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ABSTRACT 

 

THE NEUROPSYCHOLOGICAL FUNCTIONING OF OLDER ADULTS  

PRE- AND POST-COGNITIVE TRAINING WITH A BRAIN PLASTICITY-BASED 

COMPUTERIZED TRAINING PROGRAM 

 

December 2012 

 

Shannon M. Sorenson, B. A., Lehigh University 
M. A., University of Massachusetts Boston 

 

Directed by Professor Paul G. Nestor 
 
 

 The present study evaluates the effectiveness of Posit Science Cortex™ with 

Insight Drive Sharp™ as a tool for improving neuropsychological functioning in a 

normal aging sample.  The purpose of the DriveSharp™ training program is to help an 

individual improve his or her visual attention and useful field of view.  Each exercise 

continually adapts to the individual’s performance so that the training is always at an 

appropriate level for that specific person.  Thirty-two healthy older adult participants 

were randomly assigned to either the active intervention group (DriveSharp™) or a 

waitlist control group.  Participants in the intervention group were required to engage in 



 vi 

training at its recommended dosing (60 min/day, 5 days/week, 2 weeks).  All participants 

were given identical neuropsychological assessments to measure change in various 

realms of cognitive functioning.  The Trail Making Test (Reitan, 1986) and the Useful 

Field of View test (UFOV; Edwards, Vance, et al., 2005) were used to assess the areas of 

cognition that DriveSharp™ was designed to train (visual attention and information 

processing), and the Raven’s Progressive Matrices test (Raven, 1962) was used to 

measure area of cognition that is not directly trained by the program:  fluid intelligence.  

It was hypothesized that participants undergoing the intervention would experience 

improvement in both the trained and untrained neuropsychological measures, and that the 

performance gain on the measure of fluid intelligence would be the result of the variance 

shared between fluid intelligence and the more fundamental, directly-trained cognitive 

abilities.  Results revealed a statistically significant improvement on Trail Making Test 

A/C and the UFOV Selective Attention subtest for the total sample that received training.  

There was also evidence of a training effect on the UFOV Divided Attention subtest, 

though this improvement was not statistically significant.  These results indicate that the 

DriveSharp™ program may improve specific aspects of visual attention related to 

selective attention and inhibition of irrelevant information.  No significant change in 

performance was seen on the UFOV Processing Speed subtest (a measure of a cognitive 

area claimed to be directly trained by the DriveSharp™ program).  Additionally, there 

was no significant improvement in performance on the Raven’s Progressive Matrices, 

indicating no improvement due to training in more complex abilities, such as fluid 

intelligence. 
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CHAPTER	  1	  

INTRODUCTION	  

 Over the past decade, there has been an increasing scientific and popular interest 

in the question of whether mental exercises can improve cognition (e.g., Restak & Kim, 

2010).   This area of research is especially important for older adults who are at 

significant risk for cognitive decline.  Elderly adults (65 and older) make up the fastest 

growing age group in the country, expected to grow to be 19% of the population by 2030 

(US Census Bureau, 2010).  As this large proportion of individuals reach the age where 

cognitive changes can limit their functional capacity, it will be important to develop 

useful interventions that can prevent, slow, or even reverse their cognitive decline.   

1.1 Specific Aims 

 Using a randomized, controlled study, the effects of a computerized cognitive 

training software program on neuropsychological test performance were evaluated.  The 

software used, Posit Science Cortex™ with Insight Drive Sharp™ (henceforth called 

DriveSharp™), was designed to improve visual attention and processing speed.  The 

specific aims of this study were as follows: 

1. To use a randomized controlled design to examine the effects of Drive 

Sharp™ on basic aspects of visual attention, including processing speed, 
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scanning, and shifting set evaluated by the Trail Making Test in a healthy 

aging sample. 

 Older adults are often slower and less accurate than younger adults in 

performing visual-search tasks, suggesting an age-related decline in attentional 

functioning (e.g., Craik & Byrd, 1982).  Computerized cognitive training has been 

shown to improve functioning in cognitive realms that are directly trained, such as 

attention (Ball et al., 2002; Smith et al., 2009; Willis et al., 2006).  The Trail 

Making Test is a neuropsychological test of visual attention that requires 

participants to draw a line to connect 25 consecutive targets on a sheet of paper.  

This study used two versions of the Trail Making Test.  Trail Making Test A (or 

C, as the alternate version) requires connecting dots in numerical order—a 

measure of processing speed and visual scanning.  Trail Making Test B (or D, the 

alternate version) requires switching between ascending numbers and letters (a 

measure of executive functioning and set-shifting).  The primary measure of 

performance on these tests is the time to completion.  The test was given to a 

community sample of healthy, older adult participants (ages 60-75) who were of 

normal cognitive aging (Mini-Mental Status Examination [MMSE] greater than 

26).  The participants were assigned to either the training condition or a waitlist 

control condition to determine the efficacy of the DriveSharp™ training program 

on performance on this measure of visual attention.  Hypothesis:  Performance on 

Trail Making Tests A/C and B/D, measures representing cognitive realms thought 

to be directly trained by the DriveSharp™ program (visual attention, visual 
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processing speed, and divided attention) would improve after the two-week 

training period.	  

2. To use a randomized controlled design to examine the effects of Drive 

Sharp™ on basic aspects of visual information processing related to 

attention, orienting, and control evaluated by the UFOV test in a healthy 

aging sample. 

 The Useful Field of View (UFOV) is defined as the region of the visual 

field from which an observer can extract information at any given time (Ball, 

2003).  The Useful Field of View test is a computerized task that measures the 

speed at which one can rapidly process multiple stimuli across the visual field.  

Three subtests are administered (a test of processing speed, a test of divided 

attention, and a test of selective attention).  Each subtest requires accurately 

identifying targets presented at varying durations (16.67-500 ms). The three 

subtests were given to a community sample of healthy, older adult participants 

(ages 60-75) who were of normal cognitive aging (MMSE greater than 26).  The 

participants were assigned to either the training condition or a waitlist control 

condition to determine the efficacy of the DriveSharp™ training program on 

performance on this measure of visual attention.  Hypothesis: Performance on the 

UFOV, a measure of visual attention (a cognitive realm thought to be directly 

trained by the DriveSharp™ program), would improve after the two-week training 

period. 
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3. To use a randomized controlled design to examine the effects of Drive 

Sharp™ on fluid intelligence evaluated by the Raven’s Progressive Matrices 

test in a healthy aging sample.   

 Fluid intelligence is a higher-level cognitive ability that allows us to solve 

novel problems, independent of our previously acquired knowledge (e.g., Bors & 

Forrin, 1995).  Fluid abilities such as problem-solving, learning, and pattern 

recognition have been shown to rapidly decline with age (Maitland, Intrieri, 

Schaie, & Willis, 2000).  A recent study provided evidence that training more 

fundamental cognitive realm could produce a transfer effect, improving complex, 

higher-level areas of mental ability that were not directly trained (e.g., fluid 

intelligence; Jaeggi, Buschkuehl, Jonides & Perrig, 2008).  This study used the 

Raven’s Standard Progressive Matrices test, a measure of fluid intelligence 

requiring analytic and reasoning processes to understand visual analogies and 

solve multiple choice matrix problems.  The test was given to a community 

sample of healthy, older adult participants (ages 60-75) who were of normal 

cognitive aging (MMSE greater than 26).  The participants were assigned to either 

the training condition or a waitlist control condition to determine the efficacy of 

the DriveSharp™ training program on performance on this measure of fluid 

intelligence.  Hypothesis:  Performance on the Raven’s Standard Progressive 

Matrices, a measure of fluid intelligence (a cognitive realm not directly trained by 

the DriveSharp™ program), would improve after the two-week training period.
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1.2 Aging and Cognition 

	   Cognitive decline is a universal aspect of aging, sometimes beginning as early as 

age 30 and progressively worsening throughout the lifetime.  Cognitive deterioration, at 

least to some extent, is expected in many realms of mental functioning as part of the 

normal developmental process.  Most older adults experience age-associated declines in 

many areas of cognitive functioning (Hedden & Gabrieli, 2004).  Numerous cross 

sectional and longitudinal studies have documented significant decline in processing 

speed (Verhaeghen & Cerella, 2008), visual attention (Madden & Whiting, 2004), 

working memory capacity (Braver & West, 2008), learning and recalling new 

information (Old & Naveh-Benjamin, 2008), and fluid intelligence (for examples, see 

Horn & Cattell, 1967; Schretlen et al, 2000).  A major worry in elderly adults is that this 

cognitive decline may lead to disorientation, psychosocial problems, decreased mobility, 

and difficulties performing tasks of every-day life.  Along with these functional declines 

often comes a loss of independence and a need for assistance, placing an emotional and 

financial strain on individuals, their families, and society.   

1.3	  	  Neural	  Mechanisms	  of	  Aging	  

	   Throughout the lifespan, the brain is capable of changing—both physically and 

functionally—as the result of one’s experience.  Neuroplastic changes can have positive 

or negative impacts on cognitive ability depending upon the nature of the experience.  

These effects are thought to reflect the strengthening or weakening of the synaptic 

connections responsible for various mental abilities (Mahnke, Bronstone & Merzenich, 

2006).  For example, Hebbian learning processes are known to induce long-term 

potentiation (LTP), a mechanism that strengthens the association between neurons that 
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frequently fire together.  This causes synaptic pathways to become more efficient, 

increasing the speed with which their respective cognitive processes are executed 

(Barnes, 2003; Burke & Barnes, 2006; Bliss & Collingridge, 1993).  Though the 

neurochemical complexities are not fully understood, brain plasticity is thought to be the 

result of a change in the transmembrane potential of one neuron after the post-synaptic 

neurotransmitter receptors are activated.  Second messenger molecules in the cell notice 

the repeated activation of these neurotransmitters and initiate protein synthesis.  

Consequently, hormones and growth factors are produced that alter the structure and 

activity of the neuron.  Changes include the growth of the synaptic connection and an 

increase in the number of receptor cells, making the post-synaptic cell more sensitive to 

the signal of the neuron before it (Bliss & Collingridge, 1993).  

 During normal aging, changes in activity patterns and progressive biological 

susceptibilities contribute to the weakening of these synaptic connections.  While LTP 

can increase the efficiency of highly active neural networks, a reverse effect can also 

occur if these pathways stop being used.  This long-term “depression” weakens the 

synaptic connections that are less-frequently stimulated.  When this happens, the 

glutamate binding to NMDA receptors on the postsynaptic dendrites brings few calcium 

ions into the neuron.  This small amount of calcium activates enzymes that 

dephosphorylate the receptors, making them less responsive to glutamate.  Long-term 

depression may also reduce the number of post-synaptic AMPA receptors, further 

contributing to decreased reactivity of the post-synaptic cell.  Age-related cognitive 

decline is thought to be related to the weakened sensitivity of these synaptic connections 

(Barnes, 2003). 
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 Long-term depression contributes to the weakening of synaptic connections due to 

the gradual disuse of certain cognitive abilities over time, creating a self-reinforcing cycle 

of decreases in behavioral activity, synaptic loss and negative structural change 

(Churchill, Glavez, Colcombe, Swain, Kramer & Greenough, 2002; Rosenzweig & 

Bennett, 1996).   According to Mahnke, Bronstone, and Merzenich (2006), these negative 

plastic changes are driven by four age-related behavioral factors.  First, as people age, 

they tend to lessen their involvement in cognitively demanding activities.   This may be 

due to retirement or by making the decision to only pursue the activities they already 

know they enjoy.   When exposure to new activities is reduced, the activation of learning-

related systems involving attention, reward, and novelty-detection is lessened.  This 

causes the production of neurotransmitters, receptors, and biochemical constituents of 

neurons to slow.  Also, there is a reduction of stimulation on cognitive, sensory, and 

motor systems, causing a degradation of dendrites and a weakening of neural 

communication.  Second, sensory input from all systems (auditory, visual, tactile, and 

proprioceptive) is degraded as a result of the inevitable deterioration of the peripheral 

sensory organs.  As the body ages, there is typically a loss of hair cells in the cochlea in 

the ear, a loss of photoreceptors in the retina, and changes in the skin’s sensitivity.  

Sensory abilities become less precise; mental representations that are based on these 

sensory signals take more time to form and do not always accurately represent the 

external experience.  Third, there is a decrease in production and processing of the 

neuromodulators that control brain plasticity, including acetylcholine, dopamine, 

serotonin, and norepinephrine.  This decreases the communicatory activity in the neural 

networks and makes learning more difficult.  Finally, aging individuals often naturally 
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attempt to adapt their behaviors to either make challenging activities easier or avoid them 

altogether.  For example, as it gets harder to hear the television due to loss of cells in the 

cochlea, a person might turn up the volume.  This compensatory technique increases the 

damage to the ears and perpetuates the negative reorganization of the brain.	  

1.4 Theories of Cognitive Decline 

 While Merzenich and colleagues have provided a neurobiological explanation for 

age-related cognitive and functional decline, there are other prominent theories that offer 

perspective on the cognitive mechanisms driving these declines.  For example, Salthouse 

(1991a; 1991b; 1996) has conducted extensive research supporting his processing speed 

theory of age-related differences in cognition.  This theory asserts that declines in aging 

are the result of the slowing of processing speed functions.  In concordance with 

Merzenich’s theory, he proposed that the age changes in cognitive performance are the 

result of changes in the nature of activities performed as one approaches the latter end of 

the lifespan (Salthouse, 1991b).  These changes come with disuse of mental skills that 

were once depended upon, and consequently, there is a progressive reduction in the time 

it takes to perform basic cognitive operations.  This prevents more complex, higher-level 

functions from occurring in an efficient and accurate manner.  The ability for critical 

operations to be activated and processed simultaneously is also compromised, making it 

difficult to execute the synchronized pattern of synapses required for a specific task.  It 

can be speculated that this cognitive slowing is the result of the deteriorative synaptic and 

neuronal plasticity mechanisms described above.  

 Another leading theory, often called the attentional capacity theory, suggests that 

with age comes a reduction in the available mental energy and resources that are required 
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to perform cognitive operations.  This depletion of mental energy particularly affects the 

ability to sustain the attention necessary for controlled cognitive functioning (Craik & 

Byrd, 1982; Kahneman, 1973), but also hinders the ability to efficiently utilize and 

appropriately distribute attentional resources (Levitt, Fugelsang, & Crossley, 2006; Plude 

& Hoyer, 1985).  According to this theory, demanding or cognitively effortful tasks are 

especially affected with increasing age because attentional capacity is readily exceeded 

(Craik & McDowd, 1987).  Both the processing speed theory and the attentional capacity 

theory offer slightly different conceptualizations describing how a decline in a 

fundamental aspect of cognition (processing speed or attention) is the underlying 

mechanism of age-related decline.	  

1.5 Cognitive Training Interventions	   

 The malleability of our cognitive functioning provides the opportunity for training 

interventions to practice and improve specific aspects of mental ability.  There has been a 

substantial amount of research that has supported the idea that interventions can be used 

to prevent, minimize, or even reverse the negative effects of the aging brain, particularly 

in the areas most susceptible to declines (Hertzog, Kramer, Wilson, & Lindenberger, 

2009).  These interventions typically take the form of either direct instruction of useful 

cognitive strategies or repeated engagement in cognitively demanding or stimulating 

activities (Smith et al., 2009). 

 Based on studies that connect negative plasticity mechanisms (via long-term 

potentiation malfunction) to age-related cognitive and functional decline, we can assume 

that “use” and stimulation of synaptic regions can prevent or delay their structural 

deterioration.   One theory is that modifying the levels and types of stimulating 
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experiences in one’s environment may enhance LTP and induce positive plastic changes 

in the brain (Hertzog, Kramer, Wilson & Lindenberger, 2009).  Technology has allowed 

for the consolidation of various types of cognitive exercises so that this up-regulation of 

LTP processes can potentially take effect in humans with daily, computerized training 

sessions. 	  

	   1.5.1 Computerized Cognitive Training Programs.  The “brain fitness” industry 

has rapidly developed, and brain training software is now available commercially.  Many 

facilities for older adults in the United States now offer computerized brain training 

software in addition to the traditional health-promoting activities.  According to Dr. 

Michael Merzenich, the lead scientist at the brain-training software development 

corporation POSIT Science, the brain-plasticity based programs are designed to intervene 

on the negative plasticity that occurs in aging by targeting each of the underlying causes 

of cognitive decline.  The programs are intended to strongly engage mental activity by 

using challenging, computer-adaptive exercises and a daily training schedule to prevent 

disuse of the brain.  Merzenich and colleagues propose that these programs also enhance 

the accuracy and fidelity of mental representations by improving the auditory and visual 

systems’ ability to engage the cognitive networks.  Neuromodulatory systems are 

strengthened when learning-related neural networks are activated (Mahnke et el, 2006).  

Additionally, attention-demanding modules of these programs are thought to promote the 

release of acetylcholinerase and other neuro-modulators that presumably enable plasticity 

and contribute to overall cognitive efficiency.  For example, as Merzenich and colleagues 

noted, the dopaminergic reward system is activated when an individual performs well in 

the program; therefore, dopamine systems in the ventral tegmental area and substantia 
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nigra are activated.  Also, serotonergic systems are activated when the brain is detecting a 

new stimulus.  Finally, the program guides the users into new behaviors that positively 

reinforce their enhanced brain function and strengthen their critical life skills (Mahnke et 

al., 2006). 

 Although computer-based training has gained a certain amount of popularity, 

there is a limited amount of research that has demonstrated the positive effects of these 

programs.  There have been two large, multi-site studies on the effects of computerized 

cognitive training on older adults.  The first—the Advanced Cognitive Training for 

Independent and Vital Elderly (ACTIVE) study—randomly assigned 2832 independently 

living, older adults (age 65 or older) to one of three training groups or a control group.  

All subjects were recruited from senior housing, community centers, and hospitals in six 

cities across the U.S.  Each of the three training groups engaged in 10 sessions of training 

for memory, reasoning, or speed of processing.  Some subjects also received a four-

session booster training at 11 and 35 months after the completion of the first 10 sessions.  

The training sessions were 60-75 minutes long and focused on applying cognitive 

strategies to solving every-day problems.  The control group had no contact during the 

training parts of the study.  Cognitive outcome measures were given immediately after 

the 10 training sessions, and yearly for five years.  The cognitive measure given was 

designed to assess the directly trained cognitive ability (i.e. memory, reasoning, or speed 

of processing).  Functional outcomes were assessed with self-report measures of daily 

living and two performance-based measures—an Every Day Problems test and an 

Observed Tasks of Daily Living behavioral simulation test.  Results showed that all three 

interventions produced improvement in their specific cognitive abilities that was retained 
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across the five years.  The improvement remained significant at all five time points.  The 

reasoning training resulted in significantly less functional decline in self-reported 

instrumental activities of daily living than the control group, indicating that training on 

higher-level cognitive abilities may generalize to day-to-day, functional improvement.  

There were also significant increases in the performance-based measure for processing 

speed, and these subjects had significant increases on a measure of self-rated health 

(though no significant increases on self-reported instrumental activities of daily living 

were seen; Wolinsky et al., 2010).  This result, however, only occurred in those subjects 

that received the four session booster trainings, indicating a need for larger doses of 

training in this cognitive realm (Willis et al., 2006; Wolinsky et al., 2010).   

 More recently, the Improvement in Memory with Plasticity-based Adaptive 

Cognitive Training (IMPACT) study looked at the effects of a broadly available cognitive 

training program designed to improve the speed and accuracy of auditory information 

processing.  Community-dwelling, older adults (age 65 and older) were randomly 

assigned to the treatment group or to an active control group.  The active control group 

watched computer-based educational videos at the time of training.  The Repeatable 

Battery for the Assessment of Neuropsychological Status (RBANS) and a Cognitive Self-

Report Questionnaire were used to assess cognition in every-day life.  Results showed 

significant improvements in the Auditory Memory and Attention subtest of the RBANS, 

which was anticipated because this measure was directly related to the trained task.  

Performance improvements also generalized to some untrained measures of memory and 

attention, including word list recall, digits backwards, and letter-number sequencing.  

These results indicated that the computerized cognitive training did, in fact, improve 
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generalized measures of memory and attention and that the effect was robustly distributed 

across a range of neuropsychological tasks (Smith et al., 2009).   

 Despite these two findings that support the positive effects of brain-plasticity 

based training programs, a recent meta-analysis on the immediate and delayed effects of 

cognitive interventions concluded that training programs have not shown a definitive 

delay or slow of progression in brain disease (Papp, Walsh, & Snyder, 2009).  This, 

however, doesn’t necessarily mean these computerized interventions are not effective, it 

merely highlights a need for further research on how the programs can be appropriately 

designed and used in the aging population.	  

 1.5.2 Principles of Posit Science’s Brain Plasticity-Based Visual Training 

Programs.  Pioneering work by Dr. Merzenich and others has shown that the brain can 

undergo anatomical changes when stimulated by the Posit Science training programs.  

These programs adapt on a moment-to-moment and session-by-session basis to the 

unique abilities of each user.  They are designed to train speed and accuracy by driving 

the brain to make accurate discriminations while operating on stimuli with rapid time 

courses over brief periods of time.  The activities are constructed to closely resemble the 

demands of real-world performance so that the effects will be more likely to generalize 

(Delahunt et al., 2008).   

 The specific program used in this study (DriveSharp™) encompasses two training 

activities.  The first, Jewel Diver, targets divided visual attention, sustained visual 

attention, divided visual attention, and visual precision. Performance on this task is based 

on the number of objects the user is able to track at once.  The second task in 

DriveSharp™, Road Tour, targets the ability to extract useful information from peripheral 
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vision while inhibiting irrelevant information.  In other words, the activity is designed to 

enhance the operational visual attentional area, or the Useful Field of View (UFOV).  

Pilot research by Merzenich demonstrated that younger participants (mean age 27) 

performed significantly better than older participants (mean age 63) on both of these 

training activities.  Merzenich also established that after 10 training sessions, the mean 

performance of the older participants approached that of the younger participants 

(Delahunt et al., 2008). 

 For the purpose of this study, DriveSharp™ training can be conceptualized as 

intending to directly improve the following cognitive abilities related to attention:  

sustained visual attentions, selective visual attention, divided visual attention, and the 

speed with which visual attentional functions are carried out.  These subcomponents of 

visual attention have been historically conceptualized as separate but overlapping 

cognitive abilities, and studies have shown that different combinations of anatomical 

areas carry out specific operations underlying each attentional dimension.  For example, 

the more basic aspects of attention involve orienting to a stimulus, or actively focusing on 

a target location.  This specific type of attention has been shown to activate areas of the 

posterior parietal cortex in positron emission tomography studies, and is generally 

referred to as the posterior attentional system (Peterson et al., 1988). 

 Higher in the taxonomy of visual attention is selective attention, which involves 

searching a visual display, selecting appropriate focal targets, and reducing attention to 

the irrelevant stimuli present (Koch & Ullman, 1985). While neurons are selective in the 

range of activation depending upon the nature of the target, the role of the attentional 

system is to allocate activation according to which stimuli are important to direct one’s 
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focus (Sohlberg & Mateer, 2001). Attention of this nature involves the posterior 

attentional system interacting with the thalamus, which assists in recognition of the 

pertinent patterns in the environment so that one can focus on relevant stimuli while 

disengaging from irrelevant stimuli (Petersen et al., 1987). Previous research has shown 

that selective attention declines with age because of the reduced ability to inhibit the 

attention to irrelevant stimuli (McDowd & Filion, 1992). 

 At the top of the attention taxonomy are the more complex abilities that rely on 

attentional processes, such as divided attention and working memory (Sohlberg & 

Mateer, 2001), which are widely known to be susceptible to age-related declines 

(Hartley, 1993; Salthouse, 1991).  These higher-level attentional functions involve and 

overlap with executive functions, such as planning and organization.  In addition to the 

basic neurocircuitry described above, mental processing at this more executive level 

engages the prefrontal cortex, which assists in the aspects of attention that require 

organization, integration, and flexible thinking (Sohlberg & Mateer, 2001).  

 According to Merzenich and colleagues, DriveSharp™ is designed to enhance 

positive neuroplasticity mechanisms underlying the cognitive realms that are engaged by 

the program (Mahnke, Bronstone, & Merzenich, 2006).  Since both Jewel Diver and the 

Useful Field of View exercises demand various aspects of visual attention, it is 

hypothesized that increases in neuropsychological outcome measures would be the result 

of upregulation of LTP and increased neural efficiency in one or more of these 

anatomical systems described above. 	  

	   1.5.3	  Evidence for Transfer Effects.  Specifically, training has been shown to 

improve functioning in cognitive realms that are directly trained (Ball et al., 2002; Smith 
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et al., 2009; Willis et al., 2006), but support for the idea that transfer of cognitive training 

can occur to dissimilar tasks has been limited (Kramer & Willis, 2002; Edwards et al., 

2007).  There has, however, been evidence that training in more fundamental cognitive 

realms can produce a transfer effect to improvement in more complex abilities.  Speed of 

processing training, for example, has been shown to transfer to improvement on everyday 

abilities (based on the Timed Instrumental Activities of Daily Living test; Edwards et al., 

2002) and to improvement on on-road driving performance (Roenker, Cissel, Ball, 

Wadley, & Edwards, 2003).  Both of these tasks have little resemblance to the simple 

speed of processing exercises that participants were trained with and require much more 

complex cognitive activity.   The most encouraging study on transfer effects to date 

(Jaeggi, Buschkuehl, Jonides, & Perrig, 2008) provided evidence that training on a task 

of working memory produced improvements not only on the directly trained measure of 

working memory processes, but also on an untrained measure of fluid intelligence.  

Furthermore, it was found that there was a dose dependent increase in the levels of fluid 

intelligence.  Since previous theories have stated that working memory and fluid 

intelligence both require that more basic cognitive mechanisms (such as attentional 

control; Conway et al., 2002) be working properly for efficient and successful use, it 

could be argued that the training-related gain in fluid intelligence could be explained by 

the fact that working memory accounts for much of the variance of the individual 

differences in fluid intelligence.  However, the increase in fluid ability levels remained 

intact even after controlling for pre-existing individual differences in working memory as 

well as gains in working memory capacity at each time point (as measured by simple or 

complex span tasks).  This suggests that the training-related gain in fluid intelligence is 
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not directly the result of the relationship between working memory and fluid ability, and 

that a true transfer effect occurred. 

 According to Cattell’s theory (1963), fluid intelligence is used in situations that 

present new problems, requiring the brain to adapt to the situation and figure out a 

solution using higher-level mental processes.  Fluid intelligence is closely related to 

professional and academic success (Rohde & Thompson, 2007) and is the strongest 

indicator of general intelligence (Neisser et al., 1996).  There is a rapid decline in fluid 

ability into old age (Bugg, Zook, DeLosh, Devalos & Davis, 2006; Maitland et al., 2000), 

and research has shown that this decline is a significant predictor of age-related 

functional impairment (Burdick et al., 2003).  Improvement in this area of cognition 

would undoubtedly enhance the functioning of older adults, but since the underlying 

nature of fluid intelligence is to solve novel problems, it is a difficult aspect of cognition 

to increase with practice. So far, the research by Jaeggi and colleagues provides the only 

evidence for the increase of fluid intelligence by training a less-complex, more 

fundamental cognitive ability.  It suggests, however, that because fluid intelligence is 

conceptualized as a cluster of many intellectual abilities (such as processing speed and 

attention; Cattell, 1971; Horn, 1982), improvement on the fluid intelligence construct as a 

whole may be achieved by training these other elementary mental operations as well.  	  
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CHAPTER 2 

METHODS 

2.1 Participants 

 The target population (n=32) was a community sample of older individuals 

between the ages of 60-75, who were active drivers, without past or current neurological 

or serious psychiatric history.  All participants were required to have Mini-Mental Status 

Exam (MMSE; Folstein, Folstein, & McHugh, 1975) scores of 26 or greater.  No 

participants were enrolled in the study who had medical conditions that would likely 

predispose them to imminent functional decline (e.g. recent stroke); or severe sensory 

losses that would interfere in training or driving.  No participants had recent cognitive 

training. 

2.2 Design 

 A randomized, waitlist controlled design was used.  The intervention group began 

the intervention while the wait-list control group began the intervention after 2 weeks 

time (the time to complete the intervention; see Figure 1).   

2.3 Intervention 

Posit Science Cortex™ with Insight Drive Sharp™ 

 Sixteen individuals were randomly assigned to the cognitive training program 

called Posit Science Cortex™ with Insight™ DriveSharp ™, heretofore called 
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DriveSharp™.  This is a computer program encompassing two engaging tasks.  These 

include:  

1. Jewel Diver™ – the participant acts as a deep-sea diver tracking sunken 

jewels and in order to do so, he/she has to follow them on the screen when a 

bubble or fish hides them. 

2. Road Tour™ - the participant takes a trip along Route 66, locating road 

signs and identifying other cars along the way to expand useful field of view and 

increase processing speed. 

 The purpose of this program is to help an individual improve his or her visual 

attention and useful field of view.  Each exercise continually adapts to the individual’s 

performance so that the training is always at an appropriate level for that specific person 

(Zelinski, Yaffe, Ruff, Kennison & Smith, 2007).  Each exercise requires between 8 and 

10 hours of training. Participants were required to engage in training at its recommended 

dosing (60 min/day, 5 days/week, 2 weeks).  

2.4 Procedures 

 2.41 Recruitment.  Research participants were selected from the MIT AgeLab 

research participant database (COUHES #602001612) and through MIT COUHES 

approved community advertising.  A telephone screening script, confirmation letter and 

directions were used when contacting research participants about participation in the 

study.   

 2.42 Screening.  All participants completed a number of screening steps to 

determine eligibility (e.g., no neurological or psychiatric disabilities).  This included a 
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phone screen that asked for demographic data, driving history, and health information.  

After the individual was deemed eligible and he or she agreed to move forward, the 

individual was scheduled for a baseline screening assessment.  

 Participants were consented to participate.  During this process the time 

commitment, procedures, and compensation for the study were explained.  Once 

consented, participants were assessed with the Mini Mental Status Exam (MMSE; 

Folstein, et al., 1975).  Only participants with scores of 26 or higher, cut-off for normal 

cognitive functioning, were allowed to continue to the Repeatable Battery for Assessment 

of Neuropsychological Status (RBANS; Randolph, 1998).  The RBANS is an 

individually administered test measuring attention, language, visuospatial constructional 

abilities, and immediate and delayed memory.  It consists of 12 subtests, which yield five 

Index scores and a Total Scale score.  Normative information from the manual for the 

Index and Total scores is based on 540 healthy adults who ranged in age from 20–89 

years old.  To continue with the training, individuals needed to have RBANS overall 

scores representative of normal aging (taken to be 2 standard deviations within the 

normative population range, 70-130). 

 2.43 Randomization.  After all registered participants had been interviewed and 

assessed, they were randomly assigned to either the immediate intervention group 

(DriveSharp™) or a waitlist control group (control condition) using a fixed 

randomization scheme with assignment alternating between intervention and control (see 

Figure 1). 

 2.45 Neuropsychological Assessment.  All participants were given identical 

neuropsychological assessments.  These assessments occurred at two and three time-
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points: the first at baseline and the second and third after the intervention depending on 

whether the individual was in the initial treatment arm or the waitlist control.  At these 

times, participants were administered the Trail Making Tests, counterbalanced by 

participants for either the A/B or C/D version, the three Useful Field of View (UFOV) 

subtests (Ball, et al., 1988), and the Raven’s Progressive Matrices test (Raven, et al., 

2003). The assessments in the neuropsychological battery were different from the training 

exercises, ensuring that any changes seen in the performance on the assessment would 

represent true generalization of improvement rather than a familiarization with visually 

similar tasks. 

Trail Making (Reitan & Wolfson, 1986):  This is a neuropsychological test of 

visual attention and task switching.  The task requires that participants connect-

the-dots of 25 consecutive targets on a sheet of paper.  There are two versions of 

the trail-making test: A/B and C/D.  Trails A and C are measures of visual 

scanning and processing speed.  Trails B and D are measures of visual attention, 

divided attention, and executive control.  The goal is for the participant to finish 

the test as quickly as possible without making mistakes. The primary measure is 

time for completion.  

Useful Field of View (UFOV) test (Ball et al., 1988):  The UFOV test measures 

the speed at which one can rapidly process multiple stimuli across the visual field. 

UFOV does not correlate with visual acuity but rather is a measure of attentional 

resources and their spatial distribution (Ball et al., 1988).  The test, administered 

on a personal computer, requires identifying targets presented at varying durations 

(16.67–500 ms).  Three subtests are administered (processing speed, divided 
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attention, and selective attention).  Scores for each subtest can range from 16.67 

to 500 ms and are combined into a single composite score (Ball & Owsley, 1993). 

Raven’s Standard Progressive Matrices (Raven, 1962).  This is a 

neuropsychological test measuring fluid intelligence abilities, including problem 

solving, pattern completion, and abstract reasoning.  The test is comprised of 60 

visual analogy multiple-choice problems.  Each problem presents an image with a 

missing component, and the test taker must choose one of six item options that 

will best fill the missing segment to complete the larger pattern.  For the purposes 

of this study, the RSPM was divided into three test variations with 20 problems in 

each variation.   

 2.46 Intervention Compliance Assessment.  The intervention compliance was 

assessed through self-report and verified through Posit records.  Individuals were asked 

to keep record of time spent on the intervention in an attempt to measure compliance.  

This was measured continuously throughout the study period.  

2.5  Data Analysis 

 The sample was analyzed for differences between-subjects on demographic 

variables such as age, gender, and compliance.  The dependent measures were the 

performance on each neuropsychological test.  A mixed model ANOVA was used with 

one between-subject factor of group (intervention and control) and one within-subject 

factor of time (pre- and post-intervention).  It was predicted that the ANOVA would 

reveal a significant effect for the interaction of group by time.  Furthermore, it was 

predicted that follow-up comparisons will show that the source of the significant effect is 
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due to higher performance of the intervention group at time 2 in comparison to the 

performance of the control group at time 2.   

 A paired samples t-test was used to compare the change in test performance pre- 

and post-intervention for the whole group; visits 1 and 2 were compared for the 

intervention participants and visits 1 and 3 were compared for the waitlist control 

participants. 
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Figure 1.  Study Design 
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CHAPTER 3 

RESULTS 

3.1 Baseline Comparisons 

 Table 1 presents demographic characteristics and cognitive profiles (determined 

by the RBANS) of the total sample of 32 participants.  Additionally, the baseline 

comparisons of the waitlist control group and the treatment group are displayed.  The 

entire sample had a mean age of 66.56 years (standard deviation = 5.15) and was 

composed of 17 women and 15 men, 28 of whom were right handed, three left-handed, 

and one ambidextrous. The total sample had 17.09 mean years of completed education 

(standard deviation = 2.64). The waitlist control group was composed of 16 participants 

(7 female and 9 male) with a mean age of 66.31 (standard deviation = 5.83).  The 

treatment group also included 16 participants (8 female and 8 male) with a mean age of 

66.81 (standard deviation = 4.55).  As shown, the waitlist control and training groups did 

not differ significantly in gender, age, or race.  Baseline cognitive performance was also 

similar between groups.  There were no significant differences found in the RBANS total 

scores or across the five subtests. 
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Table 1.  Demographic information and baseline cognitive profiles (mean standard score 
on RBANS) for participants assigned to Waitlist Control versus DriveSharp™ conditions 

 

	  
Total	  
Sample	  
(n=32)	  

Waitlist	  
Control	  
(n=16)	  

DriveSharp™
(n=16) p-‐value	  

Age	   66.56	  
(5.15)	  

66.31	  	  
(5.83)	  

66.81	  	  
(4.55)	   0.79	  

%	  female	   46.9%	   43.8%	   50.0%	   0.73	  

%	  White	   90.6%	   93.8%	   87.5%	   1.00	  

%	  right	  handed	   87.5%	   87.5%	   87.5%	   0.70	  

Years	  of	  education	   17.09	  
(2.64)	   16.38	  (2.78)	   17.81	  (2.72)	   0.13	  

RBANS	  Total	  Score	   104.22	  
(13.58)	  

103.94	  
(11.35)	  

104.50	  
(15.89)	   0.91	  

RBANS	  Immediate	  
Memory	  

99.78	  
(11.78)	   97.81	  (12.91)	   101.75	  

(10.59)	   0.35	  

RBANS	  Visuospatial	   106.44	  
(16.70)	  

105.75	  
(17.86)	  

107.13	  
(16.00)	   0.82	  

RBANS	  Language	   100.59	  
(11.80)	   97.94	  (10.34)	   103.25	  

(12.88)	   0.21	  

RBANS	  Attention	   109.69	  
(15.93)	  

111.63	  
(15.87)	  

107.75	  
(16.26)	  

0.50	  

RBANS	  Delayed	  
Memory	  

103.28	  
(11.49)	  

102.56	  
(10.83)	  

104.00	  
(12.42)	  

0.73	  
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3.2  Cognitive Performance 

 Participants were evaluated with three main tests of attention and a test of fluid 

intelligence. Presented on Tables 2-4 are comparisons of performance pre- and post-

training with DriveSharp™ on the Trailmaking Test A/C and Trailmaking Test B/D 

(Table 2), the Useful Field of View task (UFOV; Table 3), and Ravens Progressive 

Matrices (Table 4).  

3.21 Comparisons of performance on the Trail Making test at baseline and after training 

with DriveSharp™.  

 Trail Making A/C.  For the total sample that received the training, a paired-

samples t-test was used to evaluate the impact of the intervention on participants’ scores 

on the Trail Making A/C. There was a statistically significant decrease in the time to 

completion on Trail Making A/C from baseline (M = 36.64 seconds, SD = 13.99) to post-

intervention (32.19 seconds, SD = 10.20), t(31) = 2.22, p = 0.03, d = 0.39 (see Table 2 

and Figure 2).  

 Trail Making B/D. For the total sample that received the training, a paired-

samples t-test was used to evaluate the impact of the intervention on participants’ scores 

on the Trail Making B/D. There was no statistically significant difference in the time to 

completion from baseline (M = 87.83, SD = 37.18) to post-intervention (M = 87.01, SD = 

43.33), t(31) = 0.12, p = 0.91, d = 0.02 (see Table 2 and Figure 2). 
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Table 2.  Comparison of performance on time to completion (seconds) for the Trail 
Making test between pre- and post-intervention with DriveSharp™ 
 

Total	  Sample	   Time	  to	  Completion	  (n=32)	  
	   Pre	   Post	   p-‐value	   d	  
Trail	  Making	  A/C	   36.64	  (13.99)	   32.19	  

(10.20)	  
0.03*	   0.36	  

Trail	  Making	  B/D	   87.83	  (37.18)	   87.01	  
(43.33)	  

0.91	   0.01	  

* denotes significance (p ≤	  0.05) 

 
 
 

Figure 2.  Performance of entire sample on the Trail Making Test at baseline and post-
training with DriveSharp™ 

Trail Making Test Performance 

 
 

Trails A/C 
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3.22 Comparisons of performance on the UFOV test at baseline and after training with 
DriveSharp™.  

 UFOV Processing Speed.  For the total sample that received the training, a paired-

samples t-test was used to evaluate the impact of the intervention on UFOV Processing 

Speed.   There was a statistically significant change in reaction time from baseline (M = 

27.41 milliseconds, SD = 29.10) to post-intervention (M = 17.01 milliseconds, SD = 

1.77), t(31) = 2.06, p = 0.05, d = 0.50.  However, when two outliers (more than 2.5 

standard deviations from the mean) were removed, the results did not retain their 

significance:  baseline (M = 21.14 milliseconds, SD = 13.05) to post-intervention (M = 

16.70 milliseconds, SD = 0.00), t(29) = 1.86, p = 0.07, d = 0.48 (see Table 3 and Figure 

3).  Despite the non-significant results, there was still a moderate effect size for this 

change in processing speed.   

 For the DriveSharp™ group, a paired-samples t-test was used to evaluate the 

impact of the intervention on UFOV Processing Speed.  There was no statistically 

significant difference in the reaction time from baseline (M = 30.01 milliseconds, SD = 

36.87) to post-intervention (M = 16.70 milliseconds, SD = 0), t(15)=1.44, p = 0.17, d = 

0.36.  When one outlier was removed, the results remained insignificant, t(15)=1.22, p = 

0.24, d = 0.88. 

 For the waitlist control group who subsequently underwent the DriveSharp™ 

training (comparison between visits 1 and 3), a paired-samples t-test was used to evaluate 

the impact of the intervention on UFOV Processing Speed.  There was no statistically 

significant difference in the reaction time from baseline (M = 24.81 milliseconds, SD = 

19.41) to post-intervention (M = 17.33 milliseconds, SD = 2.50), t(15)=1.73, p = 0.11, d = 

0.43.  When one outlier was removed, the results remained  insignificant, t(14)=1.46, p = 
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0.17, d = 0.38.  

 Figure 4 presents the performance on UFOV Processing Speed reaction times 

between groups during their first two visits.  A mixed-model ANOVA with one between-

subjects factor of group (DriveSharp™, Control) and one within-subjects factor of testing 

(visit 1, visit 2) was conducted.  There was no significant interaction between groups and 

time, F(1,30) = 0.33, p = 0.57, partial eta squared = 0.01.  There was a main effect for 

time, F(1,30) = 4.17, p = 0.50, partial eta squared = 0.12, with both groups showing a 

reduction in UFOV Processing Speed over time and no between-subject group 

differences, F(1,30) = 0.18, p = 0.67, partial eta squared = 0.01.  The absence of a 

statistically significant interaction group and time indicated training did not improve 

UFOV processing speed.   The significant effect for time indicated that both groups 

showed similar improvement in UFOV, regardless of training. 

 Due to the multi-visit design with a waitlist control, analyses were run to 

determine the change between visits among the waitlist control group (see Table 5).  

Paired sample t-tests showed that there was no significant change between visits 1 and 2 

(both pre-treatment visits), t = 1.46, p = 0.17, d = 0.53, indicating that this specific subtest 

was not significantly susceptible to practice effects. 

 In summary, after outliers were removed, there were no significant reductions in 

reaction times on the UFOV Processing Speed for the total, DriveSharp™, or waitlist 

control groups who had received training; however, all three groups showed reductions 

with moderate effect sizes.  For the waitlist control group who completed UFOV testing 

during three visits, there were no significant differences between visits 1 and 2.  When 

comparing DriveSharp™ and waitlist control groups between visits 1 and 2, a main effect 
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of time was found with no between-subject difference.  

 UFOV Divided Attention. For the total sample that received the training, a paired-

samples t-test was used to evaluate the impact of the intervention on UFOV divided 

attention. There was a statistically significant change in reaction time from baseline (M = 

83.04 milliseconds, SD = 90.06) to post-intervention (M = 24.82 milliseconds, SD = 

22.73), t(31) = 4.18, p < 0.01, d = 0.89.  When two outliers were removed from analyses 

(more than 2.5 standard deviations from the mean), the results remained statistically 

significant:  baseline (M = 64.46 milliseconds, SD = 74.60) to post-treatment: (M = 19.37 

milliseconds, SD = 7.61), t(29) = 3.71, p < 0.01, d = 0.85 (see Table 3 and Figure 3).  

 For the DriveSharp™ group (n=14, after removal of outliers), a paired-samples t-

test was used to evaluate the impact of the intervention on UFOV Divided Attention.  

There was a statistically significant difference in the reaction time from baseline (M = 

88.82 milliseconds, SD = 88.14) to post-intervention (M = 20.51 milliseconds, SD = 

10.03), t(13)=2.91, p = 0.01, d = 1.09. 

 For the waitlist control group who subsequently underwent the DriveSharp™ 

training (comparison between visits 1 and 3; n=16), a paired-samples t-test was used to 

evaluate the impact of the intervention on UFOV Divided Attention.  There was a 

statistically significant difference in the reaction time from baseline (M = 52.52 

milliseconds, SD = 58.06) to post-intervention (M = 18.37 milliseconds, SD = 4.72), 

t(15)=2.38, p = 0.03, d = 0.83.  

 Figure 4 presents the performance on UFOV Divided Attention reaction times 

between groups during their first two visits.  A mixed-model ANOVA with one between 

subjects factor of group (DriveSharp™, Control) and one within-subjects factor of testing 
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(visit 1, visit 2) was conducted.  As mentioned above, two outliers (more than 2.5 

standard deviations from the mean) were removed from the dataset.  There was no 

significant interaction between groups and time, F(1,28) = 3.32, p = 0.08, partial eta 

squared = 0.11.  There was, however, a main effect for time, F(1,28) = 16.7, p < 0.01, 

partial eta squared = 0.38, with both groups showing a reduction in UFOV Divided 

Attention over time and no between-subject group differences, F(1,28) = 3.16, p = 0.09, 

partial eta squared = 0.10  

 Analyses between visits 1 and 2 among the waitlist control group (see Table 5) 

showed that there was no significant change between visits 1 and 2, t=0.27, p=-.79, d= 

0.09.   This suggests that this particular subtest is not significantly susceptible to practice 

effects.  

 In summary, UFOV Divided Attention improved for the total sample following 

training.  However, since no significant differences were found between the change in 

performance of the waitlist control group and the DriveSharp™ group from visit 1 to visit 

2, a true training effect may not be present.  

 UFOV Selective Attention. For the total sample that received the training, a 

paired-samples t-test was used to evaluate the impact of the intervention on UFOV 

Selective Attention.  There was a statistically significant change in reaction time from 

baseline (M = 114.12 milliseconds, SD = 60.16) to post-intervention (M = 72.42 

milliseconds, SD = 38.83), t(31) = 5.92, p < 0.01, d = 0.83 (see Table 3 and Figure 3).   

 For the DriveSharp™ group, a paired-samples t-test was used to evaluate the 

impact of the intervention on UFOV Selective Attention.  There was a statistically 

significant difference in the reaction time from baseline (M = 132.13 milliseconds, SD = 
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67.64) to post-intervention (M = 82.93 milliseconds, SD = 46.69), t(15) = 4.38, p < 0.01, 

d = 1.09. 

 For the waitlist control group who subsequently underwent the DriveSharp™ 

training (comparison between visits 1 and 3; n=16), a paired-samples t-test was used to 

evaluate the impact of the intervention on UFOV Selective Attention.  There was a 

statistically significant difference in the reaction time from baseline (M = 96.11 

milliseconds, SD = 47.03) to post-intervention (M = 61.50 milliseconds, SD = 26.68), 

t(15) = 4.06, p = 0.001, d = 1.02.  

 Figure 4 presents the UFOV Selective Attention reaction times between groups 

during their first two visits.  One outlier was removed from analysis (more than 2.5 

standard deviations from the mean).  A mixed-model ANOVA with one between-subjects 

factor of group (DriveSharp™, Control) and one within-subjects factor of testing (visit 1, 

visit 2) was conducted.  There was a significant interaction between groups and time, 

F(1,29) = 6.79, p = 0.01, partial eta squared = 0.11.  There was also a significant main 

effect for time, F(1,29) = 16.46, p = 0.00, partial eta squared = 0.36, with both groups 

showing a reduction in UFOV Divided Attention over time and no between-subject group 

differences, F(1,28) = 3.16, p = 0.25, partial eta squared = 0.05. 

 Due to the multi-visit design with a waitlist control, analyses were run to 

determine the change between visits among the waitlist control group (see Table 5).  

Paired sample t-tests showed that there was no significant change between visits 1 and 2, 

t = -0.49, p = 0.63, d = -0.14, indicating that this subtest was not significantly susceptible 

to practice effects.    

 In summary, significant reductions in reaction times were observed for the total 
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group that received training, the DriveSharp™ group, and the waitlist control group after 

they received training.  Effect sizes were large for this reduction in reaction time (d = 

0.83).  When comparing DriveSharp™ and waitlist control groups between visits 1 and 2, 

an interaction effect was found.  Additionally, a main effect of time was found with no 

between-subject difference.  The significant between-group interaction (between the 

waitlist control and DriveSharp™ group) along with the significant main effect of time 

might indicate that although a true training effect is present, there may also be some 

practice effects. 

 

 

Table 3.  Comparison of performance on reaction time (milliseconds) for the Useful Field 
of View subtests between pre- and post-intervention with DriveSharp™ 
 

	   Reaction	  Time	  (n=32)	  
	   Pre	   Post	   p-‐value	   d	  

UFOV:	  	  Processing	  
Speed	  

21.14	  (13.05)	  °	   16.70	  °	  
(0.00)?	  

0.07	  °	   0.48	  

UFOV:	  	  Divided	  
Attention	  

64.46	  (74.60)	  °	   19.37	  °	  
(7.61)	  

<	  0.01*	  °	   0.85	  

UFOV:	  	  Selective	  
Attention	  

114.12	  (60.16)	  	   72.21	  
(38.96)	  

<	  0.01*	  	   0.83	  

* denotes significance (p ≤	  0.05); °	  outliers	  removed	  from	  analysis	  
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Figure 3. Performance of entire sample on the UFOV subtests at baseline and post-
training with DriveSharp™ 
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Figure 4.  Performance on UFOV subtests between groups within visits 
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3.23  Comparisons of performance on the Raven’s Progressive Matrices test at baseline 

and after training with DriveSharp™.  

 Raven’s Progressive Matrices.  For the total sample that received the training, a 

paired-samples t-test was used to evaluate the impact of the intervention on performance 

on the Raven’s Progressive Matrices task.   There was no statistically significant change 

in total number of matrix problems correct from baseline (M = 13.90 correct, SD = 3.31) 

to post-intervention (M = 13.93 correct, SD = 3.23), t(29) = -0.07, p = .942 (see Table 4 

and Figure 5).  

 Figure 6 presents the performance on the Raven’s Progressive Matrices test 

between groups during their first two visits.  A mixed-model ANOVA with one between- 

subjects factor of group (DriveSharp™, Control) and one within-subjects factor of testing 

(visit 1, visit 2) was conducted.  There was no significant main effect for time (from pre- 

to post-treatment), F(1,29) = 0.00, p = 0.96, partial eta squared = 0.00.  The interaction 

between group and time was also not significant, F(1,29) = 3.20, p = 0.09, partial eta 

squared = 0.10. 
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Table 4.  Comparison of performance on number correct for the Raven’s Advanced 
Progressive Matrices test between pre- and post-intervention with DriveSharp™ 
 

Total	  Sample	   Number	  Correct	  (n=32)	  
	   Pre	   Post	   p-‐value	   d	  

Raven’s	  Matrices	   13.9	  (3.32)	   13.93	  (3.23)	   0.94	   0.03	  
 
 
 

 

 

Figure 5.  Performance of entire sample on the Raven’s Progressive Matrices test at 
baseline and post-training with DriveSharp™ 
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Figure 6.  Performance on Raven’s Progressive Matrices between groups within visits  
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3.3 Correlations between demographic data, baseline cognitive functioning and 

performance on neuropsychological outcome measures.   

 Of note, there was a significant negative correlation between the age of the 

subjects and the change in the speed with which they completed Trails A (calculated by 

subtracting the pre-treatment score, or the score at visit 1 for both groups, by the post-

treatment score, or visit 2 for the treatment group and visit 3 for the waitlist control 

group), r = -0.35, n = 32, p = 0.02; in other words, the older the participants were, the 

more they improved on this test after treatment with DriveSharp™.  Performance on the 

Immediate Memory portion of the RBANS also correlated with change in the time to 

completion of Trails A, r = -0.39, n = 32, p = 0.03; these results suggest that baseline 

memory functioning correlated with improvement on Trails A after treatment with 

DriveSharp™. 

 Performance on the Visuospatial Construction portion of the RBANS was 

significantly correlated with the change in the speed of reaction on both the UFOV 

Divided Attention and Selective attention subtests (r = -0.42, n = 32, p = 0.02 and r = -

0.44, n = 32, p = 0.01, respectively, indicating that better performance on the 

Visuospatial Construction portion of the RBANS correlates with less of a change in 

reaction time from pre- to post-treatment on these UFOV subtests.   

 Finally, reduction in response time pre- to post-treatment on Trails A was 

significantly correlated with an increase in performance pre- to post-treatment on the 

Raven’s Progressive Matrices, r = -0.41, n = 32, p = 0.03.  These results suggest that 

those that were improving on Trails A were also improving on the Raven’s Progressive 

Matrices after treatment with DriveSharp™.   
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CHAPTER 4 

DISCUSSION 

 The present study examined the relationship of a computer-based training 

program, specifically DriveSharp™, and performance on various measures of cognitive 

functioning.  Participants between the ages of 60 and 75 were randomly assigned to either 

a treatment or a waitlist control group; both groups completed the DriveSharp™ training 

program at some point during the study.  All participants completed baseline assessments 

using the RBANS on which there were no differences between groups.  Pre- and post- 

intervention measures included standardized and laboratory neuropsychological tests of 

the cognitive abilities that DriveSharp™ was designed to enhance (e.g., processing speed 

and various aspects of visual attention) and standardized measure of a more complex 

cognitive ability that was not directly activated in the DriveSharp™ activities (fluid 

intelligence).  The specific aims of this study addressed whether DriveSharp™ training 

could 1) improve performance on Trail Making Test A/C and B/D—measures of different 

aspects of visual attention, 2) improve performance on three UFOV subtests—measures 

of information processing related to attention, and 3) whether the directly trained effects 

of DriveSharp™ could transfer to an improvement on the Raven’s Progressive Matrices 

test—a measure of fluid intelligence. These specific outcome measures were chosen to 

assess change in a range of cognitive abilities that are known to be susceptible to declines 

during the normal aging process. 
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4.1 DriveSharp™ and the Trail Making Test 

 The Trail Making Test A/C is a measure that requires perceptual speed and 

attentional function (e.g., visual scanning, vigilance, and concentration).  Age-associated 

performance decrements for Trails A/C have been well documented, and are thought to 

be the result of the general slowing of psychomotor speed and attentional abilities (Ivnik, 

Malec, Smith, Tangalos & Petersen, 1996).  The Trail Making Test A/C has been 

correlated to types of attention involving alerting, visual search, and orienting to chosen 

information (Wahlin, Backman, Wahlin, & Winblad, 1996).  In this study, alternate 

versions of the test (A or C) were given pre- and post-training to avoid group practice 

effects.   

 Given Posit Science’s claim that DriveSharp™ improves both attentional capacity 

and processing speed, it was hypothesized that two weeks of training with this program 

would improve performance (i.e., decrease the time to completion) on this task.  The 

results of this study supported the hypothesis that computerized training with 

DriveSharp™ improved performance on Trail Making Test A/C for the combined group.  

This indicates that basic aspects of attention, including visual search, the ability to focus 

on a simple sequence of relevant stimuli, and psychomotor speed were improved after the 

DriveSharp™ training.   

 It also has been shown that older adults show an age-related deficit in the aspect 

of attention that involves performing dual tasks (Hartley, 2001), or divided attention.  The 

decline in divided attention is thought to relate to both the slowing of the attentional 

processes involved in the task and the use of a more cautious task coordination strategy 

during dual tasks (Glass et al., 2000). With that in mind, the Trail Making Test B/D was 
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chosen for this study to measure cognitive flexibility, dual processing, and the ability to 

inhibit a dominant response while maintaining set.  Research has shown that older 

individuals have more difficulty on Trailmaking B/D (Salthouse, Atkinson, & Berish, 

2003; Van Gorp, Satz, & Mitrushina, 1990), but that performance on this task is 

responsive to training and intervention (Edwards, Wadley, et al., 2005).   

 Given that the Jewel Diver task and part of the UFOV task in the DriveSharp™ 

training both were designed to exercise divided attention, it was hypothesized that 

improved performance would be seen on Trails B/D after training.  This hypothesis, 

however, was not supported.  These results suggest that the more complex attentional 

abilities demanded by the set-switching nature of Trails B/D were not improved by the 

DriveSharp™ training.  The addition of the divided attention component may have 

required more complex aspects of attention that had not responded as well, if at all, to 

training.   

4.2 DriveSharp™ and the UFOV test 

 The UFOV test, the most widely used test of visual attention, includes three 

subtests that measure various aspects of how effectively and efficiently one extracts 

visual information from the environment. Each of these measures the speed at which one 

can rapidly process multiple stimuli across the visual field, and each requires specific 

facets of visual attention in order to perform the task efficiently.  The first subtest, UFOV 

Processing Speed, measures the threshold for discriminating stimuli presented in the field 

of view.  The second, UFOV Divided Attention, also measures reaction time to 

environmental stimuli, but requires dual processing of a stimulus in the periphery.  The 

third, UFOV Selective Attention, adds irrelevant information to the periphery so the 
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relevant target must be searched for.  The three subtests build upon one another, with the 

third and most challenging subtest (Selective Attention) requiring basic attentional 

processing, dual processing, and inhibitory processing to filter out irrelevant information.   

 These subtests are similar to the Road Tour part of the DriveSharp™ training, 

which is designed to improve reaction time during these three tasks that measure various 

aspects of attention.  Therefore, it was hypothesized that improvement in reaction time 

would be seen in all three UFOV subtests after the two weeks of training with 

DriveSharp™.  This hypothesis, however, was only partially supported; significant 

improvement was seen on only the Selective Attention subtest, suggesting that the 

training effects of DriveSharp™ were limited to specific aspects of attention captured in 

the performance of this measure.  As described above, selective attention involves the 

ability to focus on relevant information while filtering out irrelevant information in the 

environment, so it can be assumed that an improvement in this ability underlies the post-

training improvement seen on this measure.  Significant improvement in reaction time 

was not seen on the UFOV Processing Speed subtest, which requires only basic 

attentional function related to speed of information processing (though post-training 

decrease in reaction time did produce a moderate effect size).   

 In addition, there was no significant change on the UFOV Divided Attention 

subtest, which also involves the more complex attentional function of dual processing.  

Non-significant improvement with a moderate effect size was produced, however, 

suggesting that there was some effect of training.  Since the primary difference between 

the Divided Attention and Selective Attention subtests is the requirement of inhibiting 
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irrelevant distracters (Zelinski et al., 2007), this may be the locus of function that was 

most responsive to the DriveSharp™ training.  

4.3 Drivesharp™ and the Raven’s Progressive Matrices test 

 The Raven’s Progressive Matrices test was chosen to determine whether or not 

the training produces a transfer effect, that is, an improvement in fluid abilities (e.g., 

reasoning) that are not directly trained by the DriveSharp™ tasks.  The types of cognitive 

abilities related to fluid intelligence are thought to be very susceptible to age-related 

declines (Bugg et al., 2006).  Research has shown that functional decline may be 

correlated with deterioration of fluid abilities (Maitland, Intrieri, Schaie, & Willis, 2000), 

so improvements of this type could lead to important changes in the quality of life of 

older individuals. 

 Jaeggi et al. (2009) showed that training on a task of working memory produced 

improvements not only on the directly trained measure of working memory processes, 

but also on an untrained measure of fluid intelligence.  Based on the idea that basic 

attentional machinery is an underlying component of the more complex process of fluid 

intelligence, it was hypothesized that an increase in attentional efficiency would transfer 

to an improvement on the Raven’s Progressive Matrices test.  This hypothesis was not 

supported, indicating that the attentional mechanisms that were improved by training did 

not transfer to an improvement in fluid intelligence.  

4.4 Implications of Study 

 Visual attention is a multi-faceted cognitive domain that has been shown to be 

improved by training with tasks related to visual search, divided attention, and speed of 

processing (Ball et al., 2002).  According to this study, when speed of processing training 
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(i.e., putting time pressure on the execution of tasks) was combined with attentional 

demand of increasing visual complexity (i.e., more distracters present as the training 

progresses), improvement was seen on a timed visual search task and a task demanding 

selective attention.  The results of this study suggest that it is possible to use 

DriveSharp™ to rectify these age-related cognitive deficits by stimulating positive 

neuroplastic processes underlying specific facets of attention related to selectively 

attending and searching for relevant material in the visual display. 

 Previously in this paper, two popular theories were proposed to explain the 

potential mechanisms underlying age-related cognitive change: the processing speed 

theory and the attentional capacity theory.  Though these theories are often seen as 

competing, the results of this study suggest that both can be used to explain the 

vulnerabilities susceptible to training-related improvements in age-related decline.   

 As explained above, Salthouse and colleagues have proposed in their processing 

speed theory that the gradual disuse of mental skills that occurs as we advance into later 

life results in a decrease in the time and efficiency of our basic mental operations 

(Salthouse, 1996).  From this specific theoretical perspective, it is postulated that two 

weeks of DriveSharp™ training in this study may have stimulated the synaptic regions 

involved in specific facets of attention, likely related to selective attention and visual 

search.  The speed with which these attentional processes could be carried out was 

increased, thereby improving performance on two tasks that depend heavily on this 

particular attentional ability. 

 The results can also be interpreted from the attentional capacity perspective, 

which has been described as a deficiency in utilizing and appropriately distributing 
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attentional resources (Craik & Byrd, 1982; Levitt, Fugelson, & Crossley, 2006).  The 

improvement on UFOV Selective Attention measure points toward an increase in the 

ability to inhibit irrelevant information.  Trail Making Test A/C also requires this type of 

ability in order to inhibit the numbers on the page that are not relevant to moment-to-

moment focus on the specific sequence of numbers.  This inhibitory process is heavily 

intertwined specifically with processing control rather than general speed per se, 

involving the ability to slow down processing of less-relevant information (McDowd & 

Filion, 1992) while directing faster processing to the relevant information.  By acting on 

this mechanism, two weeks of DriveSharp™ training in this study may have improved 

the attentional control abilities surrounding inhibition of irrelevant material.  This is 

thought to be the most vulnerable aspect of visual attention during the aging process, 

specifically in conditions where visual search is required (Plude & Hoyer, 1985). 

 Additional insights can be gleaned from the cognitive abilities that did not 

respond to training.  These included the measure of attentional processing speed (UFOV 

Processing Speed), two measures of divided attention (UFOV Divided Attention and 

Trail Making Test B/D), and the measure of fluid intelligence (Raven’s Progressive 

Matrices).  It should be noted that while the combined group’s change in reaction time on 

the UFOV Processing Speed measure was not significant, it did decrease and analyses 

resulted in a moderate effects size.  Still, the absence of a significant effect on the 

cognitive ability that is widely thought to underlie age-related decline is somewhat 

confusing, particularly since basic attentional functions were responsive to training and it 

is likely that these rely on speed of execution.  The most likely explanation is that the 

UFOV Processing Speed subtest was not rigorous enough to detect any effects, or that 
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training was only helpful when exercises became more demanding of attentional 

resources.  

 The absence of significant training impact on the more complex, directly-trained 

mental abilities, such as set-shifting and dual processing of relevant information, is more 

easily justified.  These higher-level cognitive abilities involve frontal brain regions for 

executive functions (e.g., working memory), which may have not responded as easily to 

the type of training used in this study. We know from previous research that it is possible 

to train such abilities (e.g., Jaeggi et al., 2008; Willis et al., 2006), however, the training 

design in these studies often involved direct and constant practice with working memory 

exercises.  Even though parts of DriveSharp™ were designed to exercise divided 

attention, which often requires working memory, the amount and intensity of this type of 

training may not have been enough to produce effects.  It should also be noted that there 

was a non-significant improvement with a moderate effect size on the UFOV Divided 

Attention test from pre- to post-training; this decrease in reaction time after training 

suggests that there may be some training effect present, just not as strong of an effect as 

seen on the UFOV Selective Attention test.  This could be explained by the theory that 

the attentional process most sensitive to age-related decline is the ability to inhibit 

irrelevant information (Gazzaley, Cooney, Rissman, & D’Esposito, 2005), and that the 

cognitions where decline has already occurred are the most susceptible to improvement.  

Inhibition of task-irrelevant stimuli is essentially the key operation involved in selective 

attention; although it is utilized in divided attention as well, divided attention is perhaps 

more reliant on the mechanisms of task-switching and dual-processing.   

 Furthermore, there was no improvement on the Raven’s Progressive Matrices, 
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indicating that the attentional mechanisms that were improved by training did not transfer 

to an improvement in fluid intelligence.  This again may be the result of not enough 

training of higher-level abilities that activate frontal, executive regions as well as the 

basic attentional machinery.  The premise under which the initial hypothesis was made 

had to do with the idea that more fundamental cognitive abilities (e.g., processing speed, 

attention, and working memory) help to make up the cluster of functions necessary for 

reasoning and fluid intelligence (Cattell, 1971; Horn, 1982).  These results imply that 

there either was not enough training with DriveSharp™ to make the attentional 

improvements necessary to increase the broader function of fluid intelligence, or that the 

training program was not targeting the specific functions necessary for the transfer effect 

to occur.  As previously stated, working memory or other higher-level functions may be 

the key target function that would allow this to occur.  

4.5 Limitations and Future Research 

 The small sample size was a limitation of this study that may have prevented a 

transfer effect from occurring.  The small sample size impacted the statistical analyses, 

resulting in limited power and the threat of Type II error.  Also, despite the lack of 

significant differences between groups on demographic and cognitive screening 

measures, the pre-treatment performance on some of the neuropsychological measures 

differed significantly.  There were large standard deviations due to within group 

differences in baseline performance, making it more difficult to find statistically 

significant improvement from pre- to post-treatment.  Therefore, the use of a larger 

sample size may have produced more accurate statistical effects, which may have 

resulted in significant change on measures for which there was non-significant 
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improvement with a moderate effect size (such as UFOV Divided Attention).  

 The sample itself was made up with individuals who were relatively young, 

healthy, and cognitively intact.  Moreover, they all owned a computer and had time 

available to engage in training and complete the study; this is not necessarily a true 

representation of the broader population of older adults who could benefit from 

treatment.  Taken together, these factors limit the generalizability of the results.  Future 

studies should consider the broader population that would eventually have access to this 

type of technology.   

 Further studies on improving complex cognitive abilities (such as fluid 

intelligence) by training more fundamental processes are needed.  The results of this 

study suggest that training attentional systems alone might not target the appropriate 

functions to produce a transfer effect.  Additionally, previous research (Jaeggi et al., 

2008) found that there was a dosage effect of working memory training on fluid 

intelligence performance.  This indicates that if it is possible to see an effect on fluid 

intelligence by training attentional systems, our dose of training was not enough.  Future 

research should either target more complex cognitive abilities with frontal lobe 

involvement, such as working memory, or increase the dose of training with visual 

attention exercises.   

 Finally, this study does not address the generalizability of the results to real-world 

functioning.  It is unknown whether an increased ability to perform Trail Making Test 

A/C and UFOV Selective Attention would translate into any functional, day-to-day 

improvements.  So far, research surrounding the effects of cognitive training 

interventions have been mixed.  Some studies suggest significant self-reported quality of 



 51 

life improvements along with the improvements seen on laboratory assessments of 

cognition (Smith et al., 2009).  Some have only reported modest effects on tasks of daily 

living (Willis et al., 2006), while others report no significant transferable changes (Papp, 

Walsh, & Snyder, 2009).  While this study shows that training-related cognitive change is 

possible, further studies should utilize outcome measures that represent behaviors seen in 

every day life.  Clarification is needed on how best to use this type of technology so that 

optimal transfer to real-world functioning will occur. 
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