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ABSTRACT 

 

STUDYING SOIL MOISTURE AND LAND-TO-WATER CARBON EXPORT IN 

URBANIZED COASTAL AREAS USING REMOTELY SENSED DATA AND A 

REGIONAL HYDRO-ECOLOGICAL MODEL 

 

December 2013 

 

Yun Yang, B.A., Beijing Normal University, China 
M.S., University of Massachusetts Boston 
Ph.D., University of Massachusetts Boston 

 

Directed by Professor Crystal B. Schaaf 

 

The main objective of this research was to study the flux of dissolved organic carbon 

(DOC) from a terrestrial urbanized watershed to an estuarine system using a process-

based regional hydro-ecological model and remotely sensed data. 

 

While DOC is an important component of the global carbon cycle, the link of the 

variations in terrestrial carbon storage is still poorly understood. Soil moisture is a key 

factor that influences the amount of available water for vegetation growth and the 
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decomposition rate of organic matter in the soil and thus contributes to the amount of 

DOC in the soil at the land-water boundary. The Regional Hydro-Ecological Simulation 

System (RHESSys) was used to model the biogeochemical cycle in the Neponset 

Watershed, Boston, MA from 2006 to 2011. Remotely sensed indices and field 

measurements of soil moisture, locally measured watershed DOC values, and streamflow 

gauge amounts were used to evaluate the modeled results.   

 

The fully parameterized high resolution RHESSys model was used to simulate soil 

moisture in the highly urbanized and fragmented Neponset watershed and displayed good 

correlation with the measured soil moisture values. Another two measures of soil 

moisture conditions (the topographic moisture index (TMI) and the remotely sensed 

temperature vegetation dryness index (TVDI)) were also estimated and compared with 

field measured data. Two nested study areas, the Neponset River Watershed and the 

Greater Boston Area, were utilized to correspond with two spatial resolutions. The DOC 

concentration data sampled in the Neponset River Watershed were analyzed and the 

sensitivity of the DOC simulation in RHESSys was evaluated. The simulated DOC was 

compared with estuarine results and a good correlation was found to exist between the 

measured and simulated DOC concentrations and fluxes.   

 

This effort represents the first successful application of RHESSys model to an urbanized 

New England watershed and not only provided an accurate way to estimate both soil 
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moisture and DOC flux but also provided a framework to test further hypotheses and 

future scenarios to benefit global carbon cycle research. 



vii 
 

ACKNOWLEDGEMENTS  

 
First and foremost I would like to express the deepest appreciation to my advisor, 

Professor Crystal Schaaf, for her support and help. Without her knowledge, guidance and 

persistent help this dissertation would not have been possible. 

 

I would like to thank the following professors and members of my committee: Professor 

Christina Tague, Professor David Tenenbaum, Professor Robert Chen, Professor Ellen 

Douglas and Professor Wei Ding, for their advice, thoughtful scientific discussions, and 

hard work. I especially want to thank Professor Christina Tague for repeatedly hosting 

me in UC Santa Barbara, and for her support and scientific insights. It has been a real 

pleasure and a joy to work with her. 

 

I want to thank members of Schaaf research group for their help and friendship. I would 

also like to extend my appreciation to people in School for the Environment for creating a 

great atmosphere to work in.  

 

Last but not least, I would like to thank my family members. I want to thank my husband 

Zhuosen. He has been with me through my entire graduate career, supported me, helped 

me and stood by me through the dissertation work. I also want to thank my daughter and 

my parents for their enormous support and understanding during the completion of the 

project. 

 



viii 
 

TABLE OF CONTENTS 
 
ACKNOWLEDGEMENTS ........................................................................................................ vii 

 
LIST OF TABLES ........................................................................................................................ x 

 
LIST OF FIGURES ......................................................................................................................xi 

 
LIST OF ABBREVIATIONS .................................................................................................. xvii 

 
CHAPTER                                                                                                                      Page 
 

1. INTRODUCTION ....................................................................................................... 1 

  1.1. Dissolved Organic Carbon ......................................................................... 2 
  1.2. Soil Moisture Measurement and Estimation Methods ............................ 6 
  1.3. The Regional Hydro-Ecological Simulation System (RHESSys) ........ 8 
  1.4. Research Area ............................................................................................ 11 
 

2. EVALUATING THE SOIL MOISTURE WITH THE TEMPERATURE 
VEGETATION DRYNESS INDEX  (TVDI) ESTIMATED WITH VARIOUS 
VEGETATON INDICES (VIS) FROM MODIS AND LANDSAT DATA .... 15 

  2.1. Introduction ................................................................................................ 15 
  2.2. Data and Methodology .............................................................................. 17 
  2.3. Results and Discussions ............................................................................ 29 
  2.4. Conclusion .................................................................................................. 55 
 

3. DOC CONCENTRATION PATTERNS IN THE NEPONSET RIVER 
WATERSHED EXPLORED WITH REMOTELY SENSED DATA ............... 58 

  3.1. Introduction ................................................................................................ 58 
  3.2. Study Area .................................................................................................. 60 
  3.3. Data ............................................................................................................. 61 
  3.4. Methodology .............................................................................................. 62 
  3.5 Results and discussions .............................................................................. 63 
  3.6. Conclusion .................................................................................................. 89 
 

4. SENSITIVITY ANALYSIS AND SIMULATION OF DOC 
CONCENTRATION AND FLUX DURING INITIALIZATION OF THE 
RHESSYS MODEL ................................................................................................. 91 



ix 
 

CHAPTER                                                                                                                      Page 
  4.1. Introduction ................................................................................................ 91 
  4.2. Study Area and Data ................................................................................. 94 
  4.3. Methodology ............................................................................................ 102 
 

5. SENSITIVITY ANALYSIS AND SIMULATION OF DOC 
CONCENTRATIONS AND FLUX USING THE RHESSYS MODEL – THE 
RESULTS ................................................................................................................ 108 

  5.1. Sensitivity Analysis ................................................................................. 108 
  5.2. Neponset Results ..................................................................................... 131 
  5.3. Conclusion ................................................................................................ 138 
 

6. SUMMARY.............................................................................................................. 140 

 
REFERENCE............................................................................................................................. 146 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

LIST OF TABLES 

Table Page 

2.1. Acquisition date of both MODIS NBAR data and LST data. ....................................18 

 
2.2. Equations for the vegetation indices that were used to evaluate TVDI. .....................19 

 
3.1. Measured DOC concentration from the Neponset River Watershed. .........................65 

 
3.2. Sub-basins’ watershed characteristics list. ..................................................................74 

 
3.3. The correlation between GPP and measured DOC concentration. .............................88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

LIST OF FIGURES 

Figure                                                                                                                             Page 
 
1.1. The structure of RHESSys model. ................................................................................9 

 
1.2. Greater Boston, Massachusetts, as defined in this study (shown in light blue). .........11 

 
1.3. The Neponset River Watershed. .................................................................................13 

 
2.1. DEM for the Neponset Watershed and the slope map created from the DEM. ..........21 

 
2.2. Sampling Locations in the Neponset River Watershed. .............................................23 

 
2.3. Sampling locations of the ULTRA-EX project among the two transects (Rao et al. 

2013). .....................................................................................................................26 

 
2.4 Simplified Ts/NDVI plot (Sandholt et al. 2002). .........................................................28 

 
2.5. Histogram of the two sub-basins’ slope. .....................................................................29 

 
2.6. Topographic Moisture Index (TMI) calculated from the 5 m DEM map. ..................30 

 
2.7. Histogram of TMI for the two sampling sub-basins. ..................................................31 

 
2.8. Temporal patterns of mean soil moisture in both Milton and Sharon. .......................33 

 
2.9. Boxplot of field measured soil moisture in the Milton area over the sampling period.34 

 
2.10. Boxplot of field measured soil moisture in the Sharon area over the sampling period.

................................................................................................................................34 

 
2.11. The linear relationship between soil moisture and CV in two sub-basins. ...............35 

 
2.12. Coefficient of determination between soil moisture and TMI vs. sampling date in 

two sub-basins in the Neponset River Watershed and the precipitation data. .......37 



xii 
 

Figure                                                                                                                             Page 
 
2.13. TMI of the eastern part of Massachuestts. ................................................................38 

 
2.14. Slope of VI-LST plot on different days shown with precipitation data. Different 

lines show slopes using various vegetation indices. ..............................................40 

 
2.15. The intercept of VI-LST plots on different days shown with precipitation data. 

Different lines show intercepts using various vegetation indices. .........................41 

 
2.16. Spearman’s test coefficient of TVDIs using various VIs. ........................................42 

 
2.17. TVDI calculated using NDVI and EVI2 from MODIS on day 208 of year 2010. ...43 

 
2.18. Slope of VI-LST plot on different days shown with precipitation data in 2011. 

Different lines show slope using various vegetation indices. ................................45 

 
2.19. Intercept of VI-LST plot on different days shown with the precipitation data in 2011. 

Different lines show intercept using various vegetation indices. ..........................46 

 
2.20. Spearman’s test coefficient of TVDIs estimated using various VIs on different days 

in 2011. ..................................................................................................................47 

 
2.21. TVDI calculated using NDVI and EVI2 from Landsat data on day 197 of year 2011.49 

 
2.22. Slope of VI-LST plot on different days shown with precipitation data. Dashed lines 

show slope using various vegetation indices based on MODIS data. Solid lines 

show slope using various vegetation indices based on Landsat TM data. .............50 

 
2.23. Intercept of VI-LST plot on different days shown with precipitation data. Dashed 

lines show intercepts using various vegetation indices based on MODIS data. 

Solid lines show intercepts using various vegetation indices based on Landsat TM 

data. ........................................................................................................................50 

 
2.24. TVDI map created using EVI2 based on Landsat data from July 16th, 2011. ..........51 



xiii 
 

Figure                                                                                                                             Page 

 
2.25. The comparison between TVDI estimated using various VIs and measured soil 

moisture..................................................................................................................53 

 
2.26. Plot of TVDI estimated using EVI2 and measured soil moisture in Sharon and 

Milton. The green dots are samples from Milton and the red dots are samples 

from Sharon. ..........................................................................................................55 

 
3.1. The Neponset River Watershed. .................................................................................60 

 
3.2. The DOC concentration sampling points throughout the Neponset River Watershed.64 

 
3.3. Correlation between mean DOC concentration and standard deviation at all sampling 

points. If P10 is removed, the correlation increases to 0.71. .................................67 

 
3.4. Boxplot of DOC concentrations at each sampling point. ...........................................68 

 
3.5. Boxplot of DOC concentrations from all sampling points in different years. ............69 

 
3.6. Boxplot of DOC concentration measurements in different seasons. ..........................71 

 
3.7. Comparison of DOC concentrations averaged from all sampling points among 

different months. ....................................................................................................72 

 
3.8. Biplot of the scores of the first three principal components. ......................................77 

 
3.9. Biplot of the scores of the principal component 1 and principal component 3. .........77 

 
3.10. Comparison of the precipitation among 118 years’ average and from year 2006 to 

year 2011. ...............................................................................................................78 

 
3.11. Comparison of the maximum temperature among 118 years’ average and from year 

2006 to year 2011...................................................................................................79 

 



xiv 
 

Figure                                                                                                                             Page 

 
3.12. Comparison of the minimum temperature among 118 years’ average and from year 

2006 to year 2011...................................................................................................79 

 
3.13. API estimated from precipitation data. The blue line shows precipitation data and 

the red line shows the API values. .........................................................................80 

 
3.14 Plot of Average DOC concentrations and API values of samples from the growing 

season excluding year 2008. ..................................................................................81 

3.15. Plot of average monthly temperature and measured DOC concentration for all 

months. Points are numbered with the months in which they were sampled. .......83 

 
3.16. Plot of DOC concentrations averaged from all sampling sites for December and 

January to May and corresponding average daily temperature excluding year 2008. 

The red points represent samplings measured in late April and May. The green 

points represent samplings measured in December, January, February and March.83 

 
3.17. The correlation between measured DOC concentration and stream flow larger than 

0.35 ft3/sec (0.098 m3/sec). ....................................................................................85 

 
3.18. The correlation between DOC concentration and stream flow during the low flow.86 

 
3.19. GPP and mean DOC concentration from year 2006 to year 2011. ...........................87 

 
3.20. Plot of DOC concentration and 8-day GPP. .............................................................89 

 
4.1 The Neponset River Watershed with Massachusetts State as the background. The 

upper right corner is the digital elevation map of the Neponset River watershed. 94 

 
4.2. 100 years’ climate data at the Blue Hill weather observation station .........................95 

 
4.3. Location of USGS gauge stations in the Neponset River Watershed and DEM map of 

the Neponset River Watershed...............................................................................99 



xv 
 

Figure                                                                                                                             Page 
 
4.4. Input maps for RHESSys of the Neponset River Watershed ....................................100 

 
4.5. Patches created from combining DEM, soil type, vegetation type, land use type in the 

Neponset River Watershed at 30 m resolution ....................................................101 

 
4.6. The simplified carbon cycle and the DOC production and transportation processes in 

RHESSys. DOM is dissolved organic matter which includes both dissolved 

organic carbon and dissolved organic nitrogen in RHESS ..................................105 

 
5.1. DOM_decay_rate changes for stream DOC flux when soil depth is 3 m. ................113 

5.2. DOM_decay_rate changes for stream DOC concentration when soil depth is 3 m. 113 

 
5.3. DOM_decay_rate changes for stream DOC flux when soil depth is 10 m. ..............114 

 
5.4. DOM_decay_rate changes for stream DOC concentration when soil depth is 10 m.114 

 
5.5. Stream DOC flux changes with DOM_production_rate. ..........................................116 

 
5.6.  Stream DOC concentration changes with DOM_production_rate. .........................117 

 
5.7.  Plant carbon amount changes with DOM_production_rate. ....................................117 

 
5.8. Stream DOC flux changes with the DOC_absorption_rate. .....................................119 

 
5.9. Stream DOC concentration changes with the DOC_absorption_rate. ......................119 

 
5.10. Stream DOC flux changes with nitrogen deposition. .............................................123 

 
5.11. Stream DOC concentration changes with nitrogen deposition. ..............................123 

 
5.12. Plant carbon storage changes with nitrogen deposition changes. ...........................123 

 
5.13. Stream  DOC flux changes with change in temperature. ........................................124 

 



xvi 
 

Figure                                                                                                                             Page 

 
5.14.  Stream  DOC concentration changes with change in temperature. .......................124 

 
5.15.  Plant carbon storage changes with change in temperature. ...................................125 

 
5.16.  Stream DOC flux changes with soil depth. ............................................................126 

 
5.17.  Stream DOC concentration changes with soil depth and plant carbon storage 

changes with soil depth. .......................................................................................127 

 
5.18.  The correlation between average daily DOC flux and the proportion of surface 

water that becomes groundwater. ........................................................................128 

 
5.19.  Stream DOC flux changes with the litter composition. .........................................129 

 
5.20.  Stream DOC concentration changes with the litter composition. ..........................130 

 
5.21.  Plant carbon storage changes with the litter composition. .....................................130 

 
5.22. Uncertainty assessment of the stream flow simulation. The grey area was defined by 

using the 5% and 95% confidence levels of the acceptable simulated stream flow. 

The red line was the observed stream flow at the outlet of the Neponset River 

Watershed. ...........................................................................................................132 

 
5.23. Uncertainty assessment of logarithms of stream flow simulation. .........................133 

 
5.24. Simulated root zone soil moisture of the whole Neponset River Watershed 

comparing with average measured soil moisture in Sharon and Milton sub-basins.134 

 
5.25. Simulated daily DOC concentration compared with observed DOC concentration 

and simulated daily stream flow compared with observed stream flow. .............137 

 
5.26. Simulated daily DOC flux compared with observed DOC flux and simulated daily 

stream flow compared with observed stream flow. .............................................137 



xvii 
 

 LIST OF ABBREVIATIONS 

 
API antecedent precipitation index 

AVHRR advanced very high resolution radiometer 

CDOM chromophoric dissolved organic matter 

CV coefficient of variation 

DEM digital elevation map 

DHSVM distributed hydrology soils and vegetation model 

DN digital number 

DOC dissolved organic carbon 

DOM dissolved organic matter 

DON dissolved organic nitrogen 

DOY day of year 

ET evapotranspiration 

EVI2 two-band enhanced vegetation index 

FI feedback index 

GLUE generalized likehood uncertainty estimation 

GPP gross primary production 

gw ground water 

LAI leaf area index 

LEDAPS landsat ecosystem disturbance adaptive processing 
system 

LST land surface temperature 

MODIS moderate resolution imaging spectroradiometer 

NASA national aeronautics and space administration 

NBAR nadir BRDF adjusted reflectance 

NDVI normalized difference vegetation index 

NIR near infrared 

NLCD national land cover dataset 

NOAA national oceanic and atmospheric administration 

NRCS natural resources conservation service 



xviii 
 

PCA principal component analysis 

RHESSys regional hydro-ecological simulation system 

RVI ratio vegetation index 

SAVI soil adjusted vegetation index 

SD standard deviation 

TM thematic mapper 

TMI topographic moisture index 

TOA top of atmosphere 

TVDI temperature vegetation dryness index 

USDA united states department of agriculture 

USGS united states geological survey 

VI vegetation index 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

 
 
 
 
 
 
 
 
 

CHAPTER 1 
 
 

INTRODUCTION 

 

 

 

Dissolved organic carbon (DOC) is an important component of the global carbon cycle 

with variations linked to changes in terrestrial carbon storage. Soil moisture influences 

the decomposition rate of organic matter in the soil and the amount of available water for 

vegetation growth and thus DOC in the soil at the land-water boundary. When soil is 

saturated, lateral flow occurs and carries DOC from the soil into stream channels. This 

research explored the flux of DOC from a terrestrial urbanized watershed to an estuarine 

system with a process-based regional hydro-ecological model and remotely sensed data. 

A special emphasis was placed on the effects of soil moisture on the system and the 

utility of various remotely sensed indices of soil moisture. The study area encompassed 

the Neponset River Watershed, one of the main waterways flowing through Boston, 

Massachusetts and emptying into Boston Harbor. The Regional Hydro-Ecological 

Simulation System (RHESSys) was used to model the details of the Neponset Watershed 
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biogeochemistry. Remotely sensed data and field measurements of soil moisture and 

estuarine DOC are then used to evaluate the modeled results.   

 

 

1.1 Dissolved Organic Carbon Flux  

The flux of Dissolved Organic Carbon (DOC) from the terrestrial system to the aquatic 

system is a fundamental part of the global carbon cycle. The world riverine DOC export 

to the oceans is 0.2 GtC/year (Smith and Mackenzie 1987). It tightly links terrestrial, 

estuarine and marine carbon cycling together (Richey et al. 2004b) and contributes to the 

mechanisms of soil formation by influencing the complexity, solubility, and mobility of 

metals (Martell et al. 1988; Perdue et al. 1976; Trumbore 1993; Weng et al. 2002). DOC 

affects the aquatic ecosystem by attenuating radiation to protect the aquatic biota in the 

surface layer from UV radiation and at the same time serving to shade the aquatic biota in 

the lower layer of water (Boeing et al. 2004; Williamson and Zagarese 1994). DOC 

concentrations in riverine stream channels also impact the water quality and thus directly 

impact the health of both anthropogenic and natural communities in a watershed (Delpla 

et al. 2009; Siddiqui et al. 1997). 

 

Many studies have been carried out investigating the source, formation, and fate of DOC 

in soils and flux of DOC from the terrestrial to aquatic systems (Ågren et al. 2010; Chow 

et al. 2006; Clutterbuck and Yallop 2010; Kicklighter et al. 2013; Mayer 1994; Yano et al. 

1998). However, because of the difficulty in obtaining frequent field measurements and 

lack of consistency between laboratory studies and field measurements, our knowledge of 
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the DOC in soil and the DOC flux from the terrestrial to aquatic systems is still 

fragmentary (Kalbitz et al. 2000). DOC in soil originates from the decomposition of plant 

litter, soil humus, microbial biomass and root matter (Miller 2012; Roulet and Moore 

2006). The contact time between soil and soil water is very important for DOC 

concentrations in soil solution (Borken et al. 2011; Michalzik and Matzner 1999). In the 

spring, more water passes through the soils in a shorter time, and thus the DOC 

concentrations in soil pore water is low; the DOC concentrations in soil is higher in 

summer because less water passes through soils during comparable time periods 

(Bourbonniere 1989; Dawson et al. 2011; McDowell and Wood 1984). The fate of soil 

DOC is hydrological flushing, soil absorption and decomposition which relates to the 

nitrogen status (Boissier and Fontvielle 1993; Boyer et al. 1996; Nelson et al. 1994). 

Between 12 to 44% of DOC in the forest floor soil is decomposed by indigenous 

microbes (Yano et al. 1998). Temperature appears to be a key factor that can affect the 

concentration of DOC in soil with respect to both its source and its fate, making it 

difficult to discern the effect of increasing temperature on DOC concentrations in soil 

solution (Preston et al. 2011). Some research shows that increasing temperature increases 

DOC concentrations in soil solution (Bianchi et al. 2009; Liechty et al. 1995; Luo et al. 

2009; Williamson et al. 2008) while other research finds only a weak relationship 

between temperature and DOC concentrations in soil (Chow et al. 2006; Dosskey and 

Bertsch 1997; MacDonald et al. 1999).  

 

Hydrological flushing caused by precipitation or snowmelt serves as major method of 

DOC transport from the terrestrial to aquatic systems (Dyson et al. 2011; Raymond and 
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Saiers 2010). A high DOC flux into a stream is often observed right after snowmelt and 

the flux decreases sharply after the first peak (Boyer et al. 1996; Yavitt and Fahey 1985). 

The timing, duration and amount of precipitation and antecedent soil moisture conditions 

all influence the processes that transition DOC into streams. Field studies have found 

high DOC concentrations in stream channels during moist periods following a 

particularly dry period (Tipping et al. 1997; Zsolnay et al. 1999). Transition of DOC from 

the terrestrial to aquatic systems is also regulated by mineral soil absorption, a 

complicated process hard to quantify (Kalbitz et al. 2000). Despite intensive research on 

DOC in soils and in streams, there appears to be a combination of causes for either higher 

DOC concentrations in soil or higher DOC flux (Kalbitz et al. 2000; Strohmeier et al. 

2013).  

 

The flux of DOC in streams can be estimated using existing field measurements and 

landscape characteristics. Previous modeling work includes the SPAtially Referenced 

Regressions On Watershed attributes (SPARROW) model which is an empirical model 

that uses a nonlinear regression equation describing the transport of contaminants from 

point sources on land to rivers and through the stream network to relate the water quality 

measurements of monitoring stations to attributes of the corresponding watersheds 

(Schwarz et al. 2006). The Load Estimator (LOADEST) regression software (Runkel et al. 

2004) is also an empirical model and relates point samples to the whole watershed based 

on the regression relationship among the point measurements (Huntington and Aiken 

2012). A landscape-mixing model was applied to predict DOC concentration from 

contributing landscape elements (Ågren et al. 2013). Currie and Aber coupled a 
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decomposition model (DocMod) with a hydrology model that predicts litter production 

and actual evapotranspiration and applied this to the White Mountain National Forest in 

0.1 km2 grids on a monthly time step (Currie and Aber 1997). Aitkenhead and McDowell 

used C:N ratio in soil as a predictor to estimate annual DOC flux at both local and global 

scales (Aitkenhead and McDowell 2000). As a major component of DOC, chromophoric 

dissolved organic matter (CDOM), absorbing ultraviolet and visible light and plays an 

important role in both coastal water optical properties and the biogeochemical cycling of 

various elements, can also be used as a proxy of DOC flux (Bissett et al. 2001; Bricaud et 

al. 1981; Chen 1999; Chen et al. 2002; Green and Blough 1994; Huang and Chen 2009).  

While many studies have been developed to estimate DOC fluxes in forested areas, few 

have been developed for coastal areas and particularly for urbanized coastal areas. 

Coastal areas connect the terrestrial areas and the oceans, with energy and materials being 

exchanged frequently and in large amounts. Furthermore, urbanized areas are the places 

most impacted by human activities. Thus urbanization has the potential to greatly modify 

soil carbon pools and fluxes (Groffman and Turner 1995; Pouyat et al. 2002). Global 

deforestation due to land use changes over a 15 year period have been shown to cause a 

decrease of about 4* 1011 g of DOC (Hedges et al. 1997). The amount of carbon released 

from fossil fuels and stored in cement production for urbanized regions is estimated at 5.5 

GtC (Beven and Binley 1992). Conversely, urban trees in the conterminous USA are 

estimated to have stored 700 million tons of carbon in 2001 (Nowak and Crane 2002). 

However, it must be acknowledged that climate change influences may be exacerbated in 

urban areas because of the multiple artificial surfaces and the high levels of fossil fuel 

combustion (Nowak 2000). Therefore, improving our understanding of DOC fluxes in 
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urbanizing coastal areas will provide more detailed information about the total carbon 

cycle at both regional and global scales. 

 

 

1.2. Soil Moisture Measurement and Estimation Methods 

Soil moisture, the content of water contained in the soil matrix, is an important parameter 

in the global hydrologic and energy cycles. It influences the partitioning of incoming 

radiative energy into sensible and latent heat fluxes (Engman 1991). Soil moisture is a 

key factor regulating DOC export by directly influencing vegetation growth, organic 

matter decomposition and the amount of water running through soil to carry DOC out 

from the terrestrial to aquatic systems. Soil moisture is one of the few parameters that 

both laboratory and field studies show the same and consistent influence on DOC export. 

DOC concentrations increase during rewetting after dry periods (Chittleborough et al. 

1992; Haynes and Swift 1991; Kalbitz and Knappe 1997; Lundquist et al. 1999; 

McDowell and Wood 1984; Tipping et al. 1999; Zabowski and Ugolini 1990; Zsolnay et 

al. 1999).  

 

Although soil moisture is a key variable in several land surface processes, it is often not 

measured with the same accuracy and frequency as other important environmental 

variables (Houser et al. 1998; Verstraeten et al. 2010). As a crucial input for many 

climate or water resource management models, increasing our understanding of soil 

moisture through remotely sensed and in situ datasets is necessary (Albergel et al. 2012; 

Beljaars et al. 1996; Entekhabi et al. 2010). The traditional measurement of soil moisture 
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using a gravimetric method is time-consuming (including both field work and oven 

drying in lab) and difficult to extrapolate to larger areas from point samples. Remotely 

sensed data are widely used to measure surface soil moisture conditions on both regional 

and global scales (Brocca et al. 2010; Choi and Hur 2012; Draper et al. 2009). 

Microwave remote sensing data is one source for retrieval of soil moisture measures 

(Entekhabi et al. 2010; Njoku and Entekhabi 1996). For instance, active microwave 

sensors (e.g. the active Advanced Scatter meter (ASCAT)) can measure soil moisture at 

different spatial scales (on the order of tens of meters), but the temporal resolution is 

relatively low. Furthermore, active microwave sensors’ sensitivity to soil moisture is 

often impacted by surface roughness, topographic features and vegetation (Engman and 

Chauhan 1995). Passive microwave instruments (e.g. the passive microwave Advanced 

Microwave Scanning Radiometer (AMSR-E)) have high temporal resolution, but poor 

spatial resolution (only on the order of tens of kilometers). Therefore, microwave 

methods are not appropriate for research that focuses on small spatial scales and high 

temporal frequency variations.  

 

In contrast, optical passive satellite data can provide high temporal and spatial resolution 

information to estimate soil moisture conditions, even though optical observations are not 

a direct measure of soil moisture. Spectral indices are often used to acquire information 

describing soil moisture status. Beven and Kirkby (Beven and Kirkby 1979) created the 

topographic moisture index (TMI) to capture the relationship between topographic 

control and sub-surface hydrology to examine soil moisture patterns. The correlation 

between near-surface soil moisture and TMI is strong in wet conditions in semi-arid 
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catchments in Australia (Western and Bloschl 1999). High correlations between near-

surface soil moisture and the TMI were also found over a gently sloping and humid 

Piedmont watershed and an urbanizing watershed in the vicinity of Baltimore, Maryland 

(Tenenbaum et al. 2006).  

 

Numerous studies (Patel et al. 2009; Sims et al. 2008; Wan et al. 2004) have shown a 

strong relationship between soil moisture and the Temperature Vegetation Dryness Index 

(TVDI) especially where the Normalized Difference Vegetation Index (NDVI) is low 

during growing seasons (i.e. in locations with sparse canopy cover) (Patel et al. 2009). 

TVDI is based on the relationship between land surface temperature (LST) and NDVI 

over different land use types (Sandholt et al. 2002). Retrieval methods of soil moisture 

data using the LST/NDVI relationship have been documented in detail (Carlson 2007; 

Petropoulos et al. 2009; Sun et al. 2011). TVDI also has been shown to have a 

relationship with land use type and antecedent precipitation index (API).  

 

 

1.3. The Regional Hydro-Ecological Simulation System (RHESSys) 

Remote sensing and in situ data can both be used as inputs to simulate watershed 

dynamics using complex land surface models (e.g. TOPS and the Regional Hydro-

Ecological Simulation System (RHESSys)) (Nemani et al. 2009; Tague and Band 2004). 

RHESSys is a hydro-ecological model which has been developed to simulate water, 

carbon and nutrient flux cycling and transport in watersheds (Tague and Band 2004). The 

model is designed as a spatially nested hierarchical representation of the landscape, using 
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different models to represent processes at different scales. There are five different spatial 

scales in this model, which are (from largest to smallest) basins, hillslopes, zones, patches 

and canopy strata. Basins are closed drainage areas that have a single stream network, 

while areas that drain into one side of a stream reach are defined as hillslopes. Zones are 

areas having similar climate forcing conditions. Patches, the finest spatial unit of these 

five scales, are the areas having similar soil moisture and land use characteristics. Canopy 

strata represent the horizontal spatial variation of vertical layers. The modeling and 

processing flow in RHESSys is shown in the following diagram (Figure 1.1, 

http://fiesta.bren.ucsb.edu/~rhessys/about/about.html#intro): 

 

 

Figure 1.1. The structure of RHESSys model. 

 

http://fiesta.bren.ucsb.edu/~rhessys/about/about.html#intro�
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RHESSys has been applied to many diverse watersheds under different climate 

conditions for various research objectives (e.g.  a semiarid watershed in California 

(Shields and Tague 2012), and mountain watersheds in Switzerland (Zierl et al. 2007)). It 

was used to study nitrogen export at the watershed scale (Band et al. 2001), stream flow 

feedbacks in response to climate change, parameterizing ungauged watersheds to 

improve the modeling stream flow feedbacks (Tague et al. 2007; Tague et al. 2009a; 

Tague et al. 2012), hydrologic vegetation gradient as an indicator for lateral hydrologic 

connectivity (Hwang et al. 2012), eco-hydrologic response to the combined impacts of 

projected climate change and altered fire frequencies (Tague et al. 2009b) and snow 

distribution (Christensen et al. 2008; Hartman et al. 1999). The redistribution of moisture 

in RHESSys is similar to TOPMODEL (Beven and Kirkby 1979) and the DHSVM 

explicit routing method (Wigmosta et al. 1994). The vertical soil moisture model includes 

a variable rooting zone soil moisture store, an unsaturated store and a saturated store. For 

the carbon cycle, carbon is fixed in the ecosystem by photosynthesis (Farquhar Equation) 

and then partially consumed by the maintenance respiration (Ryan 1991) and growth 

respiration. The rest of the carbon is allocated to different tissues in vegetation based on 

fixed allocation ratios. Carbon is lost from the system by decomposition (Parton et al. 

1996) and leaching as DOC. Nitrogen is mainly from atmosphere nitrogen deposition 

(including both dry and wet deposition) and also from plants which are able to fix 

nitrogen. The nitrogen cycle includes mineralization (Parton et al. 1996) and 

denitrification (Parton et al. 1996). Nitrogen is lost from the terrestrial system by leaching 

of water as NH4, NO3 and DON. Although RHESSys has been applied successfully in 

many climate types, it has not been used in the New England area for the study of DOC 



11 
 

flux from terrestrial to coastal aquatic environments. Thus this present effort applied 

RHESSys to an urbanized coastal watershed located south of City of Boston to simulate 

the DOC export from the terrestrial to aquatic systems. 

 

 

1.4. Research Area 

 

1.4.1 The Greater Boston Area 

 

Figure 1.2. Greater Boston, Massachusetts, as defined in this study (shown in light blue). 

 
 
To capture a gradient from drier urban pixels to wetter suburban/rural pixels, the Greater 

Boston Area, was defined for this research project (Figure 1.2), and included counties 
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from three New England states, Massachusetts, Rhode Island and New Hampshire. These 

counties were Essex, Middlesex, Worcester, Suffolk, Plymouth, Norfolk and Bristol in 

Massachusetts, Providence in Rhode Island, and Belknap, Merrimack, Stafford, 

Rockingham and Hillsborough in New Hampshire. A few separate regions (the Interstate 

495 corridor, Downtown Boston, etc.) were also tested to see if these were areas which 

would capture sufficient values along the full range of moisture (TVDI values) expected 

in an urban-rural gradient. The soil type in this region is typical New England soil; rocky, 

hard-packed and generally poor for agriculture, especially across the eastern half of 

Massachusetts (NOAA, 2005). There are over six million residents in Massachusetts, 

about half of which reside within a 50-mile radius of Boston (inside the Interstate 495 

corridor) (NOAA, 2005). The study area in New Hampshire has a much higher 

population density than the rest of the New Hampshire State. While the study area is 

predominantly residential, forest is an important component of the land cover in New 

England. 

 

 

1.4.2 The Neponset Watershed 
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Figure 1.3. The Neponset River Watershed. 

  

The Neponset River Watershed (Figure 1.3) lies south of the City of Boston. It covers 

parts of 14 cities and towns southwest of Boston. The watershed area is roughly 300 km2 

and includes about 330,000 residents. The Neponset River exits over the Lower Mills 

Dam into Boston Harbor, after running approximately 48 km throughout the watershed 

(NepRWA, 2004). It has a long history of scientific study. As early as 1873, the Neponset 

Watershed was chosen as the nation’s first publicly funded water quality study site. 

Research under the Federal Clean Water Act was carried out in the Neponset Watershed 

from 1972 onward. In the 1990s, the EPA chose this watershed as a test basin for the 

Water Evaluation and Planning Model (WEAP), a practical yet robust tool to incorporate 

water demand, water supply, water quality and ecological considerations for integrated 
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water resources planning (Gao et al. 2012). The size of Neponset River Watershed was 

selected for this study because it is big enough to develop TVDI and other remotely 

sensed datasets from Landsat data but not too large to efficiently run the RHESSys model. 

Urban land occupies a large proportion of the Neponset Watershed (around 40%). Forest 

and wetland land covers comprise most of the rest of the watershed (about 40% and 20% 

respectively). The average annual precipitation was 1054 mm from 1971 to 2000 (NOAA, 

2005). The Neponset Watershed is located in close enough proximity to the University of 

Massachusetts Boston to allow for frequent field samples. Furthermore long-term 

measurements of DOC and CDOM are also available from 2006 to present in this 

watershed (Huang and Chen, 2010). 
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CHAPTER 2 

 

 EVALUATING THE SOIL MOISTURE WITH THE TEMPERATURE VEGETATION 

DRYNESS INDEX (TVDI) ESTIMATED WITH VARIOUS VEGETATON INDICES 

(VIS) FROM MODIS AND LANDSAT DATA 

 

 

 

2.1. Introduction 

Appropriate estimates of soil moisture are necessary for the accurate hydrologic and 

biogeochemical modeling of a watershed and satellite based measures offer the best 

opportunity to capture high temporal and spatial resolution soil moisture in a regional 

fashion.  The Temperature Vegetation Dryness Index (TVDI) calculated from Pathfinder, 

AVHRR and MODIS data has been shown to have a strong relationship with soil 

moisture (Patel et al. 2009; Wang et al. 2004; Xin et al. 2006). However, few studies 

have been conducted using Landsat data (with its higher spatial resolution) to calculate 

TVDI. In these earlier studies, a strong negative relationship between TVDI and in-situ 

soil moisture was found when vegetation cover is sparse (Patel et al. 2009). However the 
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relationship is less clear over thick canopy cover. This is because the NDVI (used to 

compute the TVDI) reaches saturation over dense vegetation when the biomass exceeds a 

threshold, and can even apparently decrease when dense biomass increases because of the 

effects of canopy shadowing. This makes it difficult to detect changes in land cover 

(Huete et al. 1997). While NDVI is the traditional satellite index used for TVDI, various 

other common vegetation indices (Table 2.2), including the two-band enhanced 

vegetation index (EVI2) (Jiang et al. 2008), the ratio vegetation index (RVI) (Pearson and 

Miller 1972), and the soil adjusted vegetation index (SAVI) (Huete 1988) were also 

analyzed here at both medium and fine scales. Each vegetation index formulation focuses 

on different properties of vegetation conditions; for example, some of them include the 

influence of background soil, while others are more sensitive in dense vegetation. By 

exploring the various vegetation indices, an attempt was made to improve our 

understanding of how TVDI functions and also how the various indices might work for 

different land use types. This research used both MODIS data (500m) and Landsat data 

(30m) to calculate TVDI for the Greater Boston Area and the Neponset River Watershed 

respectively. Field sampled soil moisture data collected in the Greater Boston Area and 

the Neponset River Watershed are used to validate the TVDI patterns.  

 

Near-surface soil moisture has also been proved to relate to the Topographic Moisture 

Index (TMI) in some study areas (Tague et al. 2010; Tenenbaum et al. 2006; Western et 

al. 1999; Western et al. 2004). Many studies have used TMI to study variables that are 

indirectly influenced by hydrological processes, such as soil chemistry (Band et al. 1993; 

Whelan and Gandolfi 2002) and plant species richness (Hwang et al. 2011; Zinko et al. 
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2005). TMI has been shown to be an effective proxy for depth to water table and the 

distribution of vadose zone soil moisture for the eastern U.S., if sufficient samples in 

each sampling locations are obtained and appropriate scales of DEM data are used 

(Tague et al. 2010; Tenenbaum et al. 2006). Therefore TMI was also estimated at both 

MODIS and Landsat scales using DEM data and was compared with field measured soil 

moisture to evaluate the ability of TMI to measure soil moisture conditions in the New 

England area. 

 

 

2.2. Data and Methodology 

 

2.2.1 MODIS Data and Processing 

This study incorporated a variety of satellite data sources, including 8-day standard V005 

MODIS Nadir BRDF-Adjusted reflectance (NBAR) (MCD43A4) (Schaaf et al. 2002; 

Schaaf et al. 2011) and daytime land surface temperature (LST) (MOD11A1) (Wan et al. 

2002). The spatial resolution of the NBAR data is 500 m, while LST is provided at 1 km. 

The MODIS products were downloaded from the NASA Reverb website 

(http://reverb.echo.nasa.gov/reverb). High quality remotely sensed data were filtered 

based on the data quality flags. All of the MODIS data were originally in a Sinusoidal 

(SIN) projection, and reprojected into 

NAD_1983_StatePlane_Massachusetts_Mainland_FIPS_2001. TVDI was estimated 

using the multiday NBAR data and the daily LST that fell within the retrieval range. 
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Table 2.1 lists all the NBAR and LST data selected (based on data quality) in 2010 and 

2011 and used to estimate TVDI.  

 

Table 2.1. Acquisition date of both MODIS NBAR data and LST data. 

Year Type DOY Type DOY 

2010 

MCD43A4 97 MOD11A1 104 
MCD43A4 145 MOD11A1 145 
MCD43A4 145 MOD11A1 146 
MCD43A4 169 MOD11A1 172 
MCD43A4 201 MOD11A1 208 
MCD43A4 209 MOD11A1 213 
MCD43A4 225 MOD11A1 231 
MCD43A4 233 MOD11A1 239 
MCD43A4 241 MOD11A1 242 
MCD43A4 241 MOD11A1 243 

2011 

MCD43A4 193 MOD11A1 197 
MCD43A4 225 MOD11A1 225 
MCD43A4 225 MOD11A1 229 
MCD43A4 241 MOD11A1 241 
MCD43A4 281 MOD11A1 281 
MCD43A4 305 MOD11A1 309 

 
 

NDVI values calculated from NBAR were resampled to 1 km to be comparable with the 

1 km surface temperature data. Since NDVI usually saturates in dense vegetation (Huete 

et al. 1997); as an alternative, a few additional vegetation indices (Table 2.2), including 

Ratio Vegetation Index (RVI) (Pearson and Miller 1972), Soil-Adjusted Vegetation Index 

(SAVI) (Huete 1988) and the two band Enhanced Vegetation Index (EVI2) (Huete et al. 

1994; Jiang et al. 2008) were also used to calculate TVDI. RVI was calculated as the ratio 

of near infrared and red band which is not normalized like the other three indices. SAVI 
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was created in order to remove the influence of a soil background, especially when the 

canopy coverage is around 0.5 (Huete 1988). EVI2 also considers the influence from a 

soil background and resolves the problem of using the noisy blue band in the traditional 

EVI (Jiang et al. 2008). EVI2 has been proved to effectively deal with index saturation in 

full canopy coverage locations (Jiang et al. 2008). 

 

Table 2.2. Equations for the vegetation indices that were used to evaluate TVDI. 

Index Equation Reference 

Normalized difference 
vegetation index (NDVI) 

NIR REDNDVI
NIR RED

−
=

+
 (Inamdar and 

Mitchell 2006) 

Two-band Enhanced 
vegetation index (EVI2) 

( )2.5
2

2.4 1
NIR RED

EVI
NIR RED

× −
=

+ × +
 (Jiang et al. 2008) 

Ratio vegetation index 
(RVI) 

NIRRVI
RED

=  (Pearson and Miller 
1972)  

Soil-adjusted vegetation 
index (SAVI) 

( )1NIR REDSAVI L
NIR RED L

−
= +

+ +
 

(Huete 1988) 

 

 

2.2.2 Landsat Data and Processing  

The Landsat5 Thematic Mapper (TM) has six bands in the visible and near infrared and 

one band (band 6) in the thermal infrared region. The spatial resolution is 30 m for band 

1-5 and is 120 m for band 6. All Landsat TM data were downloaded from USGS 

GLOVIS website (http://glovis.usgs.gov/). The Landsat Ecosystem Disturbance Adaptive 
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Processing System (LEDAPS) (Masek et al. 2006) was used to convert the digital number 

(DN) value into the corresponding Top of Atmosphere (TOA) radiance and to do the 

atmosphere correction to surface reflectance. Valor and Caselles’ method of calculating 

emissivity, which relates emissivity to the NDVI of a given land surface, was used to 

convert brightness temperature to real temperature (Valor and Caselles 1996). Because of 

the cloud effect and the long revisiting time of Landsat data, the data that can be used is 

limited. Only day of Year (DOY) 197, 229 and 309 in 2011 were selected based on their 

quality and the consideration of corresponding with selected MODIS data acquisition 

date. 

 

 

2.2.3 The Digital Elevation Map (DEM) and the Topographic Moisture Index (TMI) 

DEM data (Figure 2.1 left) for the State of Massachusetts available from the MassGIS 

(http://www.mass.gov/mgis/) with a scale of 1:500 were used to create the Neponset 

Watershed slope map (Figure 2.1 right) based on the location of USGS gauge station in 

Milton Village. 

http://www.mass.gov/mgis/�
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Figure 2.1. DEM for the Neponset Watershed and the slope map created from the DEM. 

 

Topographic Moisture Index (also called Topographic Wetness Index) (Beven and 

Kirkby (1979)) which shows topographic conditions as a first-order control over 

hydrology was used in the TOPMODEL. It highly relates not only to wetness status but 

also indirectly to groundwater levels, soil pH and species distribution (Giesler et al. 1998; 

Moore et al. 1993; Rodhe and Seibert 1999; Tenenbaum et al. 2006; Zinko et al. 2005). 

TMI is calculated by the following equation: 

TMI = ln(α/tanβ)                              (1) 

where α is the drainage area that all water flow through one point per unit contour line 

length and tanβ is the slope. 
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2.2.4 Field Sampling of Soil Moisture in the Neponset Watershed 

Soil moisture data were measured using a portable soil moisture impedance probe 

(ThetaProbe ML2x by Delta-T Inc.) over the Neponset Watershed. This device has an 

array of four steel pins, which are 6 cm in length and are inserted into the soil to measure 

soil moisture. Soil moisture is measured depending on the changes in the apparent 

dielectric constant. Systematic soil moisture measurements were performed at stratified 

selected sample locations (Figure 2.2), primarily during the vegetation growing season 

(April, 2011 to November, 2011). TVDI reflects the dryness condition mostly for the root 

zone, which varies with study area and seasons (Sims et al. 2008). Earlier research 

indicated that TVDI is more related to the soil moisture at 0-10 cm depth by comparing 

the relationship between TVDI and 10 cm, 20 cm and 30 cm soil moisture measurements 

(Patel et al. 2009). The soil depth of the study area is shallow, so they are still comparable 

even though the field measured soil moisture is from the surface 6 cm. 
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Figure 2.2. Sampling Locations in the Neponset River Watershed. 

 

Sampling was conducted in two sub-basins of the Neponset River Watershed. One is in 

the Milton area, which represents more of an urban environment, and the other is in the 

Sharon region, which represents more of a forest environment. They will be referred later 

in the dissertation as Milton and Sharon respectively. Eight sampling locations were 

chosen based on the Topographic Moisture Index (TMI) gradient in each sub-basin. Six 

of the eight Milton urban sampling locations were in residents’ back yards and the other 

two were in two schools’ playgrounds. Seven of the eight forest sampling locations were 

in dense forest and one was in grassland. The sampling locations were chosen to be 

representative and homogeneous within each 5 m by 5 m sampling plot. Tague et al. 

(Tague et al. 2010) indicated that sufficient samples within a plot can avoid problems 
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associated with fine scale spatial heterogeneity and improve the accuracy of field 

measurements. 25 samples were collected and averaged in each sampling plot. 

Cylindrical soil cores (10 cm long, 5 cm diameter) were also collected from sampling 

sites and then analyzed in lab to measure the gravimetric soil moisture to calibrate the 

Theta Probe. 

 

The errors from the Theta probe itself are ±0.01 m3/m3 and vary depending on the 

calibration method applied. If the generalized calibration is used, the errors associated 

with this are ±0.04 m3/m3 (Theta probe user manual). The soil-specific calibration 

method was tested to see whether it is acceptable to use the generalized calibration. The 

soil-specific calibration method is based on the following two equations: 

√ε=1.07+6.4V-6.4V2+4.7V3        (2) 

√ε=a0+a1×θ     (3) 

where ε is the dielectric constant, V is the Theta probe output, a0 and a1 are the soil 

specific parameters that need to be calibrated. The Theta probe output is converted to 

dielectric constant (Equation 1) to calculate the soil specific parameters (Equation 2). 

 

The soil at most of the urban sampling locations was mineral soil while organic soil 

dominated the forest sampling locations. Cylindrical soil cores were collected for each of 

the sampling locations (except one site due to the resident declining permission) and they 

were grouped into two types: mineral and organic soils. All of the soil cores were 

weighed and measured with the millivolt output using the Theta probe first, and then 

dried down in an oven at a relatively high temperature. The average difference between 
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the true soil moisture and the generalized calibrated soil moisture is around 0.03 which is 

at the same order of magnitude as the sampling uncertainty for estimating the plot mean. 

This is also consistent with earlier research results (Tague et al. 2010). So the generalized 

calibrations for soil moisture were used in this study.  

2.2.5 Field Sampling of Soil Moisture in the Greater Boston Area 

Soil moisture samples collected in the Greater Boston Area were provided by Professor 

Lucy Hutyra’s group working on the Ultra-Ex Boston project (Rao et al. 2013). The 

sampling period was between June and August 2010. Two transects (Figure 2.3) were 

established across the Greater Boston Area. Both of them extend from the downtown 

Boston to the west. The northern transect starts from the downtown core, and passes 

through high density suburbs, low density suburbs and into rural areas. The southern 

transect follows a major transportation corridor from the City of Boston, through 

Framingham to Worcester, MA. Three land use classes (forest, residential, other 

developed) based on 30 m NLCD and three urban classes (high population urban, lower 

population urban and rural) were chosen and at least 15 plots were sampled for any given 

combination of land use and urban classes. Within a 990 x 990m neighborhood around a 

cell, places with more than 25% impervious surface area were classified as urban areas. 

Population density was further used to classify urban areas to high population urban and 

low population urban classes. The soil moisture samples collected between DOY 213 and 

221 were used to compare with TVDIs calculated from MODIS data based on the 

availability of MODIS data.  
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Figure 2.3. Sampling locations of the ULTRA-EX project among the two transects (Rao 

et al. 2013). 

 

 

2.2.6 TVDI  

Theoretically, the plot of the vegetation index and land surface temperature forms a 

triangle shape in a heterogeneous landscape (Sandholt et al. 2002). The estimation of the 

hypotenuse is a key process of the TVDI calculation. The NDVI-LST slope relates to the 

dryness conditions and has been used in land use change mapping, land use classification, 

and ET estimation (García et al. 2013; Julien et al. 2011; Nemani and Running 1988; 

Sobrino and Raissouni 2000). TVDI was calculated from an empirical interpretation of 

the VI – Ts space (Figure 2.4), which is normally triangular if the land cover of the area is 

heterogeneous enough (Sandholt et al. 2002).  TVDI can be calculated using the 

following equation (5): 
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min

max min

s s

s s

T TTVDI
T T

−

− −

−
=

−                  (5) 

where Ts is the observed surface temperature at a given pixel, and Ts-min is the 

minimum surface temperature (at a given VI) from the wet edge of the VI- Ts triangle 

space. Ts-max is the maximum surface temperature (at a given VI) from the dry edge of 

the NDVI-Ts triangle space. Estimating the dry edge is most important for the TVDI 

calculation; the automatic envelope method developed by Nemani and Running was used 

(Nemani et al. 1993; Nemani and Running 1988).  The equation (6) of Ts-max is: 

maxsT a b NDVI− = + ×                   (6) 
where a and b are the slope and the intercept of the regression line of the dry edge, 

respectively. The values that construct the dry edge are selected by data sorting, and then 

linear regression is applied to these selected data to obtain the slope and the intercept. 

This process is repeated until the following criteria are satisfied simultaneously: 

        (1) The R2 value of the linear regression is larger than 0.70 

        (2) The change of the slope (from the previous iteration) is less than 10% 

        (3) The change of the intercept (from the previous iteration) is less than 10%  

Thus, equation (7) can be rewritten as: 

min

min

s s

s

T TTVDI
a b NDVI T

−

−

−
=

+ × −                 (7) 
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Figure 2.4 Simplified Ts/NDVI plot (Sandholt et al. 2002). 

 

 

2.2.7 Statistical methods 

When analyzing field measured soil moisture, the following statistical methods were used:  

mean, standard deviation (SD), coefficient of variation (CV) and the nonparametric 

Spearman’s test. 

The nonparametric Spearman’s test was applied to evaluate the difference between TVDI 

values calculated using different VIs. The Spearman’s rank correlation coefficient is 

expressed as equation (4): 

             (4) 

Where Rij is the rank of TVDI value of one pixel when using one VI and Rij’ is the rank 

of TVDI value of the same pixel when using another VI. 
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2.3. Results and Discussions 

 

 

2.3.1 Analysis of the Slope Data and TMI of the Two Sub-basins  

The Neponset Watershed is flat, especially near the main Neponset river channel. More 

than half of the Neponset Watershed’s slope is less than 3 degrees. The elevation 

difference along 20 miles of river channel is just 2 feet at the middle of the Neponset 

River. Most of the steep slope area is located around the Blue Hill. The slope of the two 

sample sub-basins is also low. The forest sub-basin has more area with a slope greater 

than 7 degrees and the maximum slope in the forest sub-basin is also larger than the 

urban sub-basin (Figure 2.5). 

 

Figure 2.5. Histogram of the two sub-basins’ slope. 

 

The urban sub-basin is urbanized with 71.71% of the area classified as developed, while 

the forest sub-basin has only 22.98% developed area and 68.68% vegetation area 

(dominated by deciduous forest).  
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Figure 2.6. Topographic Moisture Index (TMI) calculated from the 5 m DEM map. 

 
TMI, a relative index of the wetness status, is estimated based on the contributing 

drainage area and slope. The flatter areas are wetter (higher TMI value) than the steeper 

areas with the same drainage area. However, this method cannot work when the slope 

goes to zero. The white space in Figure 2.6 represents this case and indicates very wet 

conditions.  
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Figure 2.7. Histogram of TMI for the two sampling sub-basins. 

 

The Milton area is wetter than the Sharon area (Figure 2.7) because Sharon has steeper 

slopes, and Milton is closer to the outlet of the Neponset River, while Sharon lies in the 

head of the basin.  

 

 

2.3.2 Analysis of the Field Sampled Soil Moisture Data 

Field measured soil moisture apparently follows precipitation variation, with relatively 

low soil moisture condition during less precipitation period in summer (Figure 2.8). The 

highest soil moisture over the sampling period is in late September and October while the 
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lowest soil moisture happened in late July and early August. However, the highest soil 

moisture did not occur after the highest precipitation event (August 19, 2011) in the 

sampling period because of a relatively long dry period and low antecedent moisture 

condition before the precipitation. The soil moisture measured from the forest sub-basin 

(standard deviation is 0.07) has higher temporal variation than that in the urban sub-basin 

(standard deviation is 0.05). The soil moisture in the forest sub-basin is higher than that 

in the urban sub-basin, except in July and August because of irrigation in the summer in 

the urban area. During the dry period in late July, soil moisture in both sub-basin 

decreases gradually while the soil moisture in the urban sub-basin is higher than that in 

the forest sub-basin. 

 

 

2.3.2.1 Variation of Soil Moisture in Plot and in the Watershed 

Figure 2.9 and Figure 2.10 are box plots of field measured soil moisture over the 

sampling period. Each box is based on soil moisture measured from the eight sampling 

plots. Soil moisture in the urban sub-basin is more variable among different sampling 

plots than in the forest sub-basin. Spatial variation among various sampling sites is 

usually greater than temporal variation among different sampling dates, especially for the 

urban sub-basin. The high spatial variation observed in this study area is consistent with 

earlier studies (Brocca et al. 2010; Tague et al. 2010). The mean CV is 0.27 for the urban 

sub-basin and 0.18 for the forest sub-basin. A one-way Anova test shows the CV in 

Milton is significantly higher than the CV in Sharon (p-value= 0.0002). 
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Figure 2.8. Temporal patterns of mean soil moisture in both Milton and Sharon. 
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Figure 2.9. Boxplot of field measured soil moisture in the Milton area over the sampling 

period. 

 

Figure 2.10. Boxplot of field measured soil moisture in the Sharon area over the sampling 

period. 

 

Several studies indicate a strong negative correlation between the soil moisture and CV, 

meaning soil moisture is more variable in drier conditions (Brocca et al. 2007; Famiglietti 

et al. 2008; Penna et al. 2009; Tague et al. 2010), which is also observed in this study 

area (Figure 2.11). The CV in the urban sub-basin has a steeper and stronger negative 

relationship with soil moisture (R2=0.79) than that in the forest sub-basin (R2=0.43). The 

stronger negative relationship between CV and soil moisture in urban sub-basin is caused 

by the irrigation during the summer dry period which decreased the variance of soil 

moisture among various sampling sites. The value of CV in both the urban and forest 

sub-basin is relatively lower than the CV range reported by Famiglietti et al. [2008] and 

is similar to those observed by Brocca et al. [2007] and Tague et al. [2010]. 
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Figure 2.11. The linear relationship between soil moisture and CV in two sub-basins. 

 

 

2.3.2.2 Spatial Patterns of Measured Soil Moisture in Relation to TMI 

Figure 2.12 shows the correlation between TMI and measured soil moisture on each 

sampling date. The average R2 for all the sampling dates between TMI and measured soil 

moisutre is 0.28 in Milton and 0.32 in Sharon. In Milton, the highest correlation between 

measured soil moisture and TMI happens in July with an R2 of 0.68. This high correlation 

may be introduced by irrigation because this is a dry season and the soil moisture from 

Milton is consistently higher than in Sharon. The R2 is less than 0.5 during all the other 

dates and is especially low in the fall in Milton. The R2 varies from 0.43 to 0.15 in 
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Sharon and is more stable than Milton. The overall R2 values in both sub-basins are lower 

than those found by several other studies. In a mountain area in central-eastern Italian 

Alps, R2 was reported as 0.58 and 0.64 (Penna et al. 2009). In an undeveloped watershed, 

R2 between measured soil moisture and TMI was observed as high as 0.74. In a 

developed watershed close to the undeveloped watershed, the highest R2 was 0.32 

(Tenenbaum et al. 2006). The results from this study area are more simliar to the R2 

reported from an arid watershed in Austrialia, in which the highest R2 was 0.54 and the 

average R2 is about 0.3 (Western et al. 1999). Several studies reported higher R2 values 

during wetter conditions (Tenenbaum et al. 2006; Western et al. 1999). However, this 

was not found in this study area. For the urban sub-basin, the main reason for this may be 

the irrigation during dry season which could have dampened the pattern. For the forest 

sub-basin, the small variation of slope may be the reason. The relatively low correlation 

overall may be caused by the flat sub-basins such that TMI can not distinguish the small 

difference among sampling plots. No significant relationship can be observed between 

TMI and measured soil moisture over these filed sites in the Greater Boston Area (Figure 

2.13). This may also due to the lack of gradient of both measured soil moisture and TMI.  
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Figure 2.12.Coefficient of determination between soil moisture and TMI vs. sampling 

date in two sub-basins in the Neponset River Watershed and the precipitation data. 
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Figure 2.13. TMI of the eastern part of Massachuestts. 

 

 

2.3.3 TVDIs calculated from MODIS data 

Based on the quality of both MODIS NBAR and surface temperature data, ten 

combinations of MOD43A4 and MOD11A1 from 2010 and six combinations from 2011 

were selected to calculate TVDI using the four VIs over the Greater Boston Area.  

 

 

2.3.3.1 TVDIs calculated from 2010 MODIS data 
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Figure 2.14 shows the slopes of the VI-LST dry edges on multiple dates. Higher slopes 

mean flatter regression lines while lower slopes mean steeper regression lines. The slopes 

of NDVI-LST dry edges in this study are comparable with the range of slopes reported by 

Chen et al. (Chen et al. 2011). Research conducted in Vietnam also reported a similar 

slope during October, however, a much steeper slope during April (Patel et al. 2009). 

Slopes of RVI –LST plots are always the highest among all the VIs for all the 10 days, 

which suggests that RVI works differently as the other three normalized VIs. The slopes 

of EVI2-LST plots are almost parallel with SAVI-LST plots with the slope of EVI2-LST 

consistently higher. The slopes of NDVI-LST plot are higher than those of EVI2-LST 

and SAVI-LST during most days among the 10 days, except on June 21st, 2010. Although 

the slopes of NDVI-LST plots show different trends from April to early August, they are 

parallel with the EVI2-LST and SAVI-LST in late August. All slopes using NDVI, EVI2 

and SAVI are related to recent precipitation, which can be clearly seen from August 19th 

2010 which is before a storm, and August 27th, 2010 which is after that storm. 

 



40 
 

 

Figure 2.14. Slope of VI-LST plot on different days shown with precipitation data. 

Different lines show slopes using various vegetation indices. 

Figure 2.15 shows the intercepts of the VI-LST plots’ dry edges. The range of intercepts 

of the VI-LST plots is comparable with earlier studies (Chen et al. 2011; Patel et al. 

2009). Intercepts of  NDVI-LST plots are the highest among all the four VIs and 

intercepts of EVI2-LST plots and SAVI-LST plots still follows a similar trend, while the 

intercepts of EVI2-LST plots are a little higher. Intercepts of RVI-LST plots are always 

lower than the other three and have similar trends to the intercepts of NDVI-LST plots.  

 

April 14th, 2010 is before the growing season, so TVDI estimated using LST and VIs 

does not properly show the surface soil moisture status on that day. On June 21st, 2010, 

however the NDVI-LST plot has a steeper slope and a higher intercept than the EVI2-

LST plot and the SAVI-LST plot. On July 27th, 2010, the slope of NDVI-LST plot is less 
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than that of the EVI2-LST and SAVI-LST plots, and the intercept of the NDVI-LST plot 

is the same as the SAVI-LST plot and larger than the EVI2-LST plot. The slope of the 

NDVI-LST plot is flatter and has a larger intercept than EVI2-LST and SAVI-LST on 

August 1st, 2010. These differences indicate that NDVI works differently from EVI2 and 

SAVI in the development of TVDI values. The steeper slope of the SAVI-LST plot than 

that of the EVI2-LST plot is mainly due to the larger EVI2 value than SAVI under the 

same amount of leaf area index. 

 

 

Figure 2.15. The intercept of VI-LST plots on different days shown with precipitation 

data. Different lines show intercepts using various vegetation indices. 

 

The Spearman test was used to estimate the correlation of the rank of each pixel’s TVDI 

value among the four VIs because TVDI is calculated as a scaled value (Figure 2.16). 
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TVDIs calculated using EVI2 and SAVI always have the highest correlation while RVI 

derived TVDIs has the lowest correlation especially on August 31st, 2010. All the 

comparisons are statistical significant (p-value <0.005). This is consistent with the earlier 

statement that RVI functions differently from the other three VIs. Figure 2.17 shows the 

comparison of TVDIs calculated using NDVI and EVI2. TVDI calculated using NDVI 

tends to be higher than TVDI calculated using EVI2, especially in the drier areas (e.g. the 

Boston Downtown core). 

 
Figure 2.16. Spearman’s test coefficient of TVDIs using various VIs. 
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Figure 2.17. TVDI calculated using NDVI and EVI2 from MODIS on day 208 of year 

2010. 

 

 

2.3.3.2 TVDIs calculated from 2011 MODIS data 

Six combinations of MODIS NBAR and LST data were selected to calculate TVDI in 

2011 based on data quality and cloud coverage. All TVDIs using various VIs show 

similar rural-to-urban dryness trends on different days. They all show that the City of 

Boston is consistently drier than the rural area surrounding it. NDVI derived TVDI has 

more dry area than all of the other three VI derived TVDI methods on July 7th, 2011. The 

intercept of the NDVI-LST plot is lower than that of the SAVI-LST plot and the same as 

that of the EVI2-LST plot on July 16th, 2011 (Figure 2.19). The dry edge of the NDVI-
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LST plot is lower than that of the other two, which produces the even drier condition in 

dry areas in NDVI derived TVDI. 

 

The slopes of RVI-LST are very flat and close to zero, which is consistent with the 

results in 2010 (Figure 2.18 and Figure 2.14). Slopes of the other VI-LST plots have 

similar trends, with the slope of the NDVI-LST plot being the highest. They all drop in 

late August which is the same as the results from August 2010. This may be due to the 

high evaportransporation during late summer, which increases the land surface 

temperature differences among different canopy coverages. The decreasing trend of 

intercepts (Figure 2.19), which can be interpreted as a dropping of bare soil temperature, 

shows the opposite of the the change of slopes, which is also similar to the results from 

2010 (Figure 2.15). The intercepts of NDVI-LST are higher than all the other VI-LST 

plots, except on July 16th, 2011. The dry edges of TVDI on the MODIS scale have similar 

seasonal trends between the two years, suggesting the importance of vegetation on soil 

moisture status.  
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Figure 2.18. Slope of VI-LST plot on different days shown with precipitation data in 

2011. Different lines show slope using various vegetation indices. 
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Figure 2.19. Intercept of VI-LST plot on different days shown with the precipitation data 

in 2011. Different lines show intercept using various vegetation indices. 

 

The Spearman’s test (Figure 2.20) shows that EVI and SAVI derived TVDIs always have 

the highest correlation among the six days sampled while RVI derived TVDIs have a 

lower correlation than NDVI, EVI and SAVI derived TVDIs. However, the correlation of 

RVI derived TVDIs is almost the same as the correlation of NDVI derived TVDIs on 

October 8th, 2011 and November 5th, 2011. The rank correlation coefficients are very 

high (close to 1) on these two days, suggesting that there is not much difference between 

the four VIs during the leaf secession period. 
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Figure 2.20. Spearman’s test coefficient of TVDIs estimated using various VIs on 

different days in 2011. 

 

 

2.3.4 TVDIs from Landsat data 

RVI was not used for TVDI calculation using Landsat data because RVI is not an 

appropriate vegetation index for TVDI estimation during the green season, based on the 

above analysis. The comparison between TVDIs in Figure 2.21 also shows a similar trend 

in MODIS TVDIs; that TVDI calculated from  NDVI tends to be higher than TVDI 

calculated from EVI2 (Figure 2.21). 

  

Slopes of VI-LST derived from Landsat data are flatter than the slopes of VI-LST derived 

from MODIS data, which means a higher VI value was found at the same temperature for 

Landsat data (Figure 2.22). This flat slope was also reported by Wang et al. in an 

urbanized watershed in north China (Wang et al. 2010). The flatter slope is likely due to 
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the scale effect that occurs when the moderate spatial resolution MODIS data mixes the 

reflectance characteristics of vegetated areas with non-vegetated areas, while the fine 

resolution Landsat data has less mixed pixels. Since the Landsat TM only has one 

thermal band, which makes the split window method not suitable to calculate land surface 

temperature, the land surface temperature estimation method used here may also 

introduce some noise into the analysis.  

 

 There is no big difference among the intercepts of VI-LST plots using MODIS and 

Landsat data, except on August 17th, 2011 (Figure 2.23). This suggests that the scale 

effects of MODIS and Landsat on temperature for less canopy covered areas is not 

apparent in the resulting vegetation indices. 
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Figure 2.21. TVDI calculated using NDVI and EVI2 from Landsat data on day 197 of 

year 2011. 
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Figure 2.22. Slope of VI-LST plot on different days shown with precipitation data. 

Dashed lines show slope using various vegetation indices based on MODIS data. 

Solid lines show slope using various vegetation indices based on Landsat TM data. 

 

 

Figure 2.23. Intercept of VI-LST plot on different days shown with precipitation data. 

Dashed lines show intercepts using various vegetation indices based on MODIS 
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data. Solid lines show intercepts using various vegetation indices based on 

Landsat TM data. 

 

Figure 2.24. TVDI map created using EVI2 based on Landsat data from July 16th, 2011. 
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2.3.5 Comparison between TVDIs and Measured Soil Moisture  

TVDIs calculated using various VIs from MODIS data in the Greater Boston Area were 

compared with field measured soil moisture in 2010 and TVDIs calculated using various 

VIs from Landsat data in the Neponset River Watershed were compared with field 

measured soil moisture on July 16th, 2011 based on the data quality and available field 

measurements. 

 

 

2.3.5.1 Comparison between TVDIs and Soil Moisture Measured in Greater Boston Area 

The correlations are strong between TVDIs calculated from MODIS data (MOD43A4 

DOY 209 and MOD11A1 DOY 213) using various VIs and the soil moisture measured in 

the Greater Boston Area. EVI2-TVDI and SAVI-TVDI have high correlations with 

measured soil moisture and the R2 values are 0.69 and 0.68 respectively (Figure 2.25). 

The R2 of NDVI-TVDI with measured soil moisture is 0.63. The RVI-TVDI has the 

lowest correlation with measured soil moisture (R2 = 0.46). The R2 value of measured soil 

moisture and NDVI estimated TVDI is consistent with the value (0.62) reported by Patel 

et al. (Patel et al. 2009) and is higher than the value (0.43 for 10 cm-20 cm layer) 

reported by Chen et al. (Chen et al. 2011). 
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Figure 2.25. The comparison between TVDI estimated using various VIs and measured 

soil moisture.  

 

 

2.3.5.2 Comparison between the TVDIs estimated using Landsat Data and Field 

Measured Soil Moisture in the Neponset River Watershed 

Earlier analysis indicated that EVI2 and SAVI work very similarly in the calculation of 

TVDI. Only NDVI and EVI2 derived TVDIs from the Landsat data were compared with 

field measured soil moisture. The correlations between NDVI and EVI2 derived TVDIs 

and field measured soil moisture are different in the forest and urban sub-basins. The 
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correlations between NDVI and EVI2 derived TVDI are 0.32 and 0.34 respectively in the 

Sharon sub-basin on July 16th, 2011. The correlations between NDVI and EVI2 derived 

TVDI are 0.20 and 0.28 respectively in the Milton sub-basin. Figure 2.28 shows the 

correlation between TVDI calculated using EVI2 at the two sub-basins. Another study 

using Landsat data to estimate TVDI also reported a similar result, the R2 between NDVI 

estimated TVDI using Landsat data was 0.25 for surface soil layer (Wang et al. 2010). 

TVDI correlation with field sampling of soil moisture from the Milton sub-basin is higher 

than that from the Sharon sub-basin. The poor correlation results may be due to the scale 

effect and the more heterogeneous landscapes in the urban area. Sharon, as the forest sub-

basin, has little variation in both measured the soil moisture and TVDI. The lack of range 

in the soil moisture values can limit the R2 of the linear regression. The only thermal 

band of TM data is also a limitation in estimating land surface temperature which 

eventually affects the TVDI estimation. 
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Figure 2.26. Plot of TVDI estimated using EVI2 and measured soil moisture in Sharon 

and Milton. The green dots are samples from Milton and the red dots are samples 

from Sharon. 

 

 

2.4. Conclusion 

Weekly soil moisture sampling over both the urban sub-basin and forest sub-basin during 

the growing season of 2011 shows that soil moisture in the forest sub-basin is higher than 

that in the urban sub-basin, except during the summer when most of the irrigation 

happens. The CV and soil moisture are correlated in this research area, which is 

consistent with earlier studies. The average correlation between TMI and measured soil 

moisture in the Neponset River Watershed is around 0.3. However, this can be lower than 

0.1 during late Fall in the urban sub-basin. The ascending pattern of the correlations 

between soil moisture and TMI in wetter conditions was not observed in this study area.   
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The influence of various VIs in estimating TVDI using both MODIS and Landsat data 

show RVI does not work as effectively as NDVI, EVI2 and SAVI. EVI2 and SAVI work 

similarly and give slightly better estimates of the dryness condition. NDVI derived TVDI 

does not follow the same trend as EVI2 and SAVI derived TVDI during the peak 

growing season. This suggests a careful usage of NDVI when estimating TVDI during 

full canopy coverage period. TVDI estimated from MODIS data gives a good correlation 

with measured soil moisture in the Greater Boston Area. The relatively weak correlation 

between field measured soil moisture and TVDI estimated from Landsat data may due to 

the highly heterogeneous land cover of the study area, the small range of soil moisture 

and the limitation of the TM thermal band. Further research is needed, especially with the 

new Landsat 8 and mid-resolution Aster data. 

 

Therefore, with the good correlation with field measured soil moisture, the EVI2 

estimated TVDI can also be used as an evaluation tool for model simulated soil moisture 

at the MODIS resolution and even at the Landsat resolution if no field measurements are 

available.  
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CHAPTER 3 

 

DOC CONCENTRATION PATTERNS IN THE NEPONSET RIVER WATERSHED 

EXPLORED WITH REMOTELY SENSED DATA 

 

 

 

3.1. Introduction 

DOC critically links terrestrial, estuarine, and marine carbon cycling (Richey et al. 2004a) 

and may indicate changes in the storage of terrestrial carbon (Bianchi et al. 2009; 

Williamson et al. 2008). Increasing DOC concentrations have been reported all over the 

world in the last decade which have important effects on the quality of drinking water 

(Haaland and Mulder 2009), and on ecological processes and mercury dynamics (Forsius 

et al. 2010). Despite recent major improvements in the understanding of how DOC is 

influenced by climate indices, watershed topographic characteristics and human-induced 

change, significant uncertainty still exists.  
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A number of researchers have focused on identifying relationships between DOC 

concentration and potential parameters. Tian et al. used a few landscape characteristics 

and SWAT modeled daily runoff to explain DOC concentration in the Neponset 

Watershed located south of the City of Boston (Tian et al. 2013). Xenopoulos et al. 

analyzed the effect of nine catchment characteristics on DOC concentration in lakes in 

North American temperate forests (Xenopoulos et al. 2003). Strohmeier et al. reported 

that DOC export in runoff originated mainly from the wetland area in a catchment 

(Strohmeier et al. 2013). Findlay et al. concluded land use can affect both the quantity 

and quality of DOC exported into rivers from surrounding terrestrial sources. (Findlay et 

al. 2001). Huntington and Aiken reported that DOC concentration in the Penobscot River 

in Maine can be primarily explained by the abundance of wetlands and water yield 

(Huntington and Aiken 2012). Other than landscape characteristics and hydrological 

processes, many studies have also tried to link DOC with the chemistry of the atmosphere 

and soil. Rising temperature and declining sulphur deposition are suggested as some of 

the major reasons for the increasing DOC concentration trend (Evans et al. 2006; Evans 

et al. 2005). Aitkenhead and McDowell were able to estimate the annual riverine DOC 

flux using soil C:N as a predictor (Aitkenhead and McDowell 2000).  

 

While a number of studies have focused on investigating how streamflow and 

precipitation regulate DOC concentration in streams, fewer studies have focused on the 

extent of how remotely sensed data can be used to explain DOC concentrations in 

streams, rivers, and estuaries. Remotely sensed data is relatively easily accessed and can 

provide information for the whole watershed rather than point measurements. As the 
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source and pathway for DOC, understanding the linkage between remotely sensed 

watershed information and DOC in streams can help us better monitor and estimate DOC 

patterns. This study used a variety of remotely sensed data (Land use data, impervious 

data, wetland type data, and terrestrial gross primary production data) and inventory soil 

type data to analyze their relationship with measured DOC concentrations.  

 

 

3.2. Study Area 

 

Figure 3.1. The Neponset River Watershed. 

 

The Neponset River Watershed (Figure 3.1) lies south of the City of Boston. The 

watershed is roughly 300 km2 and contains approximately 330,000 residents. The 
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Neponset River exits over the Lower Mills Dam into Boston Harbor after running 

approximately 48 km throughout the watershed (NepRWA, 2004). Urban land occupies a 

large proportion of the Neponset Watershed, around 40%. Forest and wetland land covers 

comprise most of the rest of the watershed, about 42% and 10% respectively. The 

average annual precipitation from 1971 to 2000 was 1054 mm (NOAA, 2005).  

 

3.3. Data  

Field measured DOC concentration data, USGS gauge station stream flow data, climate 

data, and remotely sensed data were used in this study. The DOC concentration data was 

collected from 11 sampling locations throughout the Neponset River Watershed on a 

monthly basis from March 2006 to present. DOC sampling, filtration, and analysis was 

conducted by Wei Huang, Keith Cialino, and Hayley Schiebel in Dr. Robert F. Chen's lab 

at University of Massachusetts Boston (unpublished). The data analyzed in this study 

includes the DOC concentration data measured from March 2006 to December 2011. 

More details about the measurement of DOC concentration data in the Neponset River 

Watershed can be found in Huang and Chen (Huang and Chen 2009). Daily stream flow 

data at Milton Village and Mother Brook were downloaded from the United States 

Geological Survey (USGS). Daily stream flow data were derived from the USGS gauge 

stations at Milton Village, with values reduced by subtracting flow derived from Mother 

Brook. Climate data from the Blue Hill Observatory station were downloaded from 

NOAA, including maximum daily temperature, minimum daily temperature and daily 

precipitation data. Datasets derived from remote sensing includes DEM, land use type, 
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wetland type, and GPP data. 1 km spatial resolution 8-day MODIS gross primary 

production (MOD17A2) (Running et al. 2004) from 2006 to 2011 was downloaded from 

the REVERB website (www.reverb.echo.nasa.gov/reverb/). Since there is no GPP value 

over urban areas, only sampling locations that have more than half of the drainage area 

with good quality value were chosen in this study. 

 

 

 

3.4. Methodology 

 

 

3.4.1 Statistical Analysis 

One-way analysis of variance (ANOVA) was used to test for differences among 

measured DOC concentrations at different sampling points and at different temporal 

scales. P-values that were smaller than 0.05 were accepted as the significant level. 

Regression analysis was used to examine relationships between measured DOC 

concentrations and other data, such as precipitation, temperature, streamflow, and GPP 

values.  

 

Principal component analysis (PCA) was used to analyze the various watershed 

characteristics. PCA is a mathematical procedure which converts a set of variables into a 

new set of linearly uncorrelated variables (principal components) to extract the domain 

patterns. The first three principal components extracted from 31 original watershed 
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parameters were further analyzed using regression analysis to understand the most 

important watershed parameters that influence DOC concentration. 

 

 

3.4.2. Antecedent Precipitation Index (API) 

API was used to represent soil moisture conditions that may predict the impact of 

precipitation on watersheds. This index is based on the theory that the influence of 

precipitation on the current soil moisture condition decreases with the time since that 

precipitation occured (Fedora and Beschta 1989; Kohler and Linsley 1951). API reflects 

seasonal soil moisture status over the long term, while it reflects rainfall intensity in short 

term. The universal equation for calculating API is as follows: 

APIt=APIt-1K+PΔt 

Where APIt is the API at time t, APIt-1 is the API at time t-1, K is the recession coefficient, 

and PΔt is the precipitation occurring between times t-1 and t. K dictates the degree of 

decay rate of the previous API and is normally a value between 0.85 to 0.95 (Leopold and 

Dunne 1978).  

 

 

3.5 Results and discussions 

 

3.5.1 Measured DOC Concentration Data 
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DOC sampling locations that locate in stream channels were selected. Based on the 

drainage area of each sampling location, the data from eleven locations were further 

chosen (Figure 3.2).  

 

Figure 3.2. The DOC concentration sampling points throughout the Neponset River 

Watershed. 
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Note the drainage area of P3 is also part of P2. The drainage area of P9 includes the 

drainage area of both P15 and P16. P13 and P14 are within the P11 drainage area. P6 

covers the largest area among all sampling locations, which includes P8, P9, P10, P11, 

P13, P14, P15 and P16.   

 

Table 3.1. Measured DOC concentration from the Neponset River Watershed. 

Sampling 
Location

s 

Mean 
(µmol) 

Standar
d 

Deviatio
n 

Coeffici
ent of 

Variatio
n 

Minimum 
(µmol) and 

Date 

Maximum 
(µmol) and 

Date 

Sam
pling 
Num
bers 

P2 482 207 0.43 213 
(9/26/2010) 

993 
(3/29/2008) 79 

P3 575 366 0.64 258 
(3/24/2006) 

2441 
(8/27/2010) 75 

P6 588 314 0.53 
296 

(12/08/2007
) 

2036 
(4/25/2010) 78 

P8 493 218 0.44 265 
(4/01/2011) 

1682 
(2/23/2008) 77 

P9 557 320 0.57 260 
(3/24/2006) 

2270 
(2/23/2008) 69 

P10 396 348 0.88 107 
(7/17/2007) 

2400 
(10/27/2008

) 
78 

P11 478 281 0.59 
230 

(12/08/2007
) 

2221 
(4/12/2008) 79 

P13 424 219 0.52 
120 

(12/08/2007
) 

1120 
(8/27/2010) 76 

P14 375 165 0.44 195 
(3/24/2006) 

1016 
(2/28/2010) 76 

P15 574 278 0.48 251 
(2/18/2007) 

1772 
(4/12/2008) 75 

P16 474 273 0.58 79 
(9/26/2010) 

1395 
(4/12/2008) 75 
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The maximum mean value over the sampling period happens at P6 (588 µmol) and the 

minimum mean value over the sampling period happens at P14 (375 µmol) (Table 3.1). 

Standard deviations for all sampling points are high. P3 has the largest standard deviation 

(366) and P14 has the lowest (165). The mean DOC concentration has a positive 

relationship (R2=0.28) with standard deviation (Figure 3.3).The correlation reaches up to 

0.71 if P10 is removed. This positive relationship between standard deviation and mean 

DOC concentration indicates that the sub-basins with higher average DOC concentration 

tends to export more DOC during large precipitation events and tends to trap DOC during 

small precipitation events. It also indicates that sub-basins with lower average DOC 

concentration export DOC more evenly among various precipitation events. The 

minimum DOC concentration measured from all sampling points throughout the 

sampling period is 79 µmol measured on 9/26/2010 at P16. The maximum DOC 

concentration is 2441 µmol measured on 8/27/2010 at P3 from all sampling points 

throughout the sampling period. More than half of the maximum DOC concentration 

happened in the early spring of 2008. 
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Figure 3.3. Correlation between mean DOC concentration and standard deviation at all 

sampling points. If P10 is removed, the correlation increases to 0.71. 

 

 

3.5.1.1 Spatial Variance of the Measured DOC Concentration Data 

The average DOC concentration values over the study period from the 11 sampling 

locations are significantly different (Oneway ANOVA p-value<0.001).  Multi-

comparisons among these averages show that average DOC concentrations of P10 and 

P14 are significantly lower than P3, P6, P9 and P15. The largest coefficient of variation 

(CV) of DOC concentration happens at P10 and the least variance occurs at P2 (Figure 

3.4).  
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Figure 3.4. Boxplot of DOC concentrations at each sampling point. 

 
 

3.5.1.2 Temporal Variance of the Measured DOC Concentration Data 

The annual average DOC concentration values from all 11 sampling locations are 

significantly different (Oneway ANOVA test, p-value=0.0002). The average DOC 

concentration in 2008 is significantly larger than other years’ mean DOC concentration 

(p-value=0.0015) and the average DOC concentration in 2007 is significantly low (p-

value=0.0012). The low DOC concentration in 2007 was caused by less precipitation 

during the autumn of 2007 fall. Normally there are a few storms in fall following after the 

relatively dry summer, but there were no storms in fall of 2007. Correspondingly, high 

DOC concentration was observed at the beginning of 2008 due to the DOC accumulation 

in soil during the dry period of the second half of year 2007. This phenomenon is 

consistent with other studies which describe this as the wet-dry cycle effect on increasing 

DOC concentration (Chow et al. 2006; Kalbitz et al. 2000). Also year 2008 was the 
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strongest La Nina year since 1988 which brought a large amount of precipitation and 

leached out a large amount of DOC out from the terrestrial system. 

 

The DOC concentrations show various trends among different seasons (Figure 3.6). 

Spring has the most outliers for all sampling locations and the average DOC 

concentration is 467 µmol. The DOC concentration is the largest in summer with the 

value of 539 µmol. The least outliers were found in fall. Winter has the lowest DOC 

concentration; the value is 433 µmol. The average DOC concentration of the samples is 

524 µmol during the growing season (summer and fall) and 470 µmol over the leaf-off 

season (winter and spring). The average DOC concentrations during the growing and 

leaf-off seasons are as low as 509 µmol and 405 µmol, if year 2008 is excluded. 

 

The monthly average DOC concentration is the highest in August. March and December 

have the lowest monthly average DOC concentration.  

 

Figure 3.5. Boxplot of DOC concentrations from all sampling points in different years. 
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Figure 3.6. Boxplot of DOC concentration measurements in different seasons. 
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Figure 3.7. Comparison of DOC concentrations averaged from all sampling points among 

different months.  

 

 

3.5.2 Watershed Characteristics and Their Correlation with Measured DOC 

Concentration 

Watershed characteristics are grouped into topographic indices, land use type, soil type, 

and wetland type (Table 3.2). The 11 sub-basins and slope maps were created from the 

DEM downloaded from MassGIS. A 30 m spatial resolution land use map was obtained 

from the Massachusetts Forest Monitoring Program at Clark University. A soil type map, 

downloaded from MassGIS, was reclassified to eight soil types; and the major type of 

soil in all sub-basins is sandy loam. A wetland type map is a feature map obtained from 
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research. Slope, TMI, and basin area are the average value of each sub-basin. All the 

other parameters’ values are estimated by the parameter’s area and the assorciated sub-

basin’s area. 

 

A few parameters have high standard deviations, which include the basin area in the 

topographic indices category, deciduous forest in the land use type category, rock area in 

the soil type category, low density residential area in the land use type category and 

loamy sand area in the soil type category. The coefficient of variation of salt marsh in the 

land use type category, basin area in the topographic indices category, lake wetland in the 

wetland type category, and silt loam in the soil type category are higher than 1.  
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Table 3.2. Sub-basins’ watershed characteristics list. 

Samplin
g 

Location
s 

Categori
es Units Mean 

Standard 
Deviatio

n  

Coefficie
nt of 

Variatio
n 

Minimu
m  

Maximu
m Number 

Slope  
Topogra

phic 
Indices 

Degree 3.81 0.94 0.25 2.30 5.45 1 

TMI  * 2.57 0.19 0.07 2.25 2.86 2 
Basin 
Area km2 39.65 60.18 1.52 3.83 207.58 3 

Orchard   % 0.28 0.15 0.55 0.08 0.61 4 
Cranberr

y Bog 

Land 
Use 

Type 

% 7.64 0.96 0.13 5.75 9.40 5 

Pasture/
Row 

Crops 
% 3.08 1.02 0.33 1.63 5.06 6 

Deciduo
us Forest % 26.90 9.35 0.35 13.74 46.91 7 

Conifero
us Forest % 5.27 2.60 0.49 2.30 10.46 8 

Mixed 
Forest % 12.30 3.44 0.28 9.69 19.49 9 

Golf 
Course % 2.88 1.06 0.37 1.04 4.95 10 

Grasslan
d % 1.31 0.42 0.32 0.25 1.74 11 

Low 
Density 
Resident

ial 

% 22.25 6.75 0.30 11.23 31.29 12 

High 
Density 
Resident

ial 

% 3.49 1.25 0.36 1.31 5.05 13 

Commer
cial % 3.69 2.92 0.79 0.26 10.50 14 

Impervio
us Area % 15.10 3.98 0.26 9.47 21.82 15 

Wetland % 4.35 1.71 0.39 2.58 7.50 16 
Salt 

Marsh % 0.17 0.36 2.12 0.00 1.24 17 

Sand 
Quarry % 0.74 0.68 0.92 0.06 2.37 18 

Bare Soil % 2.21 1.05 0.47 0.82 4.42 19 
sandy 
loam Soil 

Type 

% 53.86 5.59 0.10 47.55 64.22 20 

riparian % 8.74 2.68 0.31 5.29 12.52 21 

rock % 11.52 8.62 0.75 3.06 30.83 22 
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urban % 9.39 4.67 0.50 4.13 16.14 23 

sand % 2.20 1.71 0.77 0.11 5.54 24 
loamy 
sand % 6.91 6.17 0.89 0.08 19.79 25 

loam % 2.05 0.97 0.48 0.09 3.37 26 

silt loam % 1.23 1.50 1.22 0.00 4.09 27 

lake 

Wetland 
Type 

% 2.77 3.58 1.29 0.00 10.19 28 

pond % 0.97 0.41 0.43 0.03 1.65 29 
shrub 

wetland % 7.42 1.61 0.22 3.87 9.59 30 

emergent 
wetland % 0.97 0.53 0.55 0.19 1.82 31 

 

All these watershed characteristics work together to regulate DOC production and 

transportation, which makes it impossible to separate one from the others to explain its 

influence on DOC concentration in stream. Principal component analysis (PCA) is 

applied to analyze the interaction among all the parameters. The first three principal 

components explain 30.2%, 25.3% and 11.5% of variation in the whole set of watershed 

parameters (Figure 3.8).  

 

Deciduous forest in the land use type category is the most important positive contributor 

to the first principal component. Rock area in the soil type category and slope in the 

topographic indices category are also important positive contributors. Sand in the soil 

type category, pond wetland in the wetland type category and commercial area, 

impervious area and sand quarry area in the land use type category are important negative 

contributors. For the second principal component, coniferous forest, mixed forest in the 

land use category and loamy sand in soil type category are the most significant positive 

contributors, Wetland in land use category and emergent wetland in wetland category are 

also positive contributors. Grassland and low density residential area in land use category 
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are the most significant negative contributors. Orchard in the land use category is the 

most significant positive contributor to the third principal component and also the sandy 

loam in soil type category (Figure 3.9). Urban, silt loam and rock in the soil type category, 

emergent wetland in the wetland category and slope in the topographic indices category 

are significant negative contributors to the third principal component. However, slope in 

the topographic indices category and urban and rock in the soil type category are also 

important contributors to the first principal component.  

 

No significant correlations were found between the first two principal components and 

the average DOC concentrations at the sampling points. However, there is a significant 

negative correlation between the average DOC concentrations and the third principal 

component (R2=0.43). Based on the composition of the third principal component, higher 

DOC concentration over a long period tends to happen more in silt loam, more in 

emergent wetland, less in orchard, and less in sandy loam sub-basins within the Neponset 

River Watershed. Orchard occupies only a small proportion of any sub-basin and its 

contribution to DOC concentration is limited. Silt loam is mainly distributed along the 

main Neponset River channel, which has a good correlation with wetland area along the 

downstream channel. This is consistent with earlier research about the importance of 

wetland in DOC export (Huntington and Aiken 2012; Miller 2012). 
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Figure 3.8. Biplot of the scores of the first three principal components. 

 

 

Figure 3.9. Biplot of the scores of the principal component 1 and principal component 3. 
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3.5.3 Climate Data 

Precipitation among 12 months is relatively evenly distributed based on 118 years of data. 

March, June, August, October, and December during 2006 to 2011 have greater average 

precipitation compared to the average precipitation from the 118 year record. A few 

extreme precipitation events were observed during 2006 to 2011 (e.g. May, June and 

November of 2006 etc., see Figure 3.10).  

 

Figure 3.10. Comparison of the precipitation among 118 years’ average and from year 

2006 to year 2011. 
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Figure 3.11. Comparison of the maximum temperature among 118 years’ average and 

from year 2006 to year 2011. 

 
 

 

Figure 3.12. Comparison of the minimum temperature among 118 years’ average and 

from year 2006 to year 2011. 
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The maximum and minimum average temperature during year 2006 to 2011 is higher 

than the average of 118 years. Year 2006, 2007 and 2008 had a warmer January and year 

2010 had a warmer March compared with other years from 2006 to 2011 (Figure 3.11 

and Figure 3.12). 

 

 

3.5.3.1Antecedent Precipitation Index (API) 

In this study, API (Figure 3.13) was calculated as starting from January 12, 2006 with a 

value of 0 because almost no precipitation events happened from January 5 to January 11 

of 2006. K was chosen as 0.85 based on the slope of the linear regression of plot of 

streamflow during a period without precipitation in a specific time interval. The time 

interval was 11 days in this study. 

 

 

Figure 3.13. API estimated from precipitation data. The blue line shows precipitation data 

and the red line shows the API values. 
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DOC concentration is positively related to API. Pearson test’s correlation coefficient R2 

is 0.14 (p-value<0.0001) for all sampling days. The correlation between API and DOC 

concentration is high during the growing season (R2 = 0.52, p-value < 0.0001) and low 

during leaf-off season (R2 = 0.02, p-value = 0.37). The correlations between API and 

DOC concentration for both growing season and leaf-off season are even higher (R2 = 

0.59, p-value < 0.0001 and R2 = 0.07, p-value = 0.12) if year 2008 is not considered. The 

low correlation between API and DOC concentration in winter and early spring is 

probably due to snow accumulation and snowmelt processes. The first snowmelt event 

leaches out a large amount of DOC and the DOC concentration decreases sharply after 

the first snowmelt (Hornberger et al. 1994). After the first snowmelt, even large 

precipitation does not bring high DOC concentration which may dampen the relationship 

between DOC concentration and precipitation. 

 

Figure 3.14 Plot of Average DOC concentrations and API values of samples from the 

growing season excluding year 2008. 
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3.5.3.2 The relationship between DOC concentration and temperature 

The relationship between averaged DOC concentrations from all sampling points and the 

mean daily temperature on the sampling date is not significant. Monthly average 

temperature has a better correlation with DOC concentration, in that the logarithm of the 

corresponding DOC concentration has a good positive correlation with the logarithm of 

average temperature (R2 = 0.09, p-value = 0.02) for all months in which the average 

temperature is larger than zero. The correlation is better (R2 = 0.19, p-value = 0.01) if 

year 2008 is not included.  

 

 The correlation between DOC concentration and temperature is not significant during the 

winter and early spring. Snowmelt in this period may decrease the correlation between 

the temperature and DOC concentration. The high DOC concentration for the first 

snowmelt event does not relate to high temperature. Most studies show increasing DOC 

concentration during the early stages of snowmelt (Currie et al. 1996; Yavitt and Fahey 

1985).  

 

The strong correlation between temperature and DOC concentration can be mainly 

attributed to the period of late April and May (Figure 3.16). Since the precipitation from 

winter to early summer doesn’t increase significantly, it is safe to conclude that 

temperature is an important seasonal factor regulating DOC concentration from winter to 

early summer. 
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Figure 3.15. Plot of average monthly temperature and measured DOC 

concentration for all months. Points are numbered with the months in which they 

were sampled. 

 

 

Figure 3.16. Plot of DOC concentrations averaged from all sampling sites for December 

and January to May and corresponding average daily temperature excluding year 

2008. The red points represent samplings measured in late April and May. The 

green points represent samplings measured in December, January, February and 

March. 
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In conclusion, climate parameters function differently in growing season and leaf-off 

season. API, as a surrogate of precipitation, has a strong positive correlation with stream 

DOC concentration during the growing season. The logarithm of DOC concentration and 

logarithm of monthly average temperature has a positive linear relationship, and the 

correlation is higher if excluding year 2008. Temperature is also a key factor for the 

higher DOC concentration in late spring compared to winter and early spring.  

 

 

3.5.4 Stream Flow Data 

The correlation between DOC concentration and stream flow is high during the growing 

season excluding year 2008 (Figure 3.17). The positive relationship between DOC 

concentration and streamflow corresponds with the relationship between DOC 

concentration and API as was reported by many studies (Ågren et al. 2010; Tian et al. 

2013). The strong positive relationship between the two was also reported in the 

Penobscot watershed in Maine (Huntington and Aiken 2012).   
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Figure 3.17. The correlation between measured DOC concentration and stream flow 

larger than 0.35 ft3/sec (0.098 m3/sec). 
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might build up during periods of low flow (Boyer et al. 1996). However, since very low 
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streamflow data may exist.  
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Figure 3.18. The correlation between DOC concentration and stream flow during the low 

flow. 
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Figure 3.19. GPP and mean DOC concentration from year 2006 to year 2011. 
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hydrological connectivity of wetland to the river channel can effectively leach the DOC 

from the land into the river channel. The low correlation over other sampling points 

suggests the source of stream DOC in these sub-basin may have a longer residence time. 

Another reason for the weak correlation is because GPP mainly reflects the source of 

DOC in soil, DOC export is also controlled by hydrological processes.  

 

Table 3.3. The correlation between GPP and measured DOC concentration. 

Sub-
basins Time r p 

p9 
8-day 0.46 0.02 
16-day 0.04 0.86 
32-day 0.06 0.77 

p13 
8-day 0.15 0.47 
16-day -0.01 0.95 
32-day -0.31 0.12 

p14 
8-day -0.13 0.53 
16-day 0.00 0.99 
32-day 0.18 0.38 

p15 
8-day -0.14 0.49 
16-day 0.07 0.75 
32-day -0.23 0.26 

p16 
8-day 0.52 0.01 
16-day 0.37 0.12 
32-day 0.21 0.36 
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Figure 3.20. Plot of DOC concentration and 8-day GPP.  

 

 

3.6. Conclusion 

By analyzing remotely sensed data that describes sub-basins’ watershed characteristics 

and observed climate and streamflow data, the temporal and spatial variation of DOC 

concentration during growing seasons can be partially explained.  
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Neponset River channel, which suggests the importance of wetland area.  
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concentration measured in stream channel during the growing season; the positive 
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with the logarithm of DOC concentration, without considering year 2008, during 

all months that the average temperature is higher than zero.  

• There is no direct correlation between annual GPP and annual DOC concentration 

in the same year or in the following year because other than the source of DOC in 

soil, DOC export is also regulated by hydrological processes. The DOC 

concentrations at P9 and P16 have strong positive correlation with the MODIS 

GPP data closest to the sampling date and do not show significant relationship 

with the GPP data 8 days and 16 days before the sampling dates during the 

growing season. The strong positive relationship in these two sub-basins (P9 and 

P16) may be due to the large area of wetlands in these locations and may indicate 

the rapid turnover rate and decomposition of organic matter in wetland.  
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CHAPTER 4 

 

SENSITIVITY ANALYSIS AND SIMULATION OF DOC CONCENTRATION AND 

FLUX DURING INITIALIZATION OF THE RHESSYS MODEL  

 
 

 

4.1. Introduction 

The flux of dissolved organic carbon (DOC) from the terrestrial system to the aquatic 

system is a fundamental part of the global carbon cycle. It tightly links together terrestrial, 

estuarine and marine carbon cycling (Richey et al. 2004b). DOC fluxes are largely 

controlled by microbial transformation and hydrological transport in the terrestrial system 

(Tranvik and Jansson 2002). Many studies have been conducted to investigate microbial 

transformation of DOC in soil (Hur et al. 2009; Lu et al. 2013) and controls on the 

proportion of DOC in hydrological transport such as mineral soil absorption of DOC in 

soil (Jardine et al. 1989; Lilienfein et al. 2004; Tipping et al. 1999). With the 

understanding of these basic mechanisms of DOC production and transportation, 

terrestrial hydro-ecological process-based models are capable of simulating DOC flux 

from the terrestrial to aquatic systems. 
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Despite the importance of the land-to-water DOC flux, there are still uncertainties about 

its origin, mechanisms and fate. Both litter and humus are commonly accepted as the 

most important sources of DOC in soil solution, though the proportion of individual 

contributions cannot be quantified (Kalbitz et al. 2000). Since humus needs longer time 

to decompose, litter primarily accounts for short-time variation of DOC production in soil 

solution. DOC export from land is also regulated by mineral soil absorption and the 

amount of water that passes through the soil (Olefeldt et al. 2012; Roulet and Moore 

2006). DOC in stream channels comes from various sources that include groundwater 

DOC; DOC from the surface organic soil layers; DOC carried by water from the deep 

mineral soil layers; precipited DOC; DOC from decomposition of in-channel litter; and in 

some urban watersheds, DOC in wastewater. The first three categories of DOC source are 

the major components but there are still uncertainties in how different mechanisms 

combine under different climate and land cover scenarios to give a particular DOC 

signature.  

 

Many studies have been conducted to investigate parameters that influence DOC export. 

The phenomenon that a dry-wet cycle of hydrological conditions results in higher DOC 

concentrations has been reported in various study areas (Kalbitz and Knappe 1997; 

Lundquist et al. 1999; McDowell and Wood 1984; Tipping et al. 1999). Laboratory 

experiments concerning the influence of various climate parameters (e.g. temperature and 

nitrogen saturation) on DOC flux often contradict the field measurements due to the 

multiple interacting controls of land-to-water DOC flux. Warmer climates increase DOC 

production in watersheds, but the decomposition rate also increases, which at the same 
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time removes DOC (Kramer et al. 1990). McDowell et al. found no significant increase 

of DOC concentration over four years’ nitrogen amendments, while DOC increased in 

laboratory experiments (McDowell et al. 1998).  

Empirical models are applied by many studies to overcome the limitation of the spatial 

and temporal resolutions of field sampling of DOC flux and concentration (Dawson et al. 

2011; Findlay et al. 2001; Huntington and Aiken 2012). However, they need a certain 

amount of measured DOC data to begin with, which is often unavailable, especially for 

small watersheds without gauges. When climate change and landuse change caused by 

human activities are included in research, empirical models are no longer suitable (Wu et 

al. 2013). Process-based models can not only provide useful predictions of future 

scenarios based on the understanding of key processes but also construct a frame to test 

new hypotheses. A few process-based models have been developed to simulate DOC flux 

from soil into rivers with emphases on either soil absorption (Neff and Asner 2001; 

Yurova et al. 2008), or hydrological rainfall-runoff processes (Xu et al. 2012), or DOC 

production from various sources (Currie and Aber 1997; Wu et al. 2013), or a 

combination of simple DOC production, soil absorption and leaching functions (Futter et 

al. 2009).  While all these processes are important to DOC export, a model that integrates 

more detailed hydrological and ecological processes is needed to better understand DOC 

export. RHESSys is a hydro-ecological process-based based model that simulates carbon, 

water and energy flux at a daily time-step. The main objective of this research is to 

simulate DOC concentration and flux in the Neponset River Watershed using RHESSys 

and to compare the results with field measured data. It is the first time that RHESSys has 

been applied to a New England watershed and is used to simulate DOC flux from the 
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terrestrial to aquatic systems. Given the large population of the New England area and the 

important role of DOC in the aquatic system and the global carbon cycle, further study of 

DOC concentrations and flux in streams using process-based models can effectively link 

laboratory and field work with the fundamental biogeochemical processes and provide 

insights into the mechanisms of DOC flux from the terrestrial to the aquatic systems.  

 

 

4.2. Study Area and Data  

The study area of this research is the Neponset River Watershed (Figure 4.1) with an area 

of around 300km2. Climate data, survey data and various remotely sensed data are used in 

this research.  

 

Figure 4.1 The Neponset River Watershed with Massachusetts State as the background. 

The upper right corner is the digital elevation map of the Neponset River 

watershed. 
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4.2.1. Climate Data 

Climate data for the Blue Hill Observatory which are available from 1893 were 

downloaded from the National Climatic Data Center (Figure 4.2). Daily Climate data 

include maximum temperature, minimum temperature and precipitation. The highest 

temperature occurs in July and the lowest temperature is in January. Precipitation is 

evenly distributed throughout the year with the lowest value in July. 

 

Figure 4.2. 100 years’ climate data at the Blue Hill weather observation station. 

 

 

4.2.2. Digital Elevation Map 

DEM data (Figure 4.3) for Massachusetts State are available from the MassGIS website 

(http://www.mass.gov/mgis/). The 1:500 scale DEM data were resampled to 30 m spatial 

resolution using a bilinear resampling method. The shape of the Neponset Watershed was 

defined using the USGS gauge station in Milton village as the watershed outlet. 
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4.2.3. Land use 

30 m resolution land use data was reclassified to three types (undeveloped, urban and 

agriculture) from an NLCD 2006 map downloaded from the USGS (Figure 4.4). Sixteen 

land cover types are included in the NLCD 2006 classification for the New England area. 

Urban includes all the developed areas, while agriculture area includes cultivated areas. 

Undeveloped area covers the remainder.  

 

 

4.2.4. Vegetation type 

Vegetation type data (Figure 4.4) were reclassified from the Massachusetts Forest 

Monitoring Program map (30 m) provided by Clark University. Four vegetation types are 

used in RHESSys. These are Non-vegetation, deciduous forest, mixed forest and grass. 

The corresponding physiological parameters for each vegetation type are taken from 

RHESSys parameter libraries (https://github.com/RHESSys/ParamDB). 

 

 

4.2.5. Soil type 

Soil type data from MassGIS were created based on the published soils surveys by the 

United States Department of Agriculture (USDA) Natural Resources Conservation 

Service (NRCS). The feature map was converted to a 5 m resolution raster map and 

resampled to 30 m. Six types of soils were classified: sandyloam, siltyloam, 

sandyclayloam, urban, riparian and rock (Figure 4.4). 
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4.2.6. Impervious area 

Orthoimagery acquired in April 2005 was downloaded from MassGIS and used to 

generate an impervious area map. The feature map was converted to 5 m spatial 

resolution impervious area data. Figure 4.5 is the patch map, the finest scale in RHESSys, 

created using the unique combinations of various vegetation, soil and hydrological 

characteristics.  

 

 

4.2.7. Phenology data 

Vegetation phenology is an important factor in the biological effects of climate change. 

The daily MODerate resolution Imaging Spectroradiometer (MODIS) BRDF/albedo data 

were used to estimate phenology information (Zhang et al. 2003). The daily Nadir BRDF 

Adjusted Reflectance (NBAR) derived vegetation index which eliminate angular effects, 

are particularly well suited to capture rapidly changing surface conditions such as 

vegetation green-up in the spring. 

 

 

4.2.8. Hydrology data 

Five USGS hydrological gauge stations (Figure 4.3) are distributed in the Neponset River 

Watershed and they are located at the Milton dam in Norwood, in Dedham, and in 

Canton. RHESSys was calibrated using stream flow data from the USGS gauge station at 

Milton Village. Mother Brook flow data were subtracted from the flow at Milton dam to 

eliminate the influence of stream flow from water imported from the Charles River 



98 
 

(connected by the Mother Brook canal). The original cubic feet per second unit was 

converted to millimeter per day per basin area to be comparable with the RHESSys 

output. Data from November 1996 to 2012 were used for RHESSys simulations.    
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Figure 4.3. Location of USGS gauge stations in the Neponset River Watershed and DEM 

map of the Neponset River Watershed. 
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Figure 4.4. Input maps for RHESSys of the Neponset River Watershed. 
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Figure. 4.5. Patches created from combining DEM, soil type, vegetation type, land use 

type in the Neponset River Watershed at 30 m resolution. 

 

 

4.2.9. Field measured DOC concentration and flux data 

The DOC data were sampled from March 2006 to January 2012 on a monthly basis 

(Huang and Chen 2009). Samples for each month were collected and analyzed by 

Professor Robert Chen’s research group at University of Massachusetts Boston. The 

discharge from USGS gauge station at Milton Dam was used to calculate DOC flux from 

the measured DOC concentration. 
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4.3. Methodology 

 

 

4.3.1. The Key Processes Relating to DOC Leaching in RHESSys 

The Regional Hydro-Ecological Simulation Systems (RHESSys) is a spatially distributed 

daily time step model that simulates carbon, water, and energy fluxes within a watershed. 

It uses a hierarchical structure to present the landscape of study area and the structure 

includes basin, zone, hillslope and patch. RHESSys has been successfully applied in 

diverse watersheds under different climate conditions (Shields and Tague 2012; Tague et 

al. 2004), to study nitrogen export (Band et al. 2001), stream flow feedbacks to climate 

change (Band et al. 1996; Baron et al. 2000; Tague and Grant 2009; Tague et al. 2007), 

parameterize ungauged watersheds (Tague et al. 2012), study hydrologic vegetation 

gradient(Hwang et al. 2012), eco-hydrologic response to the combined impacts of 

projected climate change and altered fire frequencies (Tague et al. 2009b), and snow 

distribution (Christensen et al. 2008; Hartman et al. 1999; Tague and Grant 2009). 

RHESSys integrates process-based models for vegetation growth, hydrological process 

model and decomposition processes in soil. The combination of hydrological and 

ecological process models makes the study of DOC flux between land and water possible. 

 

 

4.3.1.1 Carbon Cycle Simulation in RHESSys 

RHESSys is a semi-mechanistic carbon cycling model in which carbon is balance. 

Carbon and nitrogen in plant, litter and soil components are stoichiometrically linked. 
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Carbon is fixed from atmospheric CO2 into the ecosystem by photosynthesis (Farquhar 

Equation) as a function of temperature, radiation, nutrient, and water supplement (Figure 

4.6). The amount of carbon left after vegetation respiration is then allocated to various 

parts of plants. Vegetation components (e.g. leaves, stemwood, fine roots) turnover are 

partitioned into corresponding litter pools based on species specific turnover ratios. DOC 

in soil solution originates from the decomposition processes of four litter and four soil 

pools. Four soil carbon pools which are the fast soil carbon pool, the slow soil carbon 

pool, the shielded cellulous soil carbon pool and the recalcitrant soil carbon pool 

correspond to four litter carbon pools: the labile litter carbon pool, the cellulous litter 

carbon pool, the shielded cellulous litter carbon pool and the lignin litter carbon pool. The 

decomposition rate is estimated by base decomposition rates for different litter and soil 

pools, and is then varied as a function of soil temperature, nutrient availability and soil 

water content. Nutrient availability is a key factor affecting both photosynthesis and 

decomposition processes. 

 

 

4.3.1.2. Hydrologic Processes in RHESSys 

RHESSys simulates vertical and lateral soil moisture for each patch object. The DOC 

flux is associated with both the vertical and lateral flow at the patch level. Precipitation 

reaches the soil surface after being intercepted by vegetation. Infiltration into soil layers 

is estimated using Philip’s infiltration equation (Philip 1957), and considers the 

throughfall (or precipitation when there is no canopy) intensity and duration and soil 

saturated hydraulic conductivity. The remaining throughfall turns to surface flow and is 
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discharged to adjacent lower elevation patches. Evaporation of intercepted canopy water, 

surface detention stores and litter and canopy transpiration is simulated by the Penman-

Monteith equation (Monteith 1965). Canopy transpiration is controlled by stomata 

conductance which is computed separately for shaded and sunlit leaves. The simulation 

of stomata conductance is a function of vegetation specific maximum conductance and 

environmental controls, such as light, CO2, leaf water potential and vapor pressure deficit. 

For the part of throughfall that gets into soil, a simple three-layer model is used to model 

vertical water flux in RHESSys. The three layers are root zone, unsaturated zone and 

saturated zone. When the soil layers are saturated, lateral flow occurs and carries DOC 

out from soil. The amount of DOC in soil solution that is leached out into stream 

channels is related to soil porosity, the decay rate of soil porosity, root zone depth, soil 

depth, available DOC in soil solution, DOC distribution with depth (named as DOC 

decay rate in RHESSys) and DOC absorption rate (Figure 4.6). Available DOC is 

distributed in soil based on soil depth and DOC decay rate. With the dynamic changes of 

the water table, amount of potential leached DOC is regulated by the depth of saturated 

soil layer. Actual DOC flux is then computed by subtracting this potential DOC leached 

by the amount of DOC absorbed onto soil particles. The DOC absorption function, 

simulated by a soil specific DOC absorption rate and depth of saturated soil layer, is 

newly included in RHESSys to better simulate the seasonal variation of DOC flux. 
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Figure 4.6. The simplified carbon cycle and the DOC production and transportation 

processes in RHESSys. DOM is dissolved organic matter which includes both dissolved 

organic carbon and dissolved organic nitrogen in RHESS. 
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4.3.2. The simulation of DOC Flux and Concentration in the Neponset River Watershed  

 

 

4.3.2.1. Spin-up 

Spin-up is necessary for process-based ecological models to get the simulated ecosystem 

to an initial state (values for all carbon, nitrogen and water pools) under a certain set of 

land cover and climate conditions. The initial state was evaluated through examination of 

soil carbon and soil nitrogen accumulation. The recalcitrant soil pool has a very long 

residence time which needs a long spin-up time to stabilize. Cold spin-up from zero 

carbon storage was used in this simulation. Background CO2 concentration in the 

atmosphere and nitrogen deposition value (including both dry deposition and wet 

deposition) during the pre-industrial period were used for model spin up. All the 

vegetation was clear cut after spin-up and then simulated for another 80 years with 

increased CO2 concentration and nitrogen deposition values representing the known land 

cover history of New England forests. 

 

 

4.3.2.2. Calibration 

The model was then calibrated using USGS gauge station data at Milton Village from 

November 1996 to November 2005, in order to bring the hydrological conditions in the 

model closer to reality. A number of drainage-related parameters that cannot be directly 

measured are typically needed for calibration in hydrological models (Beven and Freer 

2001; Tague et al. 2013). The main parameters for calibration are the decay of hydraulic 
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conductivity with depth (m); saturated soil hydraulic conductivity at the surface (K); two 

groundwater parameters which control the proportion of infiltrated water that bypasses 

soil to a deeper groundwater table (gw1); and the rate of lateral flow from a hillslope-

scale groundwater table to the stream channel (gw2). The calibration process used the 

Monte Carlo method with stream flow data. The goodness of fit between measured 

stream flow data and simulated results are estimated by both the Nash-Sutcliffe Index and 

the logarithm of it. The logarithm of the Nash-Sutcliffe Index can better capture recession 

and low flow behavior. Equifinality is a common problem during calibration, especially 

for complex hydro-ecological models (Beven and Freer 2001). To evaluate the 

uncertainty of simulated streamflow, generalized likelihood uncertainty estimation 

(GLUE) method was used. GLUE was introduced by Beven and Binley to quantify the 

equifinality of complex hydrological model predictions (Beven and Binley 1992). The 

parameter sets, that have a Nash-Sutcliffe Index larger than 0.65 and a logarithm of the 

Nash-Sutcliffe Index larger than 0.8, were chosen from hundreds of simulations.  
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CHAPTER 5 

 

SENSITIVITY ANALYSIS AND SIMULATION OF DOC CONCENTRATIONS AND 

FLUX USING THE RHESSYS MODEL – THE RESULTS 

 

 

 

With Chapter 4 focusing on the initialization of RHESSys model and methodology of 

hydro-ecological processes in RHESSys model, Chapter 5 is going to focus on the results 

of sensitivity analysis of DOC simulation using RHESSys and the simulated DOC 

concentration and DOC flux in the Neponset River Watershed. 

 

 

5.1. Sensitivity Analysis 

Before running the fully parameterized RHESSys model for the Neponset Watershed, a 

sensitivity analysis for DOC transport was performed to fully explore the capabilities of 

the model.  Physical hydro-ecological model simulation can improve our understanding 

of  how various parameters affect stream flow DOC. 
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Three groups of parameters were tested using the RHESSys model for a single 30 m by 

30 m patch with the average slope, elevation, and the majority land use, soil and 

vegetation types of the Neponset River Watershed. Thus, RHESSys was run as a lumped 

watershed model. Sensitivity analysis was done for three groups of parameters consisting 

of 1) model parameters which include DOM_decay_rate, DOC_production_rate and 

DOC_absorption_rate, 2) climate indices which included temperature and nitrogen 

deposition rates, and 3) soil and vegetation parameters which included soil depth, the 

ratio of infiltrated water bypass soil (via macropores and fractures) into a deeper 

groundwater table, and C:N ratio of leaf litter.  

 

The sensitivity analyses results were evaluated by three indices: the feedback index, the 

annual average of daily stream DOC concentration and flux, and coefficient of variation 

of daily stream DOC concentration and flux. The feedback index (FI) estimates the extent 

of the changing parameters’ influence on DOC flux and concentration. 

FI = (Stream_DOCi-stream_DOC0)/ (βi-β0) 

where stream_DOCi is the simulated annual average stream DOC flux/concentration 

using new values for the test parameter, stream_DOC0 is the simulated background 

stream DOC flux/concentration using original values for the test parameter, βi is the new 

value of the test parameter, and β0 is the original value of the test parameter. A positive 

FI means larger values of the test parameter can increase DOC flux/concentration and a 

negative FI means larger values of the test parameter can decrease DOC 

flux/concentration. 
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The coefficient of variation calculated for the daily stream flow DOC flux/concentration 

output is also used to estimate whether changing parameters affect the distribution of the 

daily stream flow DOC flux/concentration output. Larger CV means higher peaks and/or 

lower low values of daily stream flow DOC flux, while lower CV means more evenly 

stable distribution of daily stream flow DOC flux. 

 

 

5.1.2. Model Parameters  

Hundreds of parameters are utilized in RHESSys and influence the stream DOC output, 

since stream DOC is so tightly linked to both ecological processes and hydrological 

processes. Most of these parameters, however, are not varied in a typical RHESSys 

simulation and are physiological parameters that set based on plant function type or soil 

parameters that are set based on soil classes. However, there are three key parameters 

(DOM_decay_rate, DOM_production_rate and DOC_absorption_rate) that directly affect 

stream DOC output. These physiological parameters are difficult to measure and there is 

much uncertainty in the values. A process-based model can not only test the influence of 

various values of these physiological parameters on DOC simulation but also improve 

our understanding of how the landscape characteristics (e.g. distribution of organic 

carbon in soil with depth) affect DOC export.  

 

 

5.1.2.1. DOM Decay Rate 
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DOM_decay_rate represents the distribution rate of dissolved organic matter (DOM) in 

soil with the change of soil depth. A higher DOM_decay_rate means more DOM located 

in deeper layers of soil and less DOM located in the surface soil. This parameter 

functions closely with soil depth, saturated hydraulic conductivity and the decay rate of 

saturated hydraulic conductivity to affect DOC export. 3 m and 10 m soil depths were 

simulated and analyzed to briefly show the impact of soil depth. 

 

Figure 5.1 shows the changes of average daily stream DOC flux, the coefficient of 

variation of daily DOC flux and the feedback index calculated from 20 years’ simulation 

with a 3 m soil depth. Average daily stream DOC flux decreases when DOM_decay_rate 

increases, since less available DOC is distributed more evenly with depth. The coefficient 

of variation (3.04 to 3.18) of simulated average daily stream DOC flux increases with 

increase of DOM_decay_rate, so the DOC flux is small most of the time, then a large 

proportion of DOC is leached out from the soil during a few large precipitation events. 

The feedback index of stream DOC flux shows a decreasing trend with the increase of 

DOM_decay_rate. Average daily stream DOC concentration decreases almost linearly 

from 236 to 226 umol/l when the DOM decay rate increases from 0 to 1 (Figure 5.2). 

Coefficient of variation of daily stream DOC concentration shows a similar, but 

ascending trend, but with less variation. The feedback index decreases linearly from -8.64 

to -10.5 umol/l/DOM_decay_rate.  

 

The daily DOC flux ranges from 0.018 to 0.035 gC/m2/day and daily DOC concentration 

changes from 580 to 1200 umol/l when the soil depth is increased to 10 m (Figure 5.3 and 
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Figure 5.4). The DOC flux and concentration slightly decrease when the 

DOM_decay_rate is smaller than 0.45 and increases rapidly when the DOM_decay_rate 

increases. The coefficient of variation of daily DOC flux keeps increasing with a 

DOM_decay_rate less than 0.7 and decreases when the DOM_decay_rate is between 0.7 

and 0.8. The coefficient of variation slightly increases in the range of 0.8 to 1 of 

DOM_decay_rate. The coefficient of variation of DOC concentration and the feedback 

index show similar trends as the flux. The results indicate the ecosystem has a negative 

feedback of DOC export with increasing DOM_decay_rate then a positive feedback 

when DOM_decay_rate continues increasing. 

 

DOC flux and concentration is larger with 10 m soil depth than with 3 m soil depth. The 

amount of DOC flux and concentration are directly affected by the amount of available 

DOC in soil and the amount of water passing through soil. The distribution of DOC in 

soil is an exponential function meaning more DOC at the surface than in deep soil. The 

amount of DOC in deep soil is larger if the DOM_decay_rate increases from a very small 

value. Therefore, less DOC would be leached out from the soil when the amount of water 

passing through the soil is the same. The change in the amount of DOC in deep soil 

becomes less if the DOM_decay_rate increases from a large value. The leached DOC is 

less for a shallow soil depth (e.g. 3 m) because of the limited involved water and soil 

depth. However, the small change of available DOC is traded off by the increasing 

amount of involved water and soil depth when soil is thick enough. Therefore, the DOC 

flux and concentration decrease first and then increase rapidly for 10 m soil depth.  
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Figure 5.1. DOM_decay_rate changes for stream DOC flux when soil depth is 3 m.   

 

 

Figure 5.2. DOM_decay_rate changes for stream DOC concentration when soil depth is 3 

m. 
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Figure 5.3. DOM_decay_rate changes for stream DOC flux when soil depth is 10 m.   

 

 

Figure 5.4. DOM_decay_rate changes for stream DOC concentration when soil depth is 

10 m. 
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5.1.2.2. DOM Production Rate 

DOM_production_rate in RHESSys is a scalar from 0 to 1 based on different soil types. 

Normally the value of the DOM_production_rate is less than 0.05. The DyDOC model 

was applied to a deciduous forest in Tennessee and the transformation of soil organic 

matter to dissolved organic matter was set as 0.02 (Tipping et al. 2012). The variation of 

DOM_production_rate has influence on both the ecological and hydrological processes of 

DOC simulation. A higher DOM_production_rate means more litter carbon is converted 

to DOC, which is also the same for DON (dissolved organic nitrogen). A higher 

DOM_production_rate will ultimately increase the loss of nitrogen and then decrease 

Leaf Area Index (LAI), which decreases the amount of potential DOC that can be leached 

out. Although a higher DOM_production_rate produces more DOC, less water passing 

through may decrease the amount of DOC leached into stream.  

 

The mean daily stream DOC flux increases very rapidly when the DOM_production_rate 

starts to increase from zero and then increases more slowly, ranging from 0.007 

gC/m2/day to 0.031 gC/m2/day when DOM_production_rate changes from 0.08 to 1 

(Figure 5.5). The coefficient of variation (1.5 to 0.7) of the average daily stream DOC 

flux decreases with increasing DOM_production_rate. As DOM_production_rate 

increases, the feedback index (0.47 to 0.02 gC/m2/day/DOM_production_rate) drops 

dramatically and then the change stablizes close to zero. The change of 

DOM_production_rate at lower levels of DOM_production_rate causes greater increases 

of daily stream DOC flux. The three indices of daily stream DOC concentration show 

similar trends to the change in DOC flux (Figure 5.6). Feedback index has a very 
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substaintial change with per unit change of DOM_production_rate, ranging from 17500 

to 0 umol/l/DOM_production_rate. DOC export undergoes positive feedback with the 

increase of DOM_production_rate. However the influence of the DOM_production_rate 

on DOC export tends to be smaller with higher DOM_production_rate. 

 

Total plant carbon decreases with an increase of the DOM_production_rate from zero, 

because more DON is produced during decomposition, thus nitrogen is less available for 

vegetation growth (Figure 5.7). Less litter is supplied at this situation, which eventually 

decreases the production of DOC in the system. The results indicate vegetation plays an 

important role in the DOC flux process by controlling the litter production, which is the 

source of DOC in soil. The results also illustrates a tight coupling between vegetation and 

nitrogen availability and DOM production. 

  

 

Figure 5.5. Stream DOC flux changes with DOM_production_rate. 
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Figure 5.6.  Stream DOC concentration changes with DOM_production_rate. 

 

Figure 5.7.  Plant carbon amount changes with DOM_production_rate. 

 

 

5.1.2.3. DOC Absorption Rate 

DOC_absorption_rate is a soil specific parameter that is used to estimate the amount of 

DOC absorbed in soil. Its unit is mgC/Kg soil. An earlier study, using 17 soil profiles, 
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found the amount of DOC absorbed in the soil surfaces was 23±73 mgC/Kg soil 

(Kothawala et al. 2008). DOM_decay_rate controls the amount of DOM in soil available 

to be flushed out of the terrestrial system. The daily stream DOC flux has a good linear 

relationship with DOC_absorption_rate (Figure 5.8). However, the difference between 

the maximum and minmum DOC flux is very small (0.01713 to 0.017 gC/m2/day) due to 

the shallow soil depth (3 m) used. More DOC is accumulated in the soil during normal 

precipitation events with a higher DOC_absorption_rate. However, this accumulated 

DOC gets leached out once larger precipitation occurs. This phenomena is consistent 

with field observations (Inamdar and Mitchell 2006) that storms carry most of the DOC 

out of the terrestrial system. The coefficient of variation ranging from 1.27 to 1.33 also 

has a positive linear relationship with DOC_absorption_rate. The feedback index of 

average daily stream DOC flux is also small, with a range of 0.0046 to 0.0035 

gC/m2/day/DOC_absorption_rate.  

 

The average daily stream DOC concentration has a negative relationship with 

DOC_absorption_rate (Figure 5.9). The coefficient of variation increases from 0.77 to 

0.79 when the DOC_absorption_rate increases from zero to 0.000245 kgC/kg soil. The 

feedback index changes from -44970 to -44860 umol/l/DOC_absorption_rate. 

DOC_absorption_rate is directly related to soil weight. Soil depth is a key parameter 

controlling the amount of DOC available to be leached out. The average daily DOC 

concentration changes very little for shallow soil depth when the DOC_absorption_rate is 

within the normal range. The DOC_absorption_rate mainly affects the timing of DOC 

leaching.  
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Figure 5.8. Stream DOC flux changes with the DOC_absorption_rate. 

  

 

Figure 5.9. Stream DOC concentration changes with the DOC_absorption_rate. 
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For the three above parameters, DOM_decay_rate works closely with soil depth, 

hydraulic conductivity and the decay rate of hydraulic conductivity. The variation of 

DOC export with changing DOM_decay_rate for a constant soil depth is less than the 

variation of DOC export with differing soil depth. DOM_production_rate is the most 

sensitive among these three model parameters. However, since DOM_production_rate 

affects vegetation growth, there is a threshold existing for its influence on DOC 

simulation. When DOM_production_rate is less than the threshold, DOC export increases 

quickly with the increase of DOM_production_rate. When DOM_production_rate is 

larger than the threshold, DOC export increases very slowly with the increase of the 

DOM_production_rate. The threshold may change based on various patch characteristics, 

such as vegetation type, soil type and climate type. There is only a small alteration in 

model response with variation in the DOC_absorption_rate. It has large influence on the 

seasonal patterns of DOC export with the dynamics of water table, which cannot be 

shown from the 20 years’ average daily DOC export. 

 

 

5.1.3. Climate Indices 

Climate changes significantly affect ecosystems. However, few studies estimate the 

influence of changing climate on stream DOC flux and concentration. Two climate 

indices (nitrogen deposition and temperature) were analyzed using the RHESSys model. 
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5.1.3.1. Nitrogen Deposition 

Nitrogen is one of the most limiting factors for vegetation growth in the study area (Aber 

et al. 1993). Increasing nitrogen deposition provides more nitrogen to vegetation and 

raises the photosynthetic rate and the amount of carbon fixed in the ecosystem. In the 

meantime, the increased leaf area may consume more water and reduce the amount of 

water that transfers DOC out of the soil, decreasing the DOC flux and concentration. 

DOC in the forest floor leachate is expected to decline under N saturation status because 

of the increased energy demand associated with immobilization of nitrogen (Aber, 1992). 

However, field experiments with N amendments did not support this hypothesis and no 

significant DOC concentration change was observed (Guggenberger and Zech 1994; 

Gundersen et al. 1998; McDowell et al. 1998; Rustad et al. 1996). In this study, 

sensitivity analysis of DOC simulation to nitrogen deposition was performed over a 

longer period with more varied nitrogen deposition levels. Plant carbon increases 

significantly with more average daily stream DOC flux and concentration when nitrogen 

deposition is larger than 0.016 KgN/m2/year (Figure 5.10, Figure 5.11 and Figure 5.12). 

Nitrogen is no longer a limiting factor for vegetation growth when nitrogen deposition 

reaches around 0.035 KgN/m2/year. This threshold is larger than chronic nitrogen 

addition conducted by Aber in Harvard forest, which is around 0.014 KgN/m2/year (Aber 

et al. 1993). Plant carbon stops growing and becomes stable. However they did not find 

nitrogen was saturated in the hardwood site at this value. The coefficient of variation of 

DOC flux (1.2 to 1.7) has a similar trend as the coefficient of variation of DOC 

concentration (0.75 to 1.1). Per unit change of nitrogen deposition causes about 1.0 

gC/m2/day change of average daily stream DOC flux, while the effect decreases as the 
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nitrogen deposition gets higher. The feedback index of DOC concentration shows a 

similar trend as the feedback index of DOC flux.  

 

 

5.1.3.2. Temperature Increase 

Temperature affects the photosysthesis rate, respiration rate, decomposition rate, 

evaporation rate and transpiration rate. Higher temperature increases the primary 

vegetation production by accelerating photosynthesis, and also enhances vegetation 

respiration and organic matter decay rates.  

 

Increasing temperature raises the stream DOC flux (0.0161 to 0.031 gC/m2/day) and 

concentration (600 to 1200 umol/l). The DOC flux and concentration start to decrease 

when the temperature reaches a limit of vegetation growth. (Figure 5.13 and Figure 5.14). 

Slightly higher temperature can stimulate the growth of vegetation and also increase 

decomposition rate (Davidson et al. 1998), while the growth of vegetation can be limited 

under very high temperatures which exceed the tolerance of vegetation growth (Bassow 

et al. 1994; Wayne et al. 1998).   
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Figure 5.10. Stream DOC flux changes with nitrogen deposition. 

  

 

Figure 5.11. Stream DOC concentration changes with nitrogen deposition. 

 

Figure 5.12. Plant carbon storage changes with nitrogen deposition changes. 
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Figure 5.13. Stream  DOC flux changes with change in temperature. 

  

 

Figure 5.14.  Stream  DOC concentration changes with change in temperature. 
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Figure 5.15.  Plant carbon storage changes with change in temperature. 

 

Nitrogen deposition has a more significant influence than temperature given expected 

ranges for nitrogen deposition and temperature in the Neponset River Watershed. The 

feedback index gets close to zero when a threshold is reached for both of these climate 

parameters. Sensitivity analysis of climate indices has some limitations. The feedback 

index is calculated from the average value of twenty year’s daily stream DOC flux and 

concentration, which ignores the nonlinear relationship between DOC export and 

changing testing parameters. With the temperature and nitrogen deposition change, 

changes of plant organisms (such as leaf structure) are not considered in this analysis. 

 

 

5.1.4. Soil and vegetation parameters 

 The sensitivity of soil depth, the proportion of surface water that becomes groundwater, 

and litter composition (which is one of the vegetation parameters) are analyzed in this 

section.  
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5.1.4.1. Soil Depth 

  

 

Figure 5.16.  Stream DOC flux changes with soil depth. 

Soil depth is a key parameter that controls the production of lateral flow, soil moisture, 

and vegetation growth. Soil depth is shallow with an average of 3 m for the Neponset 

River Watershed. Soil depth influences stream DOC concentration more than stream 

DOC flux (Figure 5.16 and Figure 5.17). Therefore, soil depth has a stronger effect on 

hydrological processes than on ecological processes. DOC flux and concentration 

significantly increase and their coefficient of variation and the feedback index of DOC 

flux decrease while the feedback index of DOC concentration increases, as soil depth 

increases from 3 m to 15 m. Less change was found for DOC flux and concentration, 

coefficient of variation, feedback index of DOC flux and concentration, and plant carbon 

storage, when soil depth is larger than 15 m. The turning point of soil depth may vary 

based on different soil texture, surface saturated hydraulic conductivity (K) and the decay 
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rate of K (m). For study areas with shallow soil depth, accurate assessment of soil depth 

is a key factor that affects accurate simulation of DOC export. 

 

  

 

 

 

Figure 5.17.  Stream DOC concentration changes with soil depth and plant carbon storage 

changes with soil depth. 
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5.1.4.2 The proportion of surface water that becomes groundwater 

The proportion of surface water that bypasses soil layers and goes directly into ground 

water is unavailable for vegetation growth and DOC leaching. The proportion of surface 

water that becomes groundwater has a high correlation with daily DOC flux (Figure 5.18) 

because of the limiting effect of this parameter on vegetation growth. 

 

Figure 5.18.  The correlation between average daily DOC flux and the proportion of 

surface water that becomes groundwater. 

 

 

5.1.4.3 C:N Ratio of Leaf Litter 
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Figure 5.19.  Stream DOC flux changes with the litter composition. 

 
Carbon fixed through photosynthesis is allocated into different parts of the plant. 

Nitrogen is correspondingly allocated in the plant by the carbon to nitrogen ratio (C:N) in 

leaf, root and stem. Leaf litter is a source of DOC and DON, so the C:N value is 

important for DOC export. The reasonable range of leaf litter C:N is from 42 to 70 based 

on literature reviews (White et al. 2000). The daily stream DOC flux changes from 0.016 

to 0.017 gC/m2/day while the smallest DOC flux occurs when leaf litter C:N is 48 (Figure 

5.19). A similar trend also appears in DOC concentration.(Figure 5.20). The coefficient 

of variation of DOC flux (1.21 to 1.29) and concentration (0.69 to 0.78) increases when 

litter C:N is less than 48, and then maintains a relatively slow and stable increase. Plant 

carbon storage increases (14.0 to 14.3 gC/m2) with the litter C:N ratio (Figure 5.21). 

DOC export has a negative feedback with increasing leaf litter C:N. However, with the 

increase of leaf litter C:N, the negative feedback becomes smaller and is close to zero 
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when leaf litter C:N is larger than 68. Therefore, for vegetation that has less leaf litter 

C:N ratio (especially around 48), DOC export simulation is sensitive to leaf litter C:N 

ratio. 

 

  

 

Figure 5.20.  Stream DOC concentration changes with the litter composition. 

 

 

Figure 5.21.  Plant carbon storage changes with the litter composition. 
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5.2. Neponset Results 

 

 

5.2.1. Calibration using the Generalized Likelihood Uncertainty Estimation (GLUE) 

method 

GLUE was introduced by Beven and Binley (1992) to quantify the uncertainty of model 

predictions (Beven and Binley 1992). For complex hydro-ecological models like 

RHESSys, it is unavoidable to have several sets of parameters that function equally well 

when compared with the observed data; this is called equifinality. Combined with Monte 

Carlo analysis, GLUE can represent the uncertainty of a model simulation in relation to 

equifinality. Parameters that were calibrated are surface hydraulic conductivity (K), 

decay rate of surface hydraulic conductivity with depth (m), the amount of water from 

precipitation that goes directly to groundwater (gw1), and the amount of water that leaves 

the groundwater pool to streamflow (gw2). The Nash-Sutcliffe index, calculated from the 

simulated stream flow and logarithms of simulated stream flow, was used to measure the 

likelihood of model performance. The model was run to simulate streamflow for the 

period from 11/01/1996 to 10/31/2005 with 432 different sets of calibration parameters. 

The criterion for acceptance of parameter sets was based on the criterion that the Nash-

Sutcliffe index of simulated stream flow was larger than 0.65 and the index based on the 

logarithm of simulated stream flow was larger than 0.80. 277 out of 432 simulations were 

selected. 
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Figure 5.22. Uncertainty assessment of the stream flow simulation. The grey area was 

defined by using the 5% and 95% confidence levels of the acceptable simulated 

stream flow. The red line was the observed stream flow at the outlet of the 

Neponset River Watershed. 

 
All the acceptable simulations tend to have high peaks, while there is more uncertainty 

during low flow conditions (Figure 5.22 and Figure 5.23). The simulated high peaks are 

higher than observed for high precipitation events and the simulated stream flow is lower 

than observed during the recession periods. For example, a large precipitation event was 

observed in late March of 2001 (March 22nd to April 5th) with the highest daily 

precipitation of 14mm/m2 making this March the wettest from 1891 to present. Stream 

flow following extreme precipitation events is hard to simulate. One reason that needs to 

be noted is the uncertainty of the precipitation input. Many studies report that spatial 

rainfall measurement is important for streamflow simulation and it uncertainty has more 

influence on small watershed modeling (Arnaud et al. 2011; Berne et al. 2004; Emmanuel 
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et al. 2012; Vaze et al. 2011). Another factor that affects streamflow simulation is the 

duration of precipitation events. Including an accurate measurement of the duration of 

each precipitation events can significantly improve the accuracy of simulated streamflow. 

However, such data are unavailable for the Neponset River Watershed.  

 

According to the storm water management policies issued by the Massachusetts 

Department of Environmental Protection, all new development projects need to match 

pre-development and post-development peak runoff rates. A variety of techniques have 

been developed and implemented to control peak runoff after development (e.g. dry 

extended detention ponds, porous pavement, grassed filter strips and wet ponds) but this 

kind of information is difficult to collect and was not provided in the input data.  

 

Figure 5.23. Uncertainty assessment of logarithms of stream flow simulation. 
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5.2.2. Simulated Root Zone Soil Moisture 

Root zone soil moisture was calculated from simulated root zone water storage and root 

zone depth based on daily climate data and water availability. Measured soil moisture 

was collected from two sub-basins (Sharon and Milton) in the Neponset River Watershed 

in 2011 on a weekly basis. Sampling points in Sharon were located in dense forested and 

undeveloped areas, while all sampling points in Milton are in residential areas (back 

yards or public grassland).  The R2 between the simulated and observed root zone soil 

moisture is 0.68 in Sharon and 0.35 in Milton (Figure 5.24).  The simulated root zone soil 

moisture volumn is comparably lower than the average of measured Sharon and Milton 

soil moistures. Most of the sampling points in Sharon are in forest while the simulated 

soil moisture for the whole sub-basin includes different land types. In Milton, all the 

sampling points are in developed grass land and experience irrigation during dry periods, 

which affects the correlation between simulated and observed soil moisture (as irrigation 

volume cannot be effectively estimated).  

 

 

Figure 5.24. Simulated root zone soil moisture of the whole Neponset River Watershed 

comparing with average measured soil moisture in Sharon and Milton sub-basins. 
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The simulated root zone soil moisture of the two sub-basins in the Neponset River 

Watershed has a good correlation with field measured soil moisture. When field 

measured soil moisture data are not available, EVI2 estimated TVDI at both MODIS and 

Landsat scales, and especially MODIS scale, can be used to evaluate RHESSys simulated 

soil moisture. 

 

5.2.3. Simulated Daily Stream DOC Concentration and Flux  

The simulated DOC concentration generally agrees with observed values, though the 

model tends to overestimate DOC concentration over large precipitation events, and the 

simulated DOC misses the very high peaks in April, May and August of 2008 (Figure 

5.25). The measured high peak of DOC concentration at the beginning of 2008 is caused 

by the accumulation of soil carbon during the second half of year 2007, and higher 

precipitation at the beginning of 2008. RHESSys simulation successfully caught the low 

DOC concentration during the second half of year 2007 and also produced relatively high 

DOC concentration in January and February of 2008. This is consistent with other studies 

about the memory of eco-systems, which means the store of DOC concentration in a year 

can impact DOC export in the following year (Yurova et al. 2008). However, RHESSys 

simulation did not capture the very high DOC concentration in April and May of 2008. It 

is possible that RHESSys did not capture this pattern because of the use of a constant soil 

specific DOC_absorption_rate rather than a dynamic DOC absorption function that varies 

with soil depth. This is also found in TRIPLEX-DOC model simulations (Wu et al. 2013). 

DOC is absorbed in soil surfaces based on the DOC_absorption_rate, which is a constant 

for all soil layers. However, in reality, the top layer of soil is normally an organic layer 
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which accumulates a large amount of DOC and has less mineral soil (and therefore less 

DOC absorption). Deep soil layers are mainly mineral soil which strongly absorbs DOC. 

Therefore, when water passes only through the top soil layer, the model may 

overestimate absorbed DOC and eventually underestimate DOC concentration in 

streamflow.  

 

Comparing to the measured DOC concentration in July of 2008, 2009, 2010 and 2011, 

the simulated DOC concentrations are underestimated. High measured DOC 

concentrations during low flows were noticed by Raymond and Saiers and they suggested 

the possible reason might be autotrophic in-stream production (Raymond and Saiers 

2010). The underestimation of DOC concentration in summer was reported by DOC 

simulation using INCA-C in four Swedish watersheds (Futter et al. 2011).  

 

The correlation between the simulated and observed DOC flux matches better than DOC 

concentration (Figure 5.26). The overall correlation using all five years’ data is 0.53. The 

correlation increases to 0.66 if the very low flows of July and August are removed. 

Overestimation of DOC flux during extreme precipitation events also occurs. The reason 

is consistent with the high peak streamflow simulation. The stream DOC simulation is 

largely influenced by the hydrological cycle. Extreme precipitation events result in large 

amounts of DOC being leached into streams. Small precipitation events leach relatively 

less DOC into streams even though there is a large store of DOC in the soil. Additional 

research concerning soil absorption and desorption would likely improve the simulation 

of stream DOC during peak and low flow periods. 
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Figure 5.25. Simulated daily DOC concentration compared with observed DOC 

concentration and simulated daily stream flow compared with observed stream 

flow.  

 

Figure 5.26. Simulated daily DOC flux compared with observed DOC flux and simulated 

daily stream flow compared with observed stream flow. 
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5.3. Conclusion 

Physical process-based hydro-ecological models can not only be used to model 

ecosystems and predict future conditions but also offer a frame work for analyzing and 

unveiling mechanisms underlying various phenomena. This research used the RHESSys 

model to conduct a comprehensive stream DOC simulation sensitivity analysis of an 

urban coastal watershed using typical soil types and climate conditions for the northeast 

United States. In particular, the stream DOC flux and concentration were simulated over 

the Neponset River Watershed, one of the major rivers draining into Boston Harbor. The 

uncertainty of the simulated stream flow was analyzed using the GLUE method. The 

simulated DOC flux and concentration values matched well with observed data. Low 

flow situations tended to have more variation than peak flow periods indicating that 

RHESSys can simulate the DOC flux and concentrations very well during normal and 

wet seasons. However, RHESSys tended to overestimate stream flow volume, which 

decreased DOC concentration during the dry season. RHESSys simulation of DOC 

concentration and flux during the end of year 2007 and the beginning of year 2008 shows 

the memory of ecosystem. A better understanding of soil absorption and desorption will 

further improve the stream DOC simulations. The major conclusions are as follows: 

• Slightly higher DOM_production_rate, nitrogen deposition, temperature, and 

deeper soil depth, can increase the stream DOC flux and concentration. The 

increase of DOC flux and concentration is not obvious when the soil depth 

increases over a certain threshold. This threshold is determined by soil 

characteristics, surface saturated hydraulic conductivity and the decay of the 

hydraulic conductivity. For study areas that have shallow soil layers, soil depth is 
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a key input for accurate estimation of DOC export. If sufficient inorganic nitrogen 

is available for vegetation growth when the DOM_production_rate is too high, 

this will eventually decrease the stream DOC flux and concentration. The 

influence of nitrogen deposition vanishes if the nitrogen deposition is large 

enough that nitrogen is no longer the limiting factor for vegetation growth. 

Increasing temperature will eventually become a limitation for vegetation growth. 

The increasing temperature will increase respiration rate and decreases stream 

DOC flux and concentration. 

• Nitrogen deposition and DOM_production_rate are the most sensitive parameters 

based on the sensitivity analysis of DOC simulation using RHESSys. However, 

the increase of DOC export is only found under a certain threshold of these two 

parameters. 

• The proportion of surface water that bypasses soil and becomes groundwater is an 

important but easily been overlooked model parameter that influences vegetation 

growth and stream DOC flux and concentration. 

• The DOC absorption function can influence the timing of DOC leaching. This 

function does not significantly change the annual amount of stream DOC flux and 

concentration, but affect the pattern of DOC leaching based on the depth of the 

dynamic water table. A dynamic DOC absorption function that varies with soil 

depth will further improve the accuracy of DOC simulation.  
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CHAPTER 6 

 

SUMMARY 

 

 

 

The main goal of this research was to study the DOC flux from a terrestrial urbanized 

watershed to an estuarine system using a process-based regional hydro-ecological model 

and remotely sensed data. A special emphasis was placed on the effects of soil moisture 

on the system and the utility of various remotely sensed indices of soil moisture. Given a 

majority of the Earth’s population now live in coastal cities, the ability to understand and 

accurately model the hydrologic and carbon cycling of the coastal urban ecosystem has 

become crucial. The RHESSys model, initialized and evaluated with remotely sensed 

data, represents an ideal platform to explore these complex systems.     

  

During the course of this research, a number of important tasks were accomplished. This 

project represented the first time that the RHESSys model was applied to a watershed in 

the northeast United States and in particular to an urbanized coastal watershed in the 
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region. A comprehensive sensitivity analysis of the DOC simulation using RHESSys was 

undertaken to help separate and evaluate the influence of hydrological and ecological 

processes on DOC leaching from terrestrial to aquatic systems. A new soil absorption 

function was integrated into the baseline RHESSys code to improve its ability to simulate 

DOC transport.  

 

This study also explored the use of various remotely sensed measures of the DEM, GPP, 

land use, soil and vegetation types, phenology and, in particular, soil moisture. These 

included a simple topographic moisture index (TMI) estimated using slope and water 

accumulation area, and a temperature vegetation dryness index (TVDI) estimated using 

various vegetation indices and land surface temperature. In general the coefficient of 

variation with field measured soil moisture decreases in wet conditions. Field soil 

moisture measures taken in the forest covered Sharon sub-basin of the Neponset River 

(further southwest of Boston) were found to exhibit a relatively stable correlation with 

TMI, while those measured in the urbanized Milton sub-basin nearer to Boston exhibited 

a larger variation of correlation with TMI. Thus the average correlation between 

measured soil moisture and TMI in this study region was weak and could not capture the 

temporal variation of the soil moisture. Compared with TMI, the TVDI was able to 

represent the temporal change of land surface soil moisture condition with better 

accuracy. The TVDI calculated from MODIS data displayed a strong correlation with 

measured soil moisture in the Greater Boston Area. The TVDI calculated from Landsat 

data had a weaker correlation with the measured soil moisture from the two sub-basins in 

the Neponset River Watershed, especially in the forest covered Sharon sub-basin. It 
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would appear that relatively wet land surface conditions, only one thermal band of 

Landsat data, and the variability of land covers at this higher spatial resolution all 

contributed to a decrease in the strength of this correlation. For TVDIs estimated from 

both MODIS and Landsat, the two-band EVI derived TVDI performed similarly to the 

SAVI derived TVDI, and both were slightly better than NDVI derived TVDI. The 

traditional NDVI derived TVDI tended to overestimate the dryness condition in dry areas 

under all conditions, and showed less sensitivity to changes in land surface soil moisture 

condition during high LAI periods. Therefore, this research suggests that the two-band 

EVI derived TVDI is best to be used as surrogate measure of field surface moisture at 

both MODIS and Landsat scales, especially at the MODIS scale. 

 

In the Neponset River Watershed, the location of silt loam soils, strongly associated with 

the presence of the main channel wetland, and emergent wetland land use were found 

(via principal component analysis) to be highly correlated with the measured DOC 

concentrations among the different sampling points. Land cover and topographic 

characteristics controlled the long-term DOC concentration variation among various sub-

basins. Short-term DOC concentrations depended primarily on climate conditions (e.g. 

temperature and precipitation). DOC concentration appears to be regulated by different 

factors in the growing and leaf-off seasons. Monthly average temperature, stream flow 

and API (antecedent precipitation index) all displayed a good correlation with the 

measured average DOC concentration at all sampling points during the growing season. 

However annual terrestrial GPP did not show a significant relationship with the annual 

DOC concentration. The eight-day GPP only displayed a good correlation with the DOC 
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concentration measured within the sub-basins in the vicinity of abundant wetland, which 

supports higher decomposition rates in the wetland. However, it is hard to identify the 

factors affecting the DOC concentration in the leaf-off season. Both the timing of snow 

melt and previous DOC leaching status can significantly affect the DOC concentrations 

during the leaf-off season, but it is hard to fully quantify their influence due to a lack of 

detailed measurements during the snow melt period. 

 

By embracing various land surface information and daily climate data, physical process-

based models such as RHESSys are shown effectively to simulate DOC concentrations, 

DOC flux and soil moisture. The simulated DOC flux has less extreme variations than the 

simulated DOC concentrations due to large variations in hydrological processes 

associated with high precipitation events. Factors that regulate the hydrological processes 

appear to have had a larger influence on DOC concentration than the factors affecting 

vegetation growth. However, factors affecting vegetation growth have had more 

influence on DOC flux by limiting the source of DOC. Nitrogen deposition is another key 

factor that influenced DOC concentration and flux through vegetation growth. Soil depth 

influenced DOC concentration through a regulation of the depth of water table. Thus 

RHESSys was found to reasonably estimate the DOC concentrations and the DOC flux in 

the Neponset River Watershed. The complexity of this urban system’s hydrological 

processes and wetlands added difficulty to the model simulation. Lack of the information 

in the model about anthropogenic strategies to control peak flow by the Department of 

Environmental Protection appears to be one of the main reasons for an overestimation of 

the peak flow in the DOC simulation.  
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The physical based process model RHESSY furthered our understanding of DOC 

leaching mechanisms by quantitatively simulating DOC concentration and DOC flux in 

the Neponset Watershed. The RHESSys simulated land surface soil moisture successfully 

captured the surface moisture conditions, even in a highly heterogeneous urban area such 

as Boston. The hierarchical structure of RHESSys was able to represent the complex 

urban spatial components and consider the effects of impervious areas, roads, and the 

sewage system. The successful application of RHESSys for DOC and soil moisture 

simulation provides a framework to test various hypotheses to improve our understanding 

and management of the urban system in the future.  

 

However, this research also uncovered some topics which will need further study. A 

comparison among simulations using different vegetation phenology estimation methods 

(a constant phenology value, the MODIS phenology and a dynamic phenology model) 

should be conducted. Long term soil moisture monitoring, corresponding with the 

increased availability of high quality remotely sensed data will improve our 

understanding and use of TVDI. Estimating TDVI from  remotely sensed data with 

resolutions finer than Landsat will further improve our understanding of the effect of 

spatial resolution and scale, especially for such highly heterogeneous urban areas. More 

field studies need to be conducted during the leaf-off season to explore the factors that 

affect DOC concentrations in the stream channels. More frequent DOC sampling during 

snow melt periods would also be very helpful. Although hydrological processes are the 

main factors influencing the short term variation of DOC concentrations in the streams in 

this study, the DOC absorption in mineral soil needs further study to more quantitatively 
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understand the DOC export. The integration of a more detailed DOC absorption function 

would also improve the model simulation of DOC in the stream during low flow seasons. 

The urbanized study area used in this study increases the difficulty of the simulation. 

Thus more detailed information about the management strategies employed on these 

watersheds to adjust peak flow would improve the ability of the model to accurately 

simulate peak flow.  

 

Despite the limitations of this work and the lines of future inquiry laid out above, this 

present study enhanced our understanding of the carbon cycle of an urbanized coastal 

watershed through the use of remotely sensed data and a regional hydro-ecological 

process based model. This study also demonstrated the utility in modeling the DOC flux 

of specific complex watersheds (and especially for unmonitored watersheds) to 

quantitatively estimate DOC flux at regional scales. 
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