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It can be time consuming to use decision analysis to allocate resources over a portfolio of projects. It may bepossible to attain most of the value added by decision analysis in significantly less time. This paper defines and
compares different analytic strategies in terms of the resulting value added for a range of simulated portfolios.
A portfolio consists of a set of candidate projects or investments of uncertain value. The value of each project
may be estimated with or without the additional information provided by decision-analytic methods. Projects
are then completely prioritized and funded in order of the ratio of their expected net present value to their
cost, or partially prioritized and funded whenever this ratio exceeds a predefined threshold level. The portfolio
funded under the various analytic strategies is compared against a strawman alternative of random funding
decisions. The value added through disciplined prioritization often exceeds the additional value added through
the more costly step of developing refined estimates of project values. Intermediate approaches, including
threshold approaches and the application of triage rules to determine which projects to analyze, are found to
be useful but not robust.
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1. Introduction
Portfolio decision analysis has been one of the major
applications of decision analysis to business and gov-
ernment. It is used to aid in the allocation of resources
across portfolios of capital investment opportunities
(projects). At its simplest, this approach consists of
applying decision-analytic techniques to the candi-
date projects in a portfolio one at a time to estimate
the cost and value (or expected value or multiattribute
utility, etc.) for each project. Projects are then ranked,
or prioritized, in decreasing order of one of several
essentially equivalent measures: the common term
“bang for the buck,” “productivity index” (Cooper
et al. 2001), and “profitability index” or “benefit to
cost ratio” (Kleinmuntz and Kleinmuntz 2001), the
latter (abbreviated as BCR) defined as the expected
value of the proceeds resulting from a project divided
by its costs. The existing budget is then used to fund
the higher-ranking projects until it is exhausted.
The research question that was the impetus for

this paper is the following: How much of the ben-
efit from portfolio decision analysis is due to the
improved value estimates and how much is simply

a result of the discipline of using an objective rank-
ing (prioritization) to determine which projects get
funded? Improvement of value estimates is time inten-
sive, requiring expert interviews and development of
financial models. Prioritization alone, on the other
hand, can be done with models that do something as
technically simple as sorting (e.g., Kirkwood 1997).
Several management studies (e.g., Rzaza et al. 1990,

Clemen and Kwit 2001) have estimated the value
added by the decision-analytic process, and in partic-
ular by portfolio analysis efforts. These studies typ-
ically compare the value of the new portfolio of
funded projects with the expected net present value
(ENPV) of the portfolio of projects that would have
been funded without doing the analysis. Some studies
(Adams et al. 2000, Sharpe and Keelin 1998) graphi-
cally compare the efficient frontier for portfolio value
versus cost with the value and cost for the entire
set of possible portfolios. Increases in value due to
decision analysis estimated in these and other studies
have ranged from 15% to over 100% of the value of
the original portfolio that would have been selected.
This increase in value far exceeds reasonable esti-
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mates of the cost of the analysis. Clemen and Kwit
(2001), for example, found that different portfolio
analysis efforts at Eastman Kodak took between 21
and 358 analyst hours.
Value-of-information techniques have been used

to study the sources of value in decision analysis
(Matheson 1968, Watson and Brown 1978), and a
related approach will be used here. The intent is to
explore a set of problems currently faced by deci-
sion analysts advising portfolio managers. Because it
is impractical to calculate the value of all different
information acquisition strategies, we shall simulate
portfolios using parameters based on empirical data.
We then record the cost and expected value of the
portfolios, assuming they are managed under each
of several analytic strategies. The different analytic
strategies are modeled as different levels of infor-
mation that may be available at the time funding
decisions are made. Parameters used to simulate the
portfolios are varied to consider different questions
and to test the robustness of results.
Section 2 introduces a model used to simulate port-

folios that are managed with one of several analytic
strategies. Section 3 explains the parameter values
used in the simulations. Section 4 describes the pos-
sible analytic strategies. The strategies range from
a minimum-value (“strawman”) strategy in which
resources are allocated to projects without making use
of relevant information, to a maximum-value (“gold
standard”) strategy in which projects are prioritized
based on perfect information. In between are several
strategies that make use of partial information about
some or all projects. Section 5 presents the results
of this simulation for each of the strategies, along
with analysis of specific questions that arise. The most
important statistic will be the expected value of the
simulated portfolio under each strategy. From this, the
value added by each strategy is calculated in absolute
terms and as a percentage of the maximum potential
value added. These results are used to identify cir-
cumstances where the simplest strategies, especially
threshold-based rules, perform almost as well as more
time-intensive and costly strategies. Section 6 summa-
rizes the findings and their implications for portfolio
decision analysis, as well as limitations of the model
and directions for future research.

2. Model
Process
We will compare different strategies employed to pri-
oritize simulated portfolios of projects where each
project has resolvable uncertainty. We use a sim-
ple structure for project values and portfolio value,
so that we may focus instead on the complications
that arise from having a large number of uncertain
projects.
We consider a process in which portfolio managers

receive and manipulate a wide range of informa-
tion about projects and, with this information, for-
mulate estimates of project values. At some point,
the manager may engage a decision analyst to refine
those estimates via structured assessments and model
building. This analysis, we assume, reveals perfectly
the subjective expected value of the proceeds of the
project based on the best possible estimates. The man-
ager can then prioritize the projects with some level
of precision and discipline and allocate a budget
among them.
We assume the proceeds follow a known distri-

bution. Detailed data on actual portfolios are scarce,
especially portfolios that have been subjected to deci-
sion analysis. Furthermore, there is wide variation in
the characteristics of portfolios that would be encoun-
tered in practice. I therefore calibrated the model by
querying industry experts, analyzing proprietary data,
and considering published examples. A typical obser-
vation is that, “in [the] Pharma[ceutical industry],
distributions of NPV are generally pretty skewed to
the right. Indeed it is that fear of missing out on the
mass to the right that makes people reluctant to kill
projects.” My own experience and that of other infor-
mants agrees with this, as does my analysis of propri-
etary data of actual portfolios and of examples from
the literature (Cooper et al. 2001, Exhibit 3.2, p. 32).
There seems to be convergence among the different
sources, with general agreement that the distribution
on project values is skewed to the right, with some
mass to the left of zero (once costs are subtracted),
and ranging as high as 10 to 20 times project costs.

Notation
We shall use the following notation for the model.
Ri: proceeds per unit of funding resulting from

project i if it is funded
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ri: log�Ri�

yi: manager’s estimate of ri
�: mean value of ri
� : standard deviation of ri
	: error in manager’s estimate of ri

 : standard deviation of 	i

Vi: the value of project i
Fi: binary variable indicating whether project i is
funded

V : the total value of the portfolio that is funded
Ci: the cost of project i
ci: log�Ci�

T : a threshold level used for some strategies

Model Structure
We assume ri ∼ N����2�, i.e., project returns �Ri�

follow a lognormal distribution having the desired
characteristics. Before decision analysis begins, the
manager forms an estimate yi, generated about ri.
Specifically, yi = ri + 	i, where the distribution of the
error term is known to be 	i ∼N�0� 
2� and errors are
independent and identically distributed (i.i.d.) and
uncorrelated with ri. This structure results in a multi-
plicative error model—commonly seen in mathemat-
ical finance—where errors in the estimates about Ri

are proportional to Ri; i.e., the manager receives a
similar level of information quality for each project.
For each project i that is analyzed, we assume that
the actual value of ri is revealed immediately before
a single point in time at which project-funding deci-
sions are made; otherwise ri is revealed (by nature)
after the funding decision.
To simplify the analysis, each project is assumed

to have the same cost, arbitrarily set at $1.00. Even
though project costs really vary, we do not give
up much by excluding this feature from the model
because cost estimates tend to have less uncertainty
and are more easily obtained than value estimates
(e.g., Table 17.1, p. 149, in Martino 1995). The main
impact of the assumption of identical costs will be to
exclude knapsack-type problems where combinations
of borderline projects are partly chosen to exhaust the
available budget exactly.
Because its cost is $1.00, the BCR of project i is equal

to Ri. Thus, Vi = Ri − 1, the value of project i, and
V =∑

ViFi, which is equal to
∑

RiFi −
∑

Fi.

3. Input Assumptions
Before simulating portfolios, we need to assign rea-
sonable parameter values for a base case. The param-
eters will later be varied one at a time.
For the distribution on r , we assume � = 1

and � = 1. This implies that the average BCR is
exp��+�2/2� ≈ 4�5, so that approximately 1 out of
6 projects has a BCR below 1.0, and approximately
1 out of 40 projects has a BCR above 20. These figures
are consistent with the sources mentioned above.
The standard deviation of the error �
� was based

on responses to the following question: Consider a
typical portfolio manager’s unassisted estimates on
proceeds per dollar of investment. Then consider
the distribution of estimated values that would be
revealed by the best possible analysis based on infor-
mation available within the company. What is the dis-
tribution of the latter set of values above or below a
given estimated value? I queried several experts and
also examined a set of proprietary data in which esti-
mates prior to decision analysis were compared with
postanalysis estimates and, where available, actual
market values. From these sources, 
 = 1�0 seems rea-
sonable for the base case.
The parameter values used in the simulation

are meant to be representative, but actual values
depend very much on the specific situation. Late-
stage projects, which have lower remaining costs, are
likely to have higher BCRs. At the other extreme,
where there are low barriers to requesting funds, the
set of candidate projects may have lower BCRs and
higher variance. Specific managers may be more or
less knowledgeable about the projects in the portfolio
than these numbers indicate.
An important implicit assumption in this analysis

is that companies do not necessarily fund all projects
with positive expected value. A likely reason for this
is the presence of other constraints that are not explicit
in our model. Capital is constrained—R&D depart-
ments have a budget and companies have competing
uses for capital (and, due to problems of asymmet-
ric information, cannot simply go to the market for
more capital). Above a certain percentage of projects
funded, the company cannot support them all. The
market may be too small, or sales force, factories,
and even R&D staff may be constrained. Furthermore,
capital can be tied up for years in development, so a



Keisler: Value of Information in Portfolio Decision Analysis
180 Decision Analysis 1(3), pp. 177–189, © 2004 INFORMS

project that delivers $2.00 for $1.00 still utilizes that
$1.00 for a long time and may yield a low return on
investment. Managerial attention is also limited, and
a smaller portfolio that retains most of the potential
value may be preferable because, ultimately, it will be
better executed.
All of these factors influence the R&D budget. The

number of candidate projects and the proportion of
projects that can be funded within the available bud-
get varies widely depending on context. For illustra-
tive purposes, we arbitrarily assume a base case with
50 projects and a budget ($15.00) sufficient to fund
30% of the candidate projects. If monetary values are
in millions, this base case represents a midsized R&D
department.

4. Strategies for Analysis and Funding
We consider four basic strategies and then some vari-
ations on them. Each strategy consists of a rule for
information-acquisition decisions, i.e., for determin-
ing which projects will undergo a thorough analysis,
and a rule for making funding decisions based on the
information available. The strategies are:

S1: Random Funding. Projects are selected and
funded in random order until the budget constraint
is reached, i.e., if the index i indicates the order in
which projects are considered,

Fi = 1 if
i−1∑

j=1
CjFj ≤ B−Ci

and Fi = 0 otherwise.
This strategy generates the baseline portfolio for

comparison with portfolios generated by other strate-
gies. For this strategy, expected value increases at
a linear rate with expenditure at the rate of the
average BCR of all the projects. The value of this
strategy for a given budget will be calculated using
this closed-form solution, rather than simulation. The
rationale for assuming project managers use a ran-
dom process even when they have some information
is that, without a disciplined value-maximizing pro-
cess, the decision-making process may preclude the
disciplined use of that information. Political and orga-
nizational pressures, conflict avoidance, or a historical
pattern of haphazard first-come–first-served funding
could all lead to this situation. Problems of this type

are commonly cited as reasons for using a decision-
analytic process. Nevertheless, this extreme case is
mainly used as a basis for comparison.

S2: Apply Threshold Rule Without Resolving
Uncertainty. Projects are considered one at a time in
random order, and project i is funded if yi meets
or exceeds a predetermined threshold level, until the
budget is exhausted. If there is additional money in
the budget left after all of these projects are funded,
remaining projects are funded in random order until
the budget is exhausted. If projects are indexed in
the order they are considered, the decision rule can
be expressed in terms of a first pass where F ′

i = 1 if
yi ≥ log�T � and

i−1∑

j=1
CjF

′
j ≤ B−Ci

and F ′
i = 0 otherwise, and a final funding decision

where Fi = 1 if F ′
i = 1 or if

i−1∑

j=1
Cj�F

′
j − Fj �≤ B−

n∑

j=1
CjF

′
j −Ci�

and Fi = 0 otherwise.
Note the inefficient use of funds with thresholds

may be asymmetric in practice. If funds remain after
the threshold is applied, it might require relatively
little additional effort to ratchet the threshold down
and then fund another round of projects. On the other
hand, if the threshold were too low, it would be
hard to raise the threshold and take funds away from
projects that had already been funded. When this is
practical, only part of the results for S2 obtained in
this paper would apply.

S3: Prioritize Without Resolving Uncertainty.
Projects are ranked in order of yi, and funded
in descending order until the budget constraint is
reached, i.e., the decision maker solves Max�Fi�E�V �
y1� � � � � yn� s.t.

∑
CiFi ≤ B.

S4: Resolve Uncertainty Then Prioritize. Projects
are ranked in order of ri and funded until the budget
constraint is reached, i.e., the decision maker solves
Max�Fi�

∑
RiFi s.t.

∑
CiFi ≤ B.

The expected value of the portfolio funded under
strategy S is denoted V (S). These values are related
to value of information in the following sense.
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Strategy S1 corresponds to a state of no information
or, equivalently, no prioritization, while S2 corre-
sponds to a state of partial information and partial
prioritization. S3 corresponds to a state of the same
partial information as in S2 plus complete prioriti-
zation. An alternate description of the situation in
S3 is that the funding decision for a single project
also incorporates information about the value of other
projects to set the proper threshold level for the bud-
get. With the intended interpretation of our model,
the increase in value from S1 to S3 arises due to
the use of a disciplined process to prioritize projects
rather than to the acquisition of the partial informa-
tion used (which the manager is assumed to have
acquired without any help). S4 corresponds to com-
plete prioritization with perfect information about
project values.
Note that although none of these strategies contains

special provisions for the case where the expected
value of the marginal project is less than zero, real
managers would not fund such projects. This simpli-
fying assumption will lead to underestimates on the
order of 1% for V (S4) at the highest two budget levels
considered (at which point the efficient frontier starts
to slope downward), and makes no difference for the
other strategies.
Variations on these strategies are possible, e.g., per-

fect information and partial prioritization. This strat-
egy, discussed briefly in the next section, has similar
characteristics to S2. It may be an interesting option
for a company that wants decentralized resource allo-
cation, but it does not illuminate any new issues.
We shall also consider briefly the strategy of ranking
projects by ENPV instead of BCR when project costs
in the model are allowed to vary.

5. Simulation Results
Computer Simulation Mechanism
The performance of different strategies is compared in
terms of several measures across 500 simulated port-
folios using the assumptions from §3. Each portfolio is
simulated by generating random values and errors for
each of the candidate projects in the portfolio. In this
section, numerical results are reported for the base-
case portfolio and selected variations (e.g., doubling
and halving of various parameters) to illustrate the

magnitude of benefit a typical manager might expect
from different strategies. Where more complete sen-
sitivity results are needed, the value of the various
strategies is graphed against ranges for the possible
parameter values.
The results of an Excel spreadsheet simulation for

S3 and S4, each using the same 500 iterations, are
given below. These are compared with the expected
values from S1 and later S2. Figures for cost and BCR
are given to make the presentation of these results
consistent with the presentation of results for the
richer sets of assumptions considered later. Ranges
given for these numbers are 95% confidence intervals
on the estimates of averages, approximated as the
mean ±2/√499 times the standard deviation across
the 500 simulated portfolios.

Base-Case Results on Value of Prioritization and
Value of Information. A reasonable lower bound
on portfolio value is V (S1), which averaged $52.00
�±$2�00� (all values are rounded to the nearest dollar)
for the given budget of $15.00. This is consistent
with the theoretical expected value of $52.00, i.e., the
available budget multiplied by the average BCR of
all projects, less cost. There is substantial improve-
ment when projects are prioritized rather than funded
at random, as the average of V (S3) was $112.00
�±$3�00�. As might be expected, further improve-
ment is possible when portfolio decision analysis
includes resolution of uncertainties about project
value estimates followed by prioritization, and V (S4)
averaged $137.00 �±3�. The standard deviation over
the 500 iterations for V (S3) is $36.00, and for V (S4) it
is $35.00. These are similar, but the standard devia-
tion as a percentage of V is substantially higher for S3
than for S4.
We do not yet consider S2 separately, because V (S2)

is close to V (S3) if the threshold is set correctly.
Because the portfolios selected by S1, S3, and S4

all have the same cost, the differences in value can
be interpreted as the value added by the analytic
strategy. This value added has two parts: The incre-
ment in value from prioritization alone (from ran-
dom funding to funding that is prioritized based on
estimated values), V (S3)− V (S1), is $61.00 �±3�, and
the increment from resolution of uncertainty and pri-
oritization, V (S4) − V (S3), is $24.00 �±1�. The stan-
dard deviation on this difference is $11.00, which



Keisler: Value of Information in Portfolio Decision Analysis
182 Decision Analysis 1(3), pp. 177–189, © 2004 INFORMS

suggests that perfect information may occasionally
contribute more value than prioritization. For the
base-case parameters, on average about 71% of the
increase in value comes from prioritization of projects
alone, and 29% comes from the additional step of
resolving uncertainty over project value.

Sensitivity of Base-Case Results to Level of Uncer-
tainty. In the base case, the variation in estimated
values is caused in equal parts by error and by vari-
ation in the actual project values. When the stan-
dard deviation of the error is half as large relative to
the standard deviation of estimated project values as
in the base case, which happens when 
 ≈ 0�38, the
results are more extreme. The value of prioritization,
V (S3)−V (S1), increases to $81.00 while the additional
value of perfect information, V (S4)−V (S3), decreases
to $5.00, i.e., 10% of the requested funding and 33%
of the budget. These increases in value would justify
Howard’s (1973, p. 81) suggestion “to spend at least
one percent of the resources I am allocating on mak-
ing sure that I am getting a good allocation of those
resources.” The case is much stronger with respect to
prioritization than with respect to improving of esti-
mates. In still more extreme cases, where there is even
less uncertainty or where the budget is sufficient to
fund most projects, the value of resolving uncertainty
about project values approaches zero.
Value of perfect information is higher, naturally,

when there is more uncertainty to be resolved. When

 is large, prioritization without additional informa-
tion is essentially a random process and adds no
value. At the other extreme, when values are known
with certainty, the value of resolving uncertainty is
zero and all the potential value lies in prioritization.
Figure 1 shows [V (S3)−V (S1)]/[V (S4)−V (S1)] when
the percent of variation in yi due to estimation error
ranges from 0% to 100%. The percentage shown on
the x-axis is calculated as 
2/�
2 + �2�, which goes
from 0% to 100% as 
 varies from 0 to �.
All other parameters are unchanged from the base

case; V (S1) and V (S4) do not depend on the param-
eter 
 . This ratio, as with all other such ratios pre-
sented here, is calculated from the simulation data
by dividing the average value of the numerator
by the average value of the denominator, rather than
the average value of this ratio calculated for each of
the 500 iterations. Note, we are using the ratio of the

Figure 1 Importance of Prioritization vs. Accuracy of Project Value
Estimates
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expected values, E[V (S3) − V (S1)]/E[V (S4) − V (S1)],
which provides a biased estimate for the expected
ratio E{[V (S3)−V (S1)]/[V (S4)−V (S1)]}.
This graph shows the average increase in value

(over random funding) from prioritization alone as
a percentage of the maximum increase possible with
perfect information and prioritization. Even when

2 = 3, so that 75% of the variation in yi is due to
estimation error, the increased value from prioritiza-
tion and estimated project values is still half the entire
increase in value arising from both prioritization and
perfect information.

Sensitivity to Budget Level. To this point, the bud-
get has been fixed at $15.00. When the budget is
varied, the results persist. Figure 2 shows the value

Figure 2 A Comparison of the Opportunity Curves Under Different
Analytic Strategies
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versus cost frontier for the portfolio prioritized using
estimated values and for the portfolio prioritized
using actual values. It is apparent that as the budget
increases, the value added by perfect information and
prioritization decreases as a percentage of the budget.
Intuitively, the benefit of the analysis is in picking out
the best projects to replace randomly selected projects,
and as the budget increases, there are fewer good
projects left to do the replacing. As the budget ranges
from $5.00 to $45.00, the value added by prioritization
ranges from 64% to 86% of the value added by perfect
information and prioritization. The reason this effect
occurs is that the value of information about marginal
projects (i.e., those for which additional information
and prioritization are more likely to change the fund-
ing decision) is higher at the low end of the bud-
get where the variation in value (in absolute rather
than percentage terms) among the marginal projects
is greater.

Sensitivity to Population Mean and Standard
Deviation. The overall predicted increases in portfo-
lio value are over 100% for the base case, and this
number declines to the lower end of the reported
range (around 20% when the budget is $40.00) as the
budget increases. It is encouraging that these numbers
are not far from the reported increases in practice, but
it is necessary to check that the results are not overly
dependent on the original parameter values.
The ratios between the values from the various

strategies do not depend at all on the population
mean—all the effects simply scale up. The assumed
value of the population standard deviation is impor-
tant. As � increases (while 
 increases in the same
proportion, so that the percent of variation in yi due to
estimation error remains unchanged), the distribution
of project values is more skewed, which makes prior-
itization relatively more important. The value added
by prioritization as a percentage of the total potential
value added is over 80% at � = 2, and over 90% at
� = 3.
The model assumes that the estimates of ri are unbi-

ased, that is, the error associated with the estimate has
a mean of 0. On the other hand, if portfolio managers
were systematically optimistic, perhaps persuaded by
overly optimistic project managers, the mean could be
positive. This would not change the end result under
processes using complete prioritization, assuming the

bias was the same for all projects. If thresholds were
used, however, such a bias could lead to overspend-
ing, etc. A common solution to this problem is to set
in some way a higher threshold, often in the form
of a hurdle rate well in excess of the cost of capital.
If biases vary depending on the project manager and
the portfolio manager is not able to identify them, the
effect is to add noise to the process and effectively
increase the size of the error in the portfolio man-
ager’s estimates.

Effect of Relaxing Cost Assumptions. The assump-
tion of identical project costs does not significantly
affect the results for the strategies considered.
Another strategy seen in practice is S3′, ranking
projects in order of ENPV. The problem with this
strategy is the role of project magnitude as a driver
of project value. For example, a project with a cost of
$2.00 and a benefit of $4.00 would be selected before
two smaller projects each with a cost of $1.00 and
a benefit of $2.50. We can estimate how much that
matters using the data from Figure 1. In two small
sets of portfolio data I collected, Ci were roughly log-
normal with ci having standard deviation approxi-
mately 2. Assuming this is correct, the proceeds of
project i, RiCi, follow a lognormal distribution, and
this strategy is equivalent to prioritizing projects in
order of yi + ci. Using this value, we can compare
[V �S3′�−V (S1)]/[V (S4)−V (S1)], the percent of poten-
tial value added by S3′, to that for the original S3.
The effect of ignoring cost variation is the same as
adding that variation to the variation of the esti-
mate. Where 
 = 0, 
2 + var�ci� = 4, and thus 80%
of the variation in the estimate �yi + ci� is due to
noise, [V �S3′�−V (S1)]/[V (S4)−V (S1)]= 44% (instead
of 100%); for 
 = 2, the ratio would be 32% (instead
of 44%). For the base-case value of 
 = 1, the “rank
by ENPV” strategy would lie between S1 and S3
(40% instead of 71% of the potential value added).
We can see that in the face of substantial cost varia-
tion, ranking by ENPV makes poor use of available
information, and decision-analytic practice has rightly
rejected it.

Effect of Relaxing Assumption of Lognormal
Distribution. The assumption of a lognormal distri-
bution matters, of course, but other distributions yield
similar results. For example, an earlier version of this
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model assumed that actual values were uniformly
distributed between 0 and 4, that the manager had a
noninformative prior and that estimated values were
equal to actual values plus a normally distributed
error term with mean 0 and standard deviation 1. In
that case, the value added by prioritization was about
75% of the value added by prioritization and perfect
information. This figure was more stable than in the
lognormal model. The relative value of prioritization
was more sensitive to change in the standard devia-
tion of the error, but the direction of the effect was
the same.

Threshold Rules
For a given threshold, T , there is some budget level,
denoted BT , sufficient to fund all of the projects whose
estimated BCR falls above the threshold, with no
funds remaining to fund projects below the threshold.
Thus, at B = BT , S2 funds exactly the same projects
as S3, and V (S2) = V (S3). As B ranges from 0% of
requested funds to BT , V (S2) increases at the con-
stant rate of the average BCR of a project whose esti-
mated productivity is above T , as shown in Figure 3.
As B ranges from BT to 100% of requested funds,
V (S2) increases at the constant rate of the average
BCR of a project whose estimated BCR is below T .
When B = BT , V (S3) ≥ V (S2) but still V (S2)≥ V (S1),
with equality at the endpoints where 0% or 100%

Figure 3 As Funding Increases, Portfolio Value Under Partial Priori-
tization (S2) Increases at the Average Rate for the Projects
That Meet the Threshold
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of projects are funded regardless of the analytic
strategy.

Sensitivity to Fit Between Threshold and Budget.
In practice, it might be difficult to set T so that BT is
exactly equal to the desired budget level. For exam-
ple, if the portfolio of potential projects is small and
potentially idiosyncratic, or if the underlying business
is not yet understood, it would be impossible to pre-
dict with precision the portion of projects that would
be funded by the threshold rule. It is therefore impor-
tant to know how much value is lost by employing
the threshold rule instead of complete prioritization.
If the loss is not great, it may still be preferable to use
a decentralized threshold rule.
As B diverges from BT , V (S2) grows closer to V (S1)

rather than V (S3). Figure 4 shows the value added
by partial prioritization, V (S2)− V (S1), as a percent-
age of the value added by complete prioritization,
V (S3)− V (S1). Each curve corresponds to a different
level of T , specifically, the levels of T where BT =
$5�00, BT = $10�00, etc. It is apparent that the perfor-
mance of threshold rules deteriorates quickly if the
threshold is not well matched to the available budget.
The portfolio manager can go from S1 to S2 with

minimal quantitative analysis. Using S2 as a new
baseline, we can ask what percentage of the pos-
sible value added by analysis would come from
the first step of completing prioritization (S3), and
how much would come from adding the additional
step of obtaining more perfect information (S4), and

Figure 4 Percent of Prioritization Value Obtained When Using Thresh-
old Rules Instead of Complete Prioritization (Partial Informa-
tion Case)
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Figure 5 Additional Value of Complete Prioritization as a Percent of
the Additional Value of Perfect Information and Complete
Prioritization
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only then prioritizing projects. Figure 5 shows the
improvement from complete prioritization as a per-
centage of the total possible increase in value from
complete analysis, [V (S3) − V (S2)]/[V (S4) − V (S2)],
against the funding level. Again, each curve repre-
sents a different level of T . If �B− BT � is large �≥10�,
then performing complete prioritization (or, equiva-
lently, setting the threshold more appropriately for
the budget and reevaluating projects against the new
threshold) will bring much �≥50%� or even most of
the additional potential value from analysis. When
�B− BT � is small then most of the remaining value of
analysis will have to come from improved estimates
of project value, especially at low budget levels.
If population parameters are known, the uncer-

tainty on project value is known, and portfolios are
not too small, T can be set so that on average BT = B.
For the current example, the budget can fund 30% of
the projects. Approximately 30% of projects will have
ri > 1�5. Because of the additional noise present in
the estimated values, a slightly different proportion of
investments would be funded at that threshold under
partial information. Therefore, a higher threshold—
corresponding to the top 30% of the distribution on
yi �≈1�75�—must be used.
Use of this threshold rule, in theory, eliminates the

need for project-level managers to even communicate
value estimates to the portfolio manager. This ought
to cut costs of analysis tremendously. A decentralized
threshold rule, however, would preclude changing

the budget or threshold to some new level after
seeing what projects are available. Furthermore, this
approach assumes the threshold is set correctly even
though it would not be possible to know the distribu-
tion of project values beforehand.
Without such flexibility, a possible drawback of

using threshold rules is that the results are less pre-
dictable. This is because the combined cost of all
projects whose BCR exceeds the threshold may be less
or greater than the budget constraint. For the base
case, the standard deviation of portfolio value under
S2 was $41.00 ($43.00 when using actual rather than
estimated values), which is about 20% greater than
for S3. Unpredictable costs might cause greater orga-
nizational difficulties—the standard deviation of cost
under S2 was $5.00, or 1/3 of the budget level, while
cost is fixed under S3 and S4.
Variable spending levels are not necessarily bad. If

budget is not a constraint, the threshold rule could
actually have the modestly desirable side effect of cor-
relating spending with the availability of promising
projects. The average expenditure for S2 was $18.20
and V (S2) averaged $125.00, compared with $124.00
for S3 interpolating from Figure 2 for the same budget
level. When using actual values, rather than expected
values, the average expenditure was $15.56 and the
increase in average value due to use of the thresh-
old rule was almost $2.00. The central limit theorem
mitigates both effects, however. As the number of
projects increases, the percentage by which the num-
ber of projects exceeding the threshold differs from
its expected value approaches zero. Conversely, with
fewer projects, the good and bad effects of using
thresholds would tend to be larger.
Using an appropriate threshold rule to make fund-

ing decisions based on estimated values can lead to
outcomes nearly as good as fully prioritizing projects
using the same estimates, in some cases better. Still,
portfolio value is quite sensitive to errors in the choice
of threshold. The more unusual the portfolio, the
more difficult it would be to set an accurate enough
threshold.

Triage Rules
Perhaps it is not surprising that the value of infor-
mation (that is, the results of the analyses of indi-
vidual project values) appears to be a minor part of
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the total value added by decision analysis. Intuitively,
a project with extremely high (low) value is likely
to be included in (excluded from) the portfolio
whether or not uncertainty about its value is resolved.
Reacting to this phenomenon, Spradlin and Kutolski
(1999) describe a triage strategy for deciding which
projects in the portfolio to analyze. Here, the portfolio
manager identifies favored (automatically included),
equivocal (to be analyzed), and undesirable (automat-
ically excluded) projects. Even though this strategy
was used mainly to accommodate senior management
preferences regarding the status of certain projects,
it merits consideration as an alternative analytic
approach.
Spradlin and Kutoloski’s strategy can be thought of

as a variation on the use of threshold rules. The lat-
ter now serves as a baseline. We now consider a new
strategy, S5, using a “triage” rule characterized by a
distance, d, around the threshold. Within this range,
uncertainty about project values is resolved. Outside
of this range, projects are automatically funded or
not, without further resolution of uncertainty. We
define S5 with the following decision rule: Fi = 1 if
yi > log�T �+ d, or if yi ≥ log�T �− d and ri ≥ log�T �,
and Fi = 0 otherwise.
Base-Case Results for Triage Rule and Sensitivity

to Triage Distance. If log�T � = 1�5 and the triage
distance, d, is 1.0, then projects where yi < 0�5 are
refused funding without further analysis; projects
where yi > 2�5 are funded without further analysis,
and projects where 0�5≤ yi ≤ 2�5 are analyzed further
and then funded only if analysis reveals that ri ≥ 1�5.
In this case, about 50% of projects are analyzed and
the value of the portfolio is $130.00. This represents
about 70% of the added value of perfect information.
This strategy has predictable limiting behavior. As
the triage distance approaches zero (infinity), no (all)
uncertainties are resolved so the triage strategy is sim-
ply a threshold strategy using partial (perfect) infor-
mation. We now consider the initial example with
different distances for the equivocal project bin.
Figure 6 shows variations of the base case with the

upper curve [V (S5) − V (S1)]/[V (S4) − V (S1)] repre-
senting the percentage of the value of perfect infor-
mation provided by the “partial perfect information”
of the triage policy. The lower curve represents the
percentage of projects analyzed, i.e., the percentage

Figure 6 Triaged Analysis Value Added as Percent of Total Potential
Value Added
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of projects for which the estimated value fell within
the indicated distance of the baseline threshold. The
results validate the triage strategy. For d ≤ 1�2, the
value added per project analyzed is 140%, or more
of the value added per project analyzed under the
perfect-information strategy S4.

Sensitivity of Triage Rule Results to Level of
Uncertainty. This result is sensitive to the level of
uncertainty in estimates as shown in Figure 7. At low
levels of uncertainty (low values of 
), there is not
much efficiency to be gained. Von Winterfeldt and
Edwards’ (1986) principle of flat optima applies here,
in that it makes less difference if a borderline project is
mistakenly replaced by a different borderline project
with a slightly lower value, even though this is more
likely to happen than severe mistakes. At high levels

Figure 7 Triaged Analysis Value Added as Percent of Total Potential
Value Added
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of uncertainty, a project that is selected to be analyzed
is not easily distinguished from other projects for
which the value of information is also substantial.
Thus, whether the triage approach is effective as a
means of conserving analytic efforts depends on how
much uncertainty remains to be resolved.

6. Conclusion
Managerial Interpretation of Results
We have seen that a one-size-fits-all approach to port-
folio analysis can waste effort. Instead, it is important
to first understand the context, i.e., the parameter
values, and only then pick a portfolio management
policy. From the base-case results for the first four
strategies, we see that, at the very minimum, man-
agers should use some sort of disciplined process.
It may be good enough to simply apply a thresh-
old where projects with high BCRs are funded and
projects with low BCRs are rejected. In such cases,
setting the appropriate threshold might be a reason-
able objective for analysis in support of the portfolio
manager.
For various reasons, it may be difficult to choose

such a threshold. In that case, explicitly ranking
projects adds substantial value. In decision-analytic
practice, the ranking of projects is often preceded by
the formation of detailed estimates of project value.
Such improved value estimates are also beneficial, but
unless uncertainty is high, improved estimates are
not nearly as important as the basic use of a disci-
plined process. It is important to distinguish between
these two sources of value. Although a full decision-
analytic approach improves value in both ways, at a
more detailed level, the actions required to improve
estimates are different than the actions required to
ensure a disciplined process, and if one source of
value or the other is dominant, scarce managerial
resources can be allocated to that effort. Sensitivity
analysis showed that even when uncertainty seems
high and difficult to resolve, there is substantial value
to adopting a decision process that incorporates a dis-
ciplined approach to prioritization.
Beyond the use of thresholds, two other time-

saving approaches were considered. Managers would
forfeit a lot of value by ranking projects in terms
of ENPV instead of explicitly considering BCR, and

this approach is not recommended. Managers who
already use a disciplined approach may be able to
save effort by analyzing in detail only those projects
that appear to be close calls. It is reasonable to use this
technique in extreme cases, but the efficiency gains
are small enough that if it is worth making the effort
to analyze the marginal project, it is likely that most
projects should be analyzed.

General Implications
Costs of analysis have not been considered explicitly
in this model, but the costs of analysis are significant.
At the high end, a rigorous portfolio analysis could
take two full-time-equivalent professionals working
for one week to analyze each asset. Considering over-
head and consulting rates, the cost of analysis can
exceed $1.00 million. Perhaps more prohibitive are
costs of delay, disruption, and managerial attention,
which provide even more motivation to streamline
the portfolio analysis process. Identifying the sources
of value in analysis should aid in defining the orga-
nizational equivalent of “fast and frugal” heuristics
(Gigerenzer and Todd 1999). These would allow man-
agers to focus attention on those aspects of the port-
folio decision process where attention is truly needed.
Current decision-analytic processes along the lines

of S4, facilitate prioritization by first generating
transparent project valuations. Extensive informa-
tion gathering and documentation is necessary to
make the process reliable if the portfolio manager
gets unpredictably biased input from project man-
agers and champions, which is a well-documented
danger (Bower 1970). The alternative is for the port-
folio manager to attempt to remove bias and then
prioritize without further involvement of individual
project managers. Arguably, gathering information
first improves organizational buy-in and honesty,
but extensive decision analysis seems like a costly
way to create trust. For example, Kleinmuntz and
Kleinmuntz (2001) describe their success with an
approach using less costly single-day group sessions.
In their process, asset values are estimated without
detailed models but the organizational benefits of a
transparent process are still achieved.
Still, the traditional approach to portfolio manage-

ment has been a popular application of decision anal-
ysis. It may be that the benefits of analyzing projects
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go beyond the improved value estimation and pri-
oritization considered in this paper. For example,
individual project value is often improved during
a full-scale portfolio decision analysis (Allen 2000).
Other costs and benefits of the portfolio are still
managed qualitatively, commonly through efforts to
“balance the portfolio.” This is sensible given the
fact that portfolio managers often face multiple con-
straints and objectives, but use results of portfolio
analysis as an invaluable input. In the course of a
rigorous portfolio analysis, managers may find that
projects are synergistic in value, can share costs, or
are correlated for some other reason. Such phenom-
ena, though not investigated here, could conceivably
increase the value of analysis, e.g., analysis that iden-
tifies and leverages synergies. Quality decisions about
such projects require more coordination than merely
considering, as in this model, whether another project
has exhausted the budget.
Benchmarking studies such as those by Cooper

et al. (2001) and by Matheson and Matheson (1998)
have identified other best practices for portfolio man-
agement that reflect more of the complexity of this
task. In addition, real portfolios often consist of
projects in varying stages of development, with vary-
ing capital needs over time and varying levels of
uncertainty, and the list of candidate projects itself
may be fluid. These dynamic aspects of portfolio
management add further complications not included
here. Such considerations could limit the flexibility
of the portfolio manager to take advantage of com-
plete information about individual projects, or, alter-
natively, could allow the analyst to find additional
nonobvious sources of value. When the value added
by analysis, and the choices to be made regarding
type of analysis are more subtle than in the current
model, the implications of the current results must be
tempered.
This paper has considered a simplified representa-

tion of portfolio decision making and demonstrated
some value drivers, but clearly there is much more
modeling to do along these lines. A streamlined ver-
sion of the current model could be amenable to
closed-form analysis rather than simulation. Such a
model would be more easily extended in other direc-
tions to study such considerations in portfolio man-
agement as Bayesian learning, risk attitudes, and
financial portfolios.

In sum, simple uncertainty resolution in portfolio
decision analysis is clearly not always the primary
source of economic value. Prioritization is necessary,
as is some quantity of information. Additional infor-
mation gathering may add value, but this depends on
how much information the portfolio manager already
has and how much new information is to be gathered
with the analytic resources available. The simulation
results in this paper provide explanations for some
of the sources of value in portfolio management and
corresponding observed practices, e.g., intuitive meth-
ods as opposed to full analytic for prioritization of
early stage R&D. The payoff from spending time on
portfolio decision analysis is already high, even with
the brute force approach of analyzing all projects. The
payoff could be higher if portfolio decision analyses
plans are focused by taking advantage of knowledge
about the general characteristics of a portfolio even
before individual projects are assessed.
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