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Valence intersubband lasers with inverted light-hole effective mass
G. Suna) and Y. Lu
Department of Physics, University of Massachusetts at Boston, Boston, Massachusetts 02125

J. B. Khurgin
Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore,
Maryland 21218

~Received 19 November 1997; accepted for publication 26 January 1998!

We propose a novel intersubband laser based on transition between the ground-state heavy-hole
subband~HH1! and light-hole subband~LH1! in a k-space region where the light-hole effective
mass is inverted. The laser structure can be electrically pumped with a simple quantum cascade
scheme. Our calculation shows that with only a small fraction of the carrier population in the upper
subband~LH1!, it is possible to achieve population inversion between the two subbands locally in
K space where the light-hole effective mass is inverted. Optical gain in excess of 150/cm can be
achieved with a pumping current density on the order to 100 A/cm2 at the temperature of liquid
nitrogen. © 1998 American Institute of Physics.@S0003-6951~98!02112-3#

The coherent light sources have covered the spectral
range from the soft x-ray region to the far infrared. Mean-
while, development of microelectronics has pushed the fron-
tier of electronic devices beyond the 100 GHz range. Here
we propose a new kind of intersubband lasers that will po-
tentially bridge the gap between the far infrared and GHz
microwaves, specifically in the 100 GHz;10 THz range.
Rapid advance of epitaxial growth techniques has opened the
possibility for the development of a fundamentally new type
of the semiconductor devices based on transitions between
the subbands in quantum wells~QWs! and superlattices. Us-
ing the method of band-gap engineering, it is possible to
adjust the energy of intersubband transition over a wide
range. Recent development of the conduction-band quantum
cascade laser~QCL!1 based on intersubband transitions in
two-dimensional semiconductor QW structures is a promis-
ing step, but so far, it has not been operated at wavelengths
longer than 15mm. Since the momentum scattering time in
semiconductors is less than 1 ps, the operation of 1 THz
intersubband lasers would require obtaining stimulated emis-
sion from a line with a Q-factor less than one, which seems
to be highly improbable. The proposed scheme of valence
intersubband laser using the feature of inverted light-hole
effective mass, on the other hand, can circumvent these prob-
lems and achieve lasing in the desired THz range with a
much simplified design of isolated single QWs.

For all practical purpose, conduction subbands in QWs
can be treated as discrete levels when the band nonparabo-
licity can be negligible. It is therefore necessary to have the
whole population of the upper subband exceed that of the
lower one in order to achieve optical gain. Since the relax-
ation rates between different subbands are determined by the
same physical processes, a complex multiple QW structure
needs to be designed to engineer the lifetimes of involved
subbands, as pointed out in our earlier work.2 The conven-
tional band-to-band semiconductor laser, on the other hand,
appears to be more attractive from the point of view of

achieving population inversion because of the nature of its
band dispersion. Clearly, the difference in band dispersion
stipulates that electrons in the conduction band always tend
to relax toward the bottom, while electrons in the valence
band tend to stay away from the top of the valence band, so
that their absorption spectrum does not overlap with the
emission spectrum of electrons in the conduction band. The
lifetime of the upper laser states near the bottom of the con-
duction band is determined by the much slower interband
process, while that of lower laser states near the top of the
valence band is determined by the much faster intraband pro-
cess. Therefore, lasing threshold can be reached when the
whole population of the upper conduction band is only a tiny
fraction of that of the lower valence band. Such a desirable
feature has been demonstrated to a lesser degree in a QCL
based on localk-space population inversion without the total
intersubband population inversion,3 owing to the band non-
parabolicity as discussed by a recent theoretical study for the
QCL.4 Here we propose a scheme of valence intersubband
lasers in which we can significantly enhance this feature by
engineering the dispersion of two valence subbands in a QW
similar to that of conduction and valence bands, i.e., one of
the subbands shall be electron-like and the other hole-like. In
order to achieve this, one of the subbands shall have its ef-
fective mass inverted. Such inversion is a result of interac-
tion between the subbands, which is much stronger in the
valence band. Indeed, in the valence band of most diamond
and zinc-blende semiconductors, light- and heavy-hole sub-
bands usually anticross, and near the point of anticrossing,
the light-hole effective mass becomes electron-like. The in-
plane dispersion of valence subbands can be calculated using
the Kane model.5 Since in GaAs-based materials theG8 cou-
pling with G6 bands is weak, the 83 8 Hamiltonian matrix
in the k–p theory reduces to a 43 4 valence band matrix
taking into account the coupling between heavy-hole and
light-hole bands.6 The anticrossing between subbands LH1
and HH2 is clearly demonstrated in Fig. 1 producing a shal-
low energy valley in the in-plane dispersion of subband LH1
for a well width of 70 Å.a!Electronic mail: gsun@cruiser.engin.umb.edu
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If we now designate states near theG-point of subband
LH1 as the intermediate states,u i &, states near the valley
~inverted-effective-mass region! of subband LH1 as the up-
per laser states,uu&, states in subband HH1 vertically below
the valley of subband LH1 as the lower laser states,u l &, and
states near theG point of subband HH1 as the ground states,
g& ~counting the hole energy downward!, we can see that the
situation closely resembles the one in the conventional band-
to-band semiconductor laser. The upper and lower laser
states can be quickly populated and depopulated through fast
intrasubband processes, while the lifetime of upper laser
states is determined by a much slower intersubband process
between subbands LH1 and HH1. The inverted-effective-
mass feature requires the coupled subbands to be closely
spaced in energy. In a GaAs/AlGaAs QW, the energy sepa-
ration between subbands HH1 and LH1 is typically less than
the optical phonon energy~36 meV!, which suppresses the
nonradiative intersubband transitions due to the optical pho-
non scattering. Thus, near the inverted-effective-mass region
in k space, the lifetime of upper laser states can be as long as
a few nanoseconds, much longer than that of lower laser
states on the order of picoseconds,tu.t l , a necessary con-
dition for achieving population inversion between the laser
states.

A quantum cascade scheme as shown in Fig. 2 is em-
ployed for electrical pumping between the two subbands,
where carriers can tunnel from subband HH1 to LH1 in the
next lasing cycle. We have estimated the tunneling time be-
tween subbands HH1 and LH1 to bet tun55 ns for a barrier
width of 50 Å taking into account the small tunneling prob-
ability between the heavy- and light-hole subbands. In com-
peting with the tunneling process, the acoustic phonons can
scatter carriers directly to the lower subband HH1 in the next
laser cycle, resulting in current loss. The acoustic phonon
process can have a much shorter scattering time oftph 5 0.1
ns at the liquid-nitrogen operating temperature of the laser.

Since the intrasubband process is significantly faster
than the intersubband process, we can use quasi-Fermi levels
(EFl , EFh) to describe light-hole and heavy-hole distribu-
tions in their respective subbands under a given pumping
current density,Jp 5 eNd(1/t tun11/tph), wheree is the free
electron charge,d is the well width, andN is the total hole
population distributed between subbands LH1 (Nl) and HH1
(Nh! as

N5(
ki

ki

pd
@ f l~ki !1 f h~ki !#Dki , ~1!

whereki /pd is the density of states ink space for the inter-
val of Dki at a given in-plane wave vector~ki5Aki ,x

2 1ki ,y
2 !,

and f l(ki) and f h(ki) are Fermi–Dirac distribution for holes
in subbands LH1 and HH1, respectively. A rate equation can
be established for the populationNl of subband LH1,
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Wind~ki !@ f l~ki !2 f h~ki !#
ki
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Dki
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ki

Wspon~ki ! f l~ki !
ki

pd
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taking into account contributions from carrier tunneling, in-
duced and spontaneous emissions. Since the energy separa-
tion between subbands HH1 and LH1 is below the optical
phonon energy~36 meV! and the laser is designed to operate
at the temperature of liquid nitrogen, the contributions from
nonradiative intersubband acoustic phonon scattering and
Auger processes are neglected in Eq.~2!. The spontaneous
emission rate is given by

Wspon~ki !5
ñe2E~ki !

3p2e0m0
2c3\2 uM p~ki !u2, ~3!

where\ is the Planck constant,m0 is the free-electron mass,
e0 and c are the permittivity and light velocity in vacuum,ñ
is the index of refraction,E(ki)5El(ki)2Eh(ki) and
M p(ki) are the optical transition energy and momentum ma-
trix element between subbands LH1 and HH1 atki , respec-
tively. The induced transition rate is related to the spontane-
ous rate by the Einstein relation,Wind(ki)5n(E)Wspon(ki),
wheren(E)51/@exp(E/kBT)21# is the number of photons
with energyE at temperatureT.

A steady-state distribution can be obtained by setting Eq.
~2! to be zero, then solved self-consistently with Eq.~1! us-
ing the Monte Carlo method. The result of quasi-Fermi lev-
els for the structure with well and barrier widths of 70 and 50
Å, respectively, is shown in Fig. 1 for a hole density of 6
31017/cm3, under a pumping current density ofJp590
A/cm2. The positions of quasi-Fermi levels relative to their
respective subbands suggest that the population inversion

FIG. 2. A schematic of the quantum cascade scheme. The tunneling and
phonon scattering processes have been identified as the mechanisms for
pumping and current loss in the laser operation, respectively. The hole en-
ergy is counted upward.

FIG. 1. In-plane dispersions of subbands HH1, LH1, and HH2 for a single
QW with a well width of 70 Å. The hole energy is counted downward.
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can be established locally near the inverted-effective-mass
region of subband LH1 even though the overall hole popu-
lation in subband LH1 is less than that in subband HH1.

The expression for optical gain at a photon energyE can
be given as

g~E!5
e2\h

m0
2E

uM pu2E G

@E2~El 2Eh!#21G2 r r~El2Eh!

3@ f l~El !2 f h~Eh!#d~El2Eh!, ~4!

wheren51/e0cñ5377V/ñ is the impedance of the medium,
r r(El2Eh) is the reduced density of states for the l-h tran-
sition, andG is the broading determined by all the dephasing
processes including both intrasubband and intersubband scat-
tering, but mostly by the much faster intrasubband process.
Equation~4! is integrated over the range ofEl2Eh where
the population inversion is established. If this region is wide
enough compared to the broadening, the Lorentzian shape
can then be approximated bypd@E2(El2Eh)#, and Eq.~4!
reduces to

g~E!5
pe2\h

m0
2E

uM pu2r r~E!@ f l~El !2 f h~Eh!#uEl2Eh5E .

~5!

In case that the broading is comparable to the energy range
of population inversion, this approximation may lead to an
overestimate of optical gain by about a factor ofA2.

The optical gain in a laser structure with a well width of
70 Å and a barrier width of 50 Å as a function of photon
energy is shown in Fig. 3 for several injected hole concen-
trations in the 531017;131018/cm3 range. It should be
pointed out that the optical gain is calculated under the con-
ditions of liquid-nitrogen operating temperature and a rela-
tively long tunneling time of 5 ns. A maximum optical gain
of 170/cm at the laser wavelength of 67mm can be achieved
for the hole concentration of 731017/cm3.

In summary, we have studied a novel valence intersub-
band laser based on the inverted-effective-mass feature in the
light-hole subband in a GaAs/AlGaAs QWs. The advantage
associated with this design is that the population inversion
needs to be achieved only locally ink space within the
inverted-effective-mass region, while the total population in
the upper light-hole subband is only a small fraction of the
population in the lower heavy-hole subband. We have theo-
retically investigated simple laser structures of quantum cas-
cade scheme which consists of multiple isolated single QWs.
Our results indicate that without establishing total population
inversion between the two subbands LH1 and HH1, it is
possible to achieve local population inversion ink space due
to this inverted-effective-mass feature and obtain an optical
gain in excess of 150/cm with a pumping current density
about 100 A/cm2 at the operating temperature of liquid ni-
trogen.
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FIG. 3. Optical gain as a funciton of the photon energy for several hole
concentrations in the QW structure of a GaAs well width of 70 Å and a
AlGaAs barrier width of 50 Å.
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