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Project Management Decisions with Uncertain Targets

Jeffrey M. Keisler, Professor, University of Massachusetts Boston, Boston, MA 02125,

jeff.keisler@umb.edu

Robert Bordley, Certified Project Management Professional, Fellow, Booz-Allen Hamilton, Troy,

Michigan 48084, bordley robert@bah.com

Abstract

Formal project management methods are largely organized around ensuring that the un-

certain performance of activities suffices to meet fixed targets and requirements. In practice,

requirements often change. Qualitative aspects of project management aim to anticipate and re-

spond to the complications these changes create. This paper explicitly treat targets as uncertain.

This allows the qualitative challenges to be recast as quantitative decisions under uncertainty.

Decision analytic techniques can then be applied. In particular, we can interpret the probability

that a project’s performance will exceed some uncertain target can be interpreted as the utility

for that level of performance. We obtain solutions for a fundamental set of project management

problems in terms of uncertain targets. The language of target-oriented utility used here pro-

vides a bridge for representing project management problems in decision analytic models, and

for translating the solutions of those models into the language of project management.

1 Introduction

1.1 Background

Project management (PM) is a widely practiced set of approaches for applying resources and

activities so as to bring about a satisfactory outcome to the project. This paper demonstrates a way

to use decision analysis for a set of PM problems that have been resistant to analytic approaches.

Before developing machinery, we start with a high level review of PM and its associated decision
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problems to be modeled. Here, we draw on the standard of the field, the Project Management Body

of Knowledge (i.e., PMBOK, Project Management Institute, 2013). PMBOK organizes project

management processes into five process groups: initiating, planning, executing, monitoring and

closing. An actual project may draw on each of these projects at multiple phases. While there

are myriad interrelated tools and structures for coordinating work across these five groups, the

following vastly simplified version of the project management process underlying PMBOK captures

their key roles.

A project starts with a directive from a project sponsor or client who calls for something to be

done, with some idea of who will be responsible (a project manager) and some understanding of the

resources that will be made available. The initiation process then identifies stakeholders and other

requisite information. Initation bridges to planning as stakeholders decide on the requirements and

resources to be used along with deciding on the general strategy of the project.

In planning, especially as relates to managing the timing of the project, the project manager

defines the activities necessary in order to complete the project, and the relationship between these

activities (e.g., creating a work breakdown structure). The project manager then estimates their

durations and resource requirements and decides on their sequence, resources, and schedules, with

the aim of meeting project requirements and managing associated risks. The planning group also

works with the other groups to revise plans in response to changes.

In execution, project staff perform the planned activities. The activities may go better or worse

than expected, and staff must communicate about day to day progress and needs. The project

manager may decide to make minor local adjustment to the activity plans as needed, or to request

changes if large adjustments seem necessary.

Monitoring of the project occurs with milestones, metrics and systems to check progress and

performance. The timing and nature of these checks may be decided in advance. Connected to
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monitoring is control, whereby needed or approved changes are communicated to the execution

group.

Project closure ensures that the product is evaluated and if it is satisfactory, documents client

acceptance along with other results of the project. The organization receives the rewards associated

with its success, and accounts are closed.

For many of the decisions falling within the process groups above, there are quantitative ap-

proaches that yield decision rules. In the project context, it is natural to think in terms of fixed

requirements. For example, it may be easier to delegate tactical responsibility down the organi-

zation if managers can simply report whether or not activities are done satisfactorily. Decision

rules are typically formulated accordingly. For example the critical path method (CPM) supports

scheduling of related activities in order to complete a project on time.

Throughout the project life cycle, however, there are often changes to specifications and re-

quirements (e.g., Gjerde et al 2002, Bhattacharya et al, 1998), throwing off plans in non-intuitive

ways that cause difficulty and inefficiency. The changes may be due a variety of internal or external

conditions. The project manager (and possibly the project sponsor) may decide to change the

projects deliverables, schedule or resources. Such changes have consequences that cascade down to

project plans in complex ways, e.g., a large exogenous budget cut could present a crisis requiring a

complete reorganization of a project. As a result, a lot of PM practice focuses on handling changes

of varying degrees as smoothly as possible, and anticipating the possibility of such changes in order

to mitigate their consequences. For example, budgets or schedules often build in a specific amount

of slack. This aspect of PM has traditionally had a qualitative and organizational focus. Changes

in requirements are driven by a wide range of factors. This is somewhat in contrast to what might

be thought of as variation in more or less repeatable internal processes that drive performance.

Thus, PM decision approaches may accommodate some uncertainty in project performance,
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e.g., scheduling algorithms and project risk management in general may incorporate uncertainty

about activity completion times. But these approaches do not formally incorporate uncertainty

about requirements, and this fact contributes to how changes in requirements complicate PM. In

essence, PM requires the project manager to act as if requirements (or targets) are fixed (i.e., as

if there is no uncertainty about them) and then to implement an orderly change control process

when targets do change.

The decision analytic approach is to explicitly and quantitatively incorporate tradeoffs and

uncertainties, even those whose quantification will largely rely on subjective judgment.

Decision analysis (DA) practitioners have applied standard DA tools on traditional PM decisions

(Schuyler, 2001, Virine & Trumper, 2007). In fact, PMBOK includes some standard decision ana-

lytic techniques, e.g., decision trees for multi-stage decisions under uncertainty, expected monetary

values, risk tolerance, and three-point probability assessment techniques. Alternatively, multicrite-

ria models are used in project planning and scheduling (T’Kindt & Billaut, 2001). But PM decision

models are already complex and forcing a fuller set of decision analytic constructs onto them can

lead to prohibitive modeling challenges. For instance, Goodwin et al (1998) noted that ”performing

these tradeoffs [for multiattribute utility in PM] requires subtle distinctions that are beyond the

fidelity of any utility model that could be constructed with reasonable effort.”

Our approach in this paper differs from prior DA efforts by formally introducing uncertainty

about requirements (or targets) into PM decisions. The hope is that (1) this will improve PM

decisions and their implementation, and (2) that this can be done with minimal disruption to

existing PM practice, e.g., by modifying or building on existing calculation and management meth-

ods. To this end, there is an emerging literature on decision analysis with uncertain targets (e.g.,

Castagnoli and LiCalzi, 1996, Bordley & LiCalzi, 2000). In some cases, it is possible to define

a utility function (a target-oriented utility function, or TOUF) on the degree of achievement on
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one or more objectives by relating this achievement to the likelihood of meeting targets. Models

using this formulation thus divide the role of the uncertain performance, which is influenced by the

decision makers actions, and the uncertain target, which is not. Of course, any problem that could

be modeled with target oriented utilities could also be modeled using a more standard decision

analysis which simply considers uncertainties on targets the same as uncertainties on any other

variables, with endpoint utilities calculated based on the target and performance levels. Thus, we

are agnostic about whether target oriented utility (TOU) should actually be interpreted in this

context in the same way as classical utility in decision making with its associated behavioral and

organizational implications, or simply as a way of encoding information. Using the TOU framework

to characterize PM decisions allows for concise expression of various notions that will be important

to this effort. To be clear, the proposed integration of uncertain targets to project management

decisions is new and the results would be equally correct whether developed with or without TOU.

1.2 Preview

The plan for the paper is to develop decision analytic rules incorporating uncertain targets for

specific PM decision problems across the PM process. We consider these problems in an order

that allows TOU concepts and simple PM rules to be introduced and woven together in order to

build toward larger scale applications. To establish this approach, we touch a lot of the important

elementary decision problems spanning the process groups. The sections contain numbered exam-

ples for which we derive new heuristics and formal results for PM. These examples demonstrate

the approach and its viability in tractable versions of PM problems, e.g., assuming Gaussian dis-

tributions to obtain mean-variance results, or using two elements when real-world problems might

have any number of elements. Furthermore, the field of PM has a vast literature containing many

decision rules and process for many specific problems. Thus, this work is not intended as a final
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word on PM decision rules, but rather opens up future research avenues to further translate this

approach to more practical situations. Specific relevant literature and methods will be discussed in

the context of the particular problems. The last part of this introduction (subsection 1.3) lays out

our mathematical notation, and the rest of the paper is structured as follows:

Section 2 presents decision analytic concepts and language to be used throughout the paper,

introducing them in the context of a generic project with a single dimension (e.g., time) of uncertain

performance and an uncertain target. Subsection 2.1 considers the tactical planning problem of

selecting a project plan, and uses a TOUF to do so. An immediate application of this to project

initiation is developed in subsection 2.2, which shows how explicit treatment of uncertainty on

targets can facilitate more effective decisions about project requirements that comprehend the

tactical decisions. Subsection 2.3 develops the first example which derives a decision analytic

certainty equivalent and risk premium formulations for project performance, which can in turn

serve as the basis for various decision rules.

Section 3 extends the approach to planning projects involving multiple interrelated activities.

Subsection 3.1 sets up our second example in which a conventional approach to scheduling activities

and allocating resources can be used to reduce performance risk along critical paths. With this

setup, a modest transformation allows the incorporation of uncertain targets in subsection 3.2,

where a modification of the standard decision rule is developed and interpreted, particularly in

the context of project execution decisions that adjust plans for one or more activities without

changing the overall project resources or deliverables. Subsection 3.3 generalizes activity planning

with additional examples intended to serve as building blocks for larger activity planning efforts.

Here, a set of activities in series must be completed before some uncertain target date, or either

one or both of two activities in parallel must be completed before the uncertain target date.

Section 4 develops the approach for what PMBOK (p.6) describes as balancing the competing
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project constraints which include, but are not limited to: scope; quality, schedule, budget, resources

and risks. Project balancing decisions may be made during project initiation as requirements and

resources are defined, as a result of changed conditions that force the reconsideration of requirements

and resources. Subsection 4.1 develops an example of project level balancing, where the project

manager cannot change the resources or the need to meet the evolving targets, but can shift focus

toward improving performance on one dimension or another. To give this example more realism, it is

developed into several parts that suggest tradeoffs across the multiple attributes of time, quality and

cost, as well as incorporating more flexible assumptions about probability distributions. Subsection

4.2 develops a brief example of business case level balancing, where resources can be shifted toward

different dimensions of performance toward the meeting of an overall target.

Section 5 builds on the results for single stage decisions in the earlier sections to general multi-

stage decisions. Monitoring plans as part of PM can be thought of as decisions about information

acquisition (at a cost) preceding later decisions about (also costly) operational plans in response to

necessary change or rework. Subsection 5.1 develops an example of a multi-stage decision in which

value of information calculations can guide the decisions about monitoring. In our formulation,

it is convenient to distinguish between information acquired about performance and information

acquired about the evolving requirements. Thus, subsection 5.2 treats the example of planning

for verification, which obtains information about performance which, per PMBOK (p.566) is used

to whether a product, service, or system complies with a regulation, requirement, specification, or

imposed condition. Subsection 5.3 treats the example of planning for validation, which, per PMBOK

(p.566) is the assurance that a product, service, or system meets the needs of the customer and

other identified stakeholders, which may involve obtaining updated information about those actual

needs.

Our contribution thus consists of (1) templates for analyzing a suite of PM decision problems
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using TOU and (2) tractable illustrative models and decision rules derived for them (which can

sometimes be calculated as modifications of familiar PM heuristics. These developments establish

connections between TOU, DA and PM as a basis for future practical implementations.

1.3 Notation

A project is a set of activities to be completed. Project managers make decisions about how to

complete the project, and the project results in some level of performance. Project performance

is considered to be against a target. The outcome is that the project either succeeds or fails in

meeting its target.

Performance levels will have n attributes and will be represented by points of <n, where n ≥ 1.

We will work with various (n-dimensional) random variables

X = (X1, ..., Xn) : Ω− > <n,

where Xi is a random variable associated with performance on attribute i. We sometimes write

xi for Xi(ω) and will suppress the subscript i when there is only one attribute (n = 1).

There will be a decision space D. We sometimes introduce an additional argument for a decision

d in D, and write

X(·) : Ω×D → <n,

so for each d ∈ D, X(d) : Ω → <n is the n-dimensional random variable associated with

performance under decision d.

There will also be a set of m ≥ 1 activities denoted by A = {a1, ..., am}. For each activity aj ,

the random variable

X(j) = (X
(j)
1 , ..., X

(j)
n ) : Ω→ <n

is associated with project performance on activity aj . We suppress the superscript when there
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is only one activity. For each set J of (indexes of) activities, we write

X(J) =
∑
j εJ X

(j)

e.g., X({1,3,5}) = X(1) +X(3) +X(5). We denote targets with

T = {T1, . . . , Tn} : Ω→ <n

where variable Ti is associated with the project target on attribute i; we will write ti for Ti(ω).

To describe the outcome of a project, we use

v(·, ·) : <n × <n → {0, 1} assigns value v(x, t) to a project when its performance is x and the

target is t. For n = 1, if X is a positively oriented metric, i.e., one where a higher score is better,

then by convention, v(x, t) = 1 if x ≥ t and v(x, t) = 0 if x < t. If X is negatively oriented , e.g.,

time to completion, then by convention, v(x, t) = 1 if −x ≥ −t and v(x, t) = 0 if −x < −t. For

n > 1, possible rules for v will be discussed. We can think of the binary function v as returning

the sponsor’s utility for a successful or unsuccessful project.

We also define

uT (x) ≡ E[v(x, T )],

and we shall typically suppress the subscript and simply write u(x). This notation has two

benefits. It allows a more compact expression of some of the quantities and relationships of interest,

and, following target-oriented utility theory, it suggests that the decision maker can perform analysis

in terms of a utility function over performance levels.

X
(j)
i , X

(J)
i , Xi(d), X

(j)
i (d), X

(J)
i (d), T (j) etc. would have the natural interpretations.

Throughout, e will denote a Gaussian random variable with mean 0 and unit variance. s(·) will

denote standard deviation, V (·) will denote variance, and E will denote expectation.

Additional parenthetical descriptors will be used in subscripts for special notations not meant

to be part of indexing, e.g., T(av) and T(diff).
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2 Deciding on a Plan for a Simple Project

2.1 The TOU frame for project management decisions

Consider a situation where the project manager must select a plan to execute the project. Project

performance will be evaluated with a single performance metric, X. The hope is that the project

meets or beats its target level of performance T , in this case with known value t. The project

manager distinguishes two possible outcomes to the project: success (with v(x, t) = 1) when x ≥ t,

and failure (v(x, t) = 0) when x < t. Performance levels are uncertain, so associated with each plan

is a probability density f(x).

The decision problem is simply

1. Select a plan d ∈ D

2. Observe the value of X = x

3. Receive value of 1 if x ≥ t

When the value of T is known to be t, The project manager’s utility function for a given plan

as defined above is then u(X) = E[v(X, t)] =
∫
f(x) Pr .{x ≥ t}dx = Pr .{x ≥ t}.

If the project manager is deciding among plans d1 and d2, the project manager calculates

E[u(X(d1)] and E[u(X(d2))] and selects the plan with the higher expected utility, that is, the plan

with the greatest probability of meeting the target. Note that if two plans have different probability

distributions neither of which stochastically dominates the other, then neither plan will be superior

to the other for all values of t.

This becomes more interesting if, rather than treating the target as a constant, we allow T to

be a random variable taking the value t. Then the decision problem becomes:

1. Select a plan d ∈ D
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2. Observe the value of X = x

3. Observe the value of T = t

4. Receive value of 1 if x ≥ t

In this case, the project manager should still select the plan that maximizes Pr .{X ≥ T}.

Her expected utility E[u(x)] = u(x) = Pr .{x ≥ T} is monotonic and increasing in x, if T has a

right-continuous probability distribution.

As shown in research on TOU, expected utility here can be used like any arbitrary utility

function with those properties as long as X and T are independent.

The remaining examples in this paper involve uncertain performance X and uncertain targets

T , and in all cases we shall assume X and T are stochastically independent of one another.

2.2 Setting Project Requirements

Note that for a given set of alternatives with known performance probability distributions, maximiz-

ing the expected utility of the target- oriented utility function (TOUF) is equivalent to maximizing

the expectation of the original binary value function. But there is a very real sense in which these

two views differ because of the way they structure information. For example, if a competitor is

expected to come out with a product in one year, a project manager may be content to aim for a

project deadline of 364 days. The project sponsor may push for a project deadline much earlier than

the anticipated competitor launch date to ensure being first to market, while the project manager

argues that such an aggressive project timeline is too risky. One proposed use of TOU has been to

align organizational incentives (Abbas et al, 2008). This can apply to setting project requirements,

which can be thought of as a game of the following sort in which different players have different

information sets:
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Let D denote the project manager’s decision space, i.e., the set of alternative plans d available,

and X(D) denotes the project manager’s probability distribution on performance levels the plans

in D. We borrow from game theory the notion of a project manager’s type θ defined by the X(D)

she faces. We assume the project sponsor somehow assigns probability distributions over θ and

the target T , and sets a reward schedule for the project manager consisting of a requirement level

x(req) and an associated bonus b (insignificant relative to the value of the project but sufficient to

motivate the manager to even accept the assignment) which is paid to the manager if performance

x ≥ x(req). The project manager (whom we shall assume risk neutral) knows her type θ(mgr), but

does not know the type of the sponsor, i.e., the sponsor’s distribution on T . The project manager

is assumed to select d so as to maximizes her expected reward, that is, bPr .X(d) ≥ T , and the

sponsor chooses x(req) so as to maximize the expected payoff of the project.

Finally the value of the target is revealed, and the project manager and sponsor both receive the

payoff associated with the resulting combination of target, performance and requirement. When the

target is known with certainty, setting x(req) = t equal to the target leads to the project manager

acting in the best interest of the sponsor. When the target is uncertain, the optimal value of x(req)

depends on θ, e.g., for some proposed x(req) and plans d1 and d2, for θ1, Pr .{X(d1) ≥ x(req)} >

Pr .{X(d2) ≥ x(req)} and Pr .{X(d1) ≥ T} > Pr .{X(d2) ≥ T}, while for θ2, Pr .{X(d1) ≥ x(req)} >

Pr .{X(d2) ≥ x(req)} and Pr .{X(d1) ≥ T} < Pr .{X(d2) ≥ T}.

Furthermore, the project manager may not wish to reveal θ if this information could lead the

sponsor to set x(req) higher and b lower. Alternatively, the sponsor could try to align incentives by

simply rewarding the managing if ultimately x ≥ t and announcing to the manager the distribution

over T . The problem here is that the sponsor may have reason to misrepresent T , e.g., in order

to get the manager to accept a lower b. The project manager may therefore form her own belief

about T , and her choice of plan will depend on this belief.
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The problem here is designing a mechanism that results in the right incentives for the project

manager. A solution is for the sponsor to announce a preliminary reward schedule where for all x,

the reward is bu(x) where u(x) = Pr .{x ≥ T}. The shape and bounds of u depend only on the

sponsor’s knowledge of T and not on θ. The manager and sponsor must still negotiate an acceptable

b, and this may indeed depend in some unspecified way on both sides’ knowledge of both T and

θ, but this step will not affect actual decisions about the project. The manager’s choice depends

only on the schedule for u(x) and θ and not on T . The manager who uses this reward schedule as

a utility function is positioned to make decisions that also maximize the sponsor’s expected utility

for the project.

2.3 Certainty Equivalent and Risk Premium

A useful concept in DA is the certainty equivalent, which allows comparison of alternative plans

with uncertain results using units of the original performance measure (dollars in many cases)

rather than an artificially defined utility scale. Another useful concept is the risk premium, which

quantifies the undesirability of the risk in a gamble as the difference between its certainty equivalent

and expected value.

For the TOUF described above, the certainty equivalent x(ce) associated with an uncertain

payoff X can be determined by solving

Pr .{x(ce) ≥ T} = Pr .{X ≥ T}

For T uniform, the certainty equivalent is E[X] with the risk premium (the difference between

expected value and certainty equivalent) being trivially equal to zero. We now develop a decision

rule based on these concepts for a more interesting case.

Example 1: If T is exponential (corresponding to the exponential utility u(x) = 1−exp(−Rx),
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where 1/R is the risk tolerance) and if X is Gaussian with variance s2(X), then the certainty

equivalent is E(X)−R s2(X)
2 (and the risk premium is R s2(X)

2 .)

A TOUF based on a Gaussian distribution for T would have the form

u(x) =

∫ x

∞
exp(−x− E[T ]

s2(T )
)dt =

∫ x

∞
exp(− x

s2(T )
+ 2x

E[T ]

s2(T )
− E[T ]

s2(T )
)

which would approach the first TOUF (T uniform) if s2(T ) approaches infinity while E(T ) does not,

and approaches the second TOUF (exponential) if E[T ], and variance, s2(T ), both go to infinity

with 2E[T ]
s2(T )

= R being constant.

For the cumulative normal, the optimal choice maximizes the certainty equivalent

E[T ] + [
s2(T )

s2(T ) + s2(X)
]1/2(E[X]− E[T ])

Proof: T has mean E[T ] and standard deviation s(T ) while X has mean E[X] and standard

deviation s(X). Then the certainty equivalent, x(ce), satisfies

Pr .{x(ce) > T} = Pr .{(c− E[T ])/s(T ) > e)} = Pr .{X ≥ T} = Pr .{ E[X]− E[T ]

(s2(X) + s2(T ))1/2
> e}

so that x(ce) = E[T ] + E[X]−E[T ]

(1+s2(X)/s2(T ))1/2
which demonstrates the result.

If we define the risk-adjusted weighting factor as

r = [
s2(T )

s2(T ) + s2(X)
]1/2

then the certainty equivalent becomes E[T ] + r(E[X]−E[T ]) where r < 1 implies risk aversion. In

the limit, as s2(T ) goes to infinity, r approaches 1, a condition which implies risk-neutrality. It is

then meaningful to talk about a performance risk premium, E[X]− x(ce) which is just

(1− r)(E[X]− E[T ])

The amount of expected performance the manager would give up in order to obtain certainty de-

pends on the both the uncertainty associated with project performance and with the performance
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risk attitude implied by the uncertainty about the target. The z-score commonly used in conven-

tional project management (in which T is assumed known) is given by z = E[X]−E[T ]

[s2(X)+s2(T )]1/2
and

corresponds to the standardized gap between certainty equivalent and target,
x(ce)−E[T ]

s(T ) . Hence the

z-score is an affine transformation of the risk premium.

To gain an understanding of the implications of results such as this, we can formulate the Tay-

lor series expansions and observe that, under some unexceptional assumptions, they approximate

simple decision rules.

When s2(X) < s2(T ), a Taylor Series expansion gives

x(ce) = E[T ] + (E[X]− E[T ])(1− s2(X)

2s2(T )
− ...)

Since the risk-aversion index for this utility is

−u′′

u′
= −d ln(u′)

dx
= (x− E[T ])/s2(T )

defining an average risk-aversion index by R(av) = E[X]−E[T ]
s2(T )

and substituting into the Taylor Series

expansion gives the approximation

x(ce) ≈ (E[X]− E[T ])−
R(av)s

2(X)

2

which, when s2(T ) is large (and R(av) is small) leads to the risk-neutral solution. When s2(X) >

s2(T ), we can also write the Taylor Series expansion

x(ce) = E[T ]+
E[X]− E[T ]

s(X)
s(T )[1−1

2
(s2(T )/s2(X))+...] = E[T ]+

E[X]− E[T ]

s(X)

s2(T )

1 + (s2(T )/s2(X)))1/2

which, when s2(T )/s2(X) is small, is like the conventional z-score heuristic for project management.

The cumulative normal (or Gaussian) utility is concave for values of x less than E[T ] and convex

otherwise. Thus, when the chances of performance exceeding E[T ] are good, the manager will be

risk-averse in performance and will only consider a gamble if its expected impact on performance
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is very positive. But when the chances of exceeding E[T ] are poor, this same manager will be more

open to taking risks. Note, this is the same pattern of risk-taking behavior as described Kahneman

& Tversky’s (1979) well-known prospect theory, but with the reference point here (E[T ]) being

unambiguously derivable from the distribution on T .

Thus, the common probability distributions assumed in PM predict that a decision maker using

TOU would – and should – display commonly observed behaviors in the pursuit of performance

levels. Abbas & Matheson (2005) made a similar observation in the context of aspiration equiva-

lents.

This formulation also has implications for decisions under incremental changes (denoted with

δ) induced in x(ce) by changes in E[X] and s(X):

δx(ce) = s(T )δz = rδE[X]− (E[X]− E[T ]]δr = −r[δE[X]− (E[X]− E[T ])(1− r2)δs(X)/s(X)]

If a manager is considering a decision which could change both the mean and variance of the

performance, e.g., cutting corners, that decision will only improve the certainty equivalent if

δE[X]

δ ln(s(X))
> (E[T ]− E[X])(1− r2)

Hence the amount of improvement in E[X] required to make a percentage improvement in risk,

s(X), viable increases with the amount the project is expected to be below target, E[T ] − E[X],

and with the amount of risk already in the project.

While many of the examples in this paper assume T Gaussian, this approach can, in principle,

be used with any distribution on T . Non-Gaussian distributions could increase the accuracy with

which preferences are modeled at the expense of additional modeling complexity.
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3 Application to Project Scheduling

Projects are composed of sets of activities related in specified ways. In the ”crashing” problem,

the alternative plans allocate resources across one or more activities to improve their performance.

With a fixed target, Abbasi and Mukattash (2001) incorporated utility functions on this problem.

In our setting, as in the case of a project consisting of a single activity, plans should be selected

so as to maximize the probability that the combined result of these activities (a function of the

performances of the individual activities) will beat some uncertain target.

For instance, in a project with only two activities, a1 and a2, there are two uncertainties X(1)

and X(2) associated with the execution of the project. The manager might choose a plan that to

puts more resources into a1 and less into a2, or vice versa, or one that takes a riskier approach with

a1 than a2, or whatever other possibilities exist.

This is only slightly more complicated than the problem from the previous section.

If we again create a TOUF from the distribution on T , and let g be the function that re-

lates activity performance levels to overall project performance, the project manager maximizes

E[u(g(x(1)(d)), x(2)(d))] in the following decision problem:

1. Select a plan d ∈ D

2. Observe the value of X(1) = x(1)

3. Observe the value of X(2) = x(2)

4. Observe the value of T = t

5. Receive value of 1 if g(x(1), x(2)) ≥ t

In the remainder of this section, we first develop an example where a TOU-based decision rule

can be used with an arbitrary set of connected activities. We then refine this example to obtain
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more rules for cases where (1) the project consists of parallel activities and (2) the project consists

of sequential activities. Finally, we discuss how the latter results relate to the problem of creating

suitable reward schedules for decentralized activity managers.

3.1 A Standard Heuristic for Scheduling Activities

We first review the standard heuristic commonly used to solve the fundamental project management

problem — how to allocate efforts to activities — and then introduce the simple extension allowed

by treating targets as uncertain. The conventional approach involves identifying the final output of

the project, listing the various tasks required to reach that output and identifying which activities

must be completed before other activities can start. A network is used to describe the precedence

relationships between different activities and project completion. Management then specifies the

possibly uncertain length of time (and cost) required to complete each activity and how much the

expected activity length could be shortened at what cost.

Example 2: Suppose (following Black, 1990) that designing a motorcycle involves five activ-

ities labelled a1, ..., a5. Activity a1 involves specifying requirements for the axle and wheels and

validating the requirements. Activity a2 involves specifying requirements for the seat and validating

the requirements. Activity a3 involves having a single supplier design the seat, handle, axles and

wheels. Activity a4 involves specifying requirements for the engine and having a supplier design

the engine. Activity a5 involves integrating the engine with the seat/handle/axle/wheel assembly.

The nature of these activities dictates that once the project begins a1, a2 and a4 can start at

any time while a3 can only start when a1 and a2 are finished, and a5 can only start when a3 and a4

are finished. The project ends when a5 is completed. These precedence relationships can be used

to define a simple directed graph, often called an activity network in PM.

Let the random variables X(1), ..., X(5) describe the uncertain times required to complete ac-
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tivities a1, ..., a5. Then the analyst identifies the three different sequences of consecutive activities

(or paths).

We define a path B as a sequence of activities aj that need to be completed in order before the

project is done. In this example, the paths are {a1, a3, a5}, {a2, a3, a5} and {a4, a5} which have

uncertain completion times of X{1,3,5} = X(1) + X(3) + X(5), X{2,3,5} = X(2) + X(3) + X(5) and

X{4,5} = X(4) + X(5) respectively. More generally, the uncertain completion time of path B is

X(B) =
∑
aj∈BX

(j). A standard project management approach is to approximate the X(j) with

beta distributions and, applying the central limit theorem, to crudely approximate the sum X(B)

as normally distributed.

In the standard PM case, the targeted project completion time is E[T ] where T is a constant,

and the manager computes the probability of the project being completed by time E[T ]. If the

mean and variance of the completion time for activity ai are E[X(j)] and s2(X(j)) respectively and

if the completion time of each activity is independent, then the mean and variance of each path is

easily computed from E[X(B)] =
∑
aj∈B E[X(j)] and s2(X(B)) =

∑
aj∈B s

2(X(j)). The probability

of completing the activities on path B by time E[T ] is

Pr .{X(B) ≤ E[T ]} = Pr .{X
(B) − E[X(B)]

s(X(B))
≤ E[T ]− E[X(B)]

s(X(B))
}

If X(B) is Gaussian, then the random variable eB = X(B)−E[X(B)]

s(X(B))
has the same distribution for all

paths. Paths can then be ranked, in order of their probability of not being completed on time by

the z-score E[T ]−E[X(B)]

s(X(B))
. In those cases, where one path’s probability of completion is significantly

lower than all the others, a heuristic can justifiably ignore the other paths and focus efforts on

project improvement on this one path — the critical path.

If it is possible to crash certain activities, (typically to shorten their completion time by adding

resources), the manager then computes the change in E[X(j)] and s2(X(j)) as well as the associated
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resource costs of crashing activity i. Since the analyst can compute the resulting impact on the

overall probability of project completion, the analyst can then rank initiatives which crash different

activities based on the change in the project certainty equivalent per dollar. This is equivalent

to ranking activities based on their impact on the z-score per dollar. Thus if a particular activity

adjusts the mean completion by δE[X(B)] and the standard deviation by δs(X(B)), then a first-order

approximation of the change in z-score is

δz(B) = −δE[X(B)]

s(X(B))
+
E[T ]− E[X(B)]

s2(X(B))
δs(X(B)) = −(1/s(X(B)))[δE[X(B)]− z(B)ds(X(B))]

The right-hand side of the equation above shows whether the change in mean is offset by the

change in standard deviation in such a way that the z-score improves and therefore the probability

of success improves. Hence the impact of a change on the z-score also defines the amount of added

risk δs(X(B)) which the manager is willing to accept in order to receive an incremental improvement,

δE[X(B)], in expected performance.

3.2 Modifying the Heuristic to Allow for a Utility Function

As previously noted, utility functions can be introduced into project management by treating T

as a random variable with mean E[T ] and variance s2(T ). This replacement of T by a random

variable can also be motivated by noting that even sponsors who do wish to set fixed targets are

sometimes uncertain about what target value is appropriate.

For example, project sponsors in consumer goods industries typically do not know when the

bulk of their customers will choose to shop for a new product, although there may be some pat-

terns associated with the seasons. Replacing the fixed target with a random variable changes the

probability of completing path B to

Pr .{X(B) ≤ T} = Pr .{X
(B) − T − E[X(B)] + E[T ]

(s2(T ) + s2(X(B)))1/2
≤ E[T ]− E[X(B)]

(s2(X(B)) + s2(T ))1/2
}
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so that the z-score can be written as

z =
E[T ]− E[X(B)]

(s2(T ) + s2(X(B)))1/2
(1)

which is equivalent to the conventional z-score with the variance of the completion time, s2(X(B)),

replaced by the variance of the gap between completion time and target, s2(X(B) − T ) = s2(T ) +

s2(X(B)). The first-order change in z-score induced by a change in E[X(B)] and s(X(B)) is now

δz = −δE[X(B)]/s(X(B) − T )− 1

2

E[T ]− E[X(B)]

[s2(X(B) − T )]3/2
2s(X(B))δs(X(B))

= −1/s(X(B) − T )[δE[X(B)]− z s(X(B))

s(X(B) − T )
δs(X(B))]

If s(X(B) − T ) = s(X(B)), the formula reduces the the previous case of no uncertainty about the

target.

However, this extension allows us to handle problems where the uncertainty attached to crashing

various activity completion times is different. For instance, suppose the completion times associated

with all activities are deterministic and that the project manager expects to fall short of the target.

Suppose that crashing activity a1 will reduce expected completion time by m1 with a standard

deviation of s1 while crashing activity a2 will reduce expected completion time by m2 with a

standard deviation of s2. Suppose s1 is much smaller than s2 and m1 is much smaller than m2.

Then the project manager must trade off expected time reduction against risk. If shortening the

completion time by m1 will guarantee completion of the expected target, the manager — using the

conventional project management objective function — should crash activity a1, even though its

expected impact on completion time is less than what he would get from crashing activity a2. In

contrast, introducing enough uncertainty in the target will cause the manager to prefer to crash the

second activity, so the uncertain target formulation can lead to different choices and a better chance

of meeting the target than would a conventional approach that ignores target uncertainty. This

example can be extended to allow for the costs associated with crashing many different activities.
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3.3 Generating Utility Functions for Performance on Parallel and Serial Activ-

ities

This paper has assumed that the project manager has the same information as activity managers

and can unilaterally instruct them. But the same type of problems that can occur in communi-

cating information (and incentives) between project sponsor to project manager may also occur

between project manager and activity manager. Then the project manager may want to delegate

decision making downward. Again, rather than setting fixed targets for activity managers, the

project manager can define new TOUFs with which activity managers can make choices that max-

imize expected utility from their own, and therefore the project manager’s and thus the sponsor’s

perspective. We consider several elementary cases.

Example 3: Suppose that the activity manager is only rewarded if the project manager

is successful. Also suppose that activities a1, ...an are in series. When activity ak starts, the

completion time of preceding activities a1, ..., ak−1 will be known. Let X(B(<k)) be the sum of their

known completion times. However the sum of the completion times of activities following activity

k, will still be uncertain. Let X(B(>k)) be the sum of the uncertain completion times of those

activities. Then the manager of activity ak will only be rewarded if activity ak’s completion time,

x(k), is less than T − x(B(<k)) −X(B(>k)). In this case, the activity manager’s uncertain target is

T (k) = T − x(B(<k))−X(B(>k)) with the activity manager’s utility function, u(X(k)) = Pr .{X(k) ≤

T (k)}.

Since the uncertainty in X(B(>k)) is greater when k is small, earlier activities will have higher

variance targets and more risk-neutral utility functions than later activities. In turn, managers of

later activities will have incentives for more pronounced performance risk taking to try to save a

lagging project or performance risk aversion to ensure that an ahead-of-schedule project doesn’t slip
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behind. That is, a later stage activity manager might accept gambles that an early stage manager

might reject and vice versa. Thus, even if the target itself is known, the nature of the activity

network may still induce a utility function on activity managers.

This example focuses on activities in series. But suppose we focus on a single activity of

interest. Then we do not need to assume that these other activities are in series. All that we need

to assume is that some activities must be finished before the activity of interest starts while other

activities cannot start until the activity of interest finishes. We can then consider the first set of

activities together as a single higher level activity a1 preceding the activity of interest, a2, followed

by the subsequent activities also considered together as a single higher level activity a3. Then

the probability of the project finishing is the probability that x(1) + X(3) + X(3) is less than the

uncertain deadline which yields a new uncertain target activity utility for the activity of interest,

T (2) = T − x(1)−X(3), and thus induces a utility function for this activity u(X(2)) = Pr .{X(2) ≤

T (2)}.

Example 4: Now consider a different case with two activities in parallel, with unknown and

stochastically independent completion times X(1) and X(2), both of which must be completed before

the target deadline. Here, the project manager is rewarded only when t ≥ max(x(1), x(2)). The

first activity manager’s utility for completing a project in time x(1) will be proportional to the

probability of T exceeding both x(1) and X(2), i.e.,

E[u(x(1))] ∝ Pr .{x(1) ≤ T,X(2) ≤ T} ∝ Pr .{x(1) ≤ T |X(2) ≤ T}Pr .{X(2) ≤ T}

Hence the first activity manager maximizes Pr .{x(1) ≤ T |X(2) ≤ T} which exceeds Pr .{x(1) ≤ T},

and so this manager will be be less aggressive with regard to X(1) than the project manager is with

regard to X.

Example 4b: Alternatively suppose the project is successful when either of the activities is
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completed before the deadline, i.e., the first activity manager gets rewarded if either her completion

time x(1) is less than T or the completion time of the second activity is less than T . Thus the first

activity manager only fails to get rewarded if both her completion time and the other activity’s

completion time exceed T . Thus the probability of getting rewarded is for achieving x(1)

1− Pr .{x(1) ≥ T,X(2) ≥ T} = 1− Pr .{x ≥ T |X(2) ≥ T}Pr .{X(2) ≥ T}

Hence the first activity manager maximizes the probability of getting rewarded by minimizing

Pr .{x ≥ T |X(2) ≥ T}, i.e., maximizing Pr .{x ≤ T |X(2) ≥ T} which is less than or equal to

Pr .{x ≤ T}. Hence the manager needs a greater value of x to achieve the target. As a result, the

manager’s target for success must be more aggressive.

Since the second activity manager likewise maximizes Pr .{x ≤ T |X(1) ≥ T}, it is straightfor-

ward to compute the probability of the deadline being met given the optimal decisions of the two

uncoordinated activity managers. But suppose the project manager were able to coordinate the

decisions of both activity managers to optimize the overall probability of meeting the deadline.

The improvement obtainable through coordination would then be simply the difference between

this probability and the probability when the activity managers’ decisions are not coordinated.

Example 4c: Alternatively, if, as in the previous section’s example activities a1 and a2 are in

parallel while the rest of the activities combined have a normal completion time, then TOU could

still be used but would be more complicated. Here the distribution of activity completion times

is the distribution of min(X(1), X(2)). Given the normality assumption, closed form expressions

exist for the mean and variance of the maximum of two Gaussian random variables (Clark,1961).

Specifically if z = E[X(1)]−E[X(2)]

s(X(1)−X(2))
, then the expected value of the mean (and the square of the mean)

of the maximum of two Gaussian variables is

E[max(X(1), X(2))] = E[X1] Pr .{z ≤ 0}+ E[X(2)](1− Pr .{z > 0})
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+
s(X(1) −X(2))

2(π)1/2
exp(−z

2

2
)

and

E[max(X(1))2, X(2)))2] = E[(X(1))2] Pr .{z ≤ 0}+ E[(X(2))2](1− Pr .{z > 0})

+ (E[X(1) +X(2)])
s(X(1) −X(2))

2(π)1/2
exp(−z

2

2
)

Replacing these two activities with this combined activity with the resulting mean and variance

then allows us to use the previous analysis (if it is acceptably accurate to approximate the maximum

of two Gaussian random variables with another Gaussian random variable.)

Example 4d: We can generalize these results by considering again sub-networks as higher

level activities, and by combining serial and parallel processes. As an example, consider the case

where the project can be organized into a sub-network of activities (designated a1) that must finish

before a particular manager’s activity (a2) can begin, and another sub-network of activities (a3)

that can be executed in parallel with a2. Since the sub-network of activities that finishes before a2

has a known completion time, x(1), the time from the start of the project to the completion of a2 is

x(1) +X(2). The project finishes on time if both x(1) +X(2) ≤ T and X(3) ≤ T . Hence, the activity

manager should maximize the expectation of u(X(k)) = Pr .{X(2) ≤ T − x(1)|X(3) ≤ T − x(1)}.

Alternatively, activity a1 might precede sub-network a2, while both of these proceed in paral-

lel with sub-network a3, and the activity manager would maximize the expectation of u(X(1) =

Pr .{X(1) +X(2) ≤ T |X(3) ≤ T}.

By variations on such iterative construction, utility functions could thus be derived for the indi-

vidual activity managers in an activity network consisting of a mix of parallel and series activities

(e.g., in the motorcycle example, activities a1 and a2 are in parallel and they are followed by activi-

ties a3 and a5 in series). Thus, TOU could be used to communicate the sponsor’s preferences down

through the organization, as responsibilities are delegated through a work breakdown structure.
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It allows even activity managers to choose among plans to complete their activities in a way that

maximizes the sponsor’s expected utility, maximizing their own expected reward, but deciding as

if they are rewarded when the larger project succeeds.

4 Project Balancing

To this point, we have discussed situations where the target is a single scalar value. Project

management typically focuses on more than one aspect of performance, most often cost, quality

and timing. Project managers may be faced with decisions that trade off performance on one of

these attributes against the other. The project manager may choose an approach that is likely to be

slower that would also be more if it were also likely to result in higher quality. We adapt Verzuh’s

(2011) distinction between project level balancing (where tradeoffs are only used in deciding how

to try to meet the different requirements), and business case level balancing (where it is possible

to make tradeoffs around what it means to ’meet’ requirements).

As before, we consider a project manager concerned with choosing a plan whose performance

is likely to exceed the customer requirements. The manager must choose from a set of alternatives

where no alternative dominates the others on all performance dimensions.

4.1 Project Level Balancing: Tradeoffs between Targets are Not Allowed

Let the single uncertainty about project performance X be decomposed into uncertainty about

time, quality and cost (random variables X1, X2 and X3), as the uncertainty about the target T is

likewise decomposed (into random variables T1, T2 and T3).

The project manager faces the following decision problem:

1. Select a plan d ∈ D
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2. Observe the value of X = (x1, x2, x3)

3. Observe the value of T = (t1, t2, t3)

4. Receive value of 1 if x1 ≥ t1, x2 ≥ t2, x3 ≥ t3

Again, we would like to formulate a utility function over multiple performance metrics whose

maximization is equivalent to maximizing the probability of a successful project. Here, we explore

for several cases how such a utility function over the X terms can be constructed to to reflect the

joint distribution of the T terms.

Assume criteria can be transformed so that the total performance measure on each dimension

is simply the sum of performance measures in that dimension over each of several activities. For

instance, project cost can easily be written as the sum of the cost of each required activity. On

the other hand, defining project completion time as the sum of adjusted completion times for

each activity requires that we define the adjusted completion time of an activity off the critical

path as zero (with adjusted completion time equalling actual completion time for activities on the

critical path.) To define an additive measure for project quality, assume that the probability of a

project being completed flawlessly is the product of the probability of each activity being completed

flawlessly. Then defining quality as the logarithm of the probability of flawlessness implies that

project quality is the sum of activity quality.

We first consider a situation where the manager cannot make tradeoffs between performance

on these various goals. This can arise when a manager is responsible to different departments for

her project’s performance on budget, quality and completion time. These goals could apply to a

single common dimension for multiple parallel projects, as in Hill and Khosla’s (1992) extension

with simpler time-cost tradeoffs, or, more generally, different project dimensions such as product

quality.
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Example 5: Suppose there are only two separate goals (e.g., time, X1 and cost, X2) and a

known relationship between these random variables with g(X1) +X2 = k for some constant k and

some strictly monotonic increasing function g. Then we can set X2 = k − g(X1) and the utility

function is

u(X1, X2) = Pr .{X1 ≥ T1, k − T2 ≥ g(X1)}

Defining upper and lower bounds T(U) = g−1(k − T2) and T(L) = T1 gives

u(X1, X2) = Pr .{T(U) ≥ X1 ≥ T(L)}

and the manager maximizes the probability that project completion time will lie in this random

interval. Define the midpoint T(av) =
T(U)+T(L)

2 and the spread T(diff) =
T(U)−T(L)

2 . Then for any

strictly monotonic increasing function h,

u(X1, X2) = Pr .{T(diff) ≥ X1 − T(av) ≥ −T(diff)} = Pr .{h(|T(diff)|) ≥ h(|X1 − T(av)|)}

Defining X = h(|X1 − T(av)|) as our performance measure and T = h(|T(diff)|) as our uncertain

target gives our utility as Pr .{X ≤ T} so that our target T is defined over deviations between X1

and T(av). If X − T is normal, then we can evaluate scenarios using E[X]−E[T ]
s(T−X) .1

Example 5b: For three performance metrics (defined to be negatively oriented in this ex-

ample), the utility function corresponding to the probability of meeting all three criteria is the

multivariate cumulative probability:

u(X1, X2, X3) = Pr .{Xi ≤ Ti; i = 1...3}
1Although in this paper, we assume the T and X terms are independent, T and X are sometimes correlated,

e.g., factors that might make performance difficult for the project team could also make performance difficult for

competitors, thereby lowering the target. when focusing on utility, assume ind, when focusing on target meeting,

then not required. Although we assumed independence for simplicity of results, most of them could be redone

without much difficulty to accommodate correlation. While such formulations would typically preclude the TOU

interpretation, this would not affect the correctness of the calculated probability that targets will be met.
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For analytic simplicity, we return to the simpler assumptions that each Ti follows an exponential

distributions with scale parameter βi and the Ti are are stochastically independent of one another,

so that the utility for a known set of performances x1, x2, x3 is:

u(x1, x2, x3) = Pr .{Ti ≥ xi; i = 1...3} =
3∏
i=1

exp(− xi
βi)

) = exp(−
∑
i

xi
βi)

)

If Xi, i = 1, ...3 are Gaussian with means E[Xi] and covariances Vik, then

u(X1, ...Xn) = 1− exp(−
∑
i

E[Xi]

βi
+

1

2

∑
ij

Vik
s(Xi)s(Xk)

)

Since the Ti are exponential, u(0, . . . , 0) = 1 and u(∞, 0, . . . , 0) = u(∞,∞, . . . ,∞) = 0, and u is

continuous in x. We can define a certainty equivalent 2 by selecting one performance dimension,

say the first, and using it as a reference, i.e., x(ce) = (x1(ce), 0, . . . , 0) such that u(x(ce) = E[u(X)].

Then

x1(ce) = β1(
∑
i

E[Xi]

βi
− 1

2

∑
ij

Vik
s(Xi)s(Xk)

)

Frequently a manager is presented with an option which will improve project’s completion time

or performance on some other attribute while introducing risk. The manager needs to know the

threshold at which the expected improvement is not worth the added risk. This is the point at which

the change in mean performance and standard deviation of performance lead to zero improvement

in expected utility (and thus in the certainty equivalent.) Thus consider an intervention which

leads to a one unit increase in E[Xj ] and an increase in Vik of q. The one unit increase in E[Xj ]

changes the certainty equivalent by β1
βj

while the change in Vik changes the certainty equivalent by

−β1
q

s(Xi)s(Xk) . The project manager should be indifferent about the intervention if q = s(Xi)s(Xk)
βj

.

So in the Gaussian case, determining whether an intervention leads to an overall improvement in

the certainty equivalent is straightforward.

2Abbas & Matheson (2009) give a more general formulation of the notion of a certainty equivalent in the context

of multi-attribute TOU.

29



The next variation is motivated by the fact that Gaussian distributions may be too restrictive

for the range of possible performance measures. We weaken assumptions about the distribution by

using the Weibull (whose density function is unimodal with a mode that can be greater than zero)

and still obtain tractable results comparable to those of the (somewhat less flexible) exponential

distribution whose density function is unimodal with its mode at zero.

Example 5c: If Ti is approximated with a shifted Weibull distribution with lower bound γi,

scaling factor βi and shape parameter αi, then

u(x1, x2, x3) = 1−
∏
i

exp(−(
xi − γi
βi

)αi) = 1− exp(−
∑
i

(
xi − γi
βi

)αi)

Example 5d: Suppose in addition that each Ti has been linearly transformed so that γi = 0

and βαii = 2, i.e., that Ti follows a Rayleigh distribution. The disutility is 1 − u(x1, x2, x3) is just

exp(−
∑
i x

αi
i /2). Assuming Xi Gaussian (as before) and defining I as the identity matrix, V as

the covariance matrix of X, W as [I + V−1]−1 and H as WV−1E[X], the expected disutility is

then

1− E[u(X1, X2, X3)] = |V −1|
∫

exp(−1

2
[xTx+ (x− E[X])V−1(x− E[X])])dx

= |V −1|
∫

exp(−1

2
[xT [I + V−1]x− 2xTV −1E[X] + E[XT ]V−1E[X])

= |V−1|
∫

exp(−1

2
[(x−H)TW−1(x−H)−HW−1H + E[XT ]V−1E[X]]dx

= |V−1W | exp(
1

2
E[XT ][V−1WW−1WV−1 −V−1]E[X])

= [I + V]−1 exp(
1

2
E[XT ]V−1[WV−1 − I]E[X])

= [I + V]−1 exp(−1

2
[EXTV−1WE[X]) = [I + V]−1 exp(−1

2
E[XT ](I + V)−1E[X])

This formula for utility of multi-dimensional performance generalizes the Gaussian case and,

per Tsetlin & Winkler (2007), accounts for the potentially critical correlation between attributes.
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4.2 Business-Case-Level Balancing: Tradeoffs between Targets are Allowed

In the previous section, a customer’s tradeoffs between different levels of performance were based

on the relative importance of meeting different requirements on time, cost, performance, etc. But

as Tsetlin and Winkler (2006) noted, there are some multi-attribute preferences which cannot

be described in this way. Instead a value function must be defined over known levels of cost,

completion time and performance which reflects tradeoffs. (There is an extensive literature on

estimating weights in the value function.) A utility function is then defined over the value function

reflecting the customer’s attitudes to risk. Specifically suppose the value, X(total), is a weighted

average of performance on the three dimensions of cost, completion time and performance.

This leads to a different type of TOUF for cost, quality and time along the lines of which will

allow utility maximization to solve the following decision problem:

1. Select a plan d ∈ D

2. Observe the value of X = (x1, x2, x3), and calculate x(total) = w1x1 + w2x2 + w3x3

3. Observe the value of T = (t1, t2, t3) and calculate t(total) = w1t1 + w2t2 + w3t3

4. Receive value of 1 if x(total) =≥ t(total)

If X(A) is the sum of the scores over various activities j, aj ∈ A, then X
(A)
i =

∑
j X

(j)
i and

X
(A)
(total) =

∑
ij X

(j)
i wi. The mean and variance of X is

∑
ij E[X

(j)
i ]wi and

∑
ijk Cov(X

(j)
i wi, X

(j)
k wk).

If there is no correlation between different activities, the variance simplifies to
∑
ijk wiV ar(X

(j)
i , X

(j)
k )wk.

If there is no correlation between attributes, this further simplifies to
∑
ij w

2
i V ar(X

(j)
i ).

As before, we introduce a random variable T which represents the uncertain level of X
(A)
(total)

which the manager is trying to achieve (e.g., the overall performance of a key competitor.) We
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can now apply as a decision rule the solution of section 3 (for the manager trying to meet an

uncertain deadline) usingX
(A)
(total) to represent the overall performance measure instead of the project

completion time X.

With the results from this section, project plans can be modified to increase chances of success.

This can be done at the start of the project (more likely as business case level balancing: picking

a different combination of performance levels in order to match the overall performance target), or

in the middle of a troubled project (more likely as project-level balancing) by changing the relative

likelihood of meeting the various targets.

5 Multi-stage Decision-Making

To this point, we have focused on using utility functions to compare and select alternatives in single-

stage decision problems by properly accounting for risk and uncertainty. In multi-stage decisions,

DA techniques, especially the concept of ”value of information,” can also help decision makers

anticipate and properly account for information that might be obtained before some later stage

choices. This applies in project management where it is often possible to build in additional decision

points allowing for course corrections during the project. For instance, in product development

projects, initial plans may contain valuable real options (Huchzermeier & Loch, 2001, Keisler &

Mang, 2011) if they build in flexibility to modify the product design or even abandon the project

if it becomes known that it is too technically challenging or that the business environment changes

before completion. We convert the project from section 2.1 into a two-stage (or multi-stage) decision

problem where it is possible to acquire information in between the stage 1 choice and the later stage

choice(s). In general, the decision problem will be as follows:

1. Select a first stage strategy
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2. If the strategy includes information acquisition, obtain partial or perfect information Ψ and

update distributions on X and or T

3. Select a second stage decision

4. Observe the value of X = x

5. Observe the value of T = t

6. Receive value of 1 if x ≥ t

In 5.1, we describe how expected TOU maximization can work in a generic case where the project

manager anticipates downstream project decisions based on information that may be acquired. In

5.2, we develop a realistic example where it is possible to develop a testing plan to, at a cost, obtain

information about system performance during the project. In 5.3, we assume system requirements

are being met, but consider how the project might plan to validate the system against customer

requirements, e.g., through focus groups.

5.1 Downstream Decisions and Value of Information in Project Management

Decision analysis can support the project manager in doing more than merely deciding to approve

an initial project plan. For instance, if certain aspects of the project are running late, management

may reallocate resources in order to accelerate various later stage activities (Kavadias & Loch,

2003). Management can also order rework, i.e., allocate resources to reworking activities previously

done (Ahmadi & Wang, 1999, Smith & Eppinger, 1997). Such decisions will only be made with

the addition of the information set (Ψ) available at the kth stage.

Example 7: We consider a project’s stages as sequential activities J = {a1, ..., an}, and aj

denotes the jth activity. Thus at the start of the project, the firm’s uncertainty about the project’s
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future performance upon completion is described by the random variable X(J) =
∑n
j=1X

(j). At the

kth stage, based on monitoring of earlier stages of the project , the manager may now believe that

∑k
j=1X

(j), which previously had mean
∑k
j=1E[X(j)] and variance

∑k
j=1 s

2(X(j)), now has mean

∑k
j=1E[X(j)|Ψ] and variance

∑k
j=1 s

2[X(j)|Ψ]. The manager can now recompute the probability of

meeting project objectives as the probability that z(Ψ) > e where

z(Ψ) =

∑k
j=1E[X(j)|Ψ] +

∑
j>k E[Xj ]− E[T ]

[s2(T ) +
∑k
j=1 s

2(X(j)|Ψ) +
∑
j>k s

2(X(j))]1/2

If we let s2(X) and E[X] be the original mean and variance for the project at time 0 and define

E[X|Ψ] =
∑k
j=1[E[X(j)|Ψ− E[X(j)]] and s2(X|Ψ) =

∑k
j=1[s2(X(j))− s2(X(j)|Ψ)], then

z =
E[X]− E[T ]

[s2(T ) + s2(X)]1/2

Recalling the risk factor from section 3,

r =
s(T )√

s2(X) + s2(T )

we can also write

s(T )z = r(E(X)− E(T ))

Similarly if

z(Ψ) =
E[X]− E[T ] + E[X|Ψ]

[s2(T ) + s2(X)− s2(X|Ψ)]1/2

then defining λ = [1− s2(X|Ψ)
s2(X)+s2(T )

]−1/2 so that

rλ =
s(T )

[s2(T ) + s2(X)− s2(X|Ψ)]1/2

implies

s(T )z(Ψ) =
E[X]− E[T ] + E[X|Ψ]

[s2(T ) + s2(X)− s2(X|Ψ)]1/2
= rλ[E[X]− E[T ] + E[X|Ψ]

As a result,the change in z-score can be written as

s(T )z(Ψ) = (E[X]− E[T ])rλ+ E[X|Ψ]rλ = s(T ][z + r[λE[X|Ψ] + (1− λ)(E[T ]− E[X])]
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Likewise the change in certainty equivalent is s(T )(z(Ψ)− z) or

r[λE[X|Ψ] + (1− λ)(E[T ]− E[X])]

Since s2(X|Ψ) > 0, λ will exceed one.

Since s2(X|Ψ) > 0, λ will exceed one, if there were no change in mean performance, the

information would increase the certainty equivalent if the project were expected to exceed its

target (E[X]−E[T ]) and would reduce the certainty equivalent if the project were expected to fall

short of its target. If the manager expects to meet (miss) the target, small decreases (increases) in

mean performance could be offset by greater certainty.

Of course, when there is no decision involved, the expected value does not change merely

because we explicitly enumerate the possible results of uncertainty resolution. For example, if the

manager expects to miss the target, then as uncertainty is resolved, the change in expected value

is asymmetric in the change in the expected performance — an increase in expected performance

leads to a greater change in expected value than the loss associated with the same magnitude of

decrease in expected performance, and the additional size of the potential gain also offsets the

decrease in expected value that occurs in the case when uncertainty is reduced and the mean

remains unchanged.

Reworking earlier activities will typically increase the mean completion time and cost of the

project while possibly improving quality. Computing the time, quality and cost implications of

rework is not straightforward since reworking an activity may involve reworking all later activities

which depended on inputs from the activity. Furthermore, reworking those later activities may

then induce new errors. The Design Structure Matrix (DSM, see Steward, 1981, Browning, 2001)

provides a natural way of estimating the cost, time and quality implications of rework. A typical

DSM might specify the probability that reworking a specific activity (e.g., engine design) requires
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rework in each of the other activities in the project (e.g., chassis design).

Once these potential decisions are translated into changes in the mean and variance of X,

formulas discussed in the previous section describe how we can potentially evaluate alternative

decisions. If z(Ψ) has substantially worsened compared to z, then it is possible that no decision

will be able to improve z(Ψ) so as to yield an acceptable probability of success to justify the

cost of continuing. In this case, the project manager might choose to cancel the project. Or,

alternatively, z(Ψ) might have improved so much relative to z as to make rework unnecessary

(although management might choose to adjust the resources allocated to activities in later stages.)

Thus in some cases, we can define an upper bound and a lower bound which define three ranges

corresponding to: advancing the project to the next stage, requesting project revision, or canceling

the project.

5.2 Engineering Testing

In system development projects, testing allows managers to learn how close the system is to meeting

its specifications. The earlier that problems are identified, the more easily they can be corrected.

Because testing takes time and money, it should only be done if it has enough to improve the

project’s trajectory. This is essentially a value of information problem, as in 5.1. Partial information

will be obtained about the performance of the project X prior to selecting a plan to finish the project

that maximizes Pr .{X ≥ T}.

We previously considered the case where management at the jth stage received information

for free, and how this information would be anticipated in earlier stage decisions. For instance, a

manager typically learns a lot about activity completion times by observing which activities were

actually completed by the time of the jth stage review.

But in the case of quality, management typically does not have have clear information about the
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quality of the deliverables resulting from activity k. Sometimes such information can be gathered

by commissioning a peer review. Sometimes it can be gathered by actually creating a prototype of

the partly completed deliverable and subjecting it to tests.

Peer review will certainly have direct cost for the staff involved. If the validation activity can

be conducted off the project’s critical path, then it will not impact project completion time. But

in many cases, a good prototype can only be constructed after completion of activities on the

critical path. Thus the validation activity typically occurs on the project’s critical path and then

necessarily consumes time. As a result, validation can increase both cost and time in order to

provide information at stage j which may lead to decisions improving product quality that are

superior to those that would have been made without this additional information.

Note, for instance, that the performance of a product is a combination of the performance of

the product if manufactured exactly to the engineered specifications and the deviations from that

performance arising from inherent manufacturing variability. Similarly the performance of a proto-

type is a combination of its performance if manufactured exactly to the required specifications and

the deviations arising from manufacturing variability. Hence if the prototype fails an engineering

test, this failure could reflect imperfections in the prototype and not in the engineering design.

But if the prototype is created to parallel how the product will be manufactured, failure in the

prototype may suggest that the design is not easily manufactured,e.g., it requires unreasonably

tight tolerances or involves assembly procedures that are overly demanding for human assemblers.

We now develop a specific example for which we can derive decision rules for planning tests to

validate the technical performance of a product. Such tests will not give management perfect infor-

mation on the product although they should the variance associated with management’s prediction

of product performance.

Example 8: Suppose the manufacturing variability for a single test item is em with mean zero
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and variance σ2. Then the variability in the performance of the prototype design is X + em where

X reflects uncertainty in the performance of the design. If the variance on X was s2(X) prior to

the test, and if tests allow direct measurement of the performance of N independent prototypes,

then the new uncertainty about X is s2(Xnew) = ( 1
s2(X)

+ N
σ2 )−1. Defining w = s2(X)

σ2

N
+s2(X)

= N

N+ σ2

s2(X)

implies s2
new(X) = (1− w)s2(X).

Given an average test result of x̂, the new mean estimate of X is

E[X]
s2(X)

+ x̂
σ2/N

1
s2(X)

+ 1
σ2/N

= E[X] + (x̂− E[X])
s2(X)

s2(X) + (σ2/N)
= E[X] + w(x̂− E[X])

Define ∆ = x̂− E[X] and

z(Delta) =
E[T ]− E[X]− w(x̂− E[X])

[(1− w)s2(X) + s2(T )]1/2

The expected utility given the test result is then Pr .{z(∆) ≥ e}. Integrating this expected

utility, over all possible test results, yields the original expected utility prior to doing the test.

Example 8b: Now suppose that doing rework changes X to X(Q) which is Gaussian with mean

E[X(Q)] and variance s2(X(Q)). Let z(Q) be the z-score associated with rework, i.e.,

z(Q) =
E[T ]− E[X(Q)]

(s2(X(Q)) + s2(T ))1/2

So the utility of doing rework is Pr .{z(Q) > e}. Since we only do rework if z(Q) > z(∆), our

expected utility if we observe the test result ∆ and then act optimally is

Pr .{max(z(Q), z(∆) > e}

This will, of course, not be less than the utility of always doing rework, Pr .{z(Q) > e} or the utility

of observing the test result and proceeding with our original plans, Pr .{z > e}.

The certainty equivalent x(ce∗) will satisfy

Pr .{
x(ce∗) − E[T ]

s(T )
> e} = Pr .{max(z(∆), z(Q)) > em} = 1− Pr .{max(z(∆), z(Q)) < e}

= 1− Pr .{z(∆) < e}Pr .{z(Q) < e}
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Let G(y) = Pr .{e > y}. Then

1−G(
x(ce∗) − E[T ]

s(T )
) = 1−G(z(∆))G(z(Q))

The inverse of G is a readily accessible function so that we can compute

x(ce∗) = E[T ] + s(T )G−1[G(z(∆))G(z(Q))]

Since the certainty equivalent before validation was just x(ce) = E[T ]+ E[X]−E[T ]

(s2(X)+s2(T ))1/2
, the difference

between the two gives the value of information.

Example 8c: Suppose in the above case the cost of running N validation tests is K(N). To

determine how much validation to conduct, we need to adjust z(Q) and z(∆) as follows

z(Q;N) =
E[T ]− E[X(Q)]−K(N)

(s2(X(Q)) + s2(T ))1/2
, z(∆;N) =

E[T ]− E[X]− w∆−K(N)

[(1− w)s2(X) + s2(T )]1/2

The optimal number of tests is that N optimizing X(ce∗) and thus [G(z(∆;N)G(z(Q;N)]. If the

test yields information on multiple dimensions, we can still use the vector of G and G−1 values

corresponding to these dimensions, with a correlation term if necessary.

In addition to specifying how many tests to run, this calculation can determine when the tests

should be run (following Ha & Porteus, 1995). If a test is run early, then the cost of rework is

small. However the accuracy of the test is lower since the design being tested is more unfinished.

In this case, w is smaller and the test is less credible. Alternatively, running the test later ensures

a more credible test (larger w) but the costs of rework are higher. Thus, by including the effect of

product design on the project’s expected utility, it becomes possible to perform value of information

calculations which can influence both the timing and the extent of validation.
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5.3 Market Testing: Validating that the Solution Satisfies Customer Require-

ments)

As the project advances toward completion, new information may become available about whether

the product specifications are still likely to meet customer requirements. Conceptually, this is

similar to the system testing example, except that here the project manager faces a decision about

whether to obtain information about the uncertain target T rather than about X before selecting

a plan for the remainder of the effort.

As information is revealed over time, E[T ] changes and s(T ) typically shrinks. Sometimes

this information is free, e.g., a competitor announces its intention to market a product with a

certain level of quality and cost. Sometimes companies will conduct real-time market research,

e.g., customer clinics or focus groups. Just as updating information on product performance causes

management to adjust its decisions, and possibly rework new activities, so this updated information

on market needs can cause a revisiting of all these decisions. The formulas previously developed

allow us to make tradeoffs between possible courses of action. As always, the critical question is

properly quantifying the costs and time-impacts of changes versus the benefits of better aligning

performance with updated market needs.

Updating the uncertain threshold, T , is theoretically equivalent to modifying the utility func-

tion applied to the project. Typically, information which reduces the uncertainty about market

requirements should make the manager more risk-sensitive, i.e., more inclined to avoid gambles if

the product seems to be exceeding requirements and more inclined to take gambles if the product

seems to fall short of requirements.3 But while the utility function becomes more risk-sensitive

3A highly engaged project sponsor might at this point want to change the utility function to be used in the

remaining decisions, in which case the project manager could receive credit for earned value (Kim et al, 2003), and

then be rewarded based on the new utility function for the remainder of the project.
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with time, this is coupled with decreasing risk in the product which is being managed.

Example 9: Suppose that new information on product performance and on the market require-

ment arrives in such a way that their expected values follow a random walk. Then the reduction

in variance on both will decrease linearly as the project progresses. If σX and σT are the volatility

associated with the performance and the requirements respectively and if s2
τ0(X) and s2

τ0(T ) denote

the initial uncertainty about the performance and requirement, then s2
τ (X) = s2

τ0(X) − τσX and

s2
τ (T ) = s2

τ0(T )− τσT . Hence the certainty equivalent at time τ is an affine transformation of

E[X]− E[T ]

1 + s2τ (X)
s2τ (T )

=
E[X]− E[T ]

1 +
s2τ0(X)−τσX
s2τ0(T )−τσT

Since the uncertainty about the requirements s2
τ (T ) changes over time, this implies that the

utility function defined by T also changes over time. While there is nothing inconsistent about utility

preferences predictably changing over time, unstable preferences differ from what is commonly

assumed in practice. But if all uncertainty disappeared at some time period τF , then s2
τ0(X) =

(τF − τ0)σX and s2
τ0(T ) = (τF − τ0)σT . As a result, the certainty equivalent would be an affine

transformation of

E[X]− E[T ]

1 + σX
σT

which does not change systematically over time. Hence, if a project manager in practice were to

create project planning decision trees, it might be reasonable to assume a stable utility function.

Even if this condition doesn’t hold exactly, the competing effects will mean that original utility

function will usually be fairly close to the post-test utility function. Thus, practical decision tree

analysis can be conducted early in the project using the original TOU function, with confidence

that the project manager’s actions will continue to maximize the project sponsor’s expected utility

throughout the project.
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6 Conclusion

The project management process features a variety of planning decisions, ranging from upfront

design to in-process adjustments. These decisions often require tradeoffs involving the probability

distribution for performance within and across dimensions. Uncertain requirements can render

existing fixed-requirement PM tools inadequate. Our contribution starts with the insight that

TOU fits rather naturally with PM, and thus might facilitate the inclusion DA within PM. We

propose that PM add assessment of uncertain targets on top of its current planning techniques, e.g.,

defining work breakdown structures and activity networks, and estimating mean and variance of

performance for activities (or more generally, full distributions). A utility function for performance

is then based on the distribution of the target, replacing the implicit binary function determined

by success in meeting fixed targets. Many resulting heuristics for maximizing expected utility can

be understood as modified versions (including suitable adjustments for uncertainty) of heuristics

for maximizing the chance of meeting fixed requirements.

We conceive of several common PM problems as sequential decision problems containing uncer-

tainty about performance and targets, and identify statistics and decision rules for simple (variants

of Gaussian) versions of these problems:

• selecting among alternative project plans, by calculating expected utility, certainty equivalent

and risk premium;

• selecting among alternative plans (or changes to plans) affecting separate activities in a generic

network, in parallel, or in series, possibly allowing for distributed PM;

• making tradeoffs in achieving performance on cost, quality and time aiming to meet either a

set of separate targets or an aggregate performance target;
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• planning to obtain mid-project information about performance and requirements, and optimal

testing, by calculating the expected value of information.

Future work would move beyond the illustrative examples in this paper to more flexible for-

mulations capable of capturing more of the considerations that arise in realistic settings. Specific

developments might include:

• multilevel uncertain targets, e.g., where there is a value of 1.0 for meeting a stretch goal, 0.5

for meeting a lower threshold, and 0 for failing to meet that lower threshold;

• distributions other than Gaussian;

• other network topologies (which might be easier to model with non-Gaussian distributions

such as the Gumbel distribution);

• different performance measures for the primary attributes of cost, quality and timing, or other

primary attributes in addition to the above;

• aspiration equivalent-based heuristics;

• characterization of the resolution of uncertainty as a function of time (e.g., to identify the

optimal time for testing);

By explicitly treating targets as uncertain variables, we can formalize many of the practical

challenges of PM. In particular, this creates interesting theoretical and applied opportunities to

enhance PM with powerful decision analytic methods.
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