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ABSTRACT 
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Directed by Professor Robyn Hannigan 

 

  

The Permian-Triassic Boundary (PTB) marks the end-Permian extinction, the 

greatest mass extinction recorded in Earth’s history. The Attargoo PTB section 

located in Spiti Valley, Himachal Pradesh, India was situated along the north 

continental margin of Gondwana-land in the Neo-Tethys Ocean during the end-

Permian extinction. In Spiti Valley, PTB sections such as Attargoo are exposed by 

a thin (~ 2cm) ferruginous layer separating the Permian black shale from Triassic 

Limestone. Studies that have presented geochemical data to support a theory of 

the end-Permian extinction lack any interpretation of post-depositional effects on 

Spiti Valley PTB sections. In order to accurately present a cause for the end 

Permian extinction one must understand if the Spiti PTB sections contain any 
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original chemical signature. In this study we present the major element 

geochemistry of the Attargoo PTB section to see if this section has experienced 

any post-depositional alteration and assess the major element geochemistry of the 

ferruginous layer. X-ray fluorescence (ED-XRF), Inductively Coupled Plasma 

Optical Emission Spectroscopy (ICP-OES), and Loss on Ignition (LOI) were used 

to gather major element, organic, and inorganic carbon values for the Attargoo 

PTB section. From our analysis we suggest that the Attargoo section has 

experienced intermediate weathering, very little chloritzation, no K-

metasomatism, and is diagenetically altered.   Intermediate weathering is 

supported by the CIA values quantified at the Gungri formation. The major 

element chemistry suggests that the Triassic limestone contains dolomitic 

characteristics. The extent of chemical weathering and chloritization do not 

appear to be significant in which samples are altered from the original chemical 

composition this is reflective in the shale CIA values and both ternary plots. The 

ferruginous layer can be divided into three sections: lower, middle and upper 

ferruginous layer. The lower ferruginous layers has shale characteristics, whereas 

the middle and upper ferruginous layer has characteristics of an ironstone or iron 

rich shale. The CIA values of the middle and upper ferruginous layer suggest that 

it formed under arid or dry conditions. The Ca, Fe, P and Corg values suggest that 

the ferruginous layer formed in situ during a non-depositional event of subaerial 

origin.  
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CHAPTER 1 

INTRODUCTION 

 

Statement of Purpose 

This thesis centers on the geochemical record of the Permian-Triassic (PT) 

sequence exposed in Spiti Valley known as Attargoo (Himachal Himalaya, India).  The 

exposed PT section at Attargoo includes the uppermost Permian Gungri Shale and the 

lowermost Triassic Mikin Limestone. The boundary itself is thought to be marked by a 2-

5 cm ferruginous layer lying unconformably between the Permian Gungri Shale and 

Triassic Mikin Limestone.  Even though this boundary is marked by an unconformity, we 

will treat this section as a complete section in order to meet the objectives set for this 

thesis. This thesis focuses on the geochemistry of these units and the evaluation of the 

impact of post-depositional processes on the geochemical record and will cover the 

following relevant topics: (1) an overview of the depositional records preserved in 

Tethyan Permian-Triassic marine sequences and (2) an overview of major element 

geochemical approaches to evaluating post-depositional alteration in sedimentary units. 
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1. Introduction 

During the late Permian- early Triassic (~ 250 mya) there were two continental 

masses, Laurasia and Gondwanaland, joined together to form the supercontinent of 

Pangea (Figure 1.1).   Pangea partially enclosed the Tethys Ocean, while the Panthalassa 

Sea surrounded Pangea (Zhao et al., 2004).  The southern Tethyan PT sequences include 

complete to nearly complete sections in the Himalayas of India, Kashmir, Pakistan, and 

Tibet.  A thorough review of the geology and paleontology of the majority of well studied 

Tethyan PT sequences is presented elsewhere in the published literature (Hongfu et al., 

2000; Sweet et al., 1992).  Since this thesis focuses on a section of the PT exposed in the 

high Himalaya of India, a brief overview of the PT geology of the northern Indian 

continental margin and the PT sequences that are exposed in this region. The sedimentary 

record of the PT in northern India represents the deformed remnants of the continental 

margin of the Indian subcontinent (Gaetani and Garzanti, 1991b).  The Tethys sediments 

in this region are exposed in the Zanskar-Spiti synclinorium (Figure 1.2).   
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Figure 1.1.  Paleogeography of Pangea showing the location of the study section at 

Attargoo based on estimates of paleolatitude derived from Guryul Ravine, Kashmir 

(Algeo et al., 2007). 
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Figure 1.2. Geology of the northwestern Himalaya showing location of study site 

(Attargoo). 
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Towards the end Permian rifting caused detachment of the Peri-Gondwanian microplate 

and the initial opening of the neo-Tethys (Sengor et al., 1988).  During the early Permian 

the margin was covered by transgressive shallow marine sediments followed by fluvial-

deltaic siliciclastics (Gaetani and Garzanti, 1991b).  Within these early Permian fluvial 

sediments is the first record of rift volcanism (Panjal Traps) (Garzanti, 1993b).  The 

major transgressive episode that is defined by this sequence corresponds to the end of 

Gondwana glaciations and the initial opening of the neo-Tethys (Veevers and Powell, 

1987).  Paleontological evidence also supports the Early Permian neo-Tethys opening 

with late Early Permian as marina faunas have been identified in these sections and to the 

north in modern-day Afghanistan and northern Karakorum to Ladakh  (Bassoullet et al., 

1983).  Following this tectono-eustatic event thick intraplate basaltic lavas, the Panjal 

Traps filled the rift valleys with rift volcanism ending in the mid-Permian (Baud et al., 

1989). The Panjal Traps were located off the continental margin of Gondwana-land near 

the Kashmir and Spiti Valley Basin.  In the late Permian transgressive shallow marine 

arenites of the Kuling Group mark the onlapping of marine waters, with these units of 

arenites becoming more distal until the maximum transgression is reached with this being 

marked by turbidites preserved in the Markha (central) region of the High Himalaya 

(Stutz, 1988).  In the early Triassic rapid thermo-tectonic subsidence and submergence of 

rift valleys caused starvation of sediments and deepening of the outer shelf and upper 

slope marked by deposition of condensed nodular limestones of Tamba Kurkur 

Formation, Lilang Group, equivalent to Mikin Formation of Spiti.  Proximal inner 

continental margin conditions are well preserved in the units at the Guryul Ravine PTB 
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section in Kashmir (Algeo et al., 2007a) and Salt Range PTB section in Pakistan 

(Waterhouse, 2010).  The early Triassic is marked by renewed carbonate productivity and 

mud supply with a thick shallowing upward sequence rapidly deposited by the Mid-

Triassic.  These thick sequences for a thick continental terrace in Zanskar and Spiti 

(Garzanti et al., 1995).  By the end Triassic these offshore marly limestones (Hanse 

Formation) are overlain by subtidal and, finally, peritidal carbonates of the Zozar 

Formation. 

1.1. The Permo-Triassic of Spiti Valley (Himachal Pradesh) at Attargoo 

 
The Paleozoic and Mesozoic Tethyan sequences in the Indian Plate are primarily 

preserved in the inner part of the Higher Himalaya.  These units are well exposed in the 

Western Himalaya at Kashmir, Zanskar- Spiti and Uttrakhand; and the Central (Nepal) 

Himalaya (Kapoor, 2004).  Spiti Valley forms part of the district of Lahul & Spiti located in 

the northern part of the Himachal Pradesh, which occupies a central position in the Western 

Himalaya (Figure 1.2). Spiti Valley became famous for its well exposed and complete 

Triassic sedimentary succession [~1400 m; (Diener, 1908; Diener, 1912; Hayden, 1904)] and 

rich fossil content (Stoliczka, 1866). During the Triassic this region formed part of the 

tropical Gondwana margin [also known as Peri-Gondwana Tethyan succession; (Matsuda, 

1985)].  The mid-low paleolatitude allowed for the development of a large and highly diverse 

mixed pelagic fauna which are very well preserved in these rocks (e.g., Diener, 1897; Krafft 

and Diener, 1909)]. 
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The section exposed at Attargoo (Chapter 2, Figure 2.1) contains late Permian 

gray-black shales of the Gungri Formation apart of the Kuling Group overlain by early 

Triassic limestone of the Mikin Formation apart of the Lilang Group.  The units are 

separated by a 2-5 cm ferruginous layer marking a sharp transition from the shale to 

limestone (Figure 1.3).  The biostratigraphy across the boundary is not firmly established 

due to the apparent lack of uppermost Permian strata at this location (Garzanti et al., 

1998).  The Gungri shale grades upward from gray to black suggesting a change in 

oxygen availability close to the PT boundary (Shukla et al., 2002a).  The regional extent 

of this layer (Spiti Valley, Lahaul Valley and Guryul Raving, Kashmir) (Algeo et al., 

2007c; Singh et al., 1995) and the mineralogical and sedimentological character suggest 

that this layer represents period of subaerial exposure or a sedimentary hiatus (Bhargava, 

1987; Bhatt et al., 1981; Srikantia and Bhargava, 1998).  It is important to note, however, 

that the overall stratigraphic record of the Tethys Himalaya documents a major long-term 

stepwise transgression which began after continental breakup in the mid-early Permian 

and ended at the PT boundary with transgression, draping, in the Lower Triassic, deep 

water limestone atop the terrigenous shelf (Gardner, 1992; Garzanti et al., 1996; Garzanti 

et al., 1995).    

1.1.1. The Gungri Shale 

 

Little information about the Gungri Shale at Attargoo has been published.  Based 

on our field observations the uppermost Gungri is consistent in character with that 

exposed at Muth (Garzanti et al., 1996).  This unit consists of black shale with 
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intercalations, stratigraphically below our samples, of thin siltstone (Figure 1.3).  

Phosphate nodules and Fe-rich concretions are locally present in the uppermost Gungri as 

well. Fragments of brachiopods and corals are also present sporadically in the lower 

samples.  Macroscopic evidence of bioturbation (e.g., Zoophycos) such as noted at Muth 

and other Spiti Valley sections (Bhargava, 1987; Bhargava et al., 1985) is at the base of 

the Gungri.  Garzanti et al. (1996) state that based on paleontological and sedimentology 

data, that the uppermost member of the Gungri was deposited in an offshore shelf 

environment episodically disturbed by "exceptional" storm events.   

1.1.2. The Ferruginous Layer 

 

At Attargoo the ferruginous layer contains goethite, quartz, gypsum and feldspar 

(Shukla et al., 2002b).  Though Shukla et al. (2002b) performed X-Ray Diffraction and 

Scanning Electron-Energy Dispersion X-Ray Spectroscopy measurements of the 

ferruginous layer they do not report mineralogy for these shales.  Oolitic ironstones like 

the ferruginous layer at Attargoo are found at several intervals in sections across the 

globe including the Frasnian (end Devonian), Sakmarian (lower Permian), Djulfian 

(upper Permian), Norian (upper Triassic), Callovian (mid Jurassic), Aptian to 

Cenomanian (lower to upper Cretaceous) and Paleocene (Garzanti, 1993a).  Garzanti 

(1993) suggests that ironstones such as the ferruginous layer in Spiti Valley marks a 

major drowning unconformity associated with time gaps several million years long and 

that it corresponds in time to peak global transgressions.  While many assume that the 

ferruginous layer marks the PT Boundary the fact that, globally, these units represent 
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maximum high stand events and significant missing time and, in Spiti, the end Permian 

fossil record is incomplete makes it difficult to constrain this unit in time.  Regardless of 

the precise age, throughout the Spiti Valley, there is a sedimentation break across the PT 

which likely caused by strongly reduced carbonate production as a consequence of the 

end-Permian biotic crisis.  This coupled with sediment reworking on  sediment starved 

shelf during deepening may have caused the lack of sedimentation and consequent 

absence of the Dorashamian age sediments at Attargoo (Bhatt et al., 1981).   

1.1.3. The Mikin Limestone 

 

At Attargoo the earliest Triassic (Dorashamian) is missing.  Condensed 

limestones with pelagic fauna Otoceras sp. were deposited on the outer shelf to upper 

slope during peak transgressive stages.  It rests unconformably over the Gungri 

Formation and comprises gray to dark gray limestone in basal part, sporadic argillaceous 

(marl) limestone and subordinate thin shale bands in middle and predominantly limestone 

in upper parts (Figure I-3). At Attargoo the lowest member is exposed with this member 

comprised of ferruginous limestone grading upwards into gray concretionary limestone 

rich in ammonoids and, occasionally, pteriid bivalves (Bhargava et al., 2004).  The Mikin 

at Attargoo preserves the basal Mikin and is a bioturbated thin to thick-shelled packstone 

(Bhargava et al., 2004).  The macrofauna of the Mikin indicate deposition in shallow 

marine waters above mean wave base (Bhargava et al., 2004).   
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Figure 1.3. Litho and biostratigraphy of the Attargoo PTB in Spiti Valley. FL stands for 

ferruginous layer, based off of Kapoor (2004) and Shukla et al. (2002b).  
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1.2. Context and Significance 
 

This research represents a portion of a larger project centered on geochemically 

based paleoenvironmental reconstruction of the Tethys at the end Permian.  The Spiti 

Valley PT sections, such as Attargoo, are poorly studied geochemically.  Of benefit to 

this research is that the Spiti Valley PT sections have been remarkably well studied 

paleontologically, sedimentologically and tectonically meaning that the geochemistry of 

the units can be considered in a context of other paleoenvironmental indicators.  One 

primary motivation for developing geochemical paleoenvironmental reconstructions of 

the marine PT is that the end-Permian is marked by one of the greatest extinctions in 

Earth’s history.  However, in order to leverage the geochemical record of Spiti to better 

understand the processes operating at that time we must confirm that the record has not 

been significantly altered since the deposition of these units.  This requires a thorough 

investigation of the major element geochemistry of these rocks and an evaluation of the 

relative impact of diagenesis and modern weathering on these rocks.   

1.3. The End-Permian Biotic Crisis – Causes and Geochemical Proxies 

 

The Permo-Triassic extinction took place at the end of the Permian approximately 

251.5 mya. The extent of the Permo-Triassic (PT) extinction is significant and marked by 

a loss of over 90% of marine and nearly 70% of terrestrial species (Erwin, 1994). Gradual 

environmental change and/or a combination of catastrophic events are invoked to explain 

the PT extinction.  Many questions remain unanswered as to the succession and timing of 

the events, the nature and relative importance of controlling factors, and the ultimate 
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causes of the ecological disaster that marks the PTB (Haas et al., 2007 ). Our lack of 

agreement stems from the fact that there are relatively few geologic sections that are 

demonstrably continuous across the boundary, and even fewer in which relatively thick 

sections allow individual late Permian events to be identified.   

 

The assumed cause(s) for this biotic crisis [see (Korte and Kozur, 2010) and references 

therein) are still under discussion and include:  

(1) large-scale volcanic activity of Siberian flood basalt and contemporaneous 

volcanism in South China  as well as smaller eruptions in the southern Tethys 

(Panjal Traps)  

(2) ocean anoxia reaching unusually shallow depths accompanied by CO2 degassing, 

and/or methane release 

(3) an oceanic acidification crisis due to increase in atmospheric CO2 concentrations  

(4) low atmospheric oxygen levels  

(5) worldwide depletion of stratospheric ozone  

(6) climate change caused by strong volcanism (volcanic winter) and/or impact of a 

celestial body  

Most of these mechanisms rely on geochemical indicators which require that the units 

under study have not been impacted by late diagenetic/metamorphic alteration or by 

modern weathering.   
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1.4. Geochemical Indicators of Mechanism(s) of the PT Extinction 

 

Regardless of the cause the scientific community agrees that the mass extinction 

and the associated environmental changes were accompanied by major perturbations of 

the global carbon cycle with nearly all end-Permian marine sections preserving a 

pronounced negative carbon-isotope excursion (e.g., Spiti Valley, Figure 1.4; Ghosh et 

al., 2002), Guryul Ravine, Kashmir, India (Algeo et al., 2007b), Meishan, China (Jin et 

al., 2000; Xie et al., 2006; Yin et al., 2007) Dongpan, China (Yin et al., 2007), Iran 

(Kozur, 2006), Seis/Siusi, Italy (Kraus et al., 2009), Coalsack Bluff, Antarctica (Retallack 

et al., 2007), Guizhou, China (Payne et al., 2004), Chaohu/Anhul, China (Tong et al., 

2005), Tethys (Baud et al., 1996; Corsetti et al., 2005), Zhuodeng, West Guangxi, China 

(Zhang et al., 2005), Wenjiangsi, China (Shao et al., 2000), Caucasia area, Russia 

(Zakharov et al., 2005), Abadeh, Iran (Korte et al., 2004a), Shahreza, Iran (Korte et al., 

2004b), Nammal, India (Baud et al., 1996), and Kamura (Isozaki et al., 2007) (Figure 

1.5).  

The timing of the initial negative δ
13

C excursions is often coincident with the end-

Permian extinction and is thought to represent a crisis of the carbon cycle probably 

caused by the shut-down of biological productivity, and the development of Strangelove 

Ocean or ocean acidification conditions (e.g., Payne et al., 2007; Payne et al., 2010).  

However, some PT sections such as Guryul Ravine and Meishan (the type section) show 

more than one negative δ
13

C excursion (Algeo et al., 2007b; Yin et al., 2007).  The 

number and timing of these excursions may indicate a series of extinction events or 

pulsed catastrophic events prior to and following the end Permian (Yin et al., 2007).  
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Broadly, the negative δ
13

C excursions are explained by contemporaneous catastrophic 

events and gradual or punctuated global events.   

Recently it was recognized that, more often than not, up to 10 ‰ (δ
13

C) negative 

shifts also occur in the early Triassic; this suggests that the ocean, once thought to return 

to “normal” after the extinction, continued to experience disturbances (Algeo et al., 

2007b).  This further suggests that the cause of the extinction could not have been a 

single catastrophic event, rather the cause(s) may be a series of events that combined to 

destabilize the carbon cycle (Yin et al., 2007).   Such events may include (1) catastrophic 

release of methane from the gas hydrate reservoir with δ
13

C ~ –60‰ (Retallack et al., 

1996), (2) the input of CO2 from volcanic out-gassing with δ
13

C ~ –6‰ (Renne and Basu, 

1991), and (3) the release of CO2 from decomposing terrestrial biomass after a 

catastrophic die-off with δ
13

C - ~25‰.    

Another, more controversial explanation is a bolide impact event (Basu et al., 

2003; Farley and Mukhopadhyay, 2001; Isozaki et al., 2007) which could have led to 

both the proposed methane release and volcanism. Gradual causes for the δ
13

C negative 

excursion include ocean stratification/turnover and re-organization of the carbon cycle 

(Retallack et al., 1996). The ocean stratification model proposes that isotopically light 

organic matter in the surface water sinks and is remineralized at depth causing an 

isotopically heavy surface ocean and isotopically light deep ocean.  Overturn of the deep 

water would return light carbon to the surface resulting in a negative 
13

C in shallow 

water limestones.  Re-organization of the carbon cycle proposed reduction in the burial 

flux of terrestrial biomass versus marine biomass. This is supported by the terrestrial 
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“coal gap” and shift from arborescent to herbaceous plants recorded at the PTB 

(Retallack et al., 1996).  This shift would impact the burial proportion of terrestrial versus 

marine organic carbon and cause a long-term negative shift in the δ
13

C of the oceans. 

This theory can be invoked for long-term excursions but fails to explain the series of 

excursions that typify the early Triassic. 
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Figure 1.4. From (Ghosh et al., 2002). General litho-, biostratigraphy, δ13C org, and δ
13

C 

carb of Permian-Triassic Boundary sections in Spiti Valley.  
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Figure 1.5. From (Yin et al., 2007 and references therein). The δ
13

C stratigraphic profiles 

of the Tethys, Meishan, S. Guizhou, Zhuodeng, Chaohu, Wenjiangsi, Caucasia area, 

Abadeh, Shahreza, Nammal, and Kamura.  
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1.5. Wide-spread Anoxia 

 

One of the widely accepted theories explaining the end Permian extinction is 

global ocean anoxia. Evidence for wide-spread anoxia include facies changes within the 

PTB sections such as increased deposition of black shales, formation of  framboidal 

pyrite (Wignall et al., 2004) dwarfism of organisms (Brookfield et al., 2003; Yin et al., 

2007), positive cerium anomaly recorded at Guryul Ravine PTB section (Algeo et al., 

2007b), the change in fauna across the PTB section (loss of diversity and abundance in 

marine sections), and closing the paleo-Tethys. However, the cause of wide-spread 

anoxia remains controversial.    

Anoxia is a condition where oxygen in the water is depleted to near or at 0 mg/L.  

Anoxia may occur in the sediment or the entire water column.  In either case these 

conditions preclude the persistence of aerobic biota.  Anoxia can be subdivided into three 

categories: (1) hypoxia - meaning low oxygen within the sediment or water column (< 2 

mg/L), (2) suboxia - the water column is under-saturated with respect to oxygen (< 5 

umol O2 per liter water), and (3) dysoxia – the water column, including the sediment-

water interface, is depleted of oxygen (0 mg/L).  Under anoxic conditions, anaerobic 

biota persist in the sediment where they produce methane (Schubert et al., 2006). 

Widespread water column anoxia can be driven by an over-abundance of anaerobic 

bacteria in the sediment where decomposition of proteins leads to the release of hydrogen 

sulfide gas from sulfur bacteria (Şengör and Atayman, 2009).  This reaction produces 

carbonic acid which enables the conversion of hydrogen sulfide to solid sulfide minerals 

(e.g., pyrite) under anoxic sediment-water interface conditions (Şengör and Atayman, 
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2009). Oxidation of HS in a suboxic or fully-oxygenated water column leads to the 

dissolution of carbonate minerals and precipitation of sulfates (Şengör and Atayman, 

2009). Sulfate reduction at the anoxic sediment-water interface forms calcium sulfide and 

releases CO2 which is then converted, in the water column, to carbonic acid which leads 

to further carbonate dissolution and delivery of organic matter to the sediments (Meunier 

and Velde, 1976). If additional carbon and sulfur are introduced into the system than 

oxidation can occur, thus continuing the production of CO2 and hydrogen sulfide (Şengör 

and Atayman, 2009).This cycle depletes the water column of oxygen leading, ultimately, 

to global ocean anoxia. 

 In anoxic waters, the sediments will generally contain chemically reduced 

organic carbon, sulfur, and iron. In these conditions, deep marine sediments will be 

dominated by clay minerals and contain variable, but high, concentrations of organic 

carbon and pyrite (FeS2).  These units, referred to as shale, are variable in color. The 

colors red and purple suggest the presence of hematite indicating oxidizing conditions 

(Şengör and Atayman, 2009). In general, black shales contain up to 30% unoxidized 

carbon (Şengör and Atayman, 2009; Wignall, 1994).  Gray-black shales contain organic 

carbon as well as authigenic pyrite produced in situ (McBride, 1974); and black or gray 

shales are indicators of anoxia in the rock record (Wignall, 1994). In unmetamorphosed 

sedimentary rocks, green shales represent the absence of hematite (oxidized Fe) and 

organic matter with the color imparted by the clay mineral, illite; green shales indicate 

sufficient oxygen at the time of deposition (Şengör and Atayman, 2009). Green shales are 

thought to represent suboxic conditions.  This criteria cannot be applied to 
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metamorphosed shales where chlorite is present (Şengör and Atayman, 2009) due to the 

fact that chloritization produces a green color in shales. Therefore the lowest 

metamorphic grade (greenschist facies) color is a poor indicator of original depositional 

conditions.  Sediment composition can also be impacted by modern weathering.  Organic 

carbon can be oxidized upon exposure or leached from sediments.  Pyrite can similarly be 

oxidized to form hematite and/or limonite.   

High abundance of framboidal pyrite at the PTB provides support for the 

contention that the end Permian ocean was anoxic.  Framboidal pyrite is a common 

diagenetic phase in many shales; they are abundant in strata deposited under low oxygen 

conditions (Raiswell and Berner, 1985). Though it is not established how framboids form 

it is clear that they form under weakly reducing conditions immediately above the 

sulfidic zone developed within marine sediments (Wignall et al., 2004). At this level 

(depth will vary depending on extent of anoxia), ferrous iron and hydrogen sulfide react 

rapidly to produce abundant iron monosulfide microcysts (Wignall et al., 2004). The iron 

monosulfide microcysts compress into spheres and form greigite (Fe3S4) due to the 

magnetic properties of the iron monosulfide microcysts. In order for greigite to form, 

partially oxidized sulfur species must be present; therefore the framboid formation occurs 

within the redox boundary (Canfield and Thamdrup, 1994; Wilkin and Barnes, 1997). 

Greigite is converted to pyrite during early diagenesis (Wignall et al., 2004).  For that 

reason, pyrite framboid formation occurs within the surface layers of sediments beneath 

dysoxic bottom waters where the redox boundary is located close to the sediment surface. 

Wignall et al. (2004) found pyrite frambroids in the Khunamuh Formation at PTB section 
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Guryul Ravine. Pyrite framboids are found in the silty shales and brachiopod shell beds 

of the lower part of Late Permian Event Horizon units (Wignall et al., 2004). The 

presence of framboidal pyrite in Khunamuh formation at Guryul Ravine suggests that 

there was a wide-spread anoxia event occurred in the Tethys during the late Permian 

period.  

The Cerium (Ce) anomaly is, geochemically, a marker of depletion or enrichment 

in Ce (a lanthanide element) compared to its neighbors Lanthanum (La) and 

Praseodymium (Pr).  A negative cerium anomaly, in rocks and sediments, occurs when 

Ce is depleted and positive when Ce is enriched.  Ce has two redox states, III and IV.  

Unlike other lanthanide elements, which are trivalent (except Eu which can be divalent), 

Ce
3+

 can be oxidized to Ce
4+

 under alkaline conditions. Ce (IV) is insoluble and, under 

oxidizing conditions, is precipitated as CeO2.  Sediments deposited under oxic or anoxic 

conditions can preserve on the long term the geochemical signature of Ce
3+

 or Ce
4+

 

though this signature can be altered, post-depositionally, by late diagenesis and 

metamorphism.  Positive cerium anomalies indicate anoxia in the water column 

enhancing Ce (III) concentrations in the sediment (Kato et al., 2002; Sholkovitz et al., 

1994). Negative Ce anomalies suggest suboxic conditions wherein aqueous Ce(III) is 

depleted (Kakuwa and Matsumoto, 2006).  

 Algeo et al. (2007b) observed positive Ce anomalies in the end-Permian 

sediments of Guryul Ravine supporting the contention that there were two episodes of 

anoxia. The first 2 positive Ce anomalies straddle the Late Permian Event Horizon 

(LPEH) and are separated by 30 cm.  Algeo et al. (2007) suggest that this represents 
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pulses of a single anoxic event associated with the end-Permian biotic crisis. A third 

positive Ce anomaly, also spanning the LPEH may indicate a separate event (Algeo et al., 

2007b). The relation between anoxia and the PTB is not unique to Guryul Ravine and is 

seen in sections across southern China and Vietnam (Grice et al., 2005; Xie et al., 2006). 

Wignall et al. (2004) inferred diachronous onset of anoxia from the records of the late 

Griesbachian of northern India, Tibet, and western Canada.  They base their conclusions 

on an assumption that anoxia was not as a causal factor in the end-Permian mass 

extinction but rather a coincidental contributor. 

Wide-spread anoxia is also supported by the record of tectonism at the time.  The 

formation of the Cathyasian Bridge (Şengör & Atayman, 2009) is proposed as the cause 

of wide-spread anoxia, resulting in the isolation of the paleo-Tethys from the Panthalassa 

Ocean. According to Şengör and Atayman (2009) some suggest that the formation of the 

Cathyasian Bridge, the closing of the paleo-Tethys, the isolation of the Panthalassa, and 

the opening of the Neo-Tethys all contributed to the depletion in the abundance and 

diversity of organisms in the Paleo-Tethys. At the time in the late Permian, the Paleo-

Tethys was shallow, with bearing physical conditions similar to an epicontental sea. Once 

the Cathyasian Bridge formed, Paleo-Tethys was no longer significantly influenced by 

physical, chemical, or biological interactions with the Panthalassa Ocean. At the same 

time, Neo-Tethys began to open, leading to a closing of Paleo-Tethys similar to the 

present day situation Caspian Sea (Şengör and Atayman, 2009). Eventually, the isolation 

and closure led to a shut-down of circulation in Paleo-Tethys and the biological pump.  
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1.6. Atmospheric O2 Drawdown 

 

There is little debate that the end-Permian extinction was accompanied by, if not 

caused by, global ocean anoxia. Prior to the extinction, ocean oxygen levels in the 

Phanerzoic were at an all time high (Berner, 2005). The abundance of oxygen in the 

atmosphere led to high diversity and abundance of vascular plant flora which were at 

their maximum in the Carboniferous (~360 mya) (Berner et al., 2007; Raymond et al., 

1985; Rowley et al., 1985). Thus, the peak of oxygen abundace in the atmosphere 

occurred at a time of continental assemblage which decreased aridification of the world’s 

climate leading to an increase in plant diversity.  However, a decline in total abundance 

of oxygen occurred in the late Carboniferous through the early Permain (Berner et al., 

2007; Rowley et al., 1985; Willis and McElwain, 2002). Orogenic events which 

accompanied the formation of Pangea  (e.g.,Huastecan, Appalachian, Hercynian, Uralian, 

Altaid, and New England) led to rapid loss of long stretches of subduction zones which 

resulted in  diminshed volcanic activity, and contributing globally to the reduction of 

atmospheric CO2 (Beerling and Berner, 2005). With the continuing of the formation of 

Pangea, aridity increased resulting in the diminished oxygen production.  The geologic 

record of this time (Carboniferous) is marked by abundant red beds and coal with these 

units recording the increased draw down of CO2 and O2 (Berner, 2005). So much gas 

consumption, occuring in a short period of time (~ 20 Ma) led to decline of atmospheric 

O2 to a low of 15%.  This precipitous decline in O2, coincident with the end Permian 

extinction (255 to 242 mya) had significant evolutionary consequences of organism 

(Berner, 2005).  
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1.7. Sea-Level Change 

 

Sea level change, both regression and transgression, in the Tethys and the 

Panthalassa Ocean has been invoked as a contributing factor to the End Permian 

extinction. Yin et al. (2007) suggest, based on the stratigraphic record of the Dongspan 

China section, that regression occurred during the end-Permian extinction.  This 

supposition is based on a suite of radiolarian (Albailellaria, Latentifistularia, 

Entactinaria, and Spumellaria) that are considered bathyal and indicative of water depths 

> 200m (Catalano et al., 1991; Yin et al., 2007). Transition to these shallow water fauna 

towards the end Permian suggests a regression event.  Marine regression is also supported 

by the presence of terrigenous clasts and replacement of deep water fauna by shallow 

water agglutinated tests and ostracods (Yin et al., 2007).  

In other sections a transgression is recorded. Brookfield et al. (2003) suggest a 

basin-wide transgression marked by an unconformity and subsidence phase.  The 

subsidence phase is marked by Upper Permian marine deposits overlying all underlying 

structures including earlier Permian rift basalts (Gaetani and Garzanti, 1991a; Garzanti et 

al., 1998). Evidence of sea-level rise during the late Permian is found in the lowest 

Khunamuh Formation (Guryul Ravine). In the Khunamuh Formation there is a decrease 

in thickness and abundance of storm beds up section, and a general decrease in grain size 

(Brookfield et al., 2003; Kapoor, 2004). Faunal and lithological change in several 

sections also suggests that marine transgression occurred. At Guryul Ravine there is a 

depletion of diversity in the benthic community; the depletion in diversity results in the 

appearance of Hindeodus parvus, other nektonic ammonoids, and other Triassic taxa 
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(Brookfield et al., 2003). Hallam and Wignall (1997) observed a similar change in fauna 

other PTB sections worldwide.  Marine transgression had a minor, if any, role in the end-

Permian extinction (Brookfield et al., 2003). This is due to the fact that some PTB 

sections that recorded marine transgression (e.g. Guryul Ravine) were probably isolated 

events.  Marine transgression coincides with, and probably caused the spread of oxygen-

poor bottom waters over well oxygenated shallow shelves (Wignall and Hallam, 1996). 

The loss of benthic diversity and abundance that marks the end-Permian extinction is 

recorded, in the rock record, in the deposition of shell beds.  The existence of these shell 

beds is controlled by water depth; as sea level rises through the basal Khunamuh 

Formation the shell beds eventually disappear (Brookfield et al., 2003). Therefore, the 

final loss in benthic diversity is directly related to the loss of habitat which is attributable 

to sea-level rise.  Many “transgression” researchers believe the end Permian extinction to 

be gradual.  The transgressive period led to the spread of low O2 waters onto the shallow 

shelf which further impacted the species abundance and diversity (Brookfield, 1993; 

Wignall et al., 2004).  

1.8. Bolide Impact  

 

One of the most controversial scenarios for the cause of the end Permian 

extinction is extraterrestrial (bolide) impact.  The bolide theory is inspired by the clear 

causative link between the Yucatan impact event and the late Cretaceous extinction.  

Several researchers have suggested a similar cause for the end Permian with the bolide 

being larger than that of the late Cretaceous.  Evidence for a bolide impact at the time 
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include chondritic meteorite fragments in the Antarctic terrestrial end Permian strata 

(Basu et al., 2003), shocked quartz  in the Antarctic terrestrial end Permian strata 

(Retallack et al., 1998), a suspect impact crater found offshore of northwestern Australia 

(Becker et al., 2004), positive Europium anomaly in the Spiti Valley PT section at Lalung 

(Bhandari et al., 1992), and the presence of a ferruginous layer  in all Spiti Valley 

sections (Shukla et al., 2002b).  

Chondritic meteorite fragments found in the terrestrial Graphite Peak PTB section 

in Antarctica supports the bolide impact theory (Basu et al., 2003). Basu et al. (2003) 

found  magnetic fragments 0.8 m below the PTB in Antarctica. The fragments were 

comprised of Fe oxides and hydroxides only and lacked significant concentrations of Ni, 

S, and P (Basu et al., 2003). The fragments contained a number silicate rich particles 

displaying identical poikilitic and granular texture (Basu et al., 2003). Additionally, the 

fragments contained small euhedral and subhedral forsterite (olivine) grains enclosed in 

larger grains of clinoenstatite; these grains have chemical composition of low FeO and 

relatively high Mn/Fe ratios (Basu et al., 2003). Basu et al. (2003) state that the chemical 

composition of forsterite and clinoenstatite is distinct from other terrestrial olivines and 

pyroxenes; the fosterite contains high concentration of CaO and Cr2O3. Therefore, the 

authors concluded that these fragments are of extraterrestrial origin and the presence of 

high CaO and Cr2O3 concentrations imply that the bolide was a chondritic meteorite 

(Basu et al., 2003).  

Retallack et al. (1998) investigated evidence of a bolide impact by focusing on 

terrestrial claystone breccias, shocked quartz, and iridium anomalies for terrestrial PTB 
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sections in Graphite Peak and Mount Crean Antarctica, and  Wybung Head, Australia. 

They noted that the claystone breccias have been thoroughly leached of alkalis and 

alkaline earths compared to clastics in the underlying coals. The claystone breccias at 

Wynbung Head were leached to the same extent as Cretaceous-Tertiary boundary (KTB) 

sediments.  No evidence of leaching was found in the claystone breccias of Antarctica 

(Retallack et al., 1998). Based on the differences in leaching of claystone breccias, the 

rare shocked quartz and iridium anomalies found in these sections were not considered 

primary deposition from direct impact fallout. Retallack et al. (Retallack et al., 1998) 

suggested redeposition from local soils as a source.  

Shocked quartz is a form of quartz that has a different microscopic structure than 

regular quartz.  It is formed under intense pressure; this causes the crystalline structure of 

quartz to be deformed along planes inside the crystal. Shoemaker (1959) noted that 

shocked quartz is found inside craters created by  bolide impacts. Retallack et al. (1998) 

did not find any shocked quartz below the PTB. The shocked quartz found at the three 

PT-boundaries were smaller and less abundant than the shocked quartz at the KTB and 

late Precambrian (Retallack et al., 1998).  But the  authors noted that the shock quartz 

found at the three PTB sections were within the size range and abundance reported at the 

Cretaceous Tertiary boundary (KTB) (Izett, 1990), late Devonian (Warmer and Sandberg, 

1996), late Triassic (Bice et al., 1992), and late Jurassic (Dyer et al., 1989). The planar 

deformation of the PT shocked quartz is comparable to that of the KTB and numerous 

other impact craters. Retallack et al. (1998) also looked for anomalously high 

concentrations of iridium (Ir) which marked the KTB.  They found a positive Ir anomaly 
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at Mount Crean, but there was no significant positive Ir anomaly at Wybung Head and 

Graphite Peak. The Graphite Peak and Wybung Head Ir anomalies were similar to the Ir 

anomalies found in PTB sections in Italy, Austria, Armenia, India, and China. Since there 

is a lack of a positive Ir anomaly at several terrestrial and marine PTB sections;  

Retallack et al. (1998) suggested that Ir anomalies can be weakened by leaching through 

strong acids that are generated during the impact shocking of the atmosphere. Iridium 

anomalies can also be caused by microbial activity (Dyer et al., 1989). Retallack et al. 

(1998) proposed that microbial activity is an appealing explanation for peak Ir values at 

the base rather than the top of the Graphite Peak and Wybung Head sections. The base is 

characterized by abundant coal deposits which are suggestive of high microbial activity 

in the soils that once supported the flora.  

Becker et al. (2004) suggested that a bolide impact crater of appropriate age 

exists, off shore, in northwestern Australia known as Bedout High. Becker et al. (2004) 

suggest that the large impact crater-like structure at Bedout is consistent with the global 

distribution of impact ejecta in the PTB, and the maximum grain sizes of shocked quartz 

matches the maximum sizes of shocked quartz at the KTB. Additionally, the Bedout 

shocked quartz is consistent with the size of the shocked quartz found at terrestrial PTB 

sections in Antarctica and Australia. Becker et al. (2004) suggest that shocked quartz is 

not present in other PTB sections because of stratospheric winds and the settling of 

particles was similar to that of the KTB. Such a dispersal of mechanism is not efficient 

for latitudinal transport of debris, therefore an impact at Bedout would disperse shocked 

quartz over the Southern Hemisphere particularly Australia and Antarctica (Becker et al., 
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2004). Lastly, the bolide impact could have acted as a trigger for massive continental 

volcanism coincident with the end Permian extinction. Ar-Ar dating of continental flood 

basalts at Deccan and Siberia show contemporaneous ages for the volcanism and the 

extinction associated with them.  In the case of the Deccan traps the basalts are 

contemporaneous with the impact of the KTB.  The coincidence of the Siberian traps and 

end-Permian extinction and the proposed Bedout impact are causatively linked by Becker 

et al. (2004) such that the impact event enhanced the eruption of a pre-existing plume. 

Others proposed evidence of a eucritic meteorite was the cause of the end 

Permian extinction due to the positive europium (Eu) anomaly and the ferruginous layer 

found at some of the PTB sections. Bhandari et al. (1992) found a positive Eu anomaly at 

the Lalung PTB section in Spiti Valley. They proposed that the positive Eu anomaly 

could be attributed to an extraterrestrial body or volcanism. They suggest that a eucritic 

meteorite was responsible for the end Permian extinction. Eucritic meteorites have 

positive Eu anomaly and are low in Ir, because their parent magma is believed to be 

enriched in europium, this would explain the low Ir anomaly and positive Eu anomaly 

found at several PTB sections (Bhandari et al., 1992). Therefore, these authors suggest 

that a eucritic meteorite maybe responsible for the end Permian extinction.  Also invoked 

as evidence of a meteorite is the ferruginous layer found in PTB sections of Spiti Valley, 

India. The formation of the ferruginous layer could be evidence of strong regression at 

the end Permian and the layer is thought by some to contain extraneous material and 

dominated by allogenic minerals (Shukla et al., 2002b).  
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1.9. Continental Volcanism 

 

Volcanism is another mechanism that contributed, to some extent, to the end 

Permian extinction. The hypothesis is that the Siberian Traps erupted in a sequence over 

a very short period of time (~1 Ma). According to Renne et al. (1995) continental 

Siberian flood volcanism produced an episodic outpouring of basaltic magma, whose 

volume and eruption rate led to the emplacement of up to 3 million km
3
 over 1Ma. This 

eruption was significantly larger than any volcanism in any other geological settings. The 

hypothesis state that the eruption led to global cooling caused by sulfate aerosol 

accumulation and acid production resulting from reduction and coalescence of sulfates 

(Renne et al., 1995). Many supporters of continental volcanism suggest that the positive 

Eu anomaly is indicative of flood volcanism eruption.  

1.10. Methane Release 

 

The end Permian extinction was caused by catastrophic release of methane 

(Şengör and Atayman, 2009). Methane gas is produced as a result of decomposition 

under anoxic conditions (Schubert et al., 2006). Three critical gases (CO2, HS, and CH4) 

accumulate in massive quantities under anoxic conditions.  Over time and under anoxic 

water column conditions the water temperature increases leading to density inversion and 

ultimately release of gas to the surface ocean and atmosphere (Şengör and Atayman, 

2009). Schubert et al. (2006) showed that methanogensis in the water column in the 

anoxic water column is negligible. The sediments from the Black Sea are sinks for 

methane in the water column, in contrast to the claim of (Reeburgh et al., 1991). Thus, 
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the major contributions of methane must come from seeps and mud volcanoes (Schubert 

et al., 2006).  

1.11. Multi-Episode Extinction  

 

Many geologists and paleontologists agree that the end-Permian extinction was 

caused by multiple events. Yin et al. (2007) suggest that there were multi-events that 

occurred before the end-Permian extinction. Evidence for multi-episodes can be seen in 

the δ
13

C stratigraphic profile of PTB sections; these sections have more than one negative 

δ
13

C excursion in the stratigraphic section (Figure 1.5). The Meishan PTB section 

provides strong evidence of multiple events; biomarkers such as 2-methylhopane, Pr/Ph, 

γC31HP, and Ts/Tm
1
, vary in association with anoxic conditions which coincide δ

13
C 

values (Yin et al., 2007). The first “event” impacts the corals, fusulinids, ammonoids, 

deep water radiolarians, and brachiopods (Yin et al., 2007). Yin et al. (2007) note the 

miniaturization of marine invertebrates signifies the presence of environmental stress 

such as degradation of habitats, which could have serve as a prelude to the mass 

extinction. Yin et al. (2007) state that these ecological changes at the PTB were induced 

by a major change in the carbonate system and represent a prelude to the mass extinction. 

Which suggest that two extinction episodes occurred in deep-water environments, after 

the first extinction, the mass extinction was caused by one or more events including those 

discussed previously in this chapter. 
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1.12. Geochemical Proxies for Evaluation of Post-Depositional Alteration 

 

The geochemical study of ancient marine sediments poses problems, due to the 

different source compositions as well as to weathering history, hydraulic sorting, and 

diagenesis. These processes complicate the original signal by controlling the abundances 

of major and trace elements (Abanda and Hannigan, 2006; Condie, 1993).   

1.12.1. Modern Weathering 

 

Weathering indices are widely used in studies of both modern and ancient in situ 

weathering profiles. A useful chemical weathering index should provide values that do 

more than simply vary relative to one another on a given weathering profile.   The most 

commonly applied, in ancient marine sediments, in the Chemical Index of Alteration 

(CIA) (Nesbitt and Young, 1982). CIA assesses the extent of weathering on siliciclastic 

material. The CIA is calculated as (100) [Al2O3/ (Al2O3 + CaO* +Na2O+K2O)] using 

molar proportions and only that portion of CaO associated with silicate minerals.  

Samples are considered fresh if the CIA is less than or equal to 50, weathered if the value 

reaches 100.  Upward trends in increasing CIA reflect an increase in weathering.  CIA 

does not allow for mobility of Al2O3.  In sediments such as the Gungri Shale the CIA 

measures the degree of weathering of feldspars, relative to unweathered protoliths 

(Nesbitt and Young, 1982). Values for unweathered plagioclase and K-feldspars are 

approximately equal to 50, as are values of unweathered upper crustal rocks. Higher CIA 

values represent higher degrees of weathering, however low CIA values may suggest arid 

or cool conditions (Fedo et al. 1995).   CIA can be applied to marly limestones such as 
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the Mikin however care must be taken in interpreting the values since none of the CaO is 

associated with silicate minerals and alkali-alkali earth content is minimal which may 

skew the CIAs towards higher than true values.  Another issue is that, in the case of the 

ferruginous layer, iron content is very high and CIA does not account for iron mobility 

meaning that the calculated CIA may underestimate the degree of weathering of those 

samples.  Therefore when looking at a sequence of rocks such as at Attargoo, it is 

probably most appropriate to use the CIA values of the shales as a proxy for weathering 

of the entire section. 

1.12.2. Diagenesis/Metamorphism 

 

The PT sequence at Attargoo is complicated by having shale, an iron rich 

ferruginous layer, and limestone which have undergone not only modern weathering but 

also diagenesis and, potentially, metamorphism (chloritization) (Algeo et al., 2007c).  

Chemical Index of Alteration is insufficient for evaluating post-depositional alteration 

such as metamorphism and diagenesis.  Growing concerns regarding potassium 

metasomatism in shale (Condie, 1993) point to the complex processes involved in 

chemical weathering in situ (production of clay minerals), mechanical breakdown, and 

continued chemical alteration during transport, burial, and diagenesis.  

 The chemical compositions of sedimentary rocks can be plotted as molar 

proportions within Al2O3, CaO* (CaO associated with silicates) + Na2O, and K2O 

(A-CN-K) compositional space, where CaO* represents Ca in silicate-bearing minerals 

only (Figure 1.6). The A-CN-K system is useful for evaluating fresh rock compositions 
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and examining their weathering trends because the upper crust is dominated by 

plagioclase- and K-feldspar–rich rocks (Nesbitt and Young, 1984, 1989) and their 

weathering products, the clay minerals. Average Paleoproterozoic shale and its probable 

source composition, average Upper Archean upper crust, are plotted in Figure 1A. The 

weathering trend for Upper Archean crust, predicted from kinetic leach rates (Nesbitt 

and Young, 1984; Nesbitt, 1992), is also plotted in Figure 1.6 (arrow b). The accumulated 

weathering products of Upper Archean crust, as represented by average Paleoproterozoic 

shale, should plot on this trend, but instead plot well below it; the average shale contains 

considerably more K2O than expected and therefore has undergone K metasomatism 

(Nesbitt, 1992). As shown in Figure I.6 different amounts of K2O can be added during 

metasomatism to all three “types” of samples.  Variable degrees of 

diagenesis/metamorphism will lead to K enrichment.  Addition of K2O to aluminous 

clays follows a path towards the K2O apex of the triangle.  It is useful also to note that the 

position of samples on the A-CN-K can also be used to establish changes in provenance 

in that if the source of sediment did not change during the deposition of the sequence all 

samples will plot together following a single trend if impacted by metamorphism. 
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Figure I-6.  From (Fedo et al., 1995). Average shale and continental crust plotted as 

molar proportions Effect of K metasomatism (metamorphism) on weathered residue of 

Archean crust to produce average Paleoproterozoic shale. Dashed arrow a shows 

chemical index of alteration (CIA) of shale; arrow b, predicted weathering trend of 

Archean crust; arrow c, addition of K to weathered residues; arrow d, CIA of weathered 

residues (before metasomatism).  
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1.13. Summary 
 

The goal of this research is to ultimately assess the paleoenvironmental conditions 

that typify the Neo-Tethys across the PT Boundary.  As previously discussed many of the 

hypotheses regarding the cause(s) of the end-Permian extinction rely on multiple proxies 

including geochemical signatures.  All too often the geologic record of the PTB has been 

impacted by diagenetic, metamorphic and weathering events.  The ability to use 

geochemical proxies to reconstruct paleoenvironments requires that the relative over-

print of each process be identified and the extent of alteration known.  The goal of this 

thesis is to geochemically explore the extent of weathering and the impact of modern 

weathering on the geochemistry Attargoo PTB section.  If this section has been 

geochemically altered such that no record of original composition is present, then it will 

not be possible to use this section to reconstruct the paleoenvironment or to inform our 

understanding of the mechanisms/processes that might have been operating at the time of 

the extinction.   
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CHAPTER 2 

THE IMPACT OF MODERN WEATHERING ON THE GEOCHEMISTRY OF A 

NEO-TETHYAN PERMO-TRIASSIC SECTION 

 

2.1. Introduction 

 

The Permian-Triassic Boundary (PTB) marks the largest mass extinction in 

Earth’s history; over 90% of all marine and 70% of terrestrial species became extinct at 

this time (~ 250 mya) (Erwin, 1993). A number of hypotheses have been proposed 

regarding the cause(s) of the extinction with many relying directly upon the geochemical 

record preserved in boundary sections.  These “geochemical” signatures include 

variations in δ
13

Ccarb during Late Permian–Early Triassic, in all measured marine 

sections, that were more extreme (up to 8 to 10‰) that the variations recorded in the 

Early Triassic (e.g. Yin et al., 2007).  These perturbations in the δ
13

Ccarb record are 

thought to reflect changes in the atmospheric and oceanic carbon cycles, and thus 

changes of environment on the Earth's surface.  Geochemical signatures associated with 

bolide impact are less well preserved in the marine sections, though there has been a 

suggestion that the enrichments in Eu at the boundary in the Spiti Valley section at 

Attargoo (India) are evidence of a eucritic bolide impact (Bhandari et al., 1992).  Other 

geochemical signatures of note include signatures associated with global ocean anoxia 
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(Algeo, 2007 and references therein), volcanism and aerosol loading of the atmosphere 

(Renne and Basu, 1991; Renne et al., 1995) and catastrophic methane release (Retallack 

et al., 2007; Şengör and Atayman, 2009).   In all of these cases the interpretation of the 

geochemical record hinges on the whether the units have been affected by post-

depositional processes including diagenesis, metamorphism and modern weathering.   

For the most part, marine PT sections show evidence of global ocean anoxia 

during the late Permian and early Triassic (Hotinski et al., 2001; Isozaki, 1997b; Kakuwa, 

2008; Kato and Isozaki, 2009; Wignall and Hallam, 1992; Wignall and Twitchett, 1996; 

Zhang et al., 2001).  Shallow marine sections also show evidence of transient anoxia 

(Musashi et al., 2001). In the Spiti Valley section at Attargoo (Himachal Pradesh, Indian 

Himalaya), evidence of anoxia includes small increases in U concentration (from 4ppm to 

8ppm) closer to the ferruginous layer (See Chapter 1) and positive (Ce/La)N ratio (~1.3) 

within the ferruginous layer (Shukla et al., 2002). Shukla et al. (2002) measured two 

samples at the ferruginous layer, five samples in the Gungri formation (Permian shale) 

and two samples in the Mikin formation (Triassic limestone) therefore, it is difficult to 

ascertain whether these increases represent prolonged changes in depositional conditions. 

Most authors, who have worked on the Spiti Valley sections, have neglected the potential 

impact of post-depositional processes on the geochemical records and have focused on 

the cause of the end-Permian extinction as recorded in the geochemical record (Bhandari 

et al., 1992; Shukla et al., 2002).  

Another PT section located in the neo-Tethys is Guryul Ravine located in 

Kashmir, India. This section has been studied for both records of the cause(s) of the mass 
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extinction as well as evaluation of the geochemical record for post-depositional alteration 

(Algeo et al., 2007; Brookfield et al., 2003). Geochemical investigations at Guryul 

Ravine can be used to inform our interpretation of the records at Spiti Valley.  For 

example, both appear to be post-depositionally altered with much of the Tethyan 

sequence in Kashmir impacted by greenschist facies metamorphism (Dèzes, 1999; 

Herren, 1987).  Though not known it appears that the Tethyan sediments in the Spiti 

Valley have also been impacted by low-grade metamorphism based on thermal alteration 

indices of 3 to 5 which is indicative of thermally mature sediments (Krystyn et al., 2007; 

Richoz et al., 2007; Singh et al., 2004). 

In the case of the Spiti Valley sections there has been little work done on 

diagenetic overprint and far less on the effect of surficial weathering.  Therefore, 

perturbations of the geochemical record attributable to weathering may occur. For 

instance, high concentrations of Zr, REE, Y, and Sc can be attributed to weathering and 

retention of heavy minerals. This weathering could occur post-depositionally once the 

sequences are exposed to surface conditions or could represent, as was the case in the 

Tethyan Guryul Ravine section (Kashmir,Algeo et al., 2007), winnowing of outer-shelf 

sediments during sea level rise just prior to the end-Permian extinction. It is crucial 

therefore that we examine the Spiti Valley section geochemistry from the perspective of 

post-depositional alteration prior to evaluating its position in the global PT 

chemostratigraphy or attempting to ascribe extinction-related causal meaning to the 

geochemical signatures preserved in the sequence. 
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Spiti Valley PTB sections have not been sufficiently studied and so their exact 

position in the global PT chemostratigraphy is not known.  The conodont and ammonite 

biostratigraphy of the units is well defined (Kapoor, 2004) and the paleodiversity is well 

constrained in the sections (e.g. Diener, 1908, 1912; Hayden, 1904; Stoliczka, 1865).  

Many PT sections in Spiti Valley are incomplete and, in the case of the Attargoo where 

the boundary is preserved, are considered significantly weathered and diagenetically 

altered (Krystyn et al., 2007; Richoz et al., 2007; Singh et al., 2004).  The extent of post-

depositional alteration in the Spiti Valley sections is consistent with that observed for the 

Guryul Ravine section in neighboring Kashmir (Dèzes, 1999; Herren, 1987). Since both 

sections are geographically close to each other, they may have commonalities in terms of 

metamorphic history and modern weathering.  If this is the case then the Spiti Valley 

PTB section at Attargoo may, like the Guryul Ravine section, retain some of the original 

geochemical depositional signatures. 

Chemical weathering strongly affects major and trace element geochemistry as 

well as mineralogy (Fedo et al., 1995; Nesbitt and Young, 1982) of sedimentary rocks.  

For example, as clay content increases during weathering, via the transformation of 

feldspars to clay, whole rock Al2O3 content increases relative to CaO, K2O and Na2O 

(Nesbitt and Young, 1982; Sheldon and Tabor, 2009).  The relative abundance of Al2O3 

to other alkali and alkali earth metals is known as the Chemical Index of Alteration 

(Nesbitt and Young, 1982).  Using the three stages of weathering defined by Taylor and 

McLennan (1985) we can place CIA values in context and allows us to assess the extent 

of weathering and loss of original depositional signatures.  These three stages are (1) 
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early – weathering of primary minerals and formation of amorphous, unstable secondary 

minerals, (2) intermediate – clay minerals are formed and are dominated by illite and 

smectite, and (3) late – clay minerals dominate with multi-component compositions of 

kaolinite-gibbsite-quartz-iron oxide. 

Metamorphism will also impact the geochemistry of sedimentary rocks.  In 

addition to mineral transformation, low-grade metamorphism significantly impacts the 

trace element chemistry of sedimentary rocks (Taylor and McLennan, 1985).  In 

thermally mature sediments  such as those preserved at Attargoo (Krystyn et al., 2007; 

Richoz et al., 2007; Singh et al., 2004) the likelihood of low-grade metamorphism and 

associated chloritization will also impact the geochemistry of the units.  Chloritization of 

rocks will impact the Mg, Fe, Ni, Mn, Zn, Li and Ca concentrations due to the formation 

of chlorite minerals such as clinochlore, chamosite, nimite, and pennantite.  In the 

absence of mineralogical data we used the geochemistry of the units to assess the extent 

of metamorphism and the potential impact on original geochemical signatures (Algeo et 

al., 2007).   

This study focuses specifically on the major element chemistry of the Spiti Valley 

PTB section at Attargoo, explores the extent of post-depositional weathering across the 

PT boundary, assesses whether the Attargoo section is suitable for a paleo-environmental 

reconstruction study, and evaluates the environmental conditions during the formation of 

the ferruginous layer.  In all, this work is part of a larger research endeavor that seeks to 

place the Spiti Valley sections within the global PT chemostratigraphy.   
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2.2. The Permian-Triassic Geology of the Spiti Valley 

 

The Neo-Tethyan sequences (Paleozoic and Mesozoic) of the Indian Plate are 

primarily preserved in the inner part of the Higher Himalaya. These sequences often 

occur in tectonically decoupled contact over crystalline bedrock. These units are well 

exposed in the Western (Kashmir, Zanskar- Spiti and Uttrakhand) and the Central 

(Nepal) Himalaya (Brookfield et al. 2003 and references there in; Figure 1.2). Spiti 

Valley became famous for its well exposed and complete Triassic sedimentary succession 

[~1400 m; (Diener, 1908, 1912; Hayden, 1904)] and rich fossil content (Stoliczka, 1865). 

 At Attargoo, the Triassic Mikin Formation rests over the Permian Gungri 

Formation with a minor break where a part of Dorashmian is missing and the PT 

Boundary (PTB) is assumed to be marked by a “ferruginous layer” (Figure 1.3 and 2.1). 

During the Triassic this region formed part of the tropical Gondwanan-land margin [a.k.a. 

Peri-Gondwana-land Tethyan succession; (Matsuda, 1985)]. The mid-low paleolatitude 

allowed for the development of a large and highly diverse mixed pelagic fauna which are 

very well preserved in these rocks [e.g., (Diener, 1897; Kraft von and Diener, 1909b)]. 

The biostratigraphy at Spiti Valley varies between the Gungri and Mikin 

Formation. The lower part of the Gungri formation contains brachiopods and bryozoans 

(Kapoor, 2004). In the upper part of the Gungri formation several Cyclolobus particularly 

C. walker specimen are abundant in the Gungri formation; the highest bed that contains 

Cyclolobus are 20-120cm from the bottom of the Mikin Formation where phosphatic 

nodules are present (Figure 1.3 Kapoor, 2004; Shukla et al., 2002). The lower Triassic 

biostratigraphy  at Spiti is similar to Kashmir, however the lower Triassic section is 
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condensed and varies in thickness from 18 to 25cm (Kapoor, 2004).The base of the Mikin 

formation contains Otoceras and Ophiceras beds, while Hedenstroemia beds lie on top of 

the Otoceras and Ophiceras bed (Kapoor, 2004).  

 

Figure 2.1. Photograph of the section at Attargoo showing the ferruginous layer. Drill 

core holes are shown were we sampled the limestone in June 2009. Samples of shale 

were taken every 1-cm as described in the method section.   

 

The Spiti Valley forms part of the district of Lahul & Spiti located in the northern 

part of the Himachal Pradesh, which occupies a central position in the Western Himalaya. 

The PTB is marked, in the sections exposed at Attargoo, Kaza, Lalung, and Guling 
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(Figure 1.2), by a thin (~ 2cm) ferruginous layer separating the Permian black shale 

(Gungri Fm. Productus shale) from the Griesbachian Triassic Limestone (Mikin Fm., 

Otoceras-Ophiceras zone) (Figure 1.3; Shukla et al., 2002). The major geochemical 

characteristics of the PTB, globally, include several chemostratigraphic trends such as the 

sharp negative excursion of δ
13

Ccarb noted in a number of PTB sections globally from the 

southern Alps (Austria-Italy) (Kraus et al., 2009), southern China, western Canada 

(Isozaki, 1997a), Transcaucasia (northwest Iran) (Korte et al., 2004b), Iran (Kozur, 

2006), Japan, New Zealand (Krull et al., 2000), and Kashmir (Algeo et al., 2007; Baud et 

al., 1989; Grossman, 1994; Holser et al., 1989; Kozur, 2007; Wang et al., 1994). The 

Spiti Valley PT sections record a number of trends observed in other sections [e.g., 

negative 
13

Ccarb excursion;  (Ghosh et al., 2002; Richoz et al., 2007)] as well as some 

that appear unique to the region such as high Eu, Sb, U, and Zn concentrations within the 

ferruginous layer [Eu/Eu* max = 1.9; (Bhandari et al., 1992; Shukla et al., 2002)], nano-

sized iron oxyhydroxide phases, gypsum, and deformed quartz (Shukla et al., 2002). 

2.3. Methods 
 

At Attargoo both bulk rock (shale) and drill core (limestone) samples (n=32) were 

collected at high stratigraphic resolution in June 2009.  Samples were collected 

continuously every 1cm  from approximately ~50 cm below (shale) and ~70 cm above 

(limestone) the ferruginous layer (Figure 1.2).  Limestone (Triassic Mikin Fm.) samples 

were collected using a Pomeroy EZ Core Drill Model D026-C (water cooled; 1” 

diameter, 5 cm length).  Sample orientation (up section) was marked on the exposed core 
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end and samples were placed in whirlpaks for transport back to the laboratory.  Shale 

(Permian Gungri Fm.) samples were collected using rock hammer and chisel.  Weathered 

surfaces were trenched approximately 7” into the rock face and approximately 3 cm thick 

slabs were removed every 3 cm.  Prior to removal from the outcrop the up section 

orientation was marked.  Strike and dip exposure of Spiti PTB sections are noted as high 

angles, and a non-diastrophic fold is particularly in the Mikin formation (Bhargarva, 

1987).  Because the shale is very fissile, sample “packets” were tightly wrapped in 

newspaper taped and placed in zip-lock bags for transport back to the laboratory.   

Sub-samples were taken from field samples for analysis in the laboratory.  For 

shales, the samples were carefully opened, and using dental picks, the layers of the shale 

separated.  Samples for analysis were taken from the “center” layer approximately 2 cm 

back from the up-section mark.  For drill core samples sub-samples were taken 2 cm back 

from the up-section mark using a chisel.  For both shale and limestone sub-samples 

approximately 7 g of material was excised.   

2.3.1. Analytical Methods 

 

Sub-samples representing homogenized 1cm intervals were powdered by Spex 

Ball Mill. The powdered samples (< 60 mesh) were analyzed for major element oxide 

(except Na2O) using a SPECTRO XEPOS Benchtop Energy Dispersive X-ray 

Fluorescence (ED-XRF) as described by Smith (2007). 3 to 5 g of sample were measured, 

in triplicate, under He purge and calibrated against SDO-1 (USGS Devonian Shale). 

Reported errors represent the propagated error of repeat/replicate measures and the 
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certified measurement (MC) ratio for each element (Table 2.1).   SGR-1 (USGS Green 

River Shale) was measured as an unknown to monitor accuracy of the ED-XRF.  

Measured values for SGR-1 were better than 95% of the known values for measured 

major elements.   

For Na concentration measurements, 16mg of powdered sample was dissolved 

completely through ultra-pure acid digestion (Murray and Leinen, 1993). Samples were 

digested in 7mL Savillex teflon bombs on a hot plate (200-260°C) (Algeo et al., 2007; 

Bayon et al., 2002). Samples were digested for 24hrs and dried down repetitively after 

each digestion step. Once the samples were dried down after the removal of concentrated 

HF, they were acidified with 0.5mL of concentrated ultrapure HNO3 and diluted with 

50mL of milli-q water.  Acid digested samples were quantified for Na using a 

PerkinElmer Optima 3000XL Inductively Coupled Plasma Optical Emission 

Spectrometer (ICP-OES) (Table 2.1).  Samples were measured in triplicate under Ar 

purge.   We measured Na using a 3 point calibration curve (500ppm, 20ppm, and 

10ppm). The 3-point calibration served as verification for instrument accuracy and 

precision.  SDO-1 was analyzed for calibration as well.  Unknown values were corrected 

by the SDO-1 measured to certified ratio. SGR-1 was measured as an unknown to 

monitor accuracy. Measured values for SGR-1 were better than 95% of the known Na 

values. 

Organic carbon and carbonate were estimated by loss on ignition (LOI) using the 

method outline in Dean (1974) (Table 2.1).   LOI results were calibrated against SDO-1. 
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2.3.2.  Chemical Index of Alteration (CIA) 

 

Chemical Index of Alteration (CIA) was calculated to assess the degree of 

weathering.  CIA uses molar proportions of Al2O3, Na2O, and K2O.  This approach is 

commonly applied to silicate and sedimentary rocks(Nesbitt and Young, 1982).  It is less 

commonly applied to limestones.  Here we calculate the CIA for all samples and only, 

where appropriate, assess the Gungri formation samples (Permian Shales) in the context 

of CIA-weathering.  

                                              

 Equation 2. 1 

CaO*, used in the CIA calculation, is the amount of CaO incoroporated in the 

silicate fraction of the rock (Nesbitt and Young, 1982), hence the reason it is not directly 

applicable to limestones. In several samples CaO* was negative.  We assumed, in these 

cases, that CaO content was neglibly associated with silicate. CaO* was determined as in 

Equation 2.2. 

                                                       

          Equation 2. 2 

 

2.4.  Results 

 

The Gungri formation has a high content of clay minerals. This is indicated by the 

high content of SiO2, TiO2, and Al2O3.  The shales also had typical, relatively low, 

concentrations of Fe2O3, MnO, MgO, CaO, P2O5, Na2O, and K2O (Figure 2.2). The high 

clay mineral content suggests that the Gungri formation is, sedimentologically, mature. 

The Mikin formation has a high content of MgO and CaO and low, overall, 
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concentrations of SiO2, TiO2, Al2O3, Fe2O3, MnO, P2O5, Na2O, and K2O (Figure 2.2) as 

is typical for limestones. The MgO values suggest that the area (PT-4-PT-7) of the Mikin 

formation has dolomitic characteristics. The ferruginous layer can be separated into three 

layers bottom, middle, and top. The bottom or lower part of the ferruginous layer 

resembles, geochemically, the Gungri formation. The middle and upper ferruginous layer 

samples are low in SiO2, TiO2, Al2O3, MnO, MgO, Na2O, and K2O and have higher 

concentrations of Fe2O3, CaO, and P2O5 than other samples in the section (Figure 2.2).  

The Corg content (calculated from LOI) between the two formations and the 

ferruginous layer are, as expected, significantly different.  The Gungri formation and 

lower part of the ferruginous layer have Corg contents ranging from 2.14 to 4.04%, the 

Mikin formation (Triassic Limestone) ranges from 0.67 to 1.42%, the middle part of the 

ferruginous layer has a value of 3.69%, and the upper part of the ferruginous has a value 

of 5.31% (Table 2.1; Figure 2.2). The Corg content for the middle and upper parts of the 

ferruginous layer are significantly higher than the Permian or Triassic formations in the 

Attargoo section. The CInorg and LOI content in the Mikin formation are significantly 

higher than the ferruginous layer and Gungri formation. This is due to the high content of 

inorganic carbon found in limestones.   

The CIA values for the Gungri formation range from 68.24-74.73, the CIA values 

indicate that the Gungri formation contains, as shales do, clay minerals which is reflected 

in the high content of Al2O3 (Table 2.1; Figure 2.2).  The CIA values for the ferruginous 

layer suggest a decrease in clay content from the bottom to the top of the layer. The 

sample PT-2, located at the bottom of the ferruginous layer, has a CIA value of 73.05.  



59 

 

This value suggests that the base of the the ferruginous layer has a higher clay mineral 

content more like the Gungri shales. The sample PT-1B, middle ferruginous layer, has a 

CIA value of 29.19. The PT-3 sample, top of the ferruginous layer, has a CIA value of 

31.57. The low CIA values of the middle and top of the ferruginous layer are probably 

due to low Al2O3, high CaO, cool, and/or arid conditions (Fedo et al., 1995). The Mikin 

formation CIA values range from 1.05-7.39 with these samples having high 

concentrations of alkali earth metals typical of limestones.  

  

 

 



 

Table 2. 1.  Major element composition of the Attargoo Section. PT 4 to 7 = Mikin 

Formation, PT 2-3 = Ferruginous Layer, PB to PJ = Gungri formation. 

LS=Limestone, FL=Ferruginous Layer, S=Shale, BDL = below detection limit. 

Standard deviation for CO2, Organic Carbon, and LOI represent SDO-1, because 

samples were corrected by SDO-1. 

Sample Rock Type Depth (cm) SiO2 (wt. %) TiO2 (wt. %) 

PT-7 Mikin Fm. (LS) 10 14.07 +/-0.30 0.05 +/-0.00 

PT-6 Mikin Fm. (LS) 7 6.44 +/-0.14 0.03 +/-0.00 

PT-5 Mikin Fm. (LS) 5 14.31 +/-0.27 0.13 +/-0.01 

PT-4 Mikin Fm. (LS) 3 7.98 +/-0.14 0.05 +/-0.00 

PT-3 FL 1.0 18.26 +/-0.32 0.09 +/-0.00 

PT-1b FL 0 33.84 +/-0.84 0.35 +/-0.02 

PT-2 FL -1.5 60.99 +/-1.04 1.13 +/-0.06 

PB-1 Gungri Fm. (S) -6 64.68 +/-0.87 1.13 +/-0.06 

PB-2 Gungri Fm. (S) -8 48.43 +/-0.65 0.74 +/-0.03 

PB-3 Gungri Fm. (S) -10 62.63 +/-0.84 1.13 +/-0.07 

PC-1 Gungri Fm. (S) -11 50.38 +/-0.72 0.74 +/-0.04 

PC-2 Gungri Fm. (S) -13 46.69 +/-0.66 0.78 +/-0.04 

PC-3 Gungri Fm. (S) -15 51.15 +/-0.70 0.80 +/-0.05 

PD-1 Gungri Fm (S) -16 59.90 +/-0.80 1.02 +/-0.06  

PD-2 Gungri Fm. (S) -18 59.32 +/-0.80 0.97 +/-0.04 

PD-3 Gungri Fm. (S) -20 60.75 +/-0.82 1.04 +/-0.07 

PE-1 Gungri Fm. (S) -21 64.95 +/-0.87 1.09 +/-0.05 

PE-2 Gungri Fm. (S) -23 66.19 +/-0.91 0.98 +/-0.04 

PE-3 Gungri Fm. (S) -25 64.03 +/-0.86 1.09 +/-0.05 

PF-1 Gungri Fm. (S) -27 53.65 +/-0.73 0.87 +/-0.04 

PF-2 Gungri Fm. (S) -28 63.04 +/-0.84 1.09 +/-0.05 

PF-3 Gungri Fm. (S) -30 63.59 +/-0.90 1.07 +/-0.07 

PG-1 Gungri Fm. (S) -32 54.01 +/-0.76 0.95 +/-0.04 

PG-2 Gungri Fm. (S) -33 52.62 +/-0.72 0.87 +/-0.04 

PG-3 Gungri Fm. (S) -35 52.05 +/-0.70 0.78 +/-0.03 

PH-1 Gungri Fm. (S) -37 60.37 +/-0.81 1.03 +/-0.05 

PH-2 Gungri Fm. (S) -38 59.30 +/-0.80 0.96 +/-0.04 

PH-3 Gungri Fm. (S) -40 61.63 +/-0.82 1.04 +/-0.05 

PI-1 Gungri Fm. (S) -42 61.09 +/-0.87 0.87 +/-0.05 

PI-2 Gungri Fm. (S) -44 60.91 +/-0.83 1.04 +/-0.06 

PI-3 Gungri Fm. (S) -45 60.36 +/-0.81 1.00 +/-0.04 

PJ-1 Gungri Fm. (S) -47 52.70 +/-0.74 0.86 +/-0.04 

PJ-2 Gungri Fm. (S) -49 52.72 +/-0.79 0.96 +/-0.06 

PJ-3 Gungri Fm. (S) -50 57.80 +/-0.77 0.93 +/-0.06 
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Table 2.1. Continued. 

Sample Al2O3 (wt. %) Fe2O3 (wt. %) MnO (wt. %) MgO (wt. %) 

PT-7 0.38 +/- 0.01 6.12 +/-0.20 1.47 +/-0.23 14.81 +/-2.50 

PT-6 0.34 +/-0.02 5.23 +/-0.17 1.12 +/-0.18 13.87 +/-2.38 

PT-5 2.20 +/-0.06 10.07 +/-0.34 1.06 +/-0.17 8.69 +/-1.46 

PT-4 0.75 +/-0.03 11.07 +/-0.33 1.85 +/-0.29 9.97 +/-1.67 

PT-3 5.53 +/-0.13 30.51 +/-0.92 0.08 +/-0.01 BDL 

PT-1b 9.67 +/-0.28 9.88 +/-0.34 0.08 +/-0.01 1.49 +/-0.34 

PT-2 20.18 +/-0.49 2.74 +/-0.08 0.01 +/-0.00 0.27 +/-0.05 

PB-1 21.61 +/-0.64 1.87 +/-0.04 0.01 +/-0.00 0.78 +/-0.21 

PB-2 16.06 +/-0.49 19.67 +/-0.45 0.01 +/-0.00 0.53 +/-0.21 

PB-3 20.61 +/-0.62 3.34 +/-0.08 0.01 +/-0.00 0.63 +/-0.17 

PC-1 14.90 +/-0.54 17.35 +/-0.40 0.01 +/-0.00 BDL 

PC-2 14.47 +/-0.53 18.93 +/-0.44 0.01 +/-0.00 BDL 

PC-3 16.08 +/-0.48 14.75 +/-0.35 0.01 +/-0.00 0.42 +/-0.23 

PD-1 19.58 +/-0.59 4.27 +/-0.10 0.01 +/-0.00 0.32 

PD-2 19.60 +/-0.58 6.89 +/-0.16 0.01 +/-0.00 0.56 +/-0.34 

PD-3 20.47 +/-0.61 4.41 +/-0.10 0.01 +/-0.00 0.86 +/-0.30 

PE-1 20.32 +/-0.61 2.22 +/-0.05 0.01 +/-0.00 1.01 +/-0.25 

PE-2 20.54 +/-0.61 3.28 +/-0.08 0.01 +/-0.00 0.77 +/-0.20 

PE-3 20.03 +/-0.60 3.41 +/-0.08 0.01 +/-0.00 0.89 +/-0.23 

PF-1 17.02 +/-0.51 12.62 +/-0.29 0.02 +/-0.00 BDL 

PF-2 20.11 +/-0.60 2.80 +/-0.07 0.01 +/-0.00 0.61 +/-0.37 

PF-3 20.26 +/-0.61 3.21 +/-0.07 0.01 +/-0.00 0.64 +/-0.22 

PG-1 17.82 +/-0.56 12.03 +/-0.28 0.02 +/-0.00 0.32 +/-0.31 

PG-2 16.86 +-/0.50 13.18 +/-0.30 0.03 +/-0.00 BDL 

PG-3 14.90 +/-0.51 10.55 +/-0.24 0.02 +/-0.00 BDL 

PH-1 20.67 +/-0.62 3.79 +/-0.09 0.01 +/-0.00 1.56 +/-0.42 

PH-2 20.40 +/-0.61 4.78 +/-0.11 0.02 +/-0.00 1.43 +/-0.35 

PH-3 20.30 +/-0.61 3.93 +/-0.09 0.01 +/-0.00 1.20 +/-0.38 

PI-1 17.50 +/-0.53 5.58 +/-0.13 0.01 +/-0.00 0.63 +/-0.18 

PI-2 20.64 +/-0.62 5.09 +/-0.12 0.03 +/-0.01 1.14 +/-0.34 

PI-3 20.09 +/-0.60 5.87 +/-0.14 0.04 +/-0.01 1.25 +/-0.32 

PJ-1 18.20 +/-0.57 8.33 +/-0.19 0.02 +/-0.00 0.92 +/-0.50 

PJ-2 18.98 +/-0.57 7.36 +/-0.17 0.02 +/-0.00 1.11 +/-0.28 

PJ-3 19.27 +/-0.58 5.20 +/-0.12 0.02 +/-0.00 0.89 +/-0.31 
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Table 2.1. Continued  

 

Sample CaO (wt. %) Na2O (wt. %) K2O (wt. %) P2O5 (wt. %) 

PT-7 31.79 +/-1.54 0.11 +/-0.03 0.23 +/-0.01 0.08 +/-0.01 

PT-6 37.49 +/-1.82 0.11 +/-0.02 0.13 +/-0.00 0.05 +/-0.00 

PT-5 31.18 +/-1.53 0.11 +/-0.02 0.67 +/-0.02 0.07 +/-0.00 

PT-4 33.95 +/-1.59 0.09 +/-0.03 0.23 +/-0.01 0.09 +/-0.01 

PT-3 9.92 +/-0.47 0.16 +/-0.03 0.37 +/-0.01 1.24 +/-0.08 

PT-1b 14.10 +/-0.69 0.30 +/-0.02 1.88 +/-0.05 1.18 +/-0.08 

PT-2 0.24 +/-0.01 0.72 +/-0.07 5.38 +/-0.12 0.12 +/-0.01 

PB-1 0.22 +/-0.01 0.48 +/-0.07 5.87 +/-0.11 0.11 +/-0.01 

PB-2 0.63 +/-0.03 0.37 +/-0.03 4.49 +/-0.08 0.13 +/-0.01 

PB-3 0.26 +/-0.01 0.44 +/-0.01 5.61 +/-0.11 0.12 +/-0.01 

PC-1 0.21 +/-0.01 0.33 +/-0.02 4.25 +/-0.08 0.12 +/-0.01 

PC-2 0.84 +/-0.04 0.35 +/-0.03 4.28 +/-0.08 0.11 +/-0.01 

PC-3 0.23 +/-0.01 0.52 +/-0.07 4.48 +/-0.08 0.11 +/-0.01 

PD-1 0.20 +/-0.01 0.51 +/-0.05 5.43 +/-0.10 0.12 +/-0.01 

PD-2 0.20 +/-0.01 0.42 +/-0.06 5.39 +/-0.10 0.12 +/-0.01 

PD-3 0.23 +/-0.01 0.54 +/-0.03 5.58 +/-0.10 0.12 +/-0.01 

PE-1 0.20 +/-0.01 0.56 +/-0.10 5.45 +/-0.10 0.12 +/-0.01 

PE-2 0.21 +/-0.01 0.68 +/-0.07 5.31 +/-0.10 0.11 +/-0.01 

PE-3 0.22 +/-0.01  0.62 +/-0.01 5.44 +/-0.10 0.12 +/-0.01 

PF-1 0.30 +/-0.01 0.56 +/-0.03 4.78 +/-0.09 0.12 +/-0.01 

PF-2 0.21 +/-0.01 0.54 +/-0.08 5.47 +/-0.10 0.11 +/-0.01 

PF-3 0.20 +/-0.01 0.27 +/-0.04 5.47 +/-0.11 0.12 +/-0.01 

PG-1 0.37 +/-0.02 0.55 +/-0.05 4.85 +/-0.09 0.11 +/-0.01 

PG-2 0.20 +/-0.01 0.54 +/-0.04 4.68 +/-0.09 0.11 +/-0.01 

PG-3 0.19 +/-0.01 0.51 +/-0.08 4.08 +/-0.08 0.10 +/-0.01 

PH-1 0.23 +/-0.01 0.59 +/-0.05 5.12 +/-0.10 0.11 +/-0.01 

PH-2 0.21 +/-0.01 0.68 +/-0.08 5.16 +/-0.10 0.11 +/-0.01 

PH-3 0.21 +/-0.01 0.59 +/-0.08 5.21 +/-0.10 0.11 +/-0.01 

PI-1 0.24 +/-0.01 0.62 +/-0.06 4.52 +/-0.09 0.12 +/-0.01 

PI-2 0.22 +/-0.01 0.79 +/-0.07 5.21 +/-0.10 0.12 +/-0.01 

PI-3 0.23 +/-0.01 0.72 +/-0.07 4.92 +/-0.10 0.11 +/-0.01 

PJ-1 0.25 +/-0.01 0.67 +/-0.08 4.85 +/-0.10 0.11 +/-0.01 

PJ-2 0.22 +/-0.01 0.73 +/-0.03 4.88 +/-0.09 0.12 +/-0.01 

PJ-3 0.20 +/-0.01 0.57 +/-0.04 4.81 +/-0.09 0.11 +/-0.01 
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Table 2.1. Continued 

 

Sample C Inorganic. (wt. %)  C Organic (wt. %)  LOI (wt. %)  CIA 

PT-7 9.23 +/-0.21 1.06 +/-0.45 30.4 +/-0.0 1.44 

PT-6 10.48 +/-0.21 0.67 +/-0.45 33.5 +/-0.0 1.05 

PT-5 8.59 +/-0.21 1.11 +/-0.45 28.5 +/-0.0 7.39 

PT-4 9.16 +/-0.21 1.42 +/-0.45 30.9 +/-0.0 2.43 

PT-3 1.08 +/-0.21 5.31 +/-0.45 13.5 +/-0.0 31.57 

PT-1b 0.60 +/-0.21 3.69 +/-0.45 8.9 +/-0.0 29.19 

PT-2 0.54 +/-0.21 2.41 +/-0.45 6.3 +/-0.0 73.05 

PB-1 0.47 +/-0.21 2.39 +/-0.45 6.0 +/-0.0 74.13 

PB-2 0.88 +/-0.21  4.04 +/-0.45 10.5 +/-0.0 70.85 

PB-3 2.10 +/-0.21 2.59 +/-0.45 11.4 +/-0.0 73.93 

PC-1 0.58 +/-0.21 3.66 +/-0.45 8.8 +/-0.0  72.97 

PC-2 0.85 +/-0.21 3.70 +/-0.45 9.7 +/-0.0 68.24 

PC-3 0.76 +/-0.21 3.00 +/-0.45 8.1 +/-0.0 72.44 

PD-1 0.52 +/-0.21 2.73 +/- 0.45 6.8 +/-0.0 73.43 

PD-2 0.58 +/-0.21 2.86 +/-0.45 7.3 +/-0.0 74.02 

PD-3 0.51 +/-0.21 3.80 +/-0.45 8.9 +/-0.0 73.61 

PE-1 0.53 +/-0.21 2.43 +/-0.45 6.3 +/-0.0 73.89 

PE-2 0.50 +/-0.21 2.19 +/-0.45 5.8 +/-0.0 73.93 

PE-3 0.49 +/-0.21 2.63 +/-0.45 6.5 +/-0.0 73.26 

PF-1 0.79 +/-0.21 2.99 +/-0.45 8.2 +/-0.0 71.92 

PF-2 0.55 +/-0.21 2.44 +/-0.45 6.4 +/-0.0 73.69 

PF-3 0.50 +/-0.21 2.37 +/-0.45 6.1 +/-0.0 75.07 

PG-1 0.37 +/-0.21 3.59 +/-0.45 8.0 +/-0.0 72.26 

PG-2 0.66 +/-0.21 3.27 +/-0.45 8.3 +/-0.0 72.74 

PG-3 0.60 +/-0.21 3.60 +/-0.45 8.8 +/-0.0 72.67 

PH-1 0.59 +/-0.21 3.22 +/-0.45 8.0 +/-0.0 74.91 

PH-2 0.53 +/-0.21 2.89 +/-0.45 7.2 +/-0.0 74.24 

PH-3 0.51 +/-0.21 2.89 +/-0.45 7.1 +/-0.0 74.38 

PI-1 0.52 +/-0.21 2.50 +/-0.45 6.4 +/-0.0 73.38 

PI-2 0.55 +/-0.21 2.63 +/-0.45 6.7 +/-0.0 73.79 

PI-3 0.53 +/-0.21 2.72 +/-0.45 6.9 +/-0.0 74.37 

PJ-1 0.78 +/-0.21 3.04 +/-0.45 8.2 +/-0.0 72.78 

PJ-2 0.58 +/-0.21 2.97 +/-0.45 7.5 +/-0.0 73.40 

PJ-3 0.73 +/-0.21  2.40 +/-0.45 6.8+/-0.0 74.73 
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Figure 2.2. Stratitgraphy of major element weight percentages for the Attargoo PTB 

section. (A) SiO2, (B) TiO2, (C) Al2O3, (D) Fe2O3, (E) MnO, (F) MgO, (G) CaO, (H) 

Na2O, (I) K2O, (J) P2O5, (K) COrganic, (L) CInorganic, (M) Loss on Ignition (LOI), and 

(N) Chemical Index of Alteration (CIA) . Dashed lines bracket the ferruginous layer.  

Depth 0 is defined as PT-1B.  
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2.4.1. Ternary Plots 

 

The A-CN-K diagram is useful for evaluating rock compositions and 

weathering trends because of the dominance of plagioclase and K-feldspar rocks, and 

clay minerals (Fedo et al., 1995). We used the A-CN-K diagram to evaluate the 

provenance of the Gungri formation. The relations suggest that Gungri formation and 

the lower part of the ferruginous layer have lost Na2O, CaO, and K2O due to post-

depositional alteration (Nesbitt and Young, 1982). The degree of chemical weathering 

for the Gungri formation and lower part of the ferruginous layer suggest diagenetic 

transformation from a plagioclase to  illite (Figure 2.3). The trend towards the A-K 

line indicates that Na and Ca  have been removed from the Gungri formation most 

likely caused by a loss of plagioclase (Figure 2.3). Shales loading towards the A-K 

line suggests that the provenance is possibly K-rich (Figure 2.3); and it appears that 

the Attargoo PTB has not undergone any K-metasomatism. The geochemistry of the 

middle and upper ferruginous layer samples (PT-1B and PT-3) suggests a trend from 

Fe, Ca and Mg enrichment to Al (Figure 2.3). 

In order to understand the degree of chemical weathering, and diagenesis, and 

metamorphism of the Attargoo section we used the the relation between the alkali 

earths, Mg, and Fe known as the A-CNK-FM diagram or mafic diagram. The A-

CNK-FM diagram suggest that shales have an abundace of clay minerals because 

samples are plotted above the feldspar-orthopryoxene (Nesbitt and Young, 2004). The 

Gungri samples and the lower ferruginous samples appear to move down the illite-
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chlorite line suggesting that the samples have undergone post-depositional weathering 

due to the presence of illite and diagenesis due to the presence smectite (Hayashi et 

al., 1997) . The Gungri formation and the lower part of the ferruginous layer appear to 

have experience some form of low-grade metamorphism as shales trend towards 

chlorite this is shown on the A-CNK-FM diagram as shales move down the illite-

chlorite line (Hayashi et al., 1997) . The relations in Figure 2.4 suggest that the 

chemical alteration in the Gungri formation may be attirbuted low-grade 

metamorphism and post depositional processes such as weathering and diagenesis 

(Figure 2.4). Interestingly, the middle ferruginous layer sample, PT-1B, appears to 

have a geochemical signature suggestive of goethite (Shukla et al., 2002);  PT-3, top 

of the ferruginous layer, appears to contain aluminous biotite (Figure 2.4). The 

middle and upper ferruginous layer samples are high in Fe, these samples also fall 

below the Feldspar-Orthopyroxene line. Falling below the Feldspar-Orthopyroxene 

line suggests that the samples contain more primary minerals rather than secondary 

clay minerals, which is indicative of immaturity (Nesbitt and Young, 2004).     
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Figure 2.3. Ternary diagram (A-CN-K) for the Gungri Formation and Ferruginous layer.  

Black line indicates the Plagioclase-Feldspar line.  
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Figure 2.4. Mafic diagram (A-CNK-FM) of the Gungri Formation and Ferruginous 

layer. The black solid line represents the Feldspar-Orthopryoxene line; the black 

dotted line represents the Illite-Chlorite line.  
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2.5.  Discussion  

2.5.1. Gungri and Mikin Formations 

 

The major element chemistry of the Attagaroo PTB section is significantly 

different across the three lithologies. The lithological change from the Permian 

Gungri Shale to the Triassic Mikin Limestone suggests that the Attagaroo PTB 

section experienced a marine regression (Bhargarva, 1987). The Gungri formation is, 

geochemically, mature, this maturity can be identified in the major element 

geochemistry  The high content of SiO2, TiO2, and Al2O3 coupled with low content of 

alkali metals indicate that the Gungri formation has a substanial amount of clay 

minerals, which further supports the notion that the Gungri formation is a very mature 

section(Fedo et al., 1995). The Gungri formation CIA values are within the average 

range of shales (CIA= 70-75; Nesbitt and Young, 1982; Taylor and McLennan, 

1985). The CIA values indicate that the Gungri formation shales have experienced 

intermediate chemical weathering, 60-80 (Fedo et al., 1995). These results supports 

our contention that the Gungri formation is suitable for paleo-enivironmental 

reconstruction.  

 The major element chemistry and CIA values for the Mikin Limestone 

(Triassic) are typical of marine limestones.  The low CIA value is due to the low 

content of Al2O3 and SiO2 with higher amounts  of CaO and MgO.  The low CIA 

values are probably due to the high content of CaO and MgO, instead of arid or dry 

conditions stated by Fedo et al. (1995). However, the Mikin formation appears to be 

weathered signficantly, the color of the Mikin limestone is noted as brown 
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(Bhargarva et al., 2004). The Mikin formation particularly the lower region appears 

as a dolomitic limestone (Bhargarva et al., 2004); the MgO and CaO values of the 

Mikin formation supports the notion that Mikin formation has dolomite 

characteristics.The geochemistry suggest that  the limestone has  a  low alkali metal 

content, the alkali metals may have been lost from leaching and chemical weathering 

of the formation. In all the major element chemistry of the suggest that the Mikin 

formation at Attargoo can be characterized as a “muddy” or “dirty” limestone, due to 

the color and major element content.  

    The major element ternary plots reveal the extent of weathering (Roser and 

Korsch, 1988) in the Gungri shales. The Gungri shales appear to have lost K2O and 

are enriched in Al2O3 suggesting re-mineralization. Major element composition of the 

Gungri suggests the presence of illite; illite is a product of post-depositional 

weathering. The Gungri shales are low in Na and Ca which may be due to weathering 

and loss of less stable minerals such as feldspars. It appears that “K-feldspar”-like 

phase remains and continues to leach (Nesbitt and Young, 2004) in the Gungri 

formation. Overall the major element relations suggest that the parent material of the 

Gungri shales is a K-rich granite; it also appears that the Attargoo PTB section did 

not experience K-metasomatism. This suggestion is supported by Fedo et al. (1995; 

Figure 3A).  

The major element geochemistry of the Gungri is indicative of not only post-

depositional alteration, but also low-grade metamorphism. The presence of illite and 

smectite suggest that secondary minerals occur in the Gungri shales; the relative of 
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abundace of smectite and illite are directly related to the CIA values of the Gungri 

formation (Hayashi et al., 1997). This presence of illite and smectite suggest that the 

Gungri formation has undergone post-depositional weathering (Nesbitt and Young, 

2004).  Therefore, the  presence of smectite illite further supports the contention that 

the shales have experienced intermediate rather than significant levels of weathering 

because they are secondary minerals to feldspar (Eggleton, 1986; Meunier and Velde, 

1976).  In general, the Gungri formation appears to be diagenetically altered and has 

experienced some chloritization; the evidence of chlorite can be seen on the A-CNK-

FM diagram as the shales trend towards chlorite. Eventhough the Gungri formation 

experienced both weathering and low-grade metamorphism, the sediments in the 

Gungri formation are not significantly altered to an extent where sediments can not be 

used for paleo-reconstruction. Therefore, we propose that Attargoo section has been 

diagenetically altered; this is supported by the presence of smectite. The section has 

experienced intermediate weathering and chlorization; with no evidence of K-

metasomastism. However, the extent of chemical weathering and chlorization do not 

appear to be significant in which samples are altered from the original chemical 

composition this is reflective in the shale CIA values and both ternary plots.  

2.5.2. Ferruginous Layer 

 

The ferruginous layer is solely found at Permian-Triassic sequences located in 

the Spiti Valley basin, this layer is different from the Late Permian Event Horizon 

(LPEH) seen at Guryul Ravine PTB section. The major element chemistry and CIA 

value of  lower ferruginous layer (PT-2) resembles the Gungri formation, while the 
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middle (PT-1B) and  upper (PT-3) ferruginous layer do not resemble either shale or 

limestone major elemental chemistry. Our analysis of major elements of the middle 

and upper ferruginous layer contains a substainal amount of  Fe, Ca, and P, with a 

small amount of alkali metals, Si, Ti, and Al.  Even though the lower part (PT-2) 

contains an abundance of clay minerals, the major element chemistry of the middle 

and upper ferruginous layers does not suggest an abundance of clay mineral due to 

the low content of SiO2, TiO2, and Al2O3. Instead it seems that the middle and upper 

sections of the ferruginous layer is immature. However, the low content of alkali 

metals except for Ca may suggest that the middle and upper ferruginous layer is post-

depositionally altered. The CIA values suggest that the middle and upper ferruginous 

layer reflects cool and/or arid conditions during deposition (Fedo et al., 1995).  

Our findings suggest that the middle and upper parts of the ferruginous layer 

has a high content of Fe and P . The A-CN-K ternary plots suggest that the lower 

ferruginous layer has an abundace of illite similiar to the Gungri formation . The 

middle and upper ferruginous layer fall along the A-CN line close to the CN, 

indicating that these units contain significant concentrations of Ca in comparison to K 

and Al, and the loss of K perhaps is due to weathering or environmental conditions 

during formation. 

The middle and upper ferruginous layer appears to be altered and may contain 

goethite (FeO(OH)) suggesting that this layer has been impacted by weathering 

(Şengör and Atayman, 2002). The major element data suggest that the upper part of 

the ferruginous layer (PT-3) contains an abundance of biotite and iron oxide minerals. 
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The abundance of Fe in the middle and upper ferruginous layers suggests that this 

layer is post-depositionally altered.  Eventhough, the A-CNK-FM diagram suggests 

that the middle and upper ferruginous layer contains more primary than secondary 

minerals, the presence of geothite found at the ferruginous layer may be a secondary 

mineral of hematite commonly seen in shales from weathering (Şengör and Atayman, 

2002); whereas the siliciclastic minerals present in  ferruginous layer suggest that it is 

immature (e.g. feldspar and quartz). Red hematite may weather to geothite, therefore 

it changes the color of a  red sedimentary rock a yellowish-brown color (Şengör and 

Atayman, 2002). A similar yellow-brownish color description has been used to 

describe the ferruginous layer (Bhatt et al., 1981; Shukla et al., 2002), which may 

suggest that the middle and upper ferruginous layer has a compisition of an iron-rich 

shale. 

The ferruginous layer is characterize as a pebbly limonitic layer (Bhandari, 

1998; Bhargarva, 1987; Bhatt et al., 1981; Ghosh et al., 2002; Shukla et al., 2002), 

composed of maganese with minor iron indicating a marine component, and consists 

of goethite, quartz, gypsum and feldspar minerals (Shukla et al., 2002). The presence 

of geothite suggest that some are implying that the ferruginous layers contains an 

abundance of hydrated iron oxides. We suggest that lower part of the ferruginous 

layer displays Gungri shale like characteristics because the major element 

geochemistry suggest that the bottom ferruginous layer has an abundance of clay 

minerals and is similar to Gungri shale. The major element chemistry of the middle 

and upper ferruginous layer suggest is iron-rich, with a high content of P and Ca. The 



77 

 

composition of the iron-rich layers appears to contain geothite (Shukla et al., 2002). 

The presence of geothite in the middle and upper ferruginous layer may suggest this 

mineral formed as a product of weathering hematite, this characteristics may imply 

that the middle and upper ferruginous layer has iron-rich shale characteristics. 

The term “limonitic” used to describe the ferruginous layer suggest that the 

ferruginous layer consist of iron oxides and/or hydrated iron oxides. In all, the term 

limonitic maybe suggestive that the ferruginous layer formed by subaerial exposure 

or deposited under anoxic conditons.  Sub-aerial exposure is is a theory use to explain 

the formation of the ferruginous layer. The biostratgraphy of Spiti contains an absent  

fossil record in the Gungri Formation (Kapoor, 2004). According to Kapoor (2004) 

the highest Cyclobus bed noted in Spiti  is 20cm from the top of the Gungri 

formation. Bhatt et al. (1981) suggest that the ferruginous layer in Spiti marked a 

subaerial exposure event that followed the deposition of the Kuling formation 

(Gungri Formation). This subaerial exposure caused the ocean to withdraw during or 

soon after the deposition of sediments that contain Cyclobus creating a void in the 

fossil record (Bhatt et al., 1981) by volcanism (Kapoor, 2004)  or impact (Shukla et 

al., 2002). Shukla et al. (2002) suggest that the mixed mineral assemblage present at 

the ferruginous layer, along with the presence of  gypsum as an evaporite supports the 

theory that the ferruginous layer formed under sub-aerial orgin during oxic 

conditions. The major element chemistry and CIA values of the middle and upper 

ferruginous layer may suggest that sub-aerial exposure could have caused the 

formation of the ferruginous layer, evidence for sub-aerial exposure are associated 
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with high Ca, Fe, and P values (Reolid et al., 2008) and low CIA values that result 

from arid conditions during formation.  

The presence of gypsum (Şengör and Atayman, 2009) and geothite at the 

ferruginous layer  may imply that the ferruginous layer could have been deposited 

under anoxic conditions instead of being formed during a sub aerial exposure event 

(Shukla et al., 2002). Under anoxic conditions  decomposition of organismal tissue 

through sulfur-reducing bacteria releases hydrogen sulfide,  hydrogen sulfide oxidizes 

and dissolves calcite in surface waters which gives rise to the mineral gypsum 

(Şengör and Atayman, 2009). The middle and upper ferruginous layer has a high 

content of COrganic (PT-1B= 3.69%, PT-3=5.31%, Table 2.1, Figure 2.2), perhaps this  

COrganic content maybe associated with the production of sulfur needed to produce 

gypsum. However, we do not have any evidence of gypsum as a primary mineral, 

sulfide bearing minerals (e.g. frambiodal pyrite) along the ferruginous layer, or sulfur 

concentrations that suggest anoxic conditions. Other evidence that is suggestive of 

anoxia is the presence geothite at the ferruginous layers. Limonite mainly composed 

of geothite, may occur as a secondary mineral to pyrite through chemical weathering 

(Dennen and Anderson, 1967). In the case of  the ferruginous layer, pyrite formed 

during diagenesis could have been abundant at the formation of the ferruginous layer, 

but due to chemical weathering pyrite oxidize into limonite, creating the limonitic 

ferruginous layer. Wignall et al. (2004) found evidence of pyrite at the PTB section 

Guryul Ravine, which is located in the Neo-Tethyan region simliar to the Attargoo 

section. Shukla et al. (2002) concluded that the ferruginous layer was deposited 
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during anoxia, despite the depositional and lithological changes seen in Spiti Valley 

from Permian Gungri shale to Triassic Mikin Limestone. The U, Th/U, Th, and 

(Ce/La)N values supports wide-spread anoxia, as Th/U (~3.8)  and (Ce/La)N values in 

the lower part of the Permian start decreasing approximately 20-30cm below the 

ferruginous layer implying that anoxia starts before the deposition of the ferruginous 

layer (Shukla et al., 2002 see Figure 3 and 4A).  Evidence gypsum along with 

maganese-bearing iron oxide phases suggest evaporitic conditions common during 

anoxia (Shukla et al. 2002). Shukla et al. (2002) suggest that wide-spread anoxia was 

short based on the occurrence of both Changxingian and Greisbachian fossils.  

 From our analysis, the organic carbon content from LOI at the ferruginous 

layer, specifically the upper part of the layer (PT-3=5.31%) is significantly higher 

than the rest of the Attargoo section. This value supports the idea that an event 

occurred during the formation of the ferruginous layer at the Attargoo section, due to 

the abrupt increase in organic carbon.  In addition, we suggest that the ferruginous 

layer at Attargoo is a iron rich shale created in situ during a non-depositional event 

due to the high content of Fe, Ca, and P and low CIA values. The high content of P 

may suggest that the ferruginous layer is a representation of a phosphatic lag. The 

idea of a phosphatic lag may imply that the ferruginous layer is a short hiatus in 

sedimentation. Our supposition that the ferruginous layer at Attargoo represents the 

PT boundary and possibly marks a hiatus in sedimentation is aligned along with the 

sharp contact seen at the Attargoo PTB section with the work of others characterizing 

the ferruginous layer as a hiatus in sedimentation that was caused by subaerial 
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exposure  (Bhargarva, 1987; Bhargarva and Bassi, 1998; Bhatt et al., 1981). This idea 

is contrary to the idea Shukla et al. (2002) proposed that the ferruginous layer could 

be of extraneous origin and was not desopsited in situ. 

2.6.  Conclusion 

The Gungri formation contains an abundance of clay minerals, this is 

reflective in the CIA values, high content of SiO2, TiO2, and Al2O3, and low content 

of  alkali metals. Based on the CIA values, the Gungri formation has undergone 

intermediate weathering; these values are also within the average range of shales, 

making the Gungri formation sediments suitable for paleo-environmental 

reconstruction.  The idea of interemdiate weathering is supported by the presence of 

secondary minerals illite and smectite suggested by the A-CNK-FM diagram. The 

Mikin formation consist of a high content of CaO and MgO; and a low content of 

SiO2, TiO2, Al2O3, MnO, Na2O, K2O, and P2O5. The low CIA values are probably 

due to the high content of CaO and MgO. The Mikin, in terms of major element 

chemistry, is similiar of a dolomite limestone. This formation can be characterize as a 

“muddy” or “dirty” limestone due to the color and low content of alkali metals.  

The A-CN-K diagram suggest that the provenance for the Attargoo section is 

a K-rich granite and the section did not undergo K-metasomatism. According to the 

A-CN-K diagram the Gungri formation has an abundance of clay minerals such as 

smectite and illite.  The A-CNK-FM diagram indicates that the Attargoo section has 

been altered by post-depositional weathering, diagenesis, and very little low-grade 

metamorphism. The presence of illite suggests that the Gungri formation is altered 
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through post-depositional weathering, and diagenetically altered due to the presence 

of smectite. According to the A-CNK-FM diagram it appears that the Gungri 

formation has undergone chlorization. Although the major element geochemistry of 

the shales did reveal some post-depositional alteration the CIA values are in line with 

a typical black.   

The ferruginous layer major element chemistry at Attargoo significantly 

changes from bottom to top.  The lower ferruginous layer (PT-2) major element 

chemistry is identical to the Gungri formation. The middle and upper ferruginous 

layer major element chemistry are distinct from both the Gungri and Mikin 

formations.  The lower ferruginous layer, like the Gungri shales below it, shows 

major element chemistry indicative of clay minerals.  However, the middle and upper 

ferruginous layer show high Ca compared to Al and K.  The middle and upper 

ferruginous layer geochemically, appears to contain goethite with both the middle and 

upper layers having high concentrations of Fe. The low CIA values of the middle and 

upper ferruginous layer suggest that arid conditions were present during the formation 

of the ferruginous layer. The ferruginous layer appears, like the surrounding shales 

and limestones, to also have been impacted by both weathering, diagenesis, and low-

grade metamorphism. The A-CNK-FM diagram suggest that the ferruginous layer 

does not contain an abundance of secondary silicate minerals which is supported by 

the finding of quartz and feldspar at the ferruginous layer. The A-CNK-FM diagram 

also suggest that the middle and upper ferruginous layer is a immature unit in the 

Attargoo PTB section.  
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The ferruginous layer has been characterized as a limonitic layer which 

indicates that the layer consist iron oxides. This description may imply that the layer 

formed during sub-aerial exposure or anoxia. Previous studies have identified that the 

minerology of the ferruginous layer consists of geothite, quartz, feldspar, and 

gypsum. The presence of geothite and gypsum both support the two theories of sub-

aerial exposure and anoxia. The high content of COrg. in the middle and upper 

ferruginous layer supports the idea that the ferruginous layers marks a catastrophic 

event . We suggest that the ferruginous layer is a iron-rich shale that was created in 

situ during a non-depositional event due to the high content of Fe, Ca, P, COrg, and 

low CIA values quantified at the ferruginous layer. Sub-aerial exposure can possibly 

result in the non-depositional event rather than an extraterrestrial event. Moreover, 

the P2O5 content quantified at the middle and upper ferruginous layer suggest a 

phosphatic lag which is normally associated with a hiatus in sedimentation.  
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APPENDIX I 

SPECTRO XEPOS BENCHTOP ENERGY DISPERSIVE X-RAY 

FLUORESCENCE (ED-XRF) 

STANDARD MODE OPERATION PROCEDURE 
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1. Turn on the ED-XRF; the power switch is on the back of the instrument. 

2. Click on X-Lab Pro Routine Dialog. 

 

 
 

3. Click standby and allow the instrument to warm up for at least 8 hours. 

 

 
 

Standby Icon 

X-LabPro Routine Dialog 
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4. Once the instrument has stayed on standby for 9 hours. Select the total number 

of runs for each sample. 

 

 
 

5. Select gas flush in which the samples will be analyzed under.  

 

 

Drop down menu for total 

number of sample runs. 

Select Gas flush from drop 

down menu for different flushes. 
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6. Select the Tqk-7058 (G) method from spreadsheet for each sample that is 

being analyzed under the column titled Method.  

 

 
 

7. Type in Sample ID under the column titled Name. 

 

 

Select Tqk-7058(G) from the 

Method drop down menu. 

Type in the Sample ID under 

the Name column. 
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8. Type in the Job name for each sample under the column titled Job. 

 

 
 

9. Turn the Instrument off of Standby and uncheck the vacuum valve open in 

order to stop the vacuum valve during the standby mode. 

 

 

Type in the name of the 

job under the Job column. 

3. Uncheck the Vacuum Valve 

open Control and close the 

Xepos Control Window. 

2. Click on the Xepos 

Control Window Icon. 

1. Turn the instrument off 

of Standby by clicking on 

the Standby icon. 
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10. Load the samples inside of the instrument and turn on the gas, the gas pressure 

should be set to 70kPa.  

 

11. Click on the Start Icon to begin instrument analysis. The computer will inform 

the user that the samples will be measured under gas flush, click Yes. If the 

computer warns the user that the samples will be measured under another 

flush besides gas, click No and change the flush to Gas.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

1. Click the Start icon to 

begin instrument analysis. 

2. The computer will inform you 

that samples will be analyze 

under Gas flush, click Yes. 
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12. Once the instrument analysis is completed, remove the samples from the 

instrument and close the remove samples pop up box. 

 

 
 

 

13. Once the samples are removed from the instrument: 

a. Turn off the He gas. 

b. Place the instrument on Standby for next analysis or leave it on 

standby for at least 9 hours before turning off the instrument.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Remove the samples from the 

instrument and close the Remove 

Samples pop up box. 
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APPENDIX II 

LOSS ON IGNITION (LOI): MUFFLE FURNACE 

STANDARD MODE OPERATION PROCEDURE 
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Loss on Ignition – Organic Carbon 

 

1. Record the mass of the crucible(s). 

 

2. Place approximately 0.5-2g of sample in the crucible, and record the mass 

of the crucible. 

 

3. Heat the crucible(s) for 1 hour at 550ºC. 

 

4. Let the crucible(s) cool down to room temperature and stir. 

 

5. Heat the crucible(s) for 1 hour at 550°C. 

 

6. Let the crucible(s) cool down to room temperature and weigh. 

 

 

Loss on Ignition- Carbonate Carbon 

 

1. Heat the crucible(s) for 2 hours at 850°C. 

 

2. Stir the sample(s) at least once during the 850°C. 

 

3. Let the crucible(s) cool down to room temperature and weigh. 
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APPENDIX III 

PERKINELMER OPTIMA 3000XL INDUCTIVELY COUPLED PLASMA 

OPTICAL EMISSION SPECTROMETER (ICP-OES) 

STANDARD MODE OPERATION PROCEDURE 
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1. Turn on the instrument in the following sequences: 

a. Computer 

b. Liquid Nitrogen Gas and Argon Gas (Ultra Pure). 

c. Water chiller, located alone on the left side against the wall. 

d. Main power, located on the right of the ICP-OES. 

e. RF Power, located on the right of the ICP-OES. 

f. Computer software WinLab 32 

 

 

 

WinLab 32  
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2. Check the gas pressure, water pressure on the chiller, and the temperature 

on the chiller. The parameters are pre-set, make sure that the readings are 

correct.  

o Gas pressure 

 N2: 62 psi 

 Ar: 80psi 

o Chiller 

 Water Pressure-50 

 Temperature- 18°C 

 

3. Let the instrument warm-up for 1.5hrs, the remain time is displayed on the 

computer screen. 

 

4. Clamp the tubing on the roller of the peristaltic pump. The Green taped 

line is the autosampler line, the autosampler should be placed on the top 

row. The red taped line is the waste line, the waste line should be place on 

the second row below the autosampler line.  

Note: Make sure the flow directions are right. If not it will damage the 

instrument.  
 

5. Turn on the perstaltic pump. 

 
 

 

1. Click Plasma Tab  

2. Click Pump Button to turn on.  
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6. Make sure the flow is smooth by introducing a few air bubbles. 

 

7. Turn off the perstaltic pump 

 
 

8. The ICP-OES is ready for sample analysis., but in order to guarantee 

reproducilibilty, the instrument should be idle at least 15 minutes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Click Pump Button to turn pump off 
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9. Set up the measurement procedures by choosing elements, wavelength and 

entering standard solution concentration.  

 
 

10. Analyze the Blank, once the blank is analyze turn off the perstaltic pump. 

 

1. Select Method Editor 

2. Chose element and wavelength 

1. Select Manual 

Button 

2. Select Plasma 

Button. 

3. Select Analyze 

Blank 

4. Turn off pump  
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11. Analyze Standard(s), once the standard(s) is/are analyzed turn off the 

perstaltic pump. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Select Analyze 

Standard 
2. Turn off Pump 
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12. Analyze the sample(s): 

a. Type in the sample name in the ID space. 

b. Select analyze sample 

c. Once the sample is analyzed, turn off pump 

Note: This procedure must be done for each sample. 

 
 

1. Select Analyze 

Sample 2. Turn off Pump 
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13. Between the individual sample run and after the entire sample run, 2% 

HNO3 solution should be used to rinse the system for 20 seconds.  

 
 

14. Rinse the instument with 2% HNO3 and DI water, by immersing the 

sample probe tip in DI water before shutting down. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Select Flush 
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15. Shut down procedure: 

a. Shut down Plasma 

b. Turn off RT power 

c. Turn off Main Power 

d. Turn off chiller 

e. Turn off Liguid Nitrogen and Argon Gas (Ultrapure). 

f. Close out WinLab 32 
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