzed by 

fluorescence flow cytometry (Sadowski, Wilson et al. 2013). There is a three-to fourfold 

increase of  <1N genome content in addition to a distinct increase of 2N< content in 

ΔcbrA compared to WT. This observation, in addition to data showing that CtrA does not 

regulate DNA replication rate per se but may regulate cell division led to the conclusion 

that ΔcbrA mutants undergo filamentation as a result of defects in septum localization or 

cell division. I therefore hypothesized that ΔcbrA leads to the misregulation of genes 
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involved in cell division. The genes used to represent two specific components of the cell 

cycle in S. meliloti, cell division and chromosomal replication, were ftsE, minC, and 

ccrM. Given that CbrA functions through the DivK pathway to regulate CtrA activity, I 

further hypothesized that ΔcbrA also leads to the misregulation of different histidine 

kinases (HK) or response regulators (RR) within the pathway.  

 The two genes specifically representing cell division, ftsE, and minC, were both 

expressed at significantly higher levels in ΔcbrA than in WT. The Min system works to 

inhibit FtsZ from assembling the Z-ring, the prokaryote homolog of tubulin, at the poles 

of the dividing cell to assure proper cell division. FtsE couples with FtsX to form FtsEX 

and acts as an ATP-cassette, recruiting specific enzymes to contribute to cell division. 

Alteration of the cell division machinery was expected in ΔcbrA, since the cells exhibit 

swelling, branching, and filamentous morphology.  

  The Min system in S. meliloti includes the minC, minD and minE genes. A 

ΔminCDE mutant showed no distinct change in growth rate or viability when compared 

to WT (Cheng, Sibley et al. 2007). When minC is overexpressed independent of minD 

and minE the viability of S. meliloti is not compromised but morphology was slightly 

altered showing filamentous, swollen and branched cells found along with WT cells 

(Cheng, Sibley et al. 2007). However, the overexpression of minC minD and minC minD 

minE led to a drastic cell viability decrease compared to WT and also increased 

filamentous, swollen, and branched morphology. Transcription initiation of the min 

operon is 174 nucleotides upstream of minC so the transcription of minD and minE is 

dependent on the promoting region upstream of minC (Cheng, Sibley et al. 2007).  
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  I hypothesize that overexpression of minCDE in ΔcbrA contributes to cell 

division defects and the filamentous morphology that is characteristic of ΔcbrA. The 

MinCDE system negatively regulates septum formation. The result of increased MinCDE 

levels should lead to lower levels of septum formation, which would decrease the 

efficiency of Z-ring formation and could potentially be fatal. The results presented here 

suggest that CbrA does contribute to cell cycle gene regulation and more specifically to 

the proper expression of cell division genes. 

 FtsE is involved in cellular division and is thought to be associated with FtsZ, 

which is directly responsible for building the constrictive Z-ring apparatus at the site of 

cellular division (Addinall, Bi et al. 1996, Pichoff and Lutkenhaus 2005).  FtsE has been 

shown to associate with FtsX to form an FtsEX complex, which is implicated in cell 

division. Recent reports show that FtsEX recruits the EnvC amidase and contributes to 

cell wall hydrolysis as division is taking place (Yang, Peters et al. 2011, Meisner, 

Montero Llopis et al. 2013).  

 FtsE is required for viability and its’ localization to the division site is also 

required for the assembly of Z rings (Corbin, Wang et al. 2007). The overproduction of 

FtsEX in E. coli leads to cell filamentation and death (de Leeuw, Graham et al. 1999). 

My results show that the ΔcbrA mutant expresses ftsE and minC at higher levels than WT 

(Figure 6). The CbrA-dependent increase in expression of both minC and ftsE may be 

mediated by the same transcription factor. Both minC and ftsE have predicted CtrA 

binding sites in their transcription start sites. Therefore, I hypothesize that CtrA directly 

mediates the overexpression of minC and ftsE in ΔcbrA.  



66 

 Attempts at cloning the ftsZ promoting region fused to GUS in the pVO155 

plasmid into S. meliloti were successful. However, cells containing the ftsZ::GUS fusion 

grew minimally on LB/MC agar plates, and not at all in liquid LB/MC. Adding a second 

ftsZ promoter likely created lethal alterations to the cellular division process, perhaps 

because it led to a change in FtsZ concentration which altered the cell’s ability to divide 

properly, leading to non-viable cells.  

 CcrM is a DNA methylase whose primary role is to methylate newly synthesized 

hemimethylated DNA. Consistent with previous results showing no change to the rate of 

DNA replication initiation in ΔcbrA cells, there was no significant difference found 

between transcription of ccrM in WT versus the ΔcbrA mutant (Wright, Stephens et al. 

1997).  

 

Misregulation of regulatory genes in ΔcbrA free-living S. meliloti 

 

 The genes I used to gain a more thorough understanding of the differences in the 

DivK regulatory pathway and its’ components when cbrA is not present were cpdR1, 

rcdA, pleC, and cbrA. CpdR1 and RcdA are both involved in CtrA degradation, CbrA is a 

histidine kinase (HK) that acts as a kinase on DivK, and PleC is an HK that acts as a 

phosphatase of DivK. The results presented here provide insight into the feedback 

regulation of genes involved in the regulatory network as a whole. 

 Previous work has shown that the absence of cbrA results in increased CtrA 

protein levels (Sadowski, Wilson et al. 2013) and an increase in phosphorylation of CtrA 
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in S. meliloti (Pini, Frage et al. 2013). This suggests that when cbrA is absent there is a 

decrease in CtrA degradation. In C. crescentus, CtrA degradation is facilitated by the 

binding of RcdA to CtrA and localization to the ClpXP protease, however the exact 

function of RcdA is unknown (Jenal 2004, Curtis and Brun 2010). The targeting of CtrA 

to ClpXP also requires the presence PopA in C. crescentus but not in S. meliloti, which 

does not have a PopA homolog. Despite known homologs of CpdR1 and RcdA in S. 

meliloti, the exact function of these proteins remains untested. Results presented here 

show that the ΔcbrA mutant, which has higher levels of CtrA, expresses rcdA at 

significantly lower levels compared to WT, suggesting that CtrA may repress 

transcription of the rcdA promoter. In C. crescentus CtrA directly regulates RcdA, and in 

S. meliloti a CtrA binding site is predicted in the rcdA promoter region (McGrath, Iniesta 

et al. 2006, Schluter, Reinkensmeier et al. 2013). In contrast with rcdA, cpdR1 

transcription is not altered in the absence of cbrA. Based on previous results, CtrA 

degradation is likely decreased when cbrA is absent due to the loss of DivK 

phosphorylation and subsequent increase in CpdR1 phosphorylation. In addition to 

alteration of the signaling pathway, absence of cbrA is predicted to further decrease CtrA 

degradation rates through transcriptional downregulation of rcdA but not cpdR1. Thus, 

we have uncovered two redundant mechanisms for regulating CtrA activity in a CbrA-

dependent manner. 

 The other components of the regulatory network examined were PleC and CbrA. 

In C. crescentus, PleC regulates DivK as a phosphatase leading to decreased phospho-

DivK and eventually increased phospho-CtrA (Figure 4). My results show that in the 
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absence of cbrA, pleC transcript levels are significantly decreased. Predictive data has 

suggested that pleC has a CtrA binding site upstream of the pleC TSS. I hypothesize that 

increased levels of CtrA-P in the absence of cbrA leads to downregulation of pleC as part 

of a negative feedback loop. Therefore, when CtrA-P levels reach a certain threshold, 

CtrA downregulates pleC to maintain high levels of CtrA activity.   

 The novel histidine kinase, CbrA, on the other hand, does not seem to have any 

transcriptional misregulation when the cbrA gene is taken out of the genome. Since CbrA 

is thought to act upstream of DivK, analogous to DivJ and PleC, and acts through DivK 

to regulation the cell cycle, it is surprising to see no change. Additionally, cbrA showed 

significantly lower transcription levels when compared to all of the other target genes 

with the exception of cpdR1. 

  

 

Expression of S. meliloti cell cycle related genes in M. sativa 

 

 In addition to an interest in understanding how the cell cycle of S. meliloti is 

regulated in free-living cells, there is great interested in elucidating how the cell cycle is 

regulated during symbiosis. One of our main goals is to understand how the S. meliloti 

cell cycle is regulated as it transitions into endoreduplication and then G0 phase, and the 

purpose of this differentiation. To gain insight into the symbiotic cell cycle program, we 

need to better understand how the cell cycle is regulated during bacteroid development 

and within fully developed bacteroids. The β-glucuronidase (GUS) fusion strains used to 
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gain insight into cell cycle regulation of free-living S. meliloti cells were also used to 

study gene expression in root nodules. GUS staining of M. sativa root nodules infected 

with GUS fusion strains proved to be a useful method to track the location and general 

timing of gene expression during symbiosis. Nodules were assayed at three and five 

weeks due to a lack of mature nodules prior to three weeks and an inability to maintain 

ideal growth conditions for M. sativa plants after five weeks.  

 S. meliloti cells must first travel through the developed infection thread (IT), and 

undergo endocytosis into the cytoplasm of the host cell before they can differentiate into 

nitrogen-fixing bacteroids (Figure 2A). Mature nodules have all stages of nodule 

development present, including invasion, colonization, and bacteroid differentiation. 

Once differentiation and bacteroid development is complete, the S. meliloti cells will exit 

their cell cycle into G0 phase and gain the ability to fix nitrogen. Thus, mature nodules 

are ideal for tracking genes expressed at all stages of symbiosis because at this point in 

development a significant subset of S. meliloti will have differentiated into nitrogen-

fixing bacteroids.  

 As previously discussed, FtsE works with FtsX, forming an ABC transporter to 

recruit amydases for cell wall hydrolysis (Yang, Peters et al. 2011). The requirement for 

cell wall elongation during cellular division is preceded by the need for the bonds 

between the existing peptidoglycan strands to be hydrolyzed. FtsE and the FtsEX 

complex is directly implicated in cell division through cell wall elongation by enabling 

the hydrolysis of pre-existing bonds, allowing for new cell wall to be synthesized. 

Reports using Bacillus subtilis showed that FtsE contributes to cell wall elongation, 
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which is consistent with the notion that FtsE defects contribute to generating cells with a 

filamentous phenotype (Meisner, Montero Llopis et al. 2013). Therefore, ftsE should be 

expressed in cells that are actively growing and dividing and may contribute to bacteroid 

formation since they have a branching and filamentous morphology indicative of cell 

growth and elongation.  

 FtsE is expressed everywhere in the nodules after three and five weeks of growth. 

This result supports the notion that FtsE is an important protein during filamentation and 

is therefore also involved in cell wall elongation in bacteroid formation. This is consistent 

with previous investigations that show filamentatous morphology when FtsE is 

overexpressed (de Leeuw, Graham et al. 1999).  

 The septum inhibiting protein MinC, which acts to prevent FtsZ localization 

everywhere in the cell except its center where septum formation takes place, was not 

always seen expressed in root nodules. When it was expressed, it was almost always 

expressed in the IT. FtsZ may be inhibited or downregulated in cells that are 

differentiating into bacteroids given their endoreduplication and filamentation 

phenotypes. Therefore, the requirement for MinC is likely diminished as well. Since cells 

aren’t dividing during bacteroid development, FtsZ isn’t needed to form the Z-ring and 

MinC will not be needed to prevent FtsZ from forming the Z-ring at an incorrect location. 

The data presented here suggests that MinC does not play an active role in bacteroid 

physiology or bacteroid formation, and I hypothesize that FtsZ does not play an active 

role in bacteroids either. Thus, FtsE, presumably as the FtsEX complex, is recruited to 
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work independent of FtsZ in bacteroids as there is a need for increased cell wall growth 

but not Z-ring formation. 

 DNA methylation has been found to be involved in various critical functions such 

as transcriptional regulation, initiation of DNA replication, and genomic imprinting 

(Campbell and Kleckner 1990, Braaten, Blyn et al. 1991, Razin and Cedar 1994). The 

most common role for DNA methylation in prokaryotes is DNA restriction-modification, 

which allows the cell to differentiate between self and foreign DNA (Wilson 1988, Bickle 

and Kruger 1993). The role of CcrM in C. crescentus and S. meliloti is a little different 

however, as it is not involved in DNA restriction-modification but is used to methylate 

the adenine residue in the sequence GANTC (Zweiger, Marczynski et al. 1994) and is 

essential to these organisms. CcrM is controlled through transcriptional regulation and 

proteolysis to restrict its presence to late predivisional cells when two hemimethylated 

chromosomes are converted into two fully methylated chromosomes. CcrM is activated 

by the global transcription factor CtrA, and when its’ regulation is altered cells display 

abnormal morphology, a disruption in cell division, and loss of control over DNA 

replication initiation (Zweiger, Marczynski et al. 1994, Wright, Stephens et al. 1996).  

 The essential DNA methyl-transferase CcrM, was found exclusively in the IT 

after three weeks and in only about half of the nodules assayed, with no expression seen 

in the other half. After five weeks, ccrM expression was decreased even more, and was 

still seen exclusively in the IT. This reinforces the idea that CcrM is important for the 

free-living cell cycle program but not the bacteroid cell cycle program, as cells in the IT 

should be dividing like WT. A key component of bacteroid formation is repeated rounds 
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of DNA replication before exiting the cell cycle into G0 phase (Figure 2C). Due to its 

role in methylating hemimethylated chromosomes and its presence in late pre-divisional 

cells, it appears that CcrM activity and DNA methylation is not required for the 

endoreduplication seen during bacteroid development. 

 

 

Expression of S. meliloti regulatory genes in M. sativa 

 

 We already know that the DivK pathway plays a major role in the cell cycle of 

free-living S. meliloti. Therefore, studying the regulatory components of this pathway 

could provide critical insight into understanding cell cycle regulation during symbiosis. 

Gene expression of the primary phosphatase to DivK, PleC, and the novel histidine 

kinase that is required for symbiosis, CbrA, was analyze in nodules. Additionally, the 

response regulators directly involved in CtrA degredation, CpdR1 and RcdA, were 

examined for their transcriptional expression patterns.  

 PleC ultimately leads to increased levels of activated, phospho-CtrA. After three 

weeks of growth, pleC expression was found throughout the nodule (Figure 4B). 

Nodules examined after five weeks of growth showed a shift such that expression of pleC 

was observed primarily in the IT, along the periphery, and in the senescent zone of the 

nodules (Figure 4D). Cells in the IT are thought to divide like WT, so the presence of 

PleC within invading cells is not surprising. Based on the more restricted pattern of pleC 
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expression in mature nodules, I hypothesize that PleC is not utilized during or upon 

completion of bacteroid formation, but may play a later role in bacteroid cell senescence.  

 Expression of cbrA, encoding the novel HK required for symbiosis, was not 

detected in nodules. I do not conclude from this that cbrA is not expressed during any 

point within nodules, though. The free-living MUG assay showed that cbrA is expressed 

at levels so low that the fusion strain is difficult to distinguish from the negative controls. 

Previous research has shown that CbrA is required for a successful symbiosis (Sadowski, 

Wilson et al. 2013). Therefore, I conclude that even though cbrA expression was not 

observed within nodules, it is likely expressed but at levels too low to be detected by 

GUS staining.  

 Two other components of the DivK pathway that I used to further elucidate gene 

expression within nodules were CpdR1 and RcdA. In C. crescentus, CpdR1 enables 

degradation of the transcription factor CtrA by the ClpXP protease. Also in C. crescentus, 

RcdA is required for this localization of CtrA to ClpXP while PopA is required for the 

signaling mechanism leading to CtrA degradation (Duerig, Abel et al. 2009, Curtis and 

Brun 2010). Expression of cpdR1 was seen in just one nodule collected after five weeks 

of growth and in no nodules harvested after three weeks of growth. Similar to CbrA 

however, in free living cells cpdR1 is expressed at significantly lower levels compared to 

the other genes examined in this study. Therefore, cpdR1 may also be expressed in 

nodules at levels too low to be detected by the GUS staining method.  

 In contrast, rcdA expression was detected either ubiquitously throughout the 

nodule or in the peripheral pattern found when analyzing pleC. Comparing ctrA and rcdA 
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expression in Figure 5, it appears that rcdA expression may determine subsequent ctrA 

expression. Nodules harvested after three weeks of growth show that most rcdA 

expression is detected ubiquitously throughout the nodules, similar to ctrA, however there 

are also nodules that express rcdA in the peripheral pattern as well. In nodules assayed 

after five weeks of growth, rcdA expression is found primarily in the peripheral pattern. 

At five weeks, ctrA shows a similar shift with most nodules showing a peripheral pattern 

of gene expression.   

 The peripheral pattern of bacterial gene expression within nodules has not been 

described previously. One explanation for this particular observation may be that the 

protocol used for detecting nodule gene expression is insensitive to low levels of gene 

expression. A previous investigation into S. melilot gene expression within root nodules 

of Medicago showed cpdR1 expression throughout the entire nodule (Kobayashi, De 

Nisco et al. 2009). This is in contrast to the findings presented here, which show a lack of 

cpdR1 expression in nodules. In free-living S. meliloti transcriptional analysis of cpdR1, 

expression levels were distinctly lower than all of the other genes examined with the 

exception of cbrA. Kobyashi et al. (2009) incubated nodules in substrate buffer for 24 

hours whereas in this study nodules were incubated for 1.5 hours in order to identify the 

nodule patter representing high gene expression. Therefore, a longer incubation time 

might reveal cpdR1 and cbrA expression in nodules as well as reveal that the peripheral 

expression pattern within nodules is due to the limited reaction time of our assay. A 

future goal will be to optimize the protocol to determine if the peripheral expression 

pattern disappears with increased incubation times.  
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S. meliloti synchronization using allelic replacement 

 

 Attempts at using allelic replacement to replace S. meliloti dnaE with the 

temperature-sensitive C. crescentus strain YB1804 dnaE were unsuccessful. After mating 

pK18mobsacB::YB1804dnaE (pK18CSH10) into S. meliloti strain Rm1021, two Nmr 

colonies were chosen for subsequent sucrose-mediated homologous recombination to 

force the plasmid out of the chromosome. Amplification using both the CcDnaE OLD 

Fwd/CcdnaE OLD Rev and Sm5 Fwd/Sm 3 Flank Rev primers showed that 

YB1804dnaE was in these isolates. However, after screening 1000 colonies grown on 5% 

sucrose and 1000 colonies grown on 10% sucrose, no colonies were found in which the S. 

meliloti dnaE had been excised from the genome and replaced with YB1804dnaE. Thus, 

it appears that C. crescentus dnaE may not be able to functionally substitute for S. 

meliloti dnaE. 

 

 

Future direction 

 

 The primary future direction for this project will be to show a direct relationship 

between CtrA and the genes misregulated in the absence of CbrA. I used ΔcbrA, which 

has an increased amount of CtrA, as a way to test for cell cycle regulation of target genes. 
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However, it remains possible that the misregulation observed could be CtrA-independent. 

Cell cycle genes were chosen based on previous research that had either shown CtrA-

dependent regulation of these genes or predicted CtrA-dependent regulation based on the 

presence of CtrA-binding sites (Tsokos and Laub 2012, Schluter, Reinkensmeier et al. 

2013). Showing CtrA-dependent regulation of cell cycle target genes can be 

accomplished through overexpression or depletion of CtrA levels. Since CtrA is required 

for viability, it cannot be deleted in the absence of a complimenting plasmid. Placing ctrA 

under the control of an inducible promoter on a complementing plasmid would allow for 

precise control over levels of CtrA in S. meliloti. In this way, it can be determined 

whether CtrA regulates transcriptional expression of genes, such as FtsE or PleC. If these 

target genes show the same misregulation as they did in ΔcbrA when CtrA is 

overexpressed, it will provide convincing evidence that CbrA contributes to regulation of 

these genes by acting through CtrA or influencing CtrA activity. 

One way to test whether CtrA is transcriptionally regulating these cell cycle genes 

directly would be through a Chromatin immunoprecipitation (CHiP) or DNase 

footprinting assay. These methods would show the direct interaction of CtrA with the 

specific DNA sequences in the promoter regions of target genes. Showing the direct 

binding of target genes by CtrA will provide a more complete understanding of how the 

DivK pathway functions to regulate the cell cycle in S. meliloti. 

 Another interesting experiment that could be utilized to further understand the cell 

cycle in S. meliloti is to synchronize a population of cells in G1 phase through a new 

nutrient-deprivation protocol and then analyze cell cycle gene expression using MUG 
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assays (De Nisco, Abo et al. 2014). After synchronization, cells would be collected at 

certain time points corresponding to a different part of the cell cycle, such as G1, S, or G2 

phase, and subjected to the MUG assay to determine when each gene is being transcribed 

as cells progression through the cell cycle. This would indicate which of the genes are 

critical for each part of the cell cycle. For example, in C. crescentus, CtrA is highly 

abundant during G1 phase, transcriptionally downregulated and degraded during S phase, 

and then transcriptionally upregulated during G2 phase and this expression pattern is 

correlated with CtrA’s role in repressing DNA replication initiation and activating cell 

division gene expression (Curtis and Brun 2010).  

 The next step in further elucidating how these target genes function in symbiosis 

will be to test for an effect of Nodule-specific Cysteine Rich (NCR) peptides on gene 

expression. Using isolated NCR peptides, it is possible to induce bacteroid differentiation 

in free-living S. meliloti cells (Penterman, Abo et al. 2014). Once cells are differentiated 

into bacteroids, MUG assays could be done to identify which of the target genes are 

expressed in bacteroids. Successfully characterizing target gene expression in bacteroids 

will be very useful in trying to further understand the mechanism by which S. meliloti 

cells perform endoreduplication and then exit from their cell cycle into G0 phase.  

 The attempt to use allelic replacement to exchange the S. meliloti dnaE with the 

temperature sensitive dnaE seemed very promising. The S. meliloti DnaE and C. 

crescentus DnaE share close homology sharing a high level of identity at the amino acid 

level, and other essential genes such as ctrA have been exchanged between the two 

organisms (Barnett, Hung et al. 2001, Lo, van Der Schalie et al. 2004). However, it may 
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not be possible to replace the S. meliloti DnaE with C. crescentus DnaE due to its non-

functionality in S. meliloti. If successful, this method would have provided a convenient 

and easy protocol to synchronize S. meliloti cells for all labs interested in further 

understanding its’ cell cycle. Despite the lack of success using this method, there has 

been progress in using alternative methods to synchronize S. meliloti (De Nisco, Abo et 

al. 2014).  
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