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Additivity of information value in two-act linear loss decisions with normal priors.   

 

Abstract: For the two-act linear loss decision problem with normal priors, conditions are 

derived for which the expected value of perfect information about two independent risks 

is super-additive in value. Several applications show how a variety of decision problems 

can reduce to the canonical problem, and how the general results obtained here can be 

translated simply to prescriptions for specific situations.    

 

Keywords: Probability, uncertainty, value of information. 
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1. Introduction 

The likelihood of extreme events can increase when there are multiple 

uncertainties. Does this mean that the value of information increases in the same 

proportion?  

In a simple two-act linear loss decision problem under uncertainty, the decision 

maker (DM) has a choice between doing nothing and taking some action, A and receiving 

an uncertain value x. The DM chooses A if the E(x)  > 0. The actual value x typically 

differs from E(x), but if the x >= 0, then nothing has been lost by choosing A. If the x < 0, 

then for every additional dollar by which the x differs from E(x), the DM loses an 

additional dollar. Many real decisions are in this class.  

If the DM can obtain information about x prior to deciding, then downside risk 

can be reduced. Specifically,if the best estimate of x is less than 0, then the decision 

changes – A is rejected and an expected loss is averted. Otherwise, the decision does not 

change and no loss is averted. The expected value of perfect information (EVPI) is the 

expected loss averted if perfect information becomes available. If there is only one 

possible outcome to the uncertainty that would switch the decision, the value of 

information is the product of the probability of a switch and the loss averted when the 

switch occurs (Behn & Vaupel, 1982). When the uncertainty is a continous probability 

distribution over x, the analogous formula is -INTEGRAL –infinity to 0 of x fx dx, where 

f is the probability density function. If the distribution, i.e., fx = exp(-1/2 mu/sigma etc, 

the resulting formula is called normal linear loss integral, and its behavior was well 

characterized by Raiffa and Schlaifer (1961). 
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Results about EVPI are known to be difficult to generalize (Hilton, 1981), but 

specific analyses have yielded substantial qualitative insights. Felli and Hazen (1998) 

demonstrated that we get significant improvement in estimates of EVPI when the entire 

decision context is considered, rather than simply the one-way sensitivities of the value of 

an alternative to each uncertain variable.  Hammitt and Shlyakhter (1999), among other 

things, explored ways in which the interaction of variables affects value of information. 

In particular, they showed how having different prior information can drastically affect 

the value of new information about a variable (in two-act linear loss decisions. They went 

so far as to consider the value of information (in a ___ decision – something other than 

TALL?) about variables having a multiplicative relationship, i.e., x = yz, essentially 

finding that percentage error matters. Clearly, one factor that often raises or lowers the 

EVPI about an uncertainty is the presence of other information about other uncertainties.   

Thus, if we add a second uncertainty or risk, extreme outcomes (and downsides), 

become more likely. For example, a lender may have concerns about two risks facing a 

borrower, where if both risks turn out badly, default is much more likely. In such cases, it 

may be desirable to obtain all potentially available information so as to avoid the 

downside. Conversely, it might be that the safety mechanism (not acting) is already 

adequate. In such cases, an appropriate switch in the decision may be so likely, even 

under partial information, that the incremental value of having complete information is 

small. If information is costly, as with experiments or polls, then it is important to know 

which of these cases obtains. That knowledge would improve the allocation of risk 

management resources applied to information acquistion.  
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We can ask when is the value of information about two such uncertainties super-

additive and when is it  sub-additive, i.e., what makes the value of information about two 

sources of uncertainty combined greater than the sum of the value of information from 

each source independently.. This question was addressed with some success by Samson et 

al. (1989). They considered decisions with discrete probabilities on two separate events 

each with two discrete outcomes. That paper left as an open question the additivity of 

EVPI with the continuous distributions that may better characterize many uncertainties.   

In this paper, we shall consider the additivity question for the normal distribution, 

both as first case of continuous distributions, and an important distribution in its own 

right. EVPI here is driven by summary statistics of mean  and standard deviation .  We 

find both a simple approximation and a precise condition for super-additivity of the 

expected value of information about independent events in two-act linear loss decisions 

with normal prior distributions.  

 A more concrete motivation is to guide practice in decision and risk analysis. The 

value of analysis has been modeled as value of information, as in Watson and Brown 

(1984), i.e., where there are variables with estimated values and the estimates are 

improved by using assessment techniques. In planning an analytic intervention, questions 

often arise regarding how much analysis should be done (e.g., decomposition). In a 

related vein, super-additive information value has been posited as an explanation for 

certain organizational structures by Milgrom and Geanakoplos (1991).  

 

2. PROBLEM STATEMENT 
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 This section considers the following decision problem: A decision maker has a 

choice between receiving $x or refraining from action and receiving $0, where x = x1 + 

x2x1 and x2 are independent, x1 = 11, x2 = 2   2, 1 follows normal distribution 

with mean 0 and standard deviation 1, and 2 is independent of 1 and is also normal 

with mean and standard deviation 2. Let denote 12The case where the choice is 

instead between $x1 and $x2 is similar.  

 The decision maker has the information gathering options of either: purchasing no 

information; purchasing perfect information about x1 (or x2) with an option to later 

purchase information about x2 before making the decision (paying a premium for the 

flexibility); or purchasing perfect information about x1 and x2 right away without paying a 

premium. 

 Let V1 denote the EVPI on x1 alone, V2 denote the EVPI on x2, and V12 denote the 

EVPI on x1 and x2 together.  Assume that information about both uncertainties is fairly 

priced, that is, V1 is equal to the cost of information about x1, and likewise for V2 and x2. 

When we consider implications of the EVPI results, we shall also assume that the 

decision maker wishes to maximize expected monetary value. This is reasonable when 

the value and costs involved are small relative to the wealth of the decision maker (or, 

often, of the decision maker’s employer). 

 Almost by definition, if the EVPI about x1 and x2 is super-additive (V12 > V1 + 

V2), the decision maker would tend toward an all-or-nothing approach to information 

acquisition. Information would be obtained about both uncertainties or neither, but not 

about one and not the other. If the EVPI is close to additive, then the decision maker can 

purchase one piece of information and perhaps purchase the other later in the (somewhat 
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unlikely) event that the value of the second piece of information conditional on the 

outcome of the first is substantially increased. If the EVPI is sub-additive, the decision 

maker may be willing to preclude the opportunity to get the second piece of information.   

 For the current problem, Raiffa and Schlaifer’s analysis gives directly relevant 

discussion of the general behavior of EVPI curves in sampling problems for two-act 

decisions. This paper uses their notation where f is the normal probability density function 

and G is 1 minus the cumulative probability density function. The subscripts N and N* 

denote that the functions are for normal or standard normal distributions, respectively, 

and these subscripts are often suppressed. Raiffa and Schlaifer analyze EVPI as a function 

of the number of observations of a normal process, yielding the following key fact: EVPI 

= Max EV achieved with PI – Max EV achieved without PI.  Assume  > . Without 

perfect information, the expected value is Max(E(x),0) = . With perfect information 

about x1 only, E(x) = x1 + E(x2) = x1 + 2. If x1 is to be revealed, the expected value to the 

decision maker before learning x1 increases to V1 = E[Max(x1 +  2)].  

Now, let u1 = / 1. Then V1 is equal to the linear loss integral LN*(u1) as in Raiffa and 

Schlaifer, and the above expectation works out to  

 = 1[fN*(u1)- u1GN*(u1)]                     (1) 

 The formula for V2 is the same, of course, with a change in subscripts.  If we let 

 12 = (1
2
 + 2

2
).                (2) 

Then,    

V12 =  12[fN*(u12)- u12GN*(u12)]                     (3) 

 What drives EVPI is the quantity E(x1+x2), and the variance of this quantity is the 

sum of the variances on its parts.  The question of super-additivity comes down to the 
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question of whether the tails of the two small bell curves (for information about x1 or x2) 

on the value of x are together "larger" than the tail of the wider bell curve corresponding 

to perfect information about both x1 and x2.   

 Raiffa and Schlaifer’s analysis provides intuition about a closely related problem.  

A graph showing the expected value of information in a sampling problem is an S-shaped 

function of the number of observations.  The first few observations have almost no value 

because they are generally insufficient to switch the decision. Value then increases for a 

while as observations are added. Eventually there are enough observations and further 

observations do not add value because if the decision were going to switch, it most likely 

would have by this point.  Considering two sets of observations of size m and n, if the 

slope of the graph of expected value of information vs. number of observations from 0 to 

m observations is less than the slope from m to m+n observations, then the information 

from the two sets of observations is super-additive in value (and it does not matter if m 

and n are switched here).   

 In our current problem, the drivers of additivity in value of information are 

similar. it is known that in “toss-up” situations, where  is close to 0, or 1 and 2 are 

large, a single piece of information can be enough to decide on one alternative or the 

other, and the second piece of information is less likely to make a difference.  In “long-

shot” situations, where  is large or where 1 and 2 are small, it is hard for the first piece 

of information to swing the decision, but two pieces of information might.  However, 

intuition does not tell precisely what the words “small,” “large,” “close” and “far” mean 

in this paragraph, e.g., is 2 small? Therefore, concrete results are needed when conditions 

are not so extreme as to make the additivity situation obvious. 
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3. THE ADDITIVITY RATIO 

 To make the intuitive statements from the last section more precise, a spreadsheet 

was used to plot the additivity ratio defined by Samson et al, V12/(V1+V2), against 1 for 

different values of  = 1-2, while holding 2 fixed at 1.  Figure 1 shows the additivity 

ratio for several values of  and  terms. 

 

---- INSERT FIGURE 1 ABOUT HERE ----- 

  

 This curve (viewed as a vertical slice of the surface in Figure 1) can have two 

shapes.  For large , the ratio starts at 1 (where 1 = 0), because the smaller piece of 

information (i.e., the one with smaller is likely to be too small to make a difference 

once the larger piece of information has changed the expected value and moved it farther 

from 0. The additivity ratio then increases to a maximum at 1 = 2, and then decreases 

asymptotically to 1 again as 1 takes on the role of the larger piece of information.  This 

maximum increases without bound as , increases and 2 is held constant, e.g., for  = 3, 

1 = 2 = 1, the additivity ratio is 12.5.  For small , the ratio still starts at 1, increases for 

a short while (or not at all if  = 0), then decreases to below 1, reaches a minimum near 

1 = 2, and returns asymptotically toward 1.   For a given 2, and for a large enough 

value of , the switch from super-additive to sub-additive looks as though it will never 

occur.  As shown later, the level of 1 where the switch does occur, increases without 

bound as a function of .  A couple of observations: in the first case the additivity ratio is 
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everywhere greater than 1 and increasing in , and increases in 1 until a level that is also 

increasing in .  In the second case, the minimum point of the additivity ratio is 

decreasing in , and reaches its lowest possible value of 1/2 for  = 0, where (V12)
2
 = 

(V1)
2
 +(V2)

2
. This is consistent with the notion that toss-up decisions lead to the most 

sub-additivity, and it holds because at  = 0, V is exactly proportional to standard 

deviation.   

 The fact that the additivity ratio is lowest when 1 = 2  is to some extent an 

artifact of the way we have defined the ratio. An alternate measure could be (V12 - V1)/V2, 

the ratio of the expected incremental value of resolving the second uncertainty after the 

first has been resolved to the expected value of resolving the second uncertainty alone.  

With either additivity measure, a value above 1 implies super-additivity and a value under 

1 implies sub-additivity.  The value of the alternate measure varies more both below 1 

and above 1, e.g., it is 0.414 (= 2-1), when  = 0 and 1 = 2 , but as 1 grows relative to 

2 the ratio approaches 0, and as 2 grows relative to 1 the ratio approaches 1.  

 

4. A CONDITION FOR SUPER-ADDITIVITY   

 The behavior of the additivity ratio curve seems systematic enough to justify a 

search for the rules that govern it.  First, more notation is needed: 

    u1 = /1;              (4) 

    u2 = /2;              (5) 

   u2
+
 = the value of u2 at which EVPI is additive;          (6) 

    S = 1/2;             (7) 
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    R = (1+S
2
);              (8) 

and 

    uR = u2/R.             (9) 

 Constraining the additivity ratio to be equal to 1 and then taking the full 

differential in terms of u2
+
 and S yields the following equation derived below:  

  du2
+
/dS = [f(u1)- (u1/uR) f(uR)] / [G(u2)+G(u1)-G(uR)]        (10)  

Derivation:  The boundary between sub and super-additivity will be found by 

constraining u2
+
 so that V12 = V1+ V2.  We could equivalently constrain u1, or  Letting 

L N* L denote the unit normal linear loss integral, writing out the V terms yields 

  2R x L(u2/R) = 2S x L(u2/S) + 2L(u2),           (11) 

     R x L(u2/R) - S x L(u2/S) - L(u2) = 0.         (12) 

Letting Q represent the left hand side of the equation 12, full differentiation of Q will 

identify du2
+
/dS. 

Recall from Raiffa and Schlaifer that,  

 LN*(u) = f N*(u) - uG N*(u), and dLN*(u)/du = -G N*(u).        (13) 

We shall now suppress the subscript N*.  We set  

   (Q/u2)du2 + (Q/S)dS = 0,          (14) 

    du2
+
/dS = -(Q/S)/(Q/u2).          (15)  

Defining uR = u2/R, and noting that u1 = u2/S yields, 

  Q/u2 = R(L(uR)/u2) - S(L(u1)/u2) - L(u2)/u2,         (16) 

  = L(uR)/uR - L(u1)/u1 - L(u2)/u2.           (17) 

  = -G(uR) + G(u1) + G(u2).          (18) 

Next, it is necessary to obtain the other half of the differential: 
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 Q/S = (R/S) L(uR) + R (L(uR)/S) - L(u1) - S (L(u1)/S).         (19) 

      (S/R) L(uR) + R (-u2/R
2
) (S/R) L(uR)/(uR) - L(u1) + S(u2/S

2
) L(u1)/(u1).       (20) 

Completing the last two partial derivatives yields, 

      (S/R) L(uR) + R(-u2/R
2
) (S/R) (-G(uR)) - L(u1) + S(u2/S

2
) (-G(u1))       (21) 

  = (S/R) L(uR) + u2S/R
2
 G(uR)) - L(u1) – u1(G(u1)).       (22) 

Expanding the L terms yields, 

 (S/R) [f(uR) - uRG(uR)] + u2(S/R
2
) G(uR) - [f(u1) – u1G(u1)] – u1G(u1)]        (23)  

  =  (S/R) f(uR) - f(u1).            (24) 

Replacing S/R with uR/u1, the total differential du2
+
/dS from (15) is,   

 [f(u1) - (uR/u1)f(uR)] / [G(u1) + G(u2) - G(uR)].            (25) 

 

 The differential equation for u2
+
 can be graphed numerically without a neat closed 

form solution.  In this figure 2, 2 is set at 1, but for different values we would simply 

scale the x and y axes by a factor of 2. Note that that du2
+
/dS contains only "f" terms in 

the numerator and "G" terms in the denominator, which is reminiscent of the hazard 

function, usually denoted H(u) = fN(u)/GN(u). Figure 2 graphs u2
+
 against S (or, if units 

are defined so that 2 = 1, the graph is of  against 1).  The starting point is u2
+
(0) = 0, 

because it is clear that in a sampling problem where  = 0 there are no values for the  

terms that lead to super-additivity. 

 

----- INSERT FIGURE 2 ABOUT HERE ----- 

 

5. AN APPROXIMATION FOR SUPER-ADDITIVITY 
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 Calculating the integral from the previous section would be inconvenient in 

practice, and it could help to use an approximation for the solution. One possibility is to 

focus on the similar structure of the numerator and denominator in (25), and, noting that 

h/h) = ln(h) for some function h, try something like ln[[-G(u1)-G(uR)]]. Unfortunately, 

because of the dissimilarities in the numerator and the denominator, nothing of this sort 

proves useful. Another possibility works better. We start with our definition of additivity, 

V12 = V1 + V2.  Noting that V12 = 12L(u12), V1 = 1L(u1) and V2 = 2L(u2).  Let us 

temporarily fix 1= 2 = 1. Then the additivity border is 12L(u12) = 21L(u1). Because 

12 = 21 (and therefore, u12 = u1/2) we can say that additivity occurs when 21L(u12) 

= 21L(u1), that is, where L(u12) =  2L(2u12), which occurs at u12  0.5.   

  No longer fixing the values of 1 and 2, we find that for S within a factor of 3 

of 1.0 (i.e., between 0.35 and 2.95), the equivalent approximation u2
+
 = (S/2), is accurate 

to within 5% of the actual u2
+
.  Above that u2

+
 flattens out more quickly than this 

approximation.  Near 0, du2
+
/dS, for both the actual function and the approximation, 

approaches infinity.  It may be more convenient in some circmstances to rewrite the 

approximation above as one of the following:  

     
+
 =  (12/2),          (26) 

or equivalently,  

     (u1u2)
+
 = 1/2.            (27) 

The form for u2
+
 is close enough to linear that the approximation holds over a substantial 

range.  For any  > 0, when S is small enough, there is super-additivity, and for any S, 

when  is large enough there is super-additivity.  Note, if x1 and x2 are not judgmentally 
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independent, (e.g., if they are bivariate normal), the curve for super-additivity would lie 

above this one by an amount increasing in the correlation between the two variables. 

 This approximation has an appealing intuitive interpretation.  The right side of the 

approximation is the geometric mean of the two standard deviations, modified by a 

constant. This sheds light on the earlier assertion that EVPI is sub-additive when the 

standard deviations are large and super-additive when they are large. It appears that the 

terms small and large do not mean very small and very large.  On the other hand, when 

there is super-additivity or sub-additivity in value between one quite small experiment 

and one quite large one, the magnitude of the effect and its value in planning analyses is 

smaller than when 1/2 is near 1. 

 An exogenous variable, k, may have affect the mean and the standard deviations. 

We may then ask for what value of k would information value be superadditive.  The 

general first-order case is where  = ak+b, 1 = ck+d, and 2 = ek+f.  Substituting these 

equations into (27), with a bit of manipulation we get an approximation for 

superadditivity that is the following quadratic function of k: EVPI is super-additive if  

(2a
2
-ce)k

2
 + (4ab-de-fc)k + (2b

2
-df) > 0.          (28) 

This equation has two solutions in k (not necessarily both positive), implying that 

as k increases, EVPI may switch from sub-additive to super-additive and back, which can 

happen if 1/2 starts out greater than 1 and then decreases to less than 1 as k increases.

 

6. NUMERICAL EXAMPLE 

The following example illustrates the use of this result for several sets of numerical 

parameter values. Consider a company that has the opportunity to build a plant for a 
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known fixed cost F in order to sell a fixed quantity Q of a new product, and facing risk on 

both cost and price. The price is uncertain P and the cost C is uncertain.  Before deciding 

to build the plant, the marketing department has asked for extra market research funding 

to better estimate P, while the manufacturing department wants funding to commission an 

engineering study to better estimate C.  

The decision maker wonders whether either study should be funded, or both, or 

neither. The decision maker considers P and C to be independent, and assigns the pre-

posterior distributions P ~N(E(P), P), and C ~N(E(C),C). If P and C were known, the 

profit from this opportunity would be easily calculated as (P-C) x Q – F. Because the 

relationship here is linear and additive,  

E((E(P)-E(C)) x Q – F.          (30) 

The preposterior standard deviation of the mean profit estimate with respect to the market 

research study is 1P x Q, and for the engineering study 2C x Q.  In this case, the 

value of one alternative is known with certainty, while there are two pieces of information 

relevant to the value of the other alternative. This decision structure has the same 

conditions for super-additivity as the one in which there are two alternatives each 

involving one uncertainty. 

This example illustrates the use of the approximation, predicting sub- (super-) 

additivity when u2 < (>) √(S/2). It also illustrates some of the major characteristics of the 

behavior of the additivity ratio with normally distributed variables. We consider cases 1-6 

in which, respectively: 1) both uncertainties are small, 2) where both uncertainties are 

large, 3) one uncertainty is large and one is small, 4) Parameters as in the previous case, 

but standard deviations are the same and set so that V12 is approximately the same as in 
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the previous case, 5)  standard deviations are not equal, and 6)  standard 

deviations are equal. The numerical assumptions for each case are shown in the first 

table, and the predictions and results are shown in the second table.  

 

----- INSERT TABLE 1 ABOUT HERE ----- 

 

----- INSERT TABLE 2 ABOUT HERE ----- 

 

 Examples such as these can be used to strengthen intuition about value of 

information from multiple sources. Note, in case 3, the alternative ratio (V12-V1)/V2 gives 

a stronger measure of super-additivity (3.970).   

 

7. OTHER APPLICATIONS 

The results in this paper could also be relevant to questions involving use of 

information from multiple sources, e.g., organizational structure or bundling and pricing 

of information products. Some possibilities along these lines follow. The conditions for 

the super-additivity approximation and formal condition are in general form. The fact that 

the conjugate distribution for the normal is itself the normal distribution allows many 

common problems to reduce to the form for which these results apply.  

1) Variables that are sums of other variables:  Consider the case in which there 

are two alternative, each the sum of independent, normally distributed variables, that is x1 

= yiI, x2 = yjJ. To apply the results, we would assign  = | x1 – x2 |. If I and J do not 

overlap and K and L are non-overlapping subsets of I U J, then 1
2
 = i K

2
, and 2 = 
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i L
2
. Thus, the additivity condition applies to value of information about any partition 

of K, L.   

 This could occur in a situtation like the following: There is an intervention that 

can be applied in a number of countries.  The intervention will be applied in either the 

Eastern Hemisphere (I) or the Western Hemisphere (J), and the benefit from either 

strategy will be the sum of the benefit in each of the countries in the targeted region.  

Demographic research that would allow precise estimates of benefits within a given 

country, on the other hand, is most convenient to do in English speaking countries (K) or 

Spanish speaking countries (L). By translating to the conditions of the additivity 

approximation, one can quickly identify whether the two sets of demographic research 

activities are super-additive in value, with respect to the decision about where to 

intervene.  It would also be possible to predict the additivity of the value of market 

research as the partitions of I and J and of K and L are toggled simultaneously. This 

structure could even be combined with something like the numerical example, where 

research is done on the cost and benefit of the intervention in each region, where cost and 

benefit are normally distributed so that the net value in each region is still normal.  

2) Sampling:   Another example is the sampling problem discussed at length by Raiffa 

and Schlaifer, in which it is possible to take a sample of n observations (with standard 

deviation ), m observations, or both. A possible action has value that correlates with an 

uncertain parameter, e.g., y = ax - b. Two possible samples about x may be taken to 

resolve some of the uncertainty. The approximation would only work in this case if the 

number of prior observations, k, is large so that the pre-posterior variance per observation 
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stays nearly constant at 
2
/k.  In this case, 1

2
 = m(

2
/k), and 2

2
 = n(

2
/k), so the two 

samples are super-additive in value if (approximately)  

     > (/k)2(nm)
1/4

.            (31) 

3) Mixed discrete and continuous probability distributions:  Another example is 

a variation on the problem analyzed by Samson et al.  In a choice between X and 0, where 

the value of X has one normal distribution in one state of nature (with a mean value of 

E(X1) in state ω1) and another normal distribution in a second state of nature (mean E(X2) 

in state ω2), and the probabilities (p and 1-p) of these two states of nature are known, the 

problem reduces to the first example above, where  

     = p X1 + (1-p) X2,           (32) 

 while  

         1
2
 = p (

2
|ω1),           (33) 

 and  

      2
2
 = (1-p) (

2
|ω2).            (34) 

Here, the super-additivity approximation can be stated as a function of p: 

Information about the value of X in state 1 and information about the value of X 

in state 2 is super-additive in value if:  

  [p(X1)+(1-p)(X2)]/[(p)(1-p)]
1/4

 > [(|ω1) x (|ω2)].        (35) 

This result could be combined with Samson et al’s discrete conditions to 

determine whether to analyze resolve the discrete chance nodes or uncertainty 

about endpoint value distributions or both, for either or both states. 

 

8. CONCLUSIONS 
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 There are three main findings in this paper. The first finding is a full 

characterization of the behavior of the additivity ratio curves for two-act linear loss 

decisions with normal priors. The fact that the additivity ratio is no less than 1/2 and 

unbounded from above suggests that it may be more beneficial than one might intuit to 

obtain information about multiple uncertainties. The second finding is the differential 

equation defining the formal condition for super-additivity.  The last finding is the 

approximation for this condition, which is more compact and accurate than might be 

expected.  These specific results have benefits over the intuitive directional statements 

that could already be made regarding the additivity of value.  The approximation is easy 

to remember and to compute by hand.  This facilitates identification of super-additivity in 

cases where the situation is not so extreme as to make it obvious.   

 By exploiting well-known characteristics of normally distributed variables, a 

variety of problems can be translated to this template in order to analyze information 

value super-additivity. Such analysis can have implications for risk management 

problems involving the collection of information from multiple sources. The results can 

determine when it makes sense for decision makers to use limited information and when 

it makes sense for them to seek extensive information if they are going to use information 

at all.  
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Figure 1: The additivity ratio V12/(V1+V2) 
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Figure 2: The boundary between super-additivity and sub-additivity (2 = 1) 
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TABLE 1: Assumed values for numerical example. 

Case E(P) P E(C) C Q F 

1  35 1 30 1 20 45 

2 35 10 30 10 20 45 

3 35 1 30 5.5 15 45 

4 35 4 30 4 15 45 

5 35 5 30 1 10 50 

6 35 4 30 4 10 50 
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TABLE 2: Predictions and results for numerical example. 

Case u2 S √(S/2) Prediction V1 V2 V12 Ratio 

1 2.75 1 0.707 Super-additive.  0.018 0.018 0.278 7.738 

2 0.275 1 0.707 Sub-additive 55.287 55.287 87.465 0.791 

3 0.364 0.182 0.302 Super-additive 0.127 20.065 20.573 1.019 

4 0.354 1 0.707 Sub-additive 11.868  11.868 29.945 0.882 

5 0 5 1.581 Sub-additive 19.947  19.947 20.342 0.850 

6 0 1 0.707 Sub-additive 15.958 15.958 22.568 0.707 
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