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The value of assessing weights in multi-criteria portfolio decision analysis 

 
 

Abstract: Analytic efforts in support of portfolio decisions can be applied with varying 

levels of intensity. To gain insight about how to match the effort to the situation, we 

simulate a portfolio of potential projects and compare portfolio performance under a 

range of analytic strategies. Each project is scored with respect to several attributes in a 

linear additive value model. Projects are ranked in order of value per unit cost and 

funded until the budget is exhausted. Assuming these weights and scores are correct, and 

the funding decisions made this way are optimal, this process is a gold standard against 

which to compare other decision processes. In particular, a baseline process would fund 

projects essentially at random, and we may estimate the value added by various decision 

processes above this worst case as a percentage of the increase arising from the optimal 

process. We consider several stylized decision rules and combinations of them: using 

equal weights, picking one attribute at random, assessing weights from a single randomly 

selected stakeholder. Simulation results are then used to identify which conditions tend to 

make which types of analytic strategies valuable, and to identify useful hybrid strategies. 

 

 

Keywords: Multi-criteria decision analysis, portfolio.  
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1. Introduction 

Background 

In portfolio decision analysis, decision analytic techniques are used to estimate 

the value of the different projects in a portfolio after which a set of proposed projects is 

selected to receive funding in order to maximize expected utility. This is a pervasive 

application. Because efforts to assess decision model parameters are themselves costly 

and require scarce managerial attention, it may be necessary to focus these efforts where 

they will be most effective and add the most value. Otherwise, as often happens in 

practice, the decision maker and analyst may rush through a very important analysis, or at 

the other extreme, analyze far beyond the point of diminishing returns.  

 Researchers have modeled the impact of different analytic methods in multi-

criteria decision making and portfolio project selection, in some cases finding that simple 

heuristics approach the results of sophisticated optimization techniques. But often, the 

practical question is not which exact algorithm to use – computing costs are nil. Rather, 

decision makers need to know which of many available assessment strategies and 

problem structuring strategies to pursue and when, i.e., where to focus managerial 

attention and analytic efforts, as well as how much difference it makes, and how to justify 

these choices to clients.  In the spirit of Phillips’ (1984) requisite decision modeling, we 

wish to know where more and less intensive approaches are sufficient. With simulation 

and sensitivity analysis, this paper illuminates such problems in the context of multi-

criteria portfolio decisions.   

One technique to estimate the value added by decision analytic efforts is to treat 

the outcome of a planned analysis as a random variable and to, essentially, calculate the 
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expected value of information for that variable with regard to the decision or decisions it 

informs (e.g., Watson & Brown, 1978).  In particular, we shall follow the approach used 

by Keefer & Pollock (1980) and more recently and explicitly Keisler
 
(2004). For a given 

portfolio and a given pre-analysis structuring of the problem, we consider the resource 

allocations that would be made in the absence of analysis and with the benefit of analysis. 

We quantify the increase in the portfolio value from the former to the latter and call it the 

value of (or value added by) analysis. This is consistent with the way the benefits of 

decision analysis are often marketed, where the value trajectory for a set of randomly 

ordered projects is juxtaposed graphically with the efficient frontier. 

Multi-attribute techniques (Keeney & Raiffa, 1976) and multi-criteria techniques 

can be used to estimate values of projects in portfolios, e.g., Stewart (1991), or Henig and 

Katz
 
(1996). In the relatively simple case of linear multi-attribute value functions, which 

we explore in this paper, the analysis consists of assigning weights to different attributes 

and assigning scores on the attributes for each project. Assuming linear values simplifies 

many calculations under uncertainty (Kirkwood, 1992, Corner & Kirkwood, 1996). In 

practice, this could be a reasonable assumption when the scale of the investments is small 

compared to the total resources available to the ultimate stakeholders, for the same reason 

expected monetary value can often be used for business decisions instead of more 

complex expected utility calculations (e.g., Smith, 2004). The weights represent the 

combination of scaling factors for the units involved and, more significantly, the tradeoffs 

between the different attributes.  

Once weights and scores are assigned, and when costs for all projects are 

projected, our model stipulates that an efficient frontier is identified and an optimal 
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allocation of resources is selected by picking the point on that frontier that exhausts the 

available budget (or, if costs and benefits are expressed in comparable terms and in the 

uncommon case that the budget is unlimited, projects are funded until the point at which 

the marginal cost matches the marginal benefit).  

It can happen that a change in weights leads to a drastic change in what gets 

funded but only a small change in total utility – or that this change in what gets funded 

makes a big difference to the utility received by some stakeholders but not by others.  

Peerenboom et al (1989), for example, illustrated “performance curves” showing how 

different programmatic objectives benefited as the budget was increased, and these 

curves can fluctuate as weights are changed. Thus, the way in which these weights are set 

has a complex impact on the ultimate value of the portfolio from any given viewpoint. 

Stummer and Vetschera
 
(2003) explore this problem further, identifying value trajectories 

when weights assigned by different individuals (or aggregates of these weights) are used 

in either centralized or decentralized project selection. 

In other contexts, weights do not have much influence on ultimate outcomes. 

Keefer and Pollock as well as Keefer and Kirkwood (1978) considered specification of 

weights along with other parameters of utility functions for a handful of small portfolios, 

finding that it is most critical to incorporate non-linear utilities where appropriate and 

relatively less important in those cases to weight the attributes.  For situations in which 

attribute scores are positively correlated (i.e., basketball player strengths), Einhorn (1976) 

found that the exact choice of attribute weights used had almost no effect on rankings. In 

a practical setting of IT budgeting, Jessop
 
(2002) also found that project selection was 

non-volatile with regard to weights. Jia et al
 
(1998) performed a detailed comparison of 
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several weighting schemes for the problem of selecting one alternative out of several, 

finding that equal weights do not always perform well, but rank-ordered centroid weights 

based on only an ordering of attributes lead to much the same choices as do actual 

weights. Extending this work, Butler and Jia (1997)
 
found a given real decision problem 

was not sensitive to the weighting scheme used. Roberts and Goodwin (2002) refined 

these approaches and found that ranking of attributes can be powerful. Liesio et al (2007, 

2008) considered a richer portfolio including possible synergies between projects, and 

obtained bounds on the value of optimal solutions under incomplete information about 

weights. Thus, there is evidence that precise weights are not always needed. All of these 

studies involve a variety of strategies for assigning weights, and in some cases a variety 

of measures for the resulting performance of the portfolio.  

To synthesize strengths of previous studies, we simulate a large number of 

decisions to achieve statistical results more robust than indications from single cases. We 

consider portfolio decisions specifically, rather than selection of a single alternative 

(where the impacts of characteristics such as variation among values, size of choice set, 

etc., are mathematically much different), while still comparing strategies using simulation 

somewhat along the lines of Jia et al (1998). Portfolio decisions typically involve 

multiple stakeholders, so we consider how strategies involving multiple individuals 

perform from various perspectives.  Finally, we compare a range of strategies that an 

analyst could undertake in settings with a typical range of characteristics, and use 

sensitivity analysis to identify conditions favorable to the use of each strategy.  This 

produces both heuristics for choosing methods as well as quantitative statements about 

the value added by different steps in the process. In particular, the value of information 
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frame links this with Keisler’s earlier work which considered the value of a portfolio 

under four generic analytic strategies: Random funding (which gave a lower bound), 

population level estimates of the distributions of project value, partial information about 

the value of individual projects, and finally complete information about individual project 

value (which gave an upper bound on the value added by analysis).   

Our point of departure here is to consider more detailed intermediate strategies 

(rather than just at a superficial level of more or less information about generic project 

value), meaningful in the context of multi-criteria decisions, for obtaining and applying 

partial information about attributes and weights.  Rather than just getting better or worse 

estimates of project value, we consider several avenues for richer scoring of projects, and 

consider the relative value added by these strategies in varying environments.  In order to 

build a model that combines these various notions without becoming too complex, we 

shall assume a structure with varying parameters for all project and portfolio 

characteristics of interest and simplifying assumptions when possible elsewhere. Our aim 

is to learn about the extent to which, under varying circumstances, the process for 

accounting for multiple criteria and assigning weights must be inclusive, precise, and 

complete, but there are many decisions an analyst makes in the course of a project that 

are not addressed here.   

 

Plan of study 

First we consider some prior research for which project attribute scores and 

weights are available. Using summary statistics derived from data for these cases, we set 

representative – or at least reasonable – simulation parameters for distribution of attribute 
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weights and estimates of those weights, as well as project scores along the various 

attributes. We then simulate a large number of portfolios using those parameters.  We 

define several analytic strategies in terms of the decision rule as a function of both 

available information and the information to be acquired by doing analysis. The specific 

strategies range from a gold-standard for analysis, obtaining the best possible attribute 

weights and making funding decisions based on them, to a straw-man situation in which 

projects are funded at random, or, equivalently, by some method that does not correspond 

at all to the actual project values. In between are strategies where information of varying 

quality can be obtained about the attributes and their weights.   

For each simulated portfolio, the decisions and corresponding ultimate outcomes 

and value received are calculated for each strategy. Random funding represents the case 

where there is no analysis, against which other strategies are compared. We vary input 

parameters over a range of values, and also consider targeted variations on the main 

strategies. The implications of these results vis-a-vis existing practice and understanding 

suggest recommendations for use of pre-analysis fact-finding and contingent approaches 

to analysis.  

In the second section, we discuss previous studies on portfolio resource allocation 

involving simulated portfolios. We next describe a model of the portfolio process and the 

simulation procedure. We define several performance measures to be used (for single and 

multiple stakeholder situations), along with the main strategies to be considered. The next 

section presents simulation results for the various strategies for the representative base 

case, along with a basic sensitivity analysis followed by consideration of some new 



 9 

strategies inspired by the results. The last two sections describe a short application using 

these insights and then discuss the findings.    

 

2. Model and assumptions 

Structure 

A portfolio consists of m candidate projects. Strategy k may recommend funding 

project i (Fik = 1) or not funding project i (Fik = 0). Projects are scored on a set of n 

attributes.  For the purposes of this exercise, we assume there is one set of “true” or 

correct weights which would be revealed by a perfect process. These weights would yield 

value scores consistent with the decision maker’s preferences over all alternatives 

involving tradeoffs across the different attributes. Weights can only be as true as 

preferences are consistent. In settings with multiple decision makers, preferences may not 

be consistent (Arrow, 1950) and so the construct of true weights is artificial. For other 

settings, the notion of “true weights” is intuitively clear. An extreme example is when 

every source of value can theoretically translate to monetary value, weights are just 

proxies for hard-to-calculate prices of the different attributes, e.g., the market share of a 

new product is valued by a firm exactly to the extent that it affects (in ways that are 

impractical to calculate) NPV of future cash flows. In still other settings, facilitating 

communication within a group allows them to agree to a single set of weights 

representing their combined interest (Phillips & Bana e Costa, 2007), which could be a 

simple aggregation of individual weights, or something more complex, and we can think 

of “true” weights as those the group would agree upon under the best possible conditions. 
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Each strategy produces estimated weights on all the attributes identified. One 

strategy might be to use a single individual’s weights while a second strategy might be to 

use a different individual’s weights. Project i’s value given weights Wk identified under 

strategy k is assumed to be the product of the vector of weights and the projects’ scores 

across attributes (j), i.e., for strategy k, Vik = j (wjk xij).   

In order to focus on complications related to the presence of multiple attributes, 

we assume in this paper that project attribute scores vary, but are already known and do 

not depend on the analytic strategy. (In the future, these results could be synthesized with 

similar results regarding other portfolio features.) We arbitrarily fix the cost of each 

project at 1, to avoid knapsack type complications where an unworthy project is funded 

merely to exhaust available budget at the margin. The results would not change 

significantly if costs are assumed to vary.  Thus, strategy k maximizes Vik subject to the 

constraint that Fik = C, where C represents the budgeted cost available for the portfolio. 

Here, the number of projects to be funded is equal to C.

Scores for each project on each attribute are assumed to be drawn from the same 

distribution, where the natural log of the scores are normal with mean x and standard 

deviation x (which is consistent with proprietary empirical data obtained from two 

consulting groups). Attribute weights are formed in a hierarchical process (analogous to 

Lipscomb et al, 1998) where individual h’s weight on attribute j is the product of the 

attribute’s true weight wj0 and the individual’s bias factor bh, e.g., where individual h 

receives a noisy signal about wj0, and where the log of the individual’s perceived weight 

is equal to the log of the true weight plus a normally distributed error term. This 

assumption may be much too conservative for situations in which we actually expect 
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negative correlations between different parties’ weights (e.g., negotiations). These 

distributions characterize the portfolio at a general level, i.e., they don’t tell us about 

weights of specific attributes, but by describing the level of uncertainty about those 

weights they are useful for information-acquisition decisions involving the assessment of 

those weights. More uncertainty would mean greater potential value added by the process 

that resolves it. 

The wj0 are assumed to be independent and identically distributed (i.i.d.) variables 

where the log of the weights follow a normal distribution with mean w and standard 

deviation w (which implies attributes are defined so that weights are positive). This 

assumption is partly for computational convenience and partly based on empirical 

observation. The bh are assumed to be i.i.d., where log bh follows a normal distribution 

with mean b and standard deviation b.  

 

Simulation parameter values  

We choose reasonable attribute values without intending that they be interpreted 

as authoritative representations of the population of real portfolios – actual characteristics 

of real portfolios would obviously vary depending on their application areas, and hence it 

will be important to consider sensitivity analysis. Since the purpose of this analysis is to 

derive first-cut qualitative insights about the problem, rather than precise guidance on 

particular decisions, this should suffice. Simulations are based on the following 

parameters:  

x = 0 

x = 1 
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This estimate for x is based on analysis of proprietary data about project value (not 

attribute scores) from Strategic Decisions Group and Argonne National Laboratory, and 

the value for x is arbitrary.   

w = 1  

This implies that the weight on an attribute in the 50
th

 percentile of attribute weights is a 

factor of e (2.718) lower than an attribute in 84
th

 percentile, etc.  The value of 1 is a crude 

estimate based very loosely on reported data from existing studies. Kleinmuntz and 

Kleinmuntz
 
(2001) had 8 attributes with weights ranging from 7.6% to 16.9%, suggesting 

a just slightly lower value of w. Elsewhere, nine or ten point scales are common and this 

range of weights seems to have proven useful, suggesting a slightly larger value of w.  

w = 0 

The value of w is arbitrary, since for our problem, it is simply a scaling constant and it 

won’t affect the relative value of the portfolio under various different strategies. 

b = 1 

These parameter values imply that the variation in attribute weights due to differences 

among individuals (w11 vs. w12) is of the same magnitude as the variation in weights 

across attributes w11 vs. w21. Likewise, the variation between the contribution to project 

value resulting from achievements on different attributes is due in equal parts to variation 

in performance on each attribute and variation in the attribute weights.  

b = 0 

i.e., we assume no systematic bias.  

m = 500 (we need a fairly large portfolio to consider some of the problems. This 

is on the high end of what might be observed in practice). 
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C = 200 (a fairly typical portion – 40% – of projects are funded, which avoids 

problems of extremes where very few projects are funded leading to great variation, or 

where most of the projects are funded leading to almost no variation). 

n = 10 (a round number just above Corner and Corner’s
 
(1995) average of 8.8 

attributes).  

We simulate attribute weights for two different individuals.  

A Microsoft Excel spreadsheet simulates 500 portfolios using formulas based on 

unique random number seeds to generate attribute weights and the score for each project 

on each attribute.  

 

Plan for sensitivity analysis 

In addition to the base case, we shall consider results for various combinations of 

parameters, allowing n to be either 3 or 10, and x, w and b to be either 0.5 or 1.0.  

 

Measures and strategies 

For each portfolio simulated, we consider the value V(p)k of a potential funded 

portfolio (p) according to the weights used with strategy k. Specifically, we consider the 

following valuation rules: when k = 0, V(p)k evaluates p using true weights; when k = 1 

V(p)k evaluates p using (arbitrary) individual 1’s weights; V(p)2 uses individual 2’s 

weights, V(p)3 places 100% of weight on attribute 1 (attribute numbers assigned in no 

particular order), and V(p)4 places 100% of weight on attribute 2; in addition to 

calculating the raw value, we also calculate this value as a percentage of the value of the 

100% funded portfolio in each case (to illustrate the convexity of each value measure’s 
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performance curve). The comparisons between some of the individual values under 

different weighting schemes are directed at questions of organizational feasibility, e.g., 

predictability, stability and fairness.  

We compute raw values and report normalized values, the former representing the 

case where the actual benefit-cost ratio for the projects may vary, the latter where the 

total of the weights sums to 1. We also calculate increments in raw values (above a 

baseline) arising from the strategies to control for variability in the simulated portfolios.  

The strategies below do not represent an exhaustive list – in fact, a very large 

number of combinations of potential interactions and characteristics of projects could be 

included or excluded from a particular portfolio decision analysis, and real techniques 

can be used with varying levels of emphasis. The focus is less on detailed tactics than on 

drivers of portfolio value, along the lines of Guikema & Milke (2003). An alternative 

approach (e.g., Heidenberger & Stummer, 1999) is to model several specific algorithms 

exactly, in order to generate valuable insights about those algorithms – especially when 

one of those specific algorithms is under consideration. We define strategies that will be 

practical to simulate but still correspond to some of the choices analysts really face. The 

primary strategies are:   

 

S0: Maximize value under correct weights   (max F V(p)0, s.t. Fi = C); 

 

This strategy represents an ideal decision analysis in which both quantitative assessments 

and group facilitation are successful. It serves as a benchmark against which other 

strategies are compared. We assume that there is a best set of weights that could be found 
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for the decision and that this strategy determines those weights and then funds projects so 

as to maximize the value according to those weights.  

 

S1: Maximize individual 1’s value    (max F V(p)1, s.t. Fi = C);

 

This strategy represents a decision analysis that does high quality quantitative 

assessments but ignores group facilitation. Instead, one person provides the definition of 

value used for funding decisions. In business, this could be, for example, this could arise 

if one manager’s opinion of what’s best for the company dominated the decision process. 

In social decisions, it could reflect a process that reflects one group’s values while 

ignoring others’ values.  

 

S2: Maximize individual 2’s value   (max F V(p)2, s.t. Fi = C);

 

This strategy is the same as S1, only with a different (and a priori indistinguishable) 

person maximizing his or her definition of value. Defining S1 separate from S2 and V(p)1 

separate from V(p)2 allows us to evaluate the consistency of certain results. 

 

S3: Maximize score on attribute 1   (max Fi (xi1), s.t. Fi = C); 

 

This strategy represents a process focused on a single issue that has no special claim to 

being the most important. It maximizes achievement on a single attribute while letting the 

others fall where they may. It is perhaps the simplest strategy that is better than no 
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strategy at all, but it is not a strategy that an organization should consciously choose. 

Something like this could occur if individual psychology or group dynamics result in 

anchoring on a single issue which is then used as the basis for selection.  

 

S4: Maximize score on attribute 2   (max Fi (xi2), s.t. Fi = C); 

 

This strategy is equivalent to S3, and is included only to allow us to calculate various 

measures of consistency.  

 

S5: All attributes weighted equally   (max Fij (xij), s.t. Fi = C); 

 

This strategy has practical appeal. It is simple to apply, e.g., facilitation could consist 

mostly of brainstorming to identify all attributes. Scores are assigned and simply summed 

or averaged. No weighting step is necessary, but neither is any attribute neglected.   

 

S6: Fund projects at random   (Fi = 0 for i > C, 1 otherwise); 

 

This strategy represents a worst case and is included to provide a baseline against which 

we can calculate how much better other strategies perform. Something like this can arise 

in practice when funding decisions are made on some basis uncorrelated with true value, 

for example, a first-come first-served funding process or one based on favoritism.  

 

S7: Fund all projects:    (Fi = 1 for all i) 
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This strategy is included in order to provide a denominator, in order to calculate the 

percent of total potential value achieved at different funding levels for different other 

strategies.  

 It is desirable for a decision process to lead to stable and predictable 

recommendations, in addition to just achieving high value. One measure of the stability 

of decisions is how much one individual’s perceived value for the funded portfolio 

changes when some set of attribute weights is used other than those offered by the 

individual. Beyond stability in value, project managers also desire predictability as to 

whether their own projects are funded. Furthermore, the extent to which the desired 

funding from any particular viewpoint is not reflected in recommendations, we may 

anticipate greater implementation challenges. With this in mind, in addition to value 

added, we track the number of shared elements between the portfolios funded by each 

pair of strategies, i.e., ΣiFi|S0 x Fi|S1, ΣiFi|S0 x Fi|S2, …, Σi Fi|S5 x Fi|S6.    

 

3. Results 

Base case 

The base case results reveal several points. Figure 1 shows the incremental value 

added by each step of analysis as a percentage of the range from the worst case to the best 

case. In the simulation, maximizing on a single attribute (S3) alone adds on average 8%,  

to baseline value (this and other reported results are rounded to the nearest percent) but 

much less than the other strategies. Not only does S3 use the wrong weights. It 

completely ignores scores for other attributes. Using one individual’s weights (S1) adds 
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40% to the portfolio value, which approaches the maximum value added (from S0) of 

48%. However, if all weights are assumed equal (S5) for the prioritizing step, the 

portfolio is still worth 38% more than if funded at random (S6). These results are 

consistent with Edwards and von Winterfeldt’s
 
(1986) results on SMART techniques, in 

which inexact weights work rather well. The last result in particular is in line with 

Einhorn’s results on equal weighting techniques. The equal weighting strategy clearly 

avoids the pitfall of focusing on any one attribute, and with far less organizational 

complexity (and assessment complexity), it performs only slightly worse than the strategy 

of using weights provided by any single individual. Therefore, the additional analytic 

effort of assessing one individual’s weights may not be justified. The benefit of assessing 

all weights correctly is still significant – another 10%, and may still be worth doing 

depending on what system is already in place.  

 

--- INSERT FIGURE 1 ABOUT HERE --- 

 

Figure 2 indicates the efficiency of the portfolio under each analytic strategy, that is, 

the percent of the fully funded portfolio’s value (S7) that each analytic strategy yields 

when 40% of the portfolio is funded. The performance curve for a single attribute is 

somewhat concave when its weight is included in the assessment (S0 and S1), yielding 

50% of its maximum achievement when 40% of the projects are funded. A typical 

attribute performs better under the equal weighting strategy (55% achievement for 40%), 

but is linear, i.e., no better than the random strategy (as we would expect) when a single 

different attribute is the basis for prioritization. The attribute that happens to be the basis, 
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however, is able to achieve almost 80% of its potential value from 40% of its potential 

funding. The differences between the average efficiencies of S0, S1, S3, S5, S6 and S7 

are all highly significant (and, of course, S1 and S2 are essentially identical as are S3 and 

S4), as efficiency percentages have a standard deviation of about 3%, so 95% confidence 

levels on this statistic are within approximately +/- 0.3%. In essence, the better strategies 

are attempts to ensure that the primary attribute is the right primary attribute. This 

suggests a new, potentially strong and simple strategy: pick the most important attribute 

and prioritize on the basis of it.  

Stability results: The portfolios are fairly stable under the first three strategies – 78% 

of the projects funded under S0 are funded under S1, which means an individual ought to 

expect some disappointments when projects are approved. The individual faces more 

disruption if another individual prevails: 70% of projects funded under S1 are funded 

under S2. Equal weighting (S5) is about as stable as S1 and S2, funding 75% of the 

projects funded under S0, and 69% of the projects funded under S1 and S2. Worse is 

when a single attribute strategy is used. In this case, stability is 48% with respect to S3 

and S4, and the random funding strategy leads to the theoretical minimum stability of 

40% (the proportion of projects funded).   

 

--- INSERT FIGURE 2 ABOUT HERE --- 

 

Sensitivity analysis 

The results show that getting the attributes right is critical to quality resource 

allocation decisions, and getting the weights right is important but not as critical. 
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Reasonable shortcuts also add substantial value. If there is a different distribution over 

attribute weights, the results do not change radically, but they change enough that our 

preferred type of analysis could also change.  We now consider results from four specific 

modifications on the base case: 

1) Less variation among individuals’ weights (b = 0.5); In this case, because the 

individual judgments are representative, using a single individual’s weights (S1) 

increases the portfolio value 95% as much as S0. Other strategies’ effectiveness is 

unchanged; S1 remains significantly better than equal weighting (S5). 2) Less variation 

among weights (w = 0.5); the overall improvement of S0 over random funding is 18%, 

less than half that in the base case.  In this case, the true signal about weights is 

comparatively weaker compared to individual-level variation, so the value added by S1 

declines to 75% of that from S0. Conversely, because weights are closer to equal than in 

the base case, the equal weighting strategy, S5, adds 90% as much value to the portfolio 

as S0. Use of a single attribute (S3) is better than in the base case, but not enough to 

make it attractive – still adding only 25% as much as S0. Distributions other than 

lognormal could be used, e.g., Keisler, 2004, compared results from the lognormal 

against those using a uniform distribution with the same standard deviation, but found 

only minor changes in the results. 

3) Less variation on project-level attribute scores (x = 0.5); The total increase in 

portfolio value due to S0 is only 22%, as opposed to more than twice that in the original 

simulation.  The relative contributions of the other strategies, as a percentage of the value 

added by S0, are nearly unchanged.   
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4) Fewer attributes (n = 3); The total increase in portfolio value due to S0 is 38%, still 

large. We note two main differences here from the base case. First, all the strategies do 

well. Even S3 and S4 add between 75% and 80% as much value as does S0. S5 adds 96% 

as much as S0.  

 

 Extension to other possible strategies 

The relatively strong performance of the equal-weighting strategy suggests that 

precise weighting may not be necessary, while the poor performance of the single 

attribute strategies suggests that we cannot avoid spending time evaluating project 

performance on multiple attributes. Can we still get closer to the optimal portfolio 

without conducting a full analysis? We now consider several new strategies that combine 

features of the ones just studied. 

 

S8: Have the group identify the attribute with the highest weight and rank projects 

in order of their scores on that attribute.  

 

This strategy – like S3 and S4 – requires minimal effort in scoring and only limited 

consideration of the relative weight of different attributes (i.e., it’s necessary to know 

which one is most important, but other possible attributes do not even need to be 

identified). The group process could be as simple as a vote, or could be a more structured 

discussion. By focusing on the most important attribute, S8 assures that what is achieved 

will be useful. In some cases, rigorously identifying the most important attribute is not 

trivial – it may require specification of the relevant range of values for each attribute and 
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then determining which attribute should have the highest weight given those ranges. In 

other cases, the ranges may be obvious and it should be straightforward to say that the 

highest weight should go on profitability or on lives saved, etc. Because the simulation 

model assumes all attribute scores are drawn from the same distribution, attribute weights 

proxy here for importance.  

 

S9: Same as S8, but only use one individual’s designated highest weight attribute.  

 

This strategy is likely easier to implement than S8. The hope is that the individual will 

usually pick the group’s most important attribute and even if not, it will still be an 

important attribute.  

 

S10: Identify all relevant attributes. Identify the most important attribute and 

assign it a weight computed based on its rank. Assume that the normalized weight (out 

of 100%) of this attribute is at the statistical expected value of the highest weight attribute 

given the generating distribution for weights and the number of attributes. The remaining 

weight is split equally among the remaining attributes.   

 

This strategy requires that all attributes be identified, but uses only minimal rank-based 

weights and does not require ranking other than picking a single most important attribute. 

It has the benefits of S8, and for the minor additional effort of identifying the other 

relevant attributes, it allows them to be considered as secondary factors.  As with some of 

the other strategies, this strategy is conveniently compared with the others here, but in 
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practice one might select more sophisticated approaches along the same lines, e.g., rank-

ordered centroid weights.   

Before comparing these strategies on full simulated portfolios, we first need to 

calculate the rank weights. In particular, we need the average weights for S10 and 

possible variants. In order to understand whatever difference there is between S8 and S9, 

it is also helpful to calculate how often these are the same and how much difference it 

makes.  The table below shows averages calculated over 500 simulated weight vectors, 

for each of the sets of parameter values (number of attributes, w and b) listed. For each 

case, we calculate the average normalized weight of the highest weighted attribute, the 

average normalized weight of the highest weighted attribute as assigned by a single 

individual, the average normalized weight of the second-highest weighted attribute, and 

the proportion of the time that the individual’s highest weighted attribute is the same as 

the true highest weighted attribute and the same as another individual’s highest weighted 

attribute.  

 

--- INSERT TABLE 1 ABOUT HERE --- 

 

Returning to the base case, we find that over an additional 25 simulated portfolios 

S8 adds 65% as much value to the portfolio as S0 – much better than 16% for S3, and 

somewhat worse than 83% for S1 and 77% for S5; For S9 the figure is 44%, because it 

performs identically to S8 when the two strategies identify the same attribute as most 

important, and adds only 40% as much value as S8 (25% as much value as S0) when they 

do not match. We then compare S10 against the other strategies and find it performs very 
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well: it adds 91% as much value as S0, it is much more consistently good than S1 and S5, 

and never much worse than either of them.  Furthermore, S10 funds 83% of the projects 

that S0 does, so it could provide a palatable starting point for stakeholders whether or not 

further refinement of weights will occur. Figure 3 illustrates the value added to the 

baseline portfolio by (the information revealed by) these strategies. 

It is possible to build on S10’s promise with S10’: After identifying the attributes, 

rank the top t attributes (instead of the top one) and do not actually assess their weights, 

but instead assume that their normalized weights are at their statistical expected values 

and split the remaining weight equally among the remaining attributes. As t approaches n, 

this strategy (or perhaps one using a centroid weighting scheme based on attribute ranks) 

resembles S0 – the attributes are identified and all estimated weights are much closer to 

their correct values than in an equal weighting strategy. Its performance will be very 

close to (but not quite equal) that of S0, but so will the amount of effort required to 

execute grows as well. A hybrid of these strategies is to apply S10 or S10’ but to have a 

single individual (a benevolent boss) declare the most important attribute(s). With one 

top attribute, this strategy appears less attractive because the two different individuals 

identify a different top attribute most of the time. Having the individual rank several top 

attributes could lead to more robust results and quick assessment.  

 

4. Discussion 

In portfolios with multiple performance attributes it is crucial to make specific 

efforts to identify attributes rather than casually hoping that suitable attributes are used by 

default. It is also important to assess relative weights in some way, but not necessarily in 
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exhaustive detail. The value of deriving weights is comparable to the value of 

information about project scores on the different attributes. The difficulty of the former 

depends on complexity of both the environment (number and complexity of attributes to 

weight and their required fidelity), and the organization (number of individuals to 

involve, the disparity of their viewpoints, and the degree to which they are ultimately 

agreeable), the difficulty of the latter depends mainly on the characteristics of the projects 

themselves (number of projects, complexity of scoring, required fidelity in scoring, and 

again number of attributes).  

Use of equal weights may perform nearly as well as use of weights from a single 

individual, although if individuals tend to have similar weightings and attributes vary a 

lot in importance, a single individual’s weights will tend to better serve everyone than 

would equal weights. If a single attribute is to be used, it is critical that the attribute be 

the right one – the most important one. As long as the top one (or several) attributes are 

identified as such, there is limited downside to this approach. It is reasonable, intuitive 

and simple to focus on a single goal, though this is still not optimal. This is not robust if 

the wrong attributes could end up as the basis for choice; in that case the portfolio does 

little better than random. In addition to delivering high portfolio value, the equal 

weighting and perfect weighting strategies offer high stability in terms of which projects 

are funded, while other strategies lead to funding decisions that vary depending on which 

individual or which attribute is featured. Such stability, predictability, and perhaps 

fairness may provide an incentive for groups to agree to agree.  

We have discovered one notable improvement on typical strategies: S10 requires 

decision makers to answer a single (albeit critical and non-trivial) question: which is the 
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most important attribute? Then, using a reasonable off-the-shelf estimate for its weight 

and a simple equal weighting model for the rest of the attributes, we bridge half the gap 

between equal weighting and perfect weighting – with minimal effort. This SMART-style 

strategy is psychologically attractive, because any decision stakeholder ought to be able 

to state what they believe the most important attribute is, but as we move through the list 

of attributes it becomes harder to rank the remaining ones.  In practice, similar heuristics 

exist. For example, some on-line decision support tools ask users to specify which feature 

of an object is most important and then provide rankings of objects.   

Naturally, other factors also affect the attractiveness of strategies. There may be 

other organizational benefits to having stakeholders assess together a complete 

weighting. This could, for example facilitate implementation of downstream decisions or 

even creation of new project proposals (e.g., using Keeney’s
 
(1992) value-focused 

thinking approach). The current results should inform practice, but should complement 

and not replace the practitioner’s real-world judgment. 

 

5. Application 

To illustrate how these findings may be useful, we review an effort in which they 

influenced development of a government R&D portfolio program. Here, funding 

priorities were to be set for about 100 projects falling into about 35 categories (between 1 

and 6 projects per category) supporting 7 strategic objectives. Within each category, there 

were interactions among the projects e.g., one project’s success – or failure – could 

reduce or eliminate the ultimate benefit from another project. 
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The initial plan was to develop an Analytic Hierarchy Process (AHP) type model 

by rating the importance of the goals, of the categories with respect to the goals, and of 

the projects with respect to the categories. A system to support this general type of 

analysis had already been approved and development started. Unfortunately, the 

developer had substantial expertise in system development but found some decision 

modeling issues to be intractable. While the top level objectives were well-documented, 

the AHP approach did a poor job discriminating among projects within a category level. 

The project level interactions were hard to characterize within an AHP structure, as were 

implications of probability of success in the face of these interactions.  Also, the AHP 

approach’s treatment of cost was not conducive to finding an efficient funding frontier. 

Realizing it needed outside help, the developer called in a subcontractor to aid in 

redesigning the architecture for the decision support system.  

The main alternative under consideration was a multi-attribute utility (MAU) 

approach. But that had practical challenges as well. The number of projects was large, the 

number of attributes was large, and the number of people involved – even at the senior 

level – was large. An MAU approach would require sufficient training (of client 

personnel) to do sensible assessments. Conducting assessments with the right groups of 

widely dispersed people in the right order would have been quite time-consuming, 

especially because a lack of consensus on weights would hurt the credibility of the 

model. At this point, time and budget available for model development and analysis were 

quite limited.  

By focusing on the value added by the portfolio analysis, it was possible to 

choose an approach that would provide the desired benefit to the client without missing 
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development targets. Based on the insight that it is important to identify criteria and in 

particular to identify the most important criteria, and even better to give them somewhat 

higher weight, it seemed that the AHP approach using the already defined high level 

objectives and the relation of the categories to those objectives would suffice. Typically, 

one category of project was targeted toward one high-level objective. Therefore, more 

identification and more precise weighting of attributes would have been of limited value. 

At the lower level, however, project scores would have been unreliable because they 

failed to capture important interactions. Weights are only useful to the extent they are 

applied to accurate scores, so there was value to structuring a scoring system at the 

category level. The solution was to use a constructed scoring scale at the category level in 

terms of which projects were successful, and using the category weights already obtained, 

the system could then generate efficient frontiers. Success probabilities were then 

incorporated in a simple manner so that expected values could be used. Finding the 

funding allocation that maximizes expected value is then a fairly simple computational 

task. This hybrid approach promised a feasible cost of assessment and left a tractable 

modeling and computational problem. With robustness to weights and more accurate 

scores, this system would deliver nearly all the potential portfolio value.   

 

6. Summary 

The value of improved estimates on weights is analogous to the decision theoretic 

value of information about those weights, where possible experiments that yield 

information correspond to different choices about which assessments the decision analyst 

should conduct. This notion can guide the dialog between analyst and decision maker in 



 29 

determining the appropriate level of various efforts. The contribution of this paper relates 

the author’s other work (e.g., Keisler, 2004).  As in other models, here we have generic 

analytic strategies ranging from no information to historical background (knowing the 

attributes) to qualitative estimation (identification of important attributes) to quantitative 

estimation (specifying weights at lower or higher levels of precision). The contribution 

here is that we define the situation in more detail with respect to weighting in multi-

attribute problems, with corresponding problem characteristics and potential analytic 

steps. The insights gained from this approach can be the basis of an explicit – though 

qualitative – pre-analysis step along the lines suggested by Butler and Jia, and as 

described in the application to design of a real portfolio decision process.  

Under reasonable assumptions, our model suggests that the value added by 

improved weight assessments can range from nearly zero to over half the baseline 

portfolio value, comparable to reported value added from other types of analysis. 

Knowing the size of this range (and how sensitive it is to situational characteristics) is 

more helpful than merely knowing that more precise assessments are better. Each step in 

the assessment process can, under some circumstances, add substantial value. Thus, 

choosing which steps to include –and which to exclude – is not trivial. By considering 

first the characteristics of the portfolio (i.e., variation among projects), the organization 

(i.e., people and their level of differentiation), and the environment (i.e., the variation 

among attributes), it is possible to identify the analytic strategies likely to add the most 

value to the portfolio for the effort required. In practice, analysts should as a first step 

consider potential value added based on how the rough distribution of weights compares 

with those considered in the model, and then balance the results against the implicit 
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difficulty (or cost) of different means of assigning attribute weights and prioritizing 

projects. Without pre-analysis, time-constrained analysts may opt for the efficient tactic 

of ranking one or more top attributes and estimating attribute weights based just on this 

information as described at the end of section 3. 

The current model has limitations that future research should address. A richer 

model for valuing potential analysis would consider the impact on strategies when 

functions aren’t linear, when projects or attributes are not independent, and when the 

organization has more complex structure than just one or two individuals with 

unpredictable differences of opinion. In addition, the methods available from which the 

multi-criteria decision analyst chooses are far more subtle and complex than those 

modeled here. Refinements of the model could certainly address distinctions between 

methods for estimating weights under different assumptions about how characteristics 

would present. Furthermore, as multi-criteria methods can be very dynamic, there are 

analytic choices that depend on the value of additional iteration and interaction among 

participants. Finally, the model could consider the efficacy of such methods in the face of 

strategic behavior in assigning weights when there are conflicting objectives.  Perhaps 

these steps could advance the main idea of this paper from a model that produces general 

insights to a formal pre-analysis tool with which to select an optimal method.  

Until then, practitioners can use the simpler insights from the current model to 

apply their efforts effectively.  They should do something about weighting, but maybe 

should not worry about it so much.  
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Figure 1: Value added to portfolio by assessments  
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Figure 2: Percent of potential value achieved at 40% funding 
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Figure 3: Value added to portfolio by frugal assessment strategies 
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Table 1: Statistics on the highest weights  

Attributes w b Maximum  
weight 
 

Maximum  
weight for  
indiv 1 

Second 
highest 
weight 

True vs. 
Indiv 1 
matches  
on first 
attribute 

Indiv 1 vs. 
Indiv 2 
matches 
on first 
attribute 

3 0.5 0.5 48% 53% 31% *65% 53% 

3 0.5 1.0 47% 62% 31% 51% 41% 

3 1.0 0.5 61% 63% 27% 79% 71% 

3 1.0 1.0 60% 67% 27% 65% 53% 

10 0.5 0.5 20% 24% 15% *39% 29% 

10 0.5 1.0 19% 35% 15% 24% 16% 

10 1.0 0.5 32% 35% 18% 57% 51% 

10 1.0 1.0 32% 43% 18% *39% 29% 

* when w = b the proportion of matches is theoretically equal for low and high 

values of  
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