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An application of value-of-information to decision process reengineering 

Abstract: Value of information (VOI) methods were used to guide changes to recurrent 

organizational decision processes, under a reengineering effort at a major automobile 

manufacturer to reduce supply and demand imbalances involving capacity for parts and 

products. We modeled representative decisions assuming as they would be made with 

and without the benefit of improved information flows, and calculated the resulting 

increase in expected value. By factoring in the entire range of decisions affected by a 

process change, we scaled the value of each organizational change to a life-cycle value. 

The results quantified the impact of organizational changes in order to refine and 

prioritize a portfolio of change projects. 

 

1. Introduction 

Value of change as value of information 

This paper applies the decision analytic idea of value of information (VOI) to plan 

improvements to an organization’s decision processes and information flows. The 

theoretical idea of applying VOI to value information systems is well-known: for each 

possible information system, model the decision maker’s information for each state of 

nature information and calculate the expected value for relevant decisions. This is 

difficult in practice, as often there are too many possible information systems or too 



 2  

many decisions to model. We successfully adapted techniques from decision analysis 

(DA) in concert with a business process reengineering (BPR) effort to guide 

improvements at General Motors.  

Planning changes typically requires prospective performance measures (Sarkis et 

al, 1997) and although information can be more nebulous than, say, materials handling, 

there is a literature on analytic methods for evaluating prospective information systems.  

The conceptual notion of using VOI (Raiffa, 1968) for this purpose is well-known (e.g., 

Vazsonyi 1976) and appears in standard management information systems textbooks 

(e.g., Turban and Aronson 1997, pp. 567-568). Both Hilton (1981) and Demski (1972) 

noted with disappointment the lack of practical applications of this concept. Such 

applications are still hard to find, although there have been recent efforts to evaluate 

(Kumar 1997, Khouja & Kumar  2002) decision support systems with regard to speed 

and flexibility, and to consider their optimal design (Herrmann & Schmidt 2002). These 

approaches are suitable when assessments for highly specific decisions and conditions 

can be obtained and timing of specific decisions can be controlled, e.g., within automated 

systems.  

For simplicity, we shall use the terms P1 and P2 to denote the as-is process (the 

process before changes) and the to-be process (with desirable improvements).  

Under the as-is process, the decision maker assigns probability distributions (in 

some cases deterministic assumptions) X|P1 for a set of parameters {X} such as the mean 

and standard deviation of the forecast a specific product’s demand. P1 does not 

necessarily represent the best information available within the company or make the best 

use of available information.  Let V(X) denote the expected value of decision  given 
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the distribution X, and let (X) denote the decision that maximizes V(X). Under an 

improved process, the decision maker assigns different probability distributions X|P2. 

Since the purpose of changing a process is to remove sources of error found in the pre-

existing process, we assume P2 will be more reliable than P1. The question of interest is 

not whether P2 is better than P1, but rather how much value this change adds and at what 

cost. To measure this, we calculate the expected value for each alternative under P2 and 

compare the value of the best alternative to the expected value (still calculated assuming 

P2) of worse alternatives that might be selected under P1.
1
  

The change in the probability distribution faced by the decision maker could arise 

in various ways: different people (who have different information) could make the 

decision; the same decision makers could receive different sources of information; the 

decision could be made at a different point in time; or using different assumptions. We 

call the value added in going from P1 to P2 the value of change (VOC).  We define:  

V1 = V((X|P1), X|P2),  

V2 = V((X|P2), X|P2), and  

VOC = V2-V1 

Now, an important step is to relate VOC for real processes to the theoretical value 

of information so that we can model both the P1 and P2 states. We can think of changes 

                                                 
1
 To the extent that any technique embeds its own biases, it over-estimates the value of its 

perceived optimal choice compared to other choices (Smith & Winkler 2006). In 

calculating VOC, we made the implicit assumption that the new process would have 

removed biases that might be present in the current process, but we recognized that 

results should be interpreted with some caution.  
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along the lines suggested by Keisler (1992), where a signal flowing through an advisor to 

a decision maker may be improved in various ways as it is collected, processed, or 

communicated. Such changes result in different situations for the decision maker. For 

example, 

1) P2 simply adds information to that from P1, thereby reducing uncertainty. In this case, 

VOC is standard expected value of information. Where possible, we make 

simplifying assumptions (e.g., normal distributions) so that we can calculate this 

value only using summary statistics such as the mean and standard deviation of 

forecasts under P1 and P2.  

2) P2 eliminates some bias.  In this case, ex-post VOI for a given decision is easily 

calculated (i.e., reduction in expected loss), but using expected value of information is 

less practical here as it would require assessing a distribution on the amount of bias.   

3) P2 provides a more accurate depiction of the level of uncertainty. Here, VOC is 

similar to Henrion & Morgan’s (1992) “expected value of including uncertainty,” or 

alternatively, we might think of the ex-post value of improved information about a 

variable’s as standard deviation or some other parameter.     

Meeting challenges of this approach 

In our application, the biggest challenge we faced was the sheer volume of 

decisions and information involved. There could be much to model, many potential 

interactions and many system alternatives.  Therefore, we needed to speed up the 

modeling process, either by making fewer models, creating the models more quickly or 

by making the models easier to populate. Equally important, just having a definition of 

VOC and a list of decisions is not enough to calculate anything. We need ways to go 
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from managers’ verbal descriptions of their problems to something calculable. 

Furthermore, if subjective judgments about what happens under P1 and P2 were needed, it 

was unclear how to obtain them. Certain characteristics of VOI problems and certain 

aspects of the information systems made these challenges manageable.  

It would take impractically high analytic resources to create computational 

models at the level of fidelity appropriate for making the underlying decisions we wished 

to improve. One way around this problem is to aim for a lower level of fidelity. VOI 

estimates for fixed problem structures are often only moderately sensitive to parameter 

values near the optimum. For example, where two alternatives have almost the same 

expected value, a small perturbation to one of them could drastically change the 

allocation of resources, but value of information would remain nearly constant (see 

Keisler, 2004a). This same notion applies again at the level of decisions about the 

information system. The actual decision may be more sensitive to the precision of 

estimates than is expected value.  Thus, order-of-magnitude type facilitative models 

(Soderquist, 2003) may be reasonable and useful if the purpose is to produce only value 

of information and related results. In situations where we cannot know the actual 

conditions of future decisions, this sort of sampling of the future decision space keeps the 

modeling workload manageable.   

If we were to obtain actual results, we needed to impose structure at several points. 

The DA work and the BPR work were closely coordinated to support each other. For both 

structuring models and estimating input values, we exploited GM’s base of experience, 

research, computer models and written reports. With these resources, some judgments 

required little more than a survey of existing data. To avoid difficult assessments, we 
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structured VOC models to use such simple judgments, while further impacts on the 

decision maker’s state of information were calculated.  

 

 

2. Application 

GM’s problem  

In the mid and late 1990’s, General Motors (GM) suffered periodic imbalances 

between production and demand for parts that it used in its family of products. For 

example, a surge in demand for a new sporty version of a popular existing family car 

could in turn lead to a surge in demand for rear spoilers. If, however, the company had 

contracted for too few spoilers then it would have to sell more basic vehicles than sporty 

vehicles. Some customers would be without their most desired product and substantial 

discounting could be required to sell what was actually produced. Conversely, lower 

demand for a product line or a whole class of products could lead to disproportionately 

large overcapacity problems for certain parts. This would result in losses due to 

contractual obligations, unnecessarily high upfront costs, and product discounting.  

There was no easy solution – it would have been impractical to increase a 

decision-maker’s workload by prescribing that they actively produce more precise 

information and analysis for thousands of separate decisions. Instead, the goal was to 

improve the match between the needs dictated by the overall decision stream and 

information flow generated by the organization, i.e., the content, timing, definitions and 

rules used for creating and distributing reports.  

Using DA with BPR  
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GM initiated a BPR effort with the management consulting firm Strategic 

Decisions Group in order to align the related planning processes across the organization. 

We discuss this BPR as background in order to set the broader context for our particular 

DA work and because it seems to be a good starting point for this type of effort. Several 

planning processes were embedded in other functions of the huge company, and hence 

the charge for this effort was for major improvements of existing processes rather than 

radical change that would eliminate many processes.  

Our goal was to improve ongoing processes to support series of recurring similar 

decisions. This meant assuring that decision makers would have available information of 

sufficient quality and would make the best use of that information, i.e., that the company 

would have a better information system (broadly conceived) for capacity planning. Key 

to this was ensuring that once decisions, forecasts and comprehension of uncertainty were 

available to one group, these would cascade consistently and quickly through the 

organization. The timing of decisions could likewise be managed in order to exploit late-

arriving information by postponing commitments where reasonable. The fundamental 

benefit of successful BPR would be a drastic reduction in financial losses due to 

insufficient or excess production. 

We needed to prioritize the portfolio of possible changes because there were 

many of them and relatively few people to implement them. The company would benefit 

if the changes with the highest payoff were completed first. We used DA techniques to 

value changes in order to prioritize them. From the start, we viewed parts capacity 

planning as a family of decisions and we collected qualitative data on it using BPR 

methods. These data would frame the DA modeling. BPR was to generate and then 
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implement specifications for individual projects to move the company from its current 

(as-is) state to a desired (to-be) state  (Manganelli and Hagen 2003).   

Mapping the system  

The first step of the BPR
2
 was as-is mapping. Because the engagement was 

focused on improving decisions, mapping consisted of identifying all players 

representing all related parts of the process and asking what decisions do you make, what 

information do you produce, and what information do you use? If we had not asked about 

each of these all along, the DA modeling that followed would have been much more 

difficult. From these data, we physically mapped the pertinent existing information flows.  

We posted the map and refined it as GM experts and stakeholders viewed and 

responded to it. The map contained 29 nodes at which information was manipulated and 

56 links between them. We reviewed the map with GM staff to identify gaps between the 

information that was needed and what was provided. These gaps suggested potential 

changes or change requirements (CRs). We were left with a complex but detailed picture 

of the system. A greatly simplified version of a portion of this map, still giving a hint of 

complexity, is shown in Figure 1. Out of 67 changes we ultimately considered and 20 that 

we modeled, this figure highlights four of them. In the paper, we explain these four 

changes in detail to illustrate the process we used to analyze many of them.  

                                                 
2
 The larger BPR effort involved a process facilitation team of five people (two internal 

GM managers, three external consultants) working closely with a core team of over 

twenty GM information creators, users and managers, in turn reporting to a senior board 

of key leaders. 
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These changes generally consisted of connecting poorly linked points. “Poorly 

linked” often meant that information relevant to a decision was available somewhere in 

the organization, but the information was not readily available to the decision maker in 

correct and usable form and in time to make the decision. Perhaps the decision was made 

too soon, or a relevant report never reached the decision maker, or two decisions were 

made independently (so that one decision maker just made a guess about what the other 

would do) instead of in coordinated fashion. There was no one centralized organizational 

unit that collated all information and made all decisions; rather, different decentralized 

organizational units made decisions based on information they had available. There was 

no appetite for a radical restructuring of the organization, so we mostly focused on 

strengthening the existing weak links.  

 

3. Working with change requirements 

Initial definitions 

We initially defined change requirements in terms that were natural for the users 

of information. We review a few of these requirements and then discuss how we moved 

toward modeling their value. We consider now the four CRs highlighted in Figure 1: 

CR1 (industry and segment volume forecast) involved the formulation of vehicle 

demand forecasts. These forecasts were prepared by GM’s Business Decision Support 

Center (BDSC) and were then sent to GM’s North American Operations Portfolio 

Planning and Capacity Planning office. This information was used for a variety of 

production capacity decisions. The concern was that the forecasts erred not so much due 

to lack of precise detail in forecasting, but due to lack of coordination and consistency 
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between different subgroups. An obvious symptom of this problem was that different 

groups actually used different forecasts. The definition of this CR was clear enough that 

the implementation team, knowing the context, understood what problems the CR would 

solve. But it was not at all obvious how to measure the impact of this requirement to 

“ensure the right information is provided by the right functional area at the right time, 

especially in areas [x, y and z].”   

CR2 (production cost information) addressed the terms for contracting capacity 

GM Purchasing reported to the vehicle level executive teams. These teams treated 

capacity terms as fixed, and therefore did not consider how costs would vary in non-

linear fashion with volume, and built plans around a point-estimate forecast. GM 

Purchasing actually had the ability to change contract terms. Ideally, Purchasing could 

understand and communicate to vehicle level executive teams relevant threshold levels 

that would cause suppliers to incur incremental tooling investment costs. Then these 

teams could make plans that reflect the impact of demand uncertainty on cost.  

CR3 (target volumes) stated that “BDSC needs to provide timely split information 

to North American Operations Portfolio Planning and Capacity Planning on items that 

have long term implications on (capacity decisions for) the Body Shop.” This included 

split information on trucks (the percentage of different bed types, drive types, 3 vs. 4 door 

vehicles, and lift gates vs. rear door designs) and vans. In the as-is process, planners 

combined vehicle forecasts with generic split percentages (i.e., assuming the same 

percentage of leather seats on vans as on trucks) rather than vehicle specific split 

percentages because this information wasn’t available until later.  
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CR4 (capacity analysis) addressed the need for a brand and body-style specific 

distribution in capacity planning analysis. The as-is process used a common standard 

deviation for all products, even though the company had discovered that forecasts for 

new products had greater uncertainty. The risk assessment should include the distinctions 

that represent the major sources of uncertainty.” 

Most other CRs similarly modified the way that some information or rule applies 

in some decisions, e.g. “Engineering Groups should not modify Vehicle Group plans or 

build in contingency (to capacity levels) but they should be strictly compliant with stated 

plans.”   The CRs were thus easy to understand, but difficult to value.  

Choosing which CRs to model 

At core team meetings, we discussed which CRs to model in detail. This was an 

iterative process. Out of 67 CRs, several were technical quick hits that did not require 

modeling, others would interact with corporate operations well beyond the scope of our 

effort, some involved organizational issues that would contribute to more efficient 

operations but did not directly affect any easily identified decisions or parameters. About 

half the CRs involved specific enough decisions and information that it was plausible to 

obtain data and develop quantitative models. We listed pertinent questions that would 

benefit from answers, and then identified twenty decisions tied to specific CRs where we 

saw potential for quantitative models to provide answers. With unlimited resources, we 

would have modeled each of them extensively. Instead, we considered which CRs were 

hardest to prioritize and which ones could be improved with a better understanding of 

their value drivers. For ten such CRs, we developed full quantitative VOC models using 

spreadsheets and explicit judgments of experts outside of the process facilitation team. 
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We analyzed ten other CRs less formally, still using spreadsheets to gain insight but not 

seeking expert judgments or additional documentation. For the other CRs where it was 

meaningful but less critical, we discussed but did not model how improved information 

flow could lead to increased value in downstream decisions.  

Common model structure for the capacity decision 

We constructed a number of “quick and dirty” influence diagrams, using as 

experts mostly members of the core team or other GM analysts. We refined influence 

diagrams and decision tree models for several of the decision points. It helped that GM 

had a strong history with DA (Kusnic & Owen, 1992). We could draw on archival 

influence diagrams as well as a corporate forecasting template that used accounting 

identities and pro-forma business case parameters such as market share and market size 

(as in DA textbook examples, e.g., McNamee and Celona, 2001). 

We realized that, because they related to supply/demand imbalances, many of the 

decisions shared the common structure of the influence diagram shown in Figure 2. 

Although we believe it is likely that in many organizations, sets of decision flows would 

have their own common structures, it was still fortunate that we discovered one here. It 

simplified the task of modeling numerous changes and made the models easy to compare.  

Specifically, the decisions involved setting capacity or quantity supplied for some 

product or part in the face of uncertainty about quantity demanded. Quantity demanded 

(e.g., the “net option demand” node in Figure 2) was driven by different parameters for 

different parts or options. It could often be derived hierarchically from either demand for 

a given family of GM vehicles, demand for a version of that vehicle (e.g., 2-door), or 

demand penetration for an option among buyers of that version of the vehicle. Profit 
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maximizing capacity levels would take into account contribution margins (both from 

parts sold as options and from vehicle sales enabled by the availability of parts), as well 

as fixed costs (e.g., tooling) associated with capacity.   

We calculated the optimal decision (typically capacity, although we could easily 

incorporate different decision variables into the same basic influence diagram) under the 

given information for each process using critical fractiles or similar simple rules, and we 

assumed normal or similarly tractable distributions. We then calculated the expected 

corresponding value received for each case. 

In some instances, we considered more than two possible information states, i.e., 

if there were multiple ways in which the CR might be implemented we estimated value of 

information about more than one variable. Although we felt that most of the changes 

could be modeled as independent, it was simple to modify multiple variables. This could 

help identify interactions that make it worthwhile to cluster certain changes.  

We model this capacity decision as a “newsvendor” problem (Arrow, et al 1951, 

Hillier & Lieberman 2005) in that we view the relevant investments as creating a 

perishable asset. Typically, GM spends money to configure durable assets from its 

existing base (whose costs treat as sunk), e.g.,  buildings and general use machines, to 

produce a specific parts and designs. The dedicated configuration (and related spending 

on equipment such as dies) has little or no salvage value after the next major vehicle 

update (or after the dies wear out). Alternatively, GM’s capacity decision can simply 

result in a contract with a supplier that commits to make such capacity available at a 

given cost. 
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In this case, rather than newspapers, capacity is what is purchased and used. The 

expected additional contribution from the marginal unit of capacity is the product of its 

contribution if used and the expected number of times it is used. This varies by vehicle 

type, e.g., for demand a sporty car’s demand may drop sharply after the first year, while a 

family sedan’s demand may relatively stable for a number of years. Capacity is added up 

to the point at which the marginal unit’s expected contribution is less than or equal to its 

cost. This point is the critical fractile of the demand distribution, where the probability of 

demand exceeding capacity is equal to the ratio of cost to contribution margin. If, as we 

typically assumed, demand follows a normal distribution, the critical fractile is simply 

calculated and easily modified for different CRs. The critical fractile rule was 

implemented in a spreadsheet template (Figure 3) and as described below. 

Demand (D) is normally distributed with mean E(D) and standard deviation (D); 

fD  denotes the probability density function for D, and D  denotes the cumulative 

probability function for D.  

Letting F denote fixed cost, K denote the capacity decision variable, and C denote 

annualized cost per unit of capacity, we note that the total cost is equal to F +  KC.  

We let M denote the contribution margin (marginal profit for a unit that was 

demanded, then produced and sold). When demand exceeds capacity (which happens 

with probability 1-D) production is fixed at the capacity level. When demand is below 

capacity, production varies with (and is equal to) demand, and contribution is integrated 

as in equation 1 below. We add together the expected contribution from both cases and 

subtract costs.  Thus, the expected value received calculated over the assumed 

distribution of demand levels is equal to  
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For the remaining calculations, we use the following notation:  

Target percentile (Row 5 in Figure 3, for calculating critical fractile) T = 1 – C/M; 

Optimal capacity = -1
D (T), where -1

D  denotes the inverse cumulative normal 

distribution over D.  (Row 8 in Figure 3) 

Q = quantity produced to meet demand = min(D, K); 

The annual profit π for given demand and capacity, where π = MQ – F – KC;  

Since there is a 1-T chance that demand will exceed capacity, the expected annual 

production for the optimal capacity (Row 21 in Figure 3) is given by:  

2) E(Q) = dxxxfKT
K

D )()1(  
  

This is calculated straightforwardly in the spreadsheet (rows 10-18 in Figure 3 

calculate the linear loss type of integral in Equation 2).   

Then we can write the expected profit as:  

3)  E(π) = ME(Q) – F – KC.  

If the demand distributions used are unbiased, expected loss compared to the ex-

post optimal capacity depends only on the standard deviation of the demand forecast. So 

if P1 has a normal distribution on D with standard deviation 1 and P2 has the same mean 

as P1 but has standard deviation reduced to 2, the expected value of the contemplated 

change would be E[π| standard deviation = 2] – E[π|standard deviation = 1].  

We assumed normal distributions around variables and entered means and 

standard deviations to the spreadsheet. We were able to structure variations with additive 

or multiplicative relationships between variables so that, as uncertainty about vehicle 
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demand propagated to uncertainty about part demand, D would continue to follow a 

normal distribution
3
. The spreadsheet template proved flexible.  

Input data for the spreadsheet models 

In obtaining numerical inputs for our models, i.e., assessment, we were interested 

in not only future costs, but uncertainty levels for a stream of products whose details were 

not yet defined. Under these conditions, we could not rely on standard DA assessment 

questions that involve subjective probability judgments about specific events. Keeping in 

mind that we are aiming for order-of-magnitude type VOC results, we hoped it would 

suffice to sample the future decision space by detailing typical situations that might occur 

and running calculations for them.  As earlier, it helped that we had access to the 

forecasts and results for past product decisions. In most cases, we had no reason to think 

that conditions had substantially changed and we assumed that a sampling of past 

conditions would be a reasonable proxy with which to simulate future conditions. To 

obtain base case assumptions about contribution margins relative to cost, we used as a 

representative vehicle (or part) one whose parameters fell near the median or mean of the 

range observed for the family of decisions toward which the change was targeted.  

Often, the most critical parameter in our spreadsheet model was the standard 

deviation on the volume forecast. We gave this parameter the most detailed attention and 

                                                 
3
   Value of information results should be robust to the exact choice of distribution as 

long as the same percentile is used, since for given mean and standard deviation the value 

of information calculated with the linear loss integral is bounded (e.g., by Chebyshev’s 

inequality). If a distribution were clearly characterized by rare but major events, it would 

be preferable to build that into the model, as we did in one case. 
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our assessments drew on various empirical data. There were prior GM research studies on 

forecast error, including one which compared forecast error for major vs. minor vehicle 

changes. In some cases, we looked at old planning forecasts and uncertainty ranges given, 

the assumptions used in those forecasts, and how they compared with what actually 

occurred. There was not enough for formal distribution fitting, but there was enough to 

draw some rough conclusions. We conferred with GM internal staff who conducted 

product decision analyses, and when necessary with the planners and decision makers 

who provided their inputs.  

We assigned probability distributions for hypothetical situations, e.g., if we had a 

major change to the C-platform sports car, and what would be the uncertainty in the 

forecast, what would be split between the lower and higher demand body styles. In most 

cases, this worked something like it did for CR1, described shortly. For simplicity, we 

often assigned normal distributions (suitable for forecast errors) with standard deviations 

approximated to multiples of 10% of the mean, e.g., 0% for no uncertainty, 10% of mean 

for low uncertainty, 50% for high uncertainty. These numbers were assigned by trained 

decision analysts (in the role of experts), but were not assessed using special DA 

techniques, and we based these estimates on data from similar previous situations.  

The effect of CRs was typically to incorporate information about forecasts, splits, 

and even levels of uncertainty that ought to already be available. For this reason, we were 

not faced with difficult to assess subjective distributions. Instead, the post-change states 

were characterized simply as good practice, e.g., facts which should be known were 

assumed to be known, and forecast errors were assumed to be at the level that the 
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company should achieve when the process worked correctly. The pre-change states were 

the post-change states compromised by the various errors we described.  

In the product plans we reviewed, cost of capacity and contribution margins were 

provided primarily by accounting and finance, demand forecasts were provided primarily 

by product managers. Uncertainty in those forecasts was usually articulated in the form of 

10
th

, 50
th

 and 90
th

 percentiles that GM analysts obtained from product managers.   

Mathematical models of the CRs 

As we shall see in the four illustrative CRs, a few basic variations could be 

applied in combination to adapt the template to our VOC models. The numbers are 

disguised. Fixed costs were the same under P1 and P2, and so are not included in the 

calculations of VOC. In the newsvendor-based VOC models for the specific CRs 

described here, capacity cost parameters and contribution margins were treated as 

deterministic.  

CR1: This change requirement is directed at improved estimates on vehicle 

demand for new programs in particular, as these have the most risk. The focus on new 

programs affects the estimates of parameters involved and is relevant to determining the 

frequency with which decisions affected by the change occur. To model its impact, we 

utilized the spreadsheet template, and incorporated the assumption that the actual demand 

for a given vehicle will be equal to the forecast demand plus a normally distributed error 

term.  The company must decide how much capacity to acquire. The cost terms here are 

at the vehicle level (fixed cost for capacity, unit cost for capacity, contribution margin, 

etc). We looked at several representative vehicles to estimate these numbers, including 

one where an inaccurate forecast had actually led to problems. 
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We first estimated the standard deviation of the error without further 

improvement – where the decision maker fails to use the best forecast that combines 

views from around the company. For this, we estimated a baseline error for standard 

vehicles (where assumptions are better shared, and where there was some expertise 

within the company even about the level of uncertainty in the forecasts). We then 

qualitatively estimated the size of potential errors for other types of vehicles, by looking 

at empirical data showing the variation among parties’ forecasts and between these 

forecasts and the eventual sales that actually occurred for historical examples.  

We assumed that with the improved estimation process, the decision maker 

rightly uses a standard error more like that for most other vehicles. The decision maker’s 

distribution is centered on the correct mean under the new process, but not necessarily 

under the original process, and we compare the expected value obtained under  the 

assumption that the initial process had an unbiased estimate for the mean (P1a), or where 

it was assumed too low (P1b) or too high (P1c).For P1a, P1b and P1c, the assumptions for C, 

M, E(D) and σ(D) were entered in cells C3,C4, C6 and C7 of the template shown in 

Figure 3, while K and E(π) are calculated in cells C8 and C22; assumptions and 

calculations for P2 are in the same rows of column D, and VOC is calculated in cell C23. 

Thus, P1a has the correct mean and the wrong standard deviation on demand, and P1b and 

P1c have not only the wrong standard deviation but also the wrong mean, while P2has the 

correct mean and standard deviation.  

CR1 C M E(D) σ(D) K  E[π(K)|P2] VOC 

P1a $1000 $5000 100,000 50,000 142,000 $355,378,000   $9,467,000 

P1b  $1000 $5000 80,000 50,000 122,000 $364,775,000        $30,000 
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P1c $1000 $5000 120,000 50,000 162,000 $337,455,000 $29,360,000 

P2 $1000 $5000 100,000 25,000 121,000 $364,805,000 – 

   

Given the large standard deviation and high margin, this situation would typically 

result in a lot of extra capacity. In case P1b, where the original forecast is below expected 

demand, the capacity at the critical fractile happens to be near the correct capacity under 

P2 (because the high standard deviation leads to inflated capacity on high margin 

products), so then the ex-post value of the change is low. 

CR2: The original CR referred to the fact that targets for vehicle production were 

being treated as requirements for parts production. To model this situation, we interpret 

the change requirement as meaning that a new decision rule should be specified. We 

assume that without the change, the decision rule takes the mean of the true input 

distribution on the quantity of a part that will be required. It treats this mean as a point 

estimate without uncertainty, and sets an optimal capacity for this point estimate. We 

calculate the expected value of this production level and compare it to the expected value 

for the proposed new decision rule: treat the point estimate as having the uncertainty it 

actually does, and set the optimal capacity for that distribution. The change will not 

reduce standard deviation in forecast distributions, but will change how the distribution is 

utilized. The value added here relates to value of information, but is not exactly the same 

–value is added by using information correctly, not merely by acquiring information. 

We selected a representative part, e.g., a high-markup option such as sunroofs, 

and estimated F and C for the production of that part. The contribution margin for the 

part is the difference between the premium we charge for a vehicle with that part 
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(alternatively, the amount by which we would have to discount a vehicle if the part were 

not available) and the variable cost of producing that part. The as-is decision rule is 

modeled as: K = E(D). The to-be decision rule finds the optimal capacity given that 

standard deviation on demand for the part is σ, using our template.    

CR2 C M E(D) σ(D) K  E[π(k)| P2] VOC 

P1 $600 $2400 175,000 0 175,000 $264,733,000 $10,227,000 

P2 $600 $2400 175,000 52,500 210,411 $274,960,000 – 

 

We assumed F = 0 (because capacity is outsourced). Under P2, K targets the 75
th

 

percentile of demand.  VOC is positive even though the expected utilization of the plant 

is lower for the new K derived under P2 than the K derived under P1, i.e., 79.4% vs. 

88%.  The VOC here is for a decision about a high-priced option. Most parts are cheaper. 

We expected decisions on approximately five such high-priced options per year.   

CR3: This CR mandates that information about the relative demand for different 

body-styles be timely and complete. To model this CR, we assumed that under the 

current system, North American Operations capacity planning ultimately formulates its 

own estimates about how many units of each body-style are needed. This estimate is 

based on the mean and standard deviation (15%) from BDSC’s forecast over the demand 

summed over both body styles. We considered a specific example of 4-door (style a) vs. 

3-door body (style b) minivans.  

Under P1, manufacturing makes an uninformed guess that there is a 50%–50% 

split among body-styles a and b, and makes a capacity decision for style. Under P2, the 

estimated split is 60% for style a, and 40% for style b.  
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Again, we targeted the 80
th

 percentile.  Note, identical values of C, M and F were 

used for CRs 1, 3 and 4, because for the relevant vehicles, these were approximately 

correct and we saw no reason to change the sample case more than necessary. For other 

CRs that were most relevant to vehicles with relatively low margins, different parameter 

values were used.  

From the viewpoint of P2, P1 gets the critical fractile wrong and yields a high 

probability of shortfall on vehicle type a, and low expected utilization on vehicle type b.  

CR3 C M E(D) σ(D) K  E[π(K)| P2] VOC for 

vehicle type 

P1a $1000 $5000 120,000 15%  150,298 $298,362,000 $17,166,000 

P1b $1000 $5000 120,000 15% 150,298 $128,048,000 $15,637,000 

P2a $1000 $5000 144,000 15% 180,358 $315,528,000 TOTAL a +b 

$32,803,000 
P2b $1000 $5000 96,000 15% 120,239 $143,685,000 

 

CR4:  The issue here is that the more radical the change in a vehicle from its 

predecessor, the more uncertainty there is about its demand. Some vehicles represent 

updated versions of older products, while other vehicles are entirely new. Instead of 

assuming that the standard deviation on the sales forecast is always the historical 30%, an 

improved approach would allow decision makers to customize forecast distributions to 

the type of vehicles. For example, vehicles that are essentially unchanged have lower 

standard deviation (perhaps 10%), and radically new vehicles have higher standard 

deviation (perhaps 50%). We calculated P1, assuming that the standard deviation σ is 

30% of mean demand. Holding expected sales constant, we calculated P2a assuming σ is 

10% and P2b assuming it is 50%.  
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Here we calculated capacities as before, and computed profit levels for both types 

of vehicles.  

CR4 C M E(D) σ(D) K  E[π(K)| P2] VOC for 

each case 

P1  $1000 $5000 150,000 30%  187,873 a-$361,988,000 

 

$17,015,000 

 

b-$288,527,000 $6,487,000 

P2a $1000 $5000 150,000 10% 162,624 $379,003,000 – 

P2b $1000 $5000 150,000 50% 213,122 $295,014,000 

 

Several others versions of the model developed along the same lines, and 

illustrate how a wide variety of changes might translate to template models. For example, 

one major part came in two styles, one of which appeared in about 60% of vehicles and 

the other in 40% of vehicles. Faulty communication occasionally led to larger capacity 

being committed for the wrong version. This was equivalent to having a 5% chance of 

using the wrong assumption for mean volume for the two parts (P1) and the rest of the 

time using the right assumption (P2), and VOC was thus 5% of the decreased profit for an 

instance when the mistake occurred.  

Another CR was to consider uncertainty about the mix of demand at the brand 

level conditionally for each body type (P2), as opposed to just calculating body type split 

and brand mix independently and multiplying the percentages to get the demand for each 

specific vehicle (P1.  The reasoning is that different option packages would be required 

for each combination (e.g., sunroof with the exciting two-door Pontiac, no sunroof with 

the four-door Pontiac or with any Chevrolet). Thus, there is more uncertainty about 

demand under P2 than P1, and for a high markup item, more capacity is appropriate. 
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Other CRs could allow improved information about contribution margins, or other 

variables that we treat as fixed in our basic model.  

Lifecycle value of change 

To scale up from VOC on one decision to VOC across all affected decisions, an 

enumerative approach would have been to list all such decisions and redo the model for 

each of them.  In our situation – and we suspect in most real ones – even if it had been 

possible to name each future decision, there would not have been time to model them all. 

Instead, we analyzed a single decision in-depth for which the change is hoped to produce 

its benefit, e.g., setting production capacity for sports car spoilers. We estimated the VOC 

for an instance of that decision and then surveyed the classes of decisions that would go 

through the same process and that we expected to have similar benefits as a proportion of 

spending involved (this is key to defining the relevant set of affected decisions).  This 

approach matched how GM organized its production scheduling systems, so obtaining 

these numbers was straightforward.  

For parts decisions, we factored in the number of parts per vehicle model that 

would be affected by a change. From the type of program (e.g., sports car production) we 

determined the set of affected vehicles. We asked how many times per year new 

programs of this type occur. We asked how many years the change would benefit a new 

program, e.g., the current process could be self-correcting for the relevant programs, so 

that an imbalance only would apply for one year (which was common), or an imbalance 

once created might persist throughout the life of the program. Finally, we recognized that 

decisions for different products involving the same type of decision may have costs and 

quantities that are lower or higher by some amount than the specific case we analyzed. 
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With simple arithmetic, we combined all these into a factor representing the number of 

equivalent decisions by which to scale up the single decision’s VOC to get a lifecycle 

VOC.  

 

4. Results 

Impact 

We summarized the results for all the VOC models (not just CR1-CR4) in a 

portfolio-analysis type dashboard as in Table 1. We could easily think about the cost of 

changes in terms of person days. We informally weighed costs against value. Based on 

their payoffs, we designated the changes as having high, medium or low priority. Senior 

management accepted these recommendations, and implementation teams were assigned 

with guidelines that fleshed out the formal CR definitions.  

The VOC models had benefits beyond prioritization. In some cases, the 

requirements were further refined as a result of insights that were directly due to these 

models. In CR1, for instance, we added guidance about when the value of improved 

information is high and hence when that information should be required. For CR4, we 

added to the original requirement the direction to ensure that forecasts make explicit 

which sources of uncertainty have and have not been incorporated, and that large 

downsides or upsides be noted separately.  Many other CRs were also enhanced this way. 

In some cases, the decision rules embedded in VOC calculations were not just sources to 

inform the definition of CRs, but served as prototypes to potential solutions for those 

CRs. For example, the company could make better use of critical fractile methods that 

comprehend uncertainty in setting the amount of flexible capacity needed, and in setting 
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various other capacity levels. In other cases, variables with high value information 

themselves (and thus topics for future corporate research) were identified, e.g., a need to 

understand how the price elasticity of demand for various options differs by body style. 

We can assess the ultimate impact of this effort within the context of the BPR 

effort as well as within the broader corporate context. The modeling phase of the project 

ended at the point that the implementation of changes began. As such, the modeling effort 

played a crucial role in selecting which changes to pursue. Beyond driving 

recommendations, the detailed models aided in understanding and articulating to the 

various stakeholders the reasons why one change or another would pay off more, thus 

facilitating consensus about how to move forward.  

Quantitative benefits: The direct benefit of this project was in the form of 

improved estimates of the annual value that changes would provide, and the use of these 

estimates to prioritize changes. It was difficult to prioritize these changes without the 

quantitative model results. Thus, as a rough approximation, without this work all the 

changes from this set were equally likely to have been in the high-priority group as the 

low-priority group (which were not implemented until two or more years later). Because 

of the improved estimates, GM would benefit from the high valued changes instead of the 

average changes over two years between the implementation of the first and second 

round of changes. By this reasoning (Keisler 2004b), the value added by our 

prioritization was on the order of $100M. This figure assumes that our value estimates 

were reasonably accurate (as the board of key leaders seemed to agree). We performed at 

least some analysis on one third of the CRs. About half the entire set of CRs had effects 
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on decisions that were easily enough articulated that this approach could plausibly have 

been used.   

Qualitative benefits:  As we look back on the project several years later, the 

changes that were thought to be important appear to have really been so. The large-scale 

BPR effort was a major success. The insights and implications of VOC modeling clearly 

contributed to elements of that success.  

  Key leaders Pat Jansen, Senior Manager, Capacity Planning and Richard Willson 

Director of Manufacturing Planning at GM described the benefits realized from the 

improvements to the decision process:  

“System improvements have been identified and implemented to correctly 

translate and communicate program intent into the detailed level required by 

Purchasing. This active management of supplier tooling rates has resulted in 

fewer constraints at new product launch due to early attention to flexibility 

requirements and product mix. … Savings in overall tooling investment [had 

been] documented and the potential for over-tooling due to poor communication 

has been minimized.”  

Brian Hagen (at that time the lead partner from Strategic Decisions Group, Inc., on the 

BPR initiative) confirms the criticality of VOC modeling to the overall effort: 

“The "Value of Change" approach provided a significant breakthrough on the 

project as it helped our project team simplify our characterization of the link 

between strategic change and corporate value creation.  Ultimately, the approach 

allowed the project team to pinpoint the sources of value resulting from change, 
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more easily prioritize recommendations, and explain – in simple terms – the 

impact of recommended changes to a senior level executive team.” 

This effort provided a language for improving the definitions and describing the effects 

of changes, and for deciding implementation priorities. It generated significant direct 

value in the form of a focused implementation plan, and it generated indirect value by 

making the reasons for the recommended changes more transparent to the rest of the 

organization.  

Lessons learned 

Some of our tactics were improvised to the specific situation we faced, with both 

constraints and resources that practitioners might not always have. Specifically, we 

benefited from having organizational memory about DA. Certainly, if practitioners have 

a similar resource, they should use it. On the other hand, we undertook a large analytic 

project without realizing how much modeling work would have to be done in a short 

time, so the focus on rapid model development might not be as great in other cases.   

We can also draw some general lessons. First, we now know that it is feasible to 

apply value of information to the design of organizational information systems and 

decision processes. It remains for others to demonstrate that this can be done for more 

subtle system design questions that would require more finely tuned analysis. In a 

realistic setting, the dimensionality of the problem may be too great to create 

comprehensive models.   

Several shortcuts, concepts and insights seem generally helpful to push our 

approach through to a successful conclusion in any setting. It was productive to integrate 

BPR and DA methods, as the former are well-suited to mapping processes and defining 
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changes. Classic elements of concurrent engineering facilitate this, i.e., team members 

had shared, multiple and requisite skills, and planned interactions structured to ensure 

feedback and feed-forward. To support DA, process mapping should explicitly address 

decision points and information that flows into them.  DA cannot dominate this step. 

Instead, managers must define the changes and cluster them around certain decision 

points. The analyst then translates these changes into DA models.  Representing different 

changes with separate models for separate decisions keeps the task simpler than trying to 

create a unified simulation of the entire organization. If the BPR is focused on a set of 

related decisions, some common structure – such as the newsvendor problem – will 

probably facilitate rapid creation of many similar models.   

To translate from verbal descriptions to quantitative models of changes, we 

formulate from the problem description a typical DA model that a decision maker might 

use. We track the flow of information from its origin to the decision maker’s final use of 

it. Specifically, we focus on characterizing the amount of uncertainty in key parameters 

such as demand forecasts and on how much of uncertainty can be reduced merely by 

removing rather specific sources of noise or confusion in the organization so that the best 

available information will be used at the most opportune time.  It is important to identify 

carefully the categories of future decisions that are affected by the change, to then tally 

the benefits of the change over that stream. We know that the results from this approach 

can at best be only approximate, but that VOI may often be robustly estimated and 

applied – and produce insight – even if the core decision model is inexact.   

The concept of VOI (and VOC) turns out to be a useful tool for improving 

decision processes, not just individual decisions. By understanding when information is 
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valuable, we can help organizations sort through the glut of information they possess. 

Many in-house decision analysts or richly embedded consulting teams could adapt this 

approach to resolving systemic organizational problems they observe. By quantifying the 

impact of these organizational changes, we gain ability to plan and implement them. 
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Figure 1: Map of information flows (simplified) 
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Figure 2 Generic influence diagram for newsvendor type parts capacity decisions 
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Figure 3: Value-of-change spreadsheet template (illustrative values).  

 

 

 

A B C D E

1 Calculation of P2 View P2 View P1 View

2 Fixed cost (F) 10000000 10,000,000$         10,000,000$    Calculations

3 Unit cost of capacity (C) 250 250$                     250$                using capacity

4 Unit contribution (M) 1000 1,000$                  1,000$             from P1,

5 Target percentile (T) =1-C3/C4 75% 75% demand

6 Demand mean [E(D)] 130000 130,000                150,000           distribution

7 Demand Std Dev 39000 39,000                  67,500             from P2

8 Optimal capacity (K) =NORMINV(C5,C6,C7) 156,305                195,528           

9 Nominal profit =C4*C8-C3*C8-C2 107,228,825$       136,646,044$  

10 Nominal extra capacity =C8-C6 26,305                  45,528             65,528            

11 Standardized extra capacity =C10/C7 0.674                    0.674               1.680              

12 Stdized prob density of D at K =NORMDIST(C11,0,1,0) 0.318                    0.318               0.097              

13 Cumulative probabilty of D at K =NORMDIST(C11,0,1,1) 0.750                    0.750               0.954              

14 Right tail std hazard of D at K =C12-C11*(1-C13) 0.149                    0.149               0.019              

15 Left tail std hazard of D at K =C12+C11*C13 0.824                    0.824               1.699              

16 E(D) | D < K =C8-C7*C15/C13 113,476                121,400           126,023          

17 E(D) | D > K =C8+C14*C7/(1-C13) 179,573                235,800           211,636          

18 Pr(D < K) =C13 75% 75% 95%

19 Expected unused capacity =C8-(C8*(1-C18)+C18*C16) 32,122                  55,596             66,276            

20 Expected utilization =(C8-C19)/C8 79.4% 71.6% 66.1%

21 Expected quantity =C20*C8 124,183                139,932           129,252          

22 Expected profit =C4*C21-C3*C8-C2 75,106,714$         81,050,081$    70,369,633$   

23 VOC =C22-E22 4,737,081$            
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Table 1 Results for portfolio of possible changes (illustrative values) 

 

Change 

requirement 

Typical 

beneficiary 

(*disguised) 

Annual value of change 

per application 

Frequency Annual  

value 

1 BDSC 

commun-

ication 

Sportarama* $10M-$50M (key 

assumption is that 

higher quality forecasts 

could be used and differ 

from brand forecasts up 

to 20%) 

All new programs 

(3-5 per year) 

$100M 

 

High  

priority 

2 Clear 

direction to 

purchasing 

regarding 

options 

Most 

vehicles 

Savings on tooling of 

$10M per program per 

year, if it is true that 

purchasing currently 

uses expected demand 

as capacity, options are 

40% of tooling cost. 

Recover after 2 

years. Applies to 

most programs  

(10 per yr) 

$40M 

 

Medium 

priority 

 

3 More 

detailed 

truck/van 

split info 

Mini-vans 

3
rd

 vs. 4
th

 

door 

$30M (key assumption 

is that plug used for 

assembly decision is off 

by about 10%.  

Maybe important 

for one program 

per year, can 

recover within 1-2 

years at some cost. 

$15M 

 

Low  

priority 

4 Brand / 

body style 

specific 

distributions 

Chevy 999* 

carryover 

has less 

uncertainty 

than new 

segment 

$10M  Every program, 

but value of 

change will vary – 

lower if program is 

typical or lower 

contribution 

$50M 

 

Medium 

priority 

5 through 20 

would be 

shown on 

later pages 
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