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Abstract: This paper presents multiple innovations associated with an electronic health record system 

developed to support evidence-based medicine practice, and highlights a new construct, based on the 

technology acceptance model, to explain end users’ acceptance of this technology through a lens of 

continuous behavioral adaptation and change. We show that this new conceptualization of technology 

acceptance reveals a richer level of detail of the developmental course whereby individuals adjust their 

behavior gradually to assimilate technology use. We also show that traditional models such as technology 

acceptance model (TAM) are not capable of delineating this longitudinal behavioral development process. 

Our TAM-derived analysis provides lens through which we summarize the significance of this project to 

research and practice. We show that our application is an excellent exemplar of the “end-to-end” IS 

design realization process; it has drawn upon multiple disciplines to formulate and solve challenges in 

medical knowledge engineering, just-in-time provisioning of computerized decision-support advice, 

diffusion of innovation and individual users’ technology acceptance, usability of human-machine 

interfaces in healthcare, and sociotechnical issues associated with integrating IT applications into a patient 

care delivery environment. 
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1. Introduction 

Evidence-based medicine is the “conscientious, explicit, and judicious use of current best 

evidence in making medical decisions about the care of individual patients” (Sackett et al. 1999). There 

has been a general consensus that continuous, comprehensive practice of evidence-based medicine has 

tremendous potential to improve quality of care and reduce practice variation. However, there is also a 

widely acknowledged gap between clinicians’ awareness of these care standards and their consistent 

application of the standards in practice. Clinical decision support systems (CDSS)—in particular, 

evidence adaptive decision support systems—provide decision aids with a knowledge base constructed 

from and continually adapting to new research and practice based evidence of medicine (Sim et al. 2001).  

Such decision aids address a current need in healthcare decision support for tools that use reliable patient 

data, decision models and problem solving methods to address challenges in performance requirements, 

data and knowledge forms and generalizability to other application areas (Sheng 2000). However, while 

there is evidence that CDSS can improve clinician guideline compliance, and thus patient health (Linder 

et al. 2009; Seidling et al. 2010), widespread use of such systems has not become available due to 

numerous technological, behavioral, and organizational barriers. These facts motivate the present 

research. 

Clinical Reminder System (CRS) is a research-oriented clinical information system iteratively 

designed and developed through a 7-year joint effort by researchers from the H. John Heinz III College at 

Carnegie Mellon University (CMU) and medical practitioners at the West Pennsylvania Hospital (WPH). 

CRS is an evidence-adaptive CDSS that aims to improve the quality of patient care by providing 

clinicians just-in-time alerts and advisories based on best known evidence-based medicine guidelines and 

individual patients’ health descriptors and treatment conditions. Of the four functions that an 

computerized CDSS may provide (Perrault and Metzger 1999)—administrative support, managing 

clinical complexity and details, cost control, and decision support—CRS is designed to supply all except 

cost control.   
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CRS has been developed in the context of increased pressure to use electronic health records 

(EHR) to improve quality of care and patient safety, in the form of recommendations from professional 

organizations such as the Institute of Medicine and Federal mandates contained in the American 

Reinvestment and Recovery Act of 2009. However, adoption rates for EHRs in the U.S. are low 

compared to other industrialized countries (Jha et al. 2009). Additionally, while CDSS technologies 

demonstrate great potential to improve quality of care and patient safety in laboratory and clinical trial 

settings (e.g., Bates et al. 1998), once deployed for routine use in the field, they often fail to obtain 

adequate embracement by medical practitioners and consequently fail to achieve those anticipated 

benefits on clinical performance and patient outcomes (Romano and Stafford 2011). For example, 

through a systematic review, van der Sijs et al. (2006) found that computerized medication safety alerts 

are overridden by clinician users in 49% to 96% of cases including those for preventing severe drug–drug 

interaction events. In a more recent review, Shojania et al. (2010) reported that point-of-care CDSS 

reminders have produced much smaller clinically significant improvements than those generally expected. 

Factors contributing to this missing link between the deployment of CDSS and the achievement of long-

term end user adherence remain underexplored. 

To enlarge the research base of knowledge regarding adoption and clinically relevant use of 

CDSS and EHR generally, CRS has operationalized research-based methods and models via a carefully 

designed application that has been evaluated in clinicians’ day-to-day patient care routines. This process 

has generated research insights into reengineering the system’s technological designs to improve its 

usability as well as informing tailored behavioral interventions for addressing the user resistance 

encountered. As an exemplar of the “end-to-end” IS design realization process, the CRS project draws 

upon multiple disciplines including decision science, computer science, information systems, and 

behavioral and social sciences to formulate and solve challenges in (1) medical knowledge engineering; 

(2) just-in-time provisioning of computerized decision-support advice; (3) diffusion of innovation and 

individual users’ technology acceptance; (4) usability of human-machine interfaces in healthcare; and (5) 
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sociotechnical issues when integrating technological systems into the reality of a patient care delivery 

environment. The CRS project hence embodies a “methodological pluralism” approach called by 

researchers (Kaplan 2001) which demands extreme additional attention to be paid to medical 

practitioners’ work contexts, their preferences and constraints, and the social and organizational 

environments in which technologies and users are situated. 

The purpose of this paper is twofold: to summarize a new understanding of the importance of 

rigorous and adaptive clinical IT design to bridge academic research and practice generated through our 

previously published work based on developing, evaluating, and iteratively improving CRS, and to use 

this understanding to frame novel insights provided by CRS regarding the behavioral underpinnings of 

technology acceptance that may inform more useful and usable technology designs as well as more 

effective diffusion strategies and use policies. We achieve the first goal by reviewing the research 

contributions of the CRS project: analysis of longitudinal usage rates and causes of dissatisfaction with an 

early version of the application, and, with a re-engineered version of CRS, user interface analysis to 

identify navigational patterns and opportunities for usability improvements, and social network analysis 

to reveal the nature of users’ social interactions the relationship to individual clinicians’ system 

utilization. We achieve the second goal by introducing a new model of technology adoption that addresses 

the limitations of the well-known technology acceptance model (TAM) through accommodation of the 

longitudinal course of acceptance behavior formation, development, and institutionalization relying on 

“actual system use” as computer-recorded objective usage instead of self-reported surrogates. 

 

2. Material and Methods 

2.1. CRS Functionality 

The Clinical Reminder System (CRS) is capable of managing workflow and clinical 

documentation as well as generating decision-support reminders at the point of care. To provide 
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administrative support, CRS allows clerical staff to register new patients and manage patient 

appointments. When patients arrive in the clinic, clerical staff use CRS to track workflow activities such 

as patient check-in, encounter in progress, and patient check-out. To enable clinicians to manage all 

necessary patient information using a single system, CRS has evolved into a “lite” EHR system. The EHR 

features of CRS provide comprehensive patient data management support such as documenting clinical 

observations, tracking progress notes, prescribing medications and ordering laboratory tests. To minimize 

data entry and to collect electronically up-to-date patient health conditions, CRS is interfaced with other 

hospital information systems to retrieve laboratory test results (in real time) and patient demographic 

information and historical disease diagnoses (in batch mode, performed periodically).  

In addition to the storage, management, and retrieval of patient data, CRS implements evidence-

based medicine guidelines to generate “just-in-time” alerts and advisories to improve medical practice of 

four chronic diseases: asthma, diabetes, hypertension, and hyperlipidemia; and five preventive care 

categories: breast cancer, cervical cancer, influenza, pneumonia, and steroid-induced osteoporosis. Such 

alerts and advisories, or reminders, provide clinicians with decision support aid in (1) managing clinical 

complexity and details, and (2) clinical diagnosis and treatment plans. The reminders that CRS generates 

take the form of recommendations to have certain tests performed, to receive vaccinations, or to discuss 

the pros and cons of alternative treatments. Figure 1 contains an extended view of CRS’ main workspace. 

[Figure 1 about here] 

The most recent, web-enabled version of CRS is implemented using C# and ASP.Net technology 

and an Oracle 10g database. All guideline-based, reminder generating algorithms are implemented as web 

services using a homegrown ontology. CRS is available at http://crs.sph.umich.edu:8088/.  

2.2 CRS Research Directions 

As a prelude to our discussion of new research results related to system usage, we summarize the 

primary research contributions of CRS. To enable effective and efficient medical knowledge engineering, 
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we designed and implemented a novel guideline ontology model that enables structured acquisition and 

automated execution of evidence-based medicine guidelines. The Guideline Representation and 

Execution Model (GREM), built upon several existing guideline ontologies such as Guideline Interchange 

Format, is discussed in detail in (Zheng et al. 2009b).  

We conducted a longitudinal, quantitative usage analysis to assess the dynamics in the utilization 

rates of CRS. The main variable constructed from computer-recorded usage data is “the percentage of 

patient encounters in which CRS was used to generate clinician directed reminders.” The longitudinal 

usage data were analyzed using a novel developmental trajectory analysis model (DTA). This model 

embodies a semi-parametric, group-based statistical approach for identifying distinct trajectory groups 

within a population and relating the group membership probabilities to a set of covariates of interest 

(Nagin 1999). Based on the quantitative analysis results, we further collected and analyzed qualitative 

data from multiple sources in order to explain the low utilization rates observed (approximately 35% on 

average), and the developmental usage trajectories identified. These empirical, field-based user 

experiences of CRS within the context of clinical practice enabled us to identify a number of positive and 

negative themes that varied across usage trajectory groups. A summary of the quantitative and qualitative 

usage analysis is described in (Zheng et al. 2005).  

The technology acceptance model, which provides a framework for understanding usage results 

such as those described above, is based on theory of reasoned action (TRA). TRA posits that an 

individual’s consciously intended behavior is determined by behavioral intention: a function of the 

person’s attitudes towards the behavior; and subjective norm: influence the person receives from his or 

her significant others (Ajzen and Fishbein 1980). In extensions to TAM, the subjective norm construct 

has traditionally been measured using self-reported, general perceptions of other’s influence to use 

software in question. As such self-reports are incapable of delineating the structure of interpersonal 

networks over which a great deal of social hints and pressure are transmitted, we employed social 

network analysis to examine the impact of social influence on individual usage. Using a survey 
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instrument to assess the structure of three cohesion networks among the clinician users of CRS, we 

demonstrated (Zheng et al. 2010) that: neither the professional nor the perceived influence network is 

correlated with EHR usage; the structure of the friendship network significantly influenced individual 

physicians’ adoption of the EHR system; and residents who occupied similar social positions in the 

friendship network shared similar EHR utilization rates. As a result, social influence affecting physician 

adoption of EHR seems to be predominantly conveyed through interactions with personal friends rather 

than interactions in professional settings. 

Motivated by the negative theme “lack of guidance in the application workflow” found in the 

previous qualitative analysis, we employed sequential pattern analysis and a first-order Markov chain 

model to analyze the temporal event sequences recorded in CRS. Such event sequences, or clickstreams, 

reflect clinicians’ actual navigation behavior in their everyday interactions with the system. Using 10 

months of interaction data between October 1, 2005 to August 1, 2006, generated by 30 users in 973 

unique patient encounters, we found (Zheng et al. 2009a) that of 17 main EHR features provided in the 

system, there exist three bundled features: “Assessment and Plan” and “Diagnosis,” “Order” and 

“Medication,” and “Order” and “Laboratory Test,” and that clinicians often accessed these paired features 

in a bundle together in a continuous sequence. The Markov chain analysis further revealed a global 

navigational pathway, suggesting an overall sequential order of EHR feature accesses. Users showed 

consistent user interface navigational patterns, some of which were not anticipated by system designers or 

the clinic management.  

Our interactions with CRS users, both direct through design meetings and direct user observation, 

and via clickstream data, reinforced to us the importance of methods to help clinicians address limitations 

imposed by structured data entry that may prevent them from documenting, for example, certain patient 

care data that could not be easily classified or codified using a given taxonomy or nomenclature. These 

EHR “exit strategies” may be useful aids to reduce disruptions and delays and prevent misinterpretation 

of the data in future patient care episodes or in research (Palchuk et al. 2010, Rhodes et al. 2007, Tang et 
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al. 2007) but may also be misused as a speedy way of entering all types of patient care data—some of 

which perhaps could have been properly classified or codified with additional effort. Using data collected 

between September 2005 and August 2006, we found (Zheng et al. 2011) that exit strategy utilization 

rates were not affected by post-implementation system maturity or patient visit volume, suggesting 

clinicians’ needs to “exit” unwanted situations are persistent; and that clinician type and gender are strong 

predictors of exit strategy usage. Drilldown analyses further revealed that the exit strategies were 

judiciously used and enabled actions that would be otherwise difficult or impossible. However, many data 

entries recorded via them could have been ‘properly’ documented, yet were not, and a significant 

proportion containing temporary or incomplete information were never subsequently amended. 

The previous research endeavors summarized in this section employed a wide range of tactics 

from technology improvements to the utilization of social influence as a leverage to promote technology 

adoption among medical professionals. Collectively, they embody the “methodological pluralism” 

ideology that is crucial to addressing those multi-faceted user resistance issues commonly encountered in 

a healthcare context originating from a concatenation of system, individual, and organizational factors. 

2.3 CRS usage analysis: Trajectory analysis and new TAM constructs 

To better understand previously published results on adoption and usage, we return to the 

technology acceptance model. Below and in subsequent sections, we propose an extension to TAM and 

test a number of hypotheses related to the TAM extension, using previously-published results on 

longitudinal usage analysis with the developmental trajectory model as a motivation.  

Since its inception in 1989, TAM has been enthusiastically embraced by information systems (IS) 

researchers and is generally regarded as the most successful and most often applied theory developed in 

the IS field. While TAM, its numerous model variants, and their empirical applications have provided 

valuable insights into what drives end users’ decision to accept or reject a technology, their limitations 

have also been well recognized. A salient shortcoming of this family of models, for example, is its lack of 

consideration of the evolving nature of technology acceptance behavior (Benbasat and Barki 2007). In 
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particular, TAM-based research has overly focused on predicting potential users’ adoption intention, 

rather than the nature of ‘meaningful acceptance’ of a technology, and hence encountered difficulties in 

predicting future acceptance of technology given that users’ perceptual beliefs may be subject to change 

over time. This issue remains unresolved in the latest developments of TAM, such as the unified theory of 

acceptance and use of technology (Venkatesh et al. 2003). 

Below, we address these TAM limitations by introducing a new model that accommodates the 

longitudinal course of acceptance behavior formation, development, and institutionalization. As for our 

developmental trajectory analysis, we use “actual system use” as computer-recorded objective usage 

instead of self-reported surrogates to test hypotheses regarding the relationship between TAM’s 

fundamental constructs and our novel constructs, self-reported and actual usage, antecedents of TAM’s 

fundamental constructs, and user satisfaction.  

 

3. Theory and Calculations 

3.1 Statement of TAM 

The technology acceptance model is an adaptation of the theory of reasoned action (Azgen and 

Fishbein 1980) that is specifically designed to study user acceptance of computer systems. The goal of 

TAM is to “provide an explanation of the determinants of computer acceptance that is general, capable of 

explaining user behavior across a broad range of end user computing technologies and user populations, 

while at the same time being both parsimonious and theoretically justified” (Davis et al. 1989, page 985). 

As Szajna (1996) indicated, “TAM is intended to resolve the previous mixed and inconclusive research 

findings associating various beliefs and attitudes with IS acceptance. It has the potential to integrate 

various development, implementation, and usage research streams in IS.” 

The theoretical foundation of TRA is the assumption that behavioral intention influences actual 

behavior. Davis (1986) used this insight to propose that information technology acceptance behavior, 
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actual system use (U), is determined by a person’s behavioral intention to use (BI); this intention, in turn, 

is determined by the person’s attitudes towards using (A) and his or her perceived usefulness (PU) of the 

IT. In TAM, attitudes towards use are formed from two beliefs: perceived usefulness (PU) of the IT and 

its perceived ease of use (PEoU). All external variables, such as system design characteristics, user 

characteristics, task characteristics, nature of the development or implementation process, political 

influences, organization structure and so on, are expected to influence acceptance behavior indirectly by 

affecting beliefs, attitudes, and intentions. 

BI = A + PU           (3.1) 

A = PU + PEoU          (3.2) 

PU = PEoU + External Variables        (3.3) 

PU and PEoU are two fundamental determinants of TAM. Perceived usefulness is defined as “the 

degree to which a person believes that using a particular system would enhance his or her job 

performance”, whereas perceived ease of use refers to “the degree to which a person believes that using a 

particular system would be free of effort”. Davis et al.’s (1989) revision of the original model contains 

only three theoretical constructs: BI, PU, and PEoU. In addition, PEoU is postulated in post-

implementation as a causal antecedent to PU, as opposed to a parallel, direct determination of BI. Figure 2 

depicts the constructs and their relations in the revised TAM model. 

[Figure 2 about here] 

In confirmatory, empirical studies of TAM (Adams et al. 1992; Davis et al. 1989, Mathieson 

1991; Taylor and Todd 1995), two themes recur. First, TAM explains a substantial proportion of the 

variance in usage intentions and behavior, typically around 40%. Second, PU is a strong determinant of 

behavioral intentions—coefficients are typically around .6.  

3.2 Contemporary Critiques of TAM 
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Current research on technology acceptance addresses two categories of concerns. First, there has 

been a paucity of research on what constitutes meaningful acceptance of a technology. Obtaining accurate 

measurements of “actual system use,” TAM’s outcome variable, has been particularly problematic 

because actual usage of a technology can be difficult to define (e.g., whether frequency of use is a 

meaningful measure of email usage); and is oftentimes unavailable to researchers (e.g., due to prohibitive 

costs to collect or privacy concerns in actual usage monitoring). Consequently, the empirical applications 

of TAM chose to (1) only elicit a person’s behavioral intention, which however may not necessarily lead 

to actual behavior; (2) use proxy measures that are not theoretically or empirically justified; for example, 

usage of an email system measured as the number of messages sent and received (Gefen and Straub 

1997); or (3) use self-reported usage measures in place of actual use by asking questions such as “on 

average, how much time do you spend on the system every day” (Venkatesh and Davis 2000) or “how 

many times do you believe you use this system during a week?” (Malhotra and Galletta 1999), which on 

one hand invites a wide range of measurement errors (e.g., the telescoping effect and the Hawthorne 

effect) and on the other hand may not accurately capture meaningful technology acceptance. 

Second, TAM-based models are positioned to predict ‘future’ acceptance of a technology to be 

introduced based on ‘current’ beliefs of its potential end users, overlooking the fact that users’ perceptual 

beliefs may be subject to change with increased use experience and continuously updated situational cues 

such as performance feedback and social appraisals. As observed by Rogers (1983), a person’s decision 

process of technology acceptance can be decomposed into a temporal sequence of steps from formation of 

attitude and adoption decision to actual use and reinforcement feedback of the adoption decision made. In 

addition, the mood of users, as moderated by uncertainty associated with complex tasks, may affect 

perceptions of ease and usefulness (Djambasi et al. 2010).  However, the prevalent design of TAM-based 

research usually assesses usage measures at the onset of technology introduction and then relates them to 

‘usage’ collected at arbitrarily selected time intervals, for example one month post-introduction. This 

design, largely influenced by how the original TAM validation studies were conducted, fails to 
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accommodate the evolving aspect of technology acceptance. In addition, the time intervals are often 

arbitrarily selected in an atheoretical manner which may not allow for sustainable acceptance behavior to 

develop.   

3.3 TAM Extension Variables 

The true value of a technology cannot be realized until its use is institutionalized as an integral 

part of end users’ day-to-day work. Regarded in this light, we propose to measure ‘acceptance’ as the 

stable usage state after the acceptance behavior of a technology has fully matured, referred to as 

institutionalized use (IU). In order to determine whether/when this state is reached, we introduce a new 

analytic method to model the development of acceptance behavior—from initial ‘trial’ adoption to long-

term institutionalization—referred to as ‘developmental pattern.’ The latter construct also allows for a 

close perusal of the temporal dynamics in end users’ acceptance behavior, so that they can be stratified 

based on their patterns of behavioral evolution, those demonstrating problematic progression can be 

identified, and just-in-time behavior interventions can be introduced. These two constructs, 

institutionalized use and developmental pattern, together form our new conceptualization of actual, 

longitudinal acceptance behavior. 

As previously discussed, developmental patterns are quantified using developmental trajectory 

analysis, a semi-parametric, group-based approach for identifying distinct groups of individual 

trajectories within a population and for profiling the characteristics of group members (Nagin 1999). In 

this study, we operationalize the developmental pattern construct as an end user’s membership of 

trajectory groups (usage trajectory group—UTG) as estimated using the DTA method. 

Besides TAM’s PU and PEoU constructs, we also incorporate several additional variables 

including: (1) a person’s general optimism (GO) held toward a technology, which is similar to the attitude 

psychological construct contained in TRA—from which TAM was derived—but differs in a way that GO 

assesses a person’s holistic perception about the genre of the technology being introduced rather than the 

evaluation of a particular system or product; and (2) two computer literacy assessments: computer 
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knowledge (CK) and computer experience (CE), which are necessary when a technology is complex 

requiring substantial user skills. 

To examine how actual usage compares to self-reported measures, we also include in the test 

model self-reported usage (SRU). In addition, we include two static usage measures, initial usage (IniU) 

and average usage (AU), to validate TAM in the context of this study. In the empirical study the IniU 

measure was obtained one month after technology implementation following the common practice found 

in many TAM-based studies. Lastly, we include user satisfaction (SAT) as an additional outcome 

variable, which has been suggested by researchers critiquing TAM for its lack of non-usage related 

outcome measures (e.g., Benbasat and Barki 2007). 

3.4 TAM Extension Hypotheses 

Our first two sets of hypotheses are related to TAM’s constructs and traditional outcome 

measures: 

 PU will predict self-reported measures including general optimism, user satisfaction and self-

reported usage;  

 PEoU will predict self-reported measures including general optimism, user satisfaction and 

self-reported usage. 

The next two sets of hypotheses are related to TAM’s constructs and the new outcome measures 

of this study based on longitudinal acceptance behavior: 

 PU will not predict the actual usage measures objectively recorded (IU, UTG, IniU, and AU); 

 PEoU will not predict the actual usage measures objectively recorded (IU, UTG, IniU, and 

AU). 

We then tested the relationship between postulated antecedents of PU and PEoU and the new 

outcome measures, as well as the traditional TAM measures themselves: 
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 General optimism will predict actual acceptance behavior comprised of institutionalized use 

and usage group membership; 

 Computer literacy scores will moderate the effect of the other predicting constructs; 

 Computer literacy scores will have a direct influence on the outcome variables. 

Finally, to replicate previous critiques of TAM, we tested the relationship between self-reported 

usage and the new outcome measures: 

 Self-reported usage will not be correlated with actual usage measures.  

 

4. Results 

4.1 Data Collection 

CRS was offered for use by 44 internal medicine residents at the Western Pennsylvania 

Hospital’s ambulatory primary care practice between February–December 2002. The results to follow 

thus reflect the original (client-server, non-reengineered version) of CRS. The residents used the system 

to document and retrieve patient care data and generate patient-specific reminders to improve the 

management of major chronic conditions and preventive care measures. During the study period, use of 

the system was highly recommended, however, it was not mandatory. The actual usage reported in this 

paper hence reflects the residents’ true acceptance of the technology. 

We selected to measure system usage as “percentage of patient visits in which the system was 

used to generate physician-directed reminders,” instead of “frequency of use” or “time spent using the 

system” as commonly used in TAM-based studies. The principal objective of the reminder system was to 

provide the “reminding” functionality to physicians to facilitate informed decision-making. Using the 

system to generate reminders is therefore the sentinel event signifying ‘meaningful’ acceptance of the 

technology. We monitored this usage measure continuously after the system was deployed until all users’ 
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acceptance behavior had stabilized, which occurred by the end of the 10th month after the system’s “go-

live” date.  

We administered several questionnaire surveys to assess the perceptual constructs of the proposed 

model. Computer literacy and general optimism toward use of information technology in healthcare were 

assessed with Cork’s instrument measuring physicians’ use of, knowledge about, and attitudes toward 

computers (Cork et al. 1998). TAM’s constructs were assessed using its original survey instrument with 

slight rewording to fit the context of this study. Finally, we used the IBM Satisfaction Questionnaire to 

elicit the resident users’ satisfaction of CRS. This instrument constitutes items assessing general system 

usability, user interface design, and overall satisfaction (Lewis 1995). Except for the Cork’s survey which 

was administrated one month post-implementation, the other two surveys were conducted after the stable 

usage state was reached (i.e., 10 months after the system was implemented). 

4.2 DTA Developmental Trajectories 

Among the 44 potential users of CRS, 41 recorded valid system usage during the study period. 

We first performed a developmental trajectory analysis of these 41 CRS users. The results show that they 

can be clustered into three groups each demonstrating distinct trajectory of usage development (Figure 3).  

[Figure 3 about here] 

Bold and light lines denote observed and predicted trends, respectively. Observed data values are 

computed as the mean use rate of users assigned to each of these groups identified by estimation, and 

expected values are computed using DTA model coefficient estimates. The three identified groups are 

labeled as “Heavy” (9 users including 5 users who completed all surveys), “Moderate” (15 including 12 

who completed all surveys), and “Light” (17 including 11 who completed all surveys), respectively. We 

examine the developmental trends in Figure 3 as follows: Users classified as “Light” initially utilized the 

system in about 35% of their patient encounters, and this rate remained steady over the 10-month study 

period. “Moderate” users had the highest initial usage, about 70%, but this rate consistently decreased 
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over the study period to a level comparable with that of the “Light” users. “Heavy” users had an initial 

usage of approximately 50%, and this rate increased consistently to about 100% at the end of the study 

period. Changing acceptance behavior for members of the moderate group is of particular interest because 

it indicates that “Moderate” users demonstrated strong “enthusiasm” in use of the system initially, while 

followed by a gradual decline in later stages. These usage measures are summarized in Table 1.  

[Table 1 about here] 

4.3 TAM Analyses 

Table 2 shows the correlation matrices of major research constructs. PU is strongly correlated 

with average usage (AvgU), and PEoU is strongly correlated with self-reported usage (SRU); both 

correlations are significant at .001 level. PU is also correlated with institutionalized use (IU, P < .05) as 

well as usage group membership (UTG, P < .01); and PEoU is correlated with self-reported user 

satisfaction (SAT, P < .05). Neither PU nor PEoU is correlated with initial usage (IniU). As TAM posits, 

PU is correlated with PEoU (P < .001). 

[Table 2 about here] 

Self-reported usage is not correlated with any of the actual usage measures, nor user satisfaction. 

Other interesting correlations worth noting in the table: general optimism (GO) is strongly correlated with 

PU, institutionalized use (IU), and AvgU (P < .01), and computer experience (CE) is strongly correlated 

with both PU (P < .05) and PEoU (P < .01). This indicates GO and CE may be antecedents of PU or 

PEoU, and GO may directly influence actual use behavior. Usage group membership is also strongly 

correlated with average usage and institutionalized use, P < .001 for both, which indirectly confirms the 

validity of user clustering obtained by the developmental trajectory analysis. Note that usage group 

membership is an ordinal variable; its value roughly represents distinct usage levels, from the lowest to 

the highest. 
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Table 2 also reveals relationships among three computer literacy scales. Computer experience is 

significantly correlated with computer optimism. Other relations are also positive, but not statistically 

significant. 

Hypothesis testing was performed using a series of stepwise regressions, consistent with the 

methods used in the original validation studies of TAM and its major extensions (e.g., Davis 1989, 

Viswanath & Davis 2000). We chose ordinal logistic regression because UGM is coded as an ordinal 

variable (1: “Light”; 2: “Moderate”; and 3: “Heavy”). Initial results are shown in Table 3.  

[Table 3 about here] 

Contradictory to TAM, PU has no significant influence on any of the usage measures. PEoU, on 

the other hand, has significantly positive impact on self-reported usage (P < .001) and user satisfaction (P 

< .01). Noticeably, both outcome variables are self-reported measures. For self-reported usage, PEoU 

alone explains 38% of its variance. For user satisfaction, PEoU and computer knowledge (CK) accounts 

for 33% of its variance. Note that CK has a negative impact on user satisfaction (P < .01), which indicates 

that users who know more about computers are less satisfied with this application. 

Institutionalized use is the main outcome variable of interest, representing the materialization of 

sustainable use. As shown in Table 3, this usage is significantly affected by a single factor: a person’s 

general optimism (P < .001). This factor alone accounts for 36% of the variance. PU or PEoU seem to 

have little influence on this usage measure. Usage group membership, another main outcome variable, is 

not affected by PU or PEoU either. Instead the probability of a person’s following a specific 

developmental trajectory is jointly determined by his or her computer knowledge (P < .05) and computer 

optimism (P < .001). The estimated Logit coefficient of CK is negative, indicating that a higher computer 

knowledge score is associated with an increased probability of placing a user into a “less desirable” usage 

group. Initial usage was not found to be affected by any of the model’s new constructs. This can be 

explained by the fact that all constructs were measured after sustainable use was achieved, i.e., these post-

acceptance measures have little to do with a person’s initial adoption decision. Average usage is 
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influenced by other computer knowledge (P < .01) and general optimism (P < .001); these two factors 

jointly explain 56% of the variance. CK, again, was found to negatively impact the average usage. 

The lower portion of Table 6.13 examines antecedents of PU and PEoU. As TAM posits, PEoU 

have a significant positive influence over PU (P < .001). CK negatively affects PU (P < .01), consistent 

with findings of its negative influence on all other dependent variables. General optimism is another 

significant determinant of PU (P < .001). These three factors together contribute to 67% of variance in 

perceived usefulness. PEoU has only one significant antecedent identified: computer experience. CE 

positively influences PEoU (P < .01), explaining 29% of its variance. This is also the only significant 

influence of CE on other study constructs. 

 

5. Discussion 

5.1 Longitudinal Analysis 

Developmental trajectory results in Figure 3 suggest that among the resident users, there existed a 

considerable amount of behavioral heterogeneity which should be differentially treated; for example, by 

introducing tailored training or incentivizing strategies to help “Moderate” avert the declining trend of 

usage. Further, the trajectories illustrate that end users’ technology acceptance behavior could take an 

extended period of time to develop before arriving at the stable, saturated state (10 months in our case). 

Usage snapshots, such as that measured one month after the initial introduction of a technology, may not 

accurately capture the institutionalized use that is critical to achieving a sustainable performance impact. 

To better illustrate the findings, we present regression results reported in Table 3 as a diagram 

(Figure 4). Note that only statistically significant coefficients are depicted in the diagram. 

[Figure 4 about here] 

As shown in Figure 4, PEoU is a strong predictor of SRU (self-reported usage). However, neither 

PU nor PEoU has a significant influence over the actual usage measures objectively recorded. Although 
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these findings challenge the fundamental proposition of TAM, they are in agreement with previous 

studies that criticized use of self-reported usage measures. As discussed in earlier sections, these studies 

collectively reported PU and PEoU are congruent to behavioral intention and self-reported usage, but are 

poor predictors of actual system usage objectively measured (e.g., Chin 1996, Straub et al. 1995, and 

Szajna 1996). Consistent with these critical studies, self-reported usage is shown to be correlated with 

none of the actual usages objectively measured. 

General optimism, on the other hand, is the most influential factor that has a significant, positive 

impact on several outcome variables (IU, UTG, and AU). This result suggests that an end user’s 

perception of the genre of the technology being introduced can be a stronger behavioral determinant as 

compared to the perceived usefulness and ease of use evaluation of a particular system or a particular 

product. Seeking ways to forester potential users’ positive, holistic attitude toward a technological 

innovation may hence greatly increase the likelihood of success of its implementation instances. Although 

no significant impact is found by PU on either self-reported or actual behavior, perceived usefulness is 

positively associated with general optimism, i.e., GO positively and strongly influences PU. The 

determinant role of general optimism shown in this study confirms previously published results (Zheng et 

al. 2005), which state that “Heavy” users have a significant higher computer optimism score comparative 

to other users, and GO significantly influences the membership probability of usage groups. Although 

CRS needed further improvement and objective barriers such as time constraints existed, “Heavy” users 

were willing to adapt their practice style to accommodate use of the system: they documented the clinical 

observation and generated and responded to reminders after patient encounter. In contrast, other types of 

users simply refused to adopt the system (light user group), or abandoned its use after initial trials 

(moderate user group). 

Counter to intuition, computer knowledge has a consistent negative impact on several outcome 

variables (UTG, AU, SAT). Zheng et al. (2005) report a similar finding using developmental trajectory 

analysis: an increase in computer knowledge score decreases the probability of a user’s being categorized 
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into heavy user group.1 We interpret this result as that a computer savvy user will hold higher 

performance expectations of software applications. In addition, a system’s deficiencies may be more 

transparent to knowledgeable users as compared to novice users. These effects may have an adverse 

impact on a person’s willingness to adapt to accommodate the use of a system. Nonetheless, this finding 

indicates that inadequate computer literacy is no longer a barrier to physicians’ adoption of IT, especially 

with a younger generation of physicians (mean age of the medical residents participated in this study is 

29.6), because improved computer knowledge does not necessarily lead to an increased likelihood of 

acceptance.  

5.2 System Evolution, Usage and Impact in Practice 

We now discuss the importance of the longitudinal analysis results in the context of CRS’ 

development and the series of findings out of this stream of work. CRS, designed as an evidence-based 

medical reminder system for small primary care physician practices, evolved over time into a 

‘lightweight’ EHR system in response to user feedback and observed trends in usage (Zheng et al. 2005 

and the current study). Our focus on usability and user acceptance is highly relevant given recent results 

that cast doubt on the efficacy of EHRs and CDSS in practice, as opposed to laboratory settings or small-

scale implementations (Romano and Stafford 2011). Multidimensional analyses of a re-engineered 

version of CRS, e.g. interface design (Zheng et al. 2009), social context for usage (Zheng et al. 2010) and 

exit strategies (Zheng et al. 2011), rooted in actual usage, is a model for future application development in 

research and practice. In particular, implementation of professional-quality applications in the practice 

context, routine and detailed collection of actual usage data, and analysis of the usage context are 

essential to developing health IT applications that are likely to be used and to improve medical practice.  

 

                                                 
1 The analysis of Zheng et al. (2005) uses the entire universe of responses : the residents who did not return valid 
questionnaire responses are also included. 
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6. Conclusions 

This paper proposes a new conceptualization of technology acceptance—constituting 

institutionalized use and developmental pattern—to study the longitudinal behavioral adaptation and 

change. This new view of technology acceptance is presented in the context of a highly-engineered 

application that has been extensively revised to account for observed trends in usage and user feedback 

and which we feel embodies best research practices for IT development and evaluation.  

To operationalize the developmental pattern construct, we used a semi-parametric, group-based 

modeling approach that identifies distinct patterns of trajectories within a population. We validated this 

model in an empirical setting where a clinical decision-support system was introduced to a group of 

internal medicine residents. We show that the new model, an extension to the original TAM incorporating 

four objective measures of actual usage from an implemented EHR, is able to reveal richer details of end 

users’ acceptance of technology, while the original TAM performs poorly in explaining observed 

developmental behavior when relying on traditional self-reported usage measures derived from the Cork 

et al. (1998) survey instrument  

The stream of research on electronic health records represented by our work on CRS, including 

the TAM extension, as discussed in this paper, embodies a number of features identified by Arnott and 

Pervan (2008) as essential for the health of the DSS discipline: it is directly relevant to medical practice; it 

is based on directly-measured usage of a professional-quality IT artifact, and it has benefitted from 

external funding. As such, our work makes a contribution to resolving the “tension between academic 

rigor and professional relevance” (p. 667).  

This new notion of technology acceptance supports our multidimensional analysis of application 

usage: sophisticated users of IT applications have high expectations of application quality, and traditional 

notions of comfort with IT are not associated with levels of usage. Thus, future analyses of health IT 

applications must rigorously address ‘simple usage’—instances of interaction with system to understand 
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adoption; ‘complex usage’—details of interaction with user interface (including exception management), 

and ‘usage context’—how users interact with each other and reinforce system usage, or lack thereof.  
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Table 1: Summary of Actual Usage Measures 

 

 

Table 2: Correlation Matrices of Main Model Constructs 
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Table 3: Regression Results 
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Figure 1. Screenshot of CRS Main Workspace 
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Figure 2: Revised Technology Acceptance Model (recreated based on Davis et al. 1989) 

 

 

 

 

 

Figure 3: Developmental Trajectories Identified 
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Figure 4: Results of Model Testing (* P < .05; ** P < .01; *** P < .001) 
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