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VISION 
A key hurdle that prevents MOOCs from reaching their transformative potential 
in terms of making valuable learning experiences available to the masses is that 
they fail to provide the kind of social environment that is conducive to sustained 
engagement and learning.  This is especially true as students arrive in waves to 
these fledgling online learning communities.  Our research seeks to lay the 
foundation for meeting this challenge by beginning with a case study and 
computational modeling of social interaction data in order to yield new 
knowledge that would inform development of novel, real-time support for 
building healthy learning communities that foster a high level of engagement and 
learning.  

Interactive, supportive technology exists for effectively supporting small 
group online collaboration (Kumar & Rosé, 2011; Adamson et al., 2014).  Where 
small group interaction is already used within a MOOC context (such as 
supported by NovoEd https://novoed.com/), such technology could be imported 
wholesale.  However, in more typical forms of MOOC social interaction, such as 
in the threaded discussions, the positive effects of these forms of support may not 
generalize, and therefore the support may need to be substantially adapted.  Thus, 
what we consider in this chapter is how we might build on the prior success with 
dynamic support for small group collaboration in order to work towards a new 
generation of more socially supportive MOOCs.  The ultimate goal of this new 
context sensitive support is to yield more resilient massive scale online learning 
environments.  We must consider what such support might look like.  To that end, 
we begin with what exists for supporting small group collaboration (e.g., Kumar 
& Rosé, 2011; Adamson et al., 2014) and consider what we have learned from a 
case study in an xMOOC with over 60,000 students enrolled that suggests how 
such technology might be applied. 

The proposal is not to replace humans with technology but to extend the 
capabilities of human effort through technology in order to use that valuable 



human contact in a cost effective way.  In so doing, we draw from the literature 
on classroom discussion to motivate design for highly successful facilitative 
support.  The design of such support is consistent with the literature on facilitation 
of collaborative learning groups (e.g., Hmelo-Silver & Barrows, 2006), and 
leverages a large body of work that has shown that certain forms of classroom 
discussion facilitation, termed Accountable Talk®, otherwise known as 
Academically Productive Talk, are beneficial for learning with understanding 
(Adey & Shayer, 1993; Bill, Leer, Reams, & Resnick, 1992; Chapin & O'Connor, 
2004; Resnick, Asterhan, & Clarke, in press; Topping & Trickey, 2007a, 2007b; 
Wegerif, Mercer, & Dawes, 1999).  This facilitation technique highlights a set of 
core facilitation moves that teachers employ as tools to encourage group 
knowledge integration among students in whole class discussions.  In classrooms 
where Accountable Talk is used, students learn to reason together and use each 
other’s thinking as a resource to scaffold their own.  Achieving the potential for 
such an effect in MOOCs would be a substantial improvement over what 
mainstream MOOCs currently offer. 

The unique developmental history of MOOCs creates challenges that 
cannot be met without insight into the inner-workings of massive scale social 
interaction.  In particular, rather than evolving gradually as better understood 
forms of online communities, MOOCs have a rather abrupt start.  The bulk of the 
student population that participates in a MOOC signs up for participation 
substantially before the launch date.  When the launch date comes, the community 
springs up all at once, with potentially tens of thousands of new initiates, and no 
substantial community core beyond the instructor and TAs.  Then they expand in 
waves as new cohorts of students arrive from week to week to begin the course.  
As massive communities of strangers that lack shared practices that would enable 
them to form supportive bonds of interaction, these communities grow in an 
organic manner.  While some students may successfully find like-minded students 
with whom to bond and find support, when others come they may find an 
overwhelming amount of communication having already been posted that they 
feel lost in.  Others may find themselves somewhere in between these two 
extremes.  They may begin to form weak bonds with some other students when 
they join, however, massive attrition may create challenges as members who have 
begun to form bonds with fellow students soon find their virtual cohort dwindling 
(Rosé et al., 2014; Yang et al., 2014a).  Early attempts to organize the community 
into smaller study groups may be thwarted by such periodic growth spurts paired 
with attrition, as groups that initially had sufficient human resources to 
accomplish their tasks soon fall below that level and then are unable to support 
the needs of remaining students.   

Our research is leading us towards development of new interventions to 
enhance MOOC platforms, which entails development of new technology (Yang 



et al., 2014b).  An overarching goal is development of a communication medium 
that can accommodate emerging community/sub-community structure -- 
supporting the formation and sustenance of supportive relationships.  Ultimately, 
what we aim to foster is communities of inquiry (Garrison, 2010) where students 
build supportive bonds with one another so that they are able to reason together 
and use each other’s thinking as resources as in Accountable Talk  classrooms.  
We seek to accomplish this through provision of synchronous discussion 
opportunities and support for more efficient help seeking. 
 
THEORETICAL AND TECHNICAL FOUNDATION 
One of the great challenges of making MOOCs more effective is dealing with the 
massive scale while considering limitations on the instructors and teaching staff 
for offering support.  A key aspect of our vision is to take advantage of the 
tremendous support resources that the students themselves bring to the table that 
they could offer each other.  Work towards leveraging support from students has 
already shown promise in the field of Computer Supported Collaborative 
Learning.  Though it is frequently noted that unsupported collaboration may 
suffer from many interpersonal difficulties, we have observed in a variety of 
collaborative tasks how students benefit in their pre to post-test gains by almost a 
full letter grade just from having a fellow student to work with (Gweon et al., 
2006; Kumar et al., 2007).  Above and beyond that, support for effective 
collaboration improves learning in collaborative contexts (Gweon et al., 2006).   

Until recently, the state-of-the-art in computer supported collaborative 
learning consisted of static forms of support, such as structured interfaces, 
prompts, and assignment of students to scripted roles (see Fischer et al., 2013 for 
a review).  Most recently, a decade of research in this vein, including our own 
(Gweon et al., 2006; Kumar et al., 2007; Kumar & Rosé, 2011; Dyke et al., 2013; 
Adamson et al., 2014), shows that students can benefit from their interactions in 
learning groups when automated support is provided, especially dynamic, 
interactive and context sensitive support.  Dynamic forms of collaboration support 
“listen in” on student conversations in search of important events that present 
opportunities for discouraging dysfunctional behavior or encouraging positive 
behavior using automated analysis of collaborative learning processes (Kumar et 
al., 2007; Adamson et al., 2014).   

The theoretical foundation for the work begins by considering what makes 
discussion for learning effective.  The answer to the question will vary depending 
upon whether one comes from a cognitive (Webb, 2013), developmental (Golbeck 
& El-Moslimany, 2013), or sociocultural (Hakkarainen et al., 2013) perspective.  
In our work, we adopt a sociocognitive perspective (Howley et al., 2013), 
emphasizing the value in making reasoning public and encouraging students to 
listen carefully to and build on one another’s reasoning (de Lisi & Golbeck, 



1999).  As students engage in this type of exchange, they have the opportunity to 
observe discrepancies between their own mental model and those of other 
students.  This exchange thus provides opportunities to experience cognitive 
conflict and learning.  They also have the opportunity to take ownership over 
knowledge and position themselves as valuable sources of knowledge within the 
interaction (Howley et al., 2011).   

In the classroom discourse community, work on teacher facilitation 
techniques suggests methods for encouraging these types of interactions between 
students.  One such framework, termed Accountable Talk, or Academically 
Productive Talk, has demonstrated striking results in terms of precipitating steep 
increases in achievement in the domain of instruction, with transfer to other 
domains that persists for years (Adey & Shayer, 1993; Bill, Leer, Reams, & 
Resnick, 1992; Chapin & O'Connor, 2004; Resnick, Asterhan, & Clarke, in press; 
Topping & Trickey, 2007a, 2007b; Wegerif, Mercer, & Dawes, 1999).  In our 
recent work, we have adapted some of these teacher facilitation practices in 
automated support for collaborative learning that uses intelligent software agents 
to provide the facilitation for student groups (Adamson et al., 2014).  When the 
automated facilitation provided support that is well adapted to the needs of the 
student groups, we find pockets of intensive interaction among students following 
facilitation moves (Dyke et al., 2013; Adamson et al., 2014).  In addition to the 
local effect on small groups of collaborating students, we see that students who 
have experienced a supported small group collaboration experience bring the 
positive effect back to whole class discussion (Clark et al., 2013).  This result 
connecting small group and large group effects suggests that technology for 
supporting small group online collaboration may have a direct application in 
MOOCs where students are assigned to work in small groups for some 
assignments.  However, our larger goal is to apply the general principle more 
directly to all forms of social interaction in MOOCs.  For example, if we provide 
intensive synchronous collaboration experiences in the midst of the MOOC 
learning experience, we hope the positive effects will be felt also within the 
asynchronous threaded discussion forums. 

An essential enabling technology in our work on dynamic support for 
collaborative learning has been development of technology for automated analysis 
of discussion for learning (Donmez et al., 2005; Rosé et al., 2008; Mu et al., 2012; 
Gweon et al., 2013).  In this work we focus on automatic application of multi-
dimensional frameworks for characterizing collaborative learning processes 
(Howley, Mayfield, & Rosé, 2013; Howley, Mayfield, Rosé, & Strijbos, 2013).  
More recently we have developed techniques for automated analysis of threaded 
discussions in MOOCs, including analysis of emergent discussion groups (Yang 
et al., under review; Kumar et al., under review), indicators of motivation and 



cognitive engagement (Wen et al., 2014a), and expressed attitude towards the 
course and course tools (Wen et al., 2014b).   

In our work using automated analyses to dynamically trigger agent based 
facilitation to support collaboration, as well as to support our sensemaking in 
interpretation of data for research purposes, we have made use of supervised, 
semi-supervised, and unsupervised machine learning methods.  In our experience, 
supervised models, which are models trained with data hand annotated with 
theory motivated labels has stronger predictive validity (Rosé et al., 2014b; Wen 
et al., 2014a; Wen et al., 2014b), but it is also helpful from a research perspective 
to employ exploratory models that can offer a bird’s eye view of the data that do 
not require pre-determined hand labels.  To that end, some of our recent work has 
focused on the development of probabilistic graphical modeling techniques for 
identifying emergent community structure in MOOC discussions (Yang et al., 
2014a; Yang et al., under review) and other types of threaded discussions (Kumar 
et al., under review).  The goal here is to use cues from who is interacting with 
whom (using social network structure that can be constructed from reply links 
within threads) integrated with models of which themes are discussed (using topic 
modeling tools) in order to identify emerging groups with topical foci that reflect 
the values they share when they are interacting.   

From a technical perspective, our modeling approach integrates two types 
of probabilistic graphical models.  First, in order to obtain a soft partitioning of 
the social network of the discussion forums, we used a Mixed Membership 
Stochastic Blockmodel (MMSB) (Airoldi et al., 2008). The advantage of MMSB 
over other graph partitioning methods is that it does not force assignment of 
students solely to one sub-community.  The model can track the way students 
move among sub-communities during their participation.  Some of our earlier 
work made use only of this portion of the model (Rosé et al., 2014a).  Latent 
Dirichlet Allocation (LDA) (Blei et al., 2003) is a probabilistic topic model that 
we used to estimate for each person a distribution of identified communicative 
themes that mirrors her pattern of interconnectivity in the community.  In our 
recent work, the fuller integrated exploratory technique was useful for identifying 
emerging groups within discussion threads with significantly higher or lower 
attrition than average (Yang et al., under review).  The text component of the 
model provides some measure of anchoring and allows us to identify the topics of 
discussion shared by students in groups that exhibit higher or lower attrition than 
average.  If we can identify these vulnerable sub-communities as they emerge, we 
can channel more support and hopefully mitigate some of the dropout risk.   

In addition to basic research in machine learning applied to problems in 
conversation analysis, an important contribution of this work we offer to the 
MOOC research community is development of two publically available tool kits 
that are in wide use, namely TagHelper tools (Rosé et al., 2008) and LightSIDE 



(Mayfield & Rosé, 2013), each of which have been downloaded over 5,000 times 
from over 70 countries.  A recent survey sent out to the 200 most recent 
downloaders of LightSIDE indicates that 39% of respondents continue to use 
LightSIDE regularly after downloading.  Both tool kits provide a convenient 
graphical user interface environment for novice users of text classification 
technology that easily runs text extraction and classification experiments with a 
few clicks.  On top of that, LightSIDE serves as a vehicle for dissemination of 
new techniques for effective application of machine learning to text mining, 
including novel feature extraction techniques (Gianfortoni et al., 2011).  The 
newest version (LightSIDE 2.0) includes a model specification panel that enables 
easy use of multi-level modeling techniques from applied statistics as domain 
adaptation and multi-domain learning approaches.  One of the most unique 
capabilities of LightSIDE is its sophisticated support for error analysis.   

Another important aspect of our work has been architectures for managing 
real time support for online discussion.  A major aspect of this research began 
with the development of the Basilica architecture, which facilitates rapid 
development of multi-party collaboration environments.  A recently published 
journal article (Kumar & Rosé, 2011) describes a series of collaborative 
environments developed through this architecture using reusable components.  An 
improved version of the architecture, referred to as Bazaar, is now freely available 
online and includes instructional materials that enable others to learn to use it 
quickly (Adamson & Rosé, 2012).  It has been used over the past couple of years 
in tutorials and short training courses with undergraduates and graduate students.  
Experience in these venues demonstrates that even undergraduate students are 
able to learn to use Bazaar and build prototype dynamic support for collaborative 
learning within one or two weeks.  A key contribution of this research is 
development of a method for coordinating real time automated behavior 
monitoring with decision making about providing support and advice for shaping 
behavior.  It’s effective coordination algorithms simultaneously consider the 
history of participation, the current state of the student’s engagement, and planned 
future events related to instruction and support. 

The most productive realization of this technology to MOOCs may not be 
the most straightforward mapping of its usage in small group chat to this 
environment, namely using intelligent software agents to submit automated 
messages to threaded MOOC discussions.  These contributions might be regarded 
as spam.  Beyond that, it would not be clear which students would even see the 
messages or when.  Thus, a more effective realization of such technology might 
be to use automated analyses of student behavior in MOOCs to trigger 
personalized recommender mentor agents that would provide opportunity 
suggestions to students as a side bar.  Alternatively, automation could involve 
trigger events that are delivered to facilitators or instructors about discussions that 



need attention.  Solutions to problems related to balancing multiple concerns in 
triggering supportive interventions that have been an important part of the 
development of the Bazaar architecture could still be leveraged nevertheless. 

 
 
CASE STUDY 
A course developed by the University of Pittsburgh’s Institute for Learning, 
entitled ‘Accountable Talk®: Conversation that Works’ provides data for our case 
study.  It was developed as a seven-week course in the Coursera platform and 
launched in October of 2013.  This course was conceived as a teacher professional 
development course primarily for K-12 instructors.  An earlier version of the 
course had been offered a number of times in Moodle to groups of 20 or fewer K-
12 teachers or administrators.  It was always a highly interactive course in which 
threaded discussions were a central learning activity and attrition was all but non-
existent.  The course instructors anticipated that offering the course through 
Coursera would reduce the potential for intensive teacher-student engagement.  In 
order to partly compensate for this, additional instructional resources were offered 
to students to supplement the materials that were part of the original course.   

The structure of the course followed a traditional xMOOC pattern.  
Students took an optional demographic pre-course survey at the beginning of their 
participation consisting mainly of standard Coursera pre-course survey questions.  
Each week, they did readings, watched videos, took quizzes, and participated in 
two types of threaded discussion.  One was meant to focus on thoughtful 
discussion about the week’s theme; the other was meant to be related to personal 
experience putting the principles taught by the course into practice.  There were 
two substantial peer graded assignments that students completed.  At the end of 
the course, students took an optional post-course survey. 

More than 60,000 students signed up for the course, approximately 51,000 
of which were still enrolled in the course at its completion, although fewer than 
3% of students completed all the assignments.  Of the 60,000 who signed up, only 
about 25,000 students accessed the course materials at least once.  Of those 
students, only about 5% of the students ever posted to the discussion forums.  At 
the completion of the course, 4,709 posts had been contributed, and the average 
number of posts contributed by forum participants was four.  Contrary to 
expectation, of the students who self-declared a profession, only 18% of them 
were K-12 instructors.  Instead, the very diverse student population (both in terms 
of national origin and profession) included not only the full spectrum of 
instructors (including college professors), it also included doctors, lawyers, other 
professionals, retired people, and a large contingent of parents of teen-agers.  
Participants who were not teachers frequently declared that their hope in 



participating was that they would gain better communication skills that would be 
valuable in their work and families.   

What was unusual about the administration of the course was the level of 
dedication of the two course instructors in supporting the threaded discussions.  
They took shifts watching the discussion around the clock, and frequently stepped 
in to offer feedback and guide the discussions.  Based on their observations, they 
created new videos to offer just in time instruction and advice, and to address 
issues that came up along the way.  For example, in response to a trend of student 
remarks about difficulties keeping up with the large amount of material offered in 
each week, the instructors offered suggestions for selective participation.  When 
the instructors noticed interesting discussions occurring in the discussion threads, 
they posted podcasts where they highlighted these discussions and offered their 
own commentary.  Furthermore, the instructors very quickly noticed the 
difference between the expected student profile and the diverse population of 
students who indeed participated in the course.  They were quick to respond by 
setting up special threads in each sub-forum dedicated to specific student 
populations such as professionals, parents, K-12 instructors, post-secondary 
instructors, and non-traditional students.  The goal was to aid students in finding 
like others with whom to interact. 

The instructors noticed that the depth of discussion in the threads each 
week was far less deep and substantial than what they had encountered in earlier 
Moodle deployments.  In particular, interspersed with serious, thoughtful 
contributions were purely social contributions.  Sometimes discussions about 
teaching practices degenerated into complaint sessions about school 
administration.  These contributions did not go unappreciated, however.  Some of 
these complaint posts were among the most highly up-voted posts.  Nevertheless, 
there were also comments in the post-course survey that indicated that some 
students were dismayed that other students were not taking the threaded 
discussions as seriously as they were. 

Though the discussions were peppered with off topic discussion about life 
issues, the tone remained largely jovial.  On the other hand, some antisocial 
behavior was also noted.  One participant in particular started a number of 
belligerent threads, expressing opinions in a disrespectful way.  The instructors 
took note of this student and eventually attempted to offer feedback to curb his 
behavior after other students started to file complaints.  Unfortunately, this 
intervention was not successful in shaping his behavior for the better, and 
ultimately he was removed from the course.  The posts he contributed in the 
meantime were nevertheless left within the discussion forums, and precipitated 
reactions from other students, some of which were disrespectful as well.  We see 
here the dangers of antisocial seeds being sewn.  The lingering effect eventually 
dissipated; however, it is not yet clear what the ripple effect of this antisocial 



behavior was on other students who interacted directly with the posts or indirectly 
as they read. Antisocial behavior degrades the quality of the environment for 
others.  However, if we put a positive spin on it, we can take the existence of such 
behavior as a research challenge and seek to turn dysfunction into learning 
opportunities (or at least contain it so that it is not harmful to others).   

A frequent positive comment in the post-course survey was to note and 
appreciate the dedication of the course instructors in terms of the intensity of their 
involvement in the threaded discussions. Nevertheless, the course instructors were 
overwhelmed by the sheer volume of contribution despite the fact that such a 
small percentage of enrolled students ever participated in the discussion forums.  
Despite their best efforts, there were as many complaints from students in the 
post-course survey describing that they felt they were speaking into the air when 
they posted and that they struggled to find people to have a meaningful discussion 
with or they felt as overwhelmed and lost in the sea of posted messages as the 
instructors also felt trying to keep up with it. 

The work of the instructors in supporting the discussions was aided by 
regular technology enhanced reports of behavior trends within their MOOC, 
which were discussed at weekly or biweekly meetings throughout the duration of 
the course. Using data mining techniques such as survival analysis and topic 
analysis applied to data scraped from the discussion forums, the frequent meetings 
discussed trends in discussion focus, apparent student interests and concerns, and 
student dropout.  Figure 1 displays a rudimentary representation that was 
commonly used to support these discussions.   

In order to create this representation, Latent Dirichlet Allocation (LDA) 
was applied to the data that accumulated since the course’s launch date.  Each 
post was treated as a separate document.  LDA was configured to identify 10 
themes.  Each message was coded as discussing whichever of these 10 themes 
was rated by LDA as explaining the source of the largest percentage of words in 
the post.  For each day of the course, we computed a distribution of topics based 
on the percentages of messages assigned to each topic.  The line graph in Figure 1 
displays the topic trends over time. Though the pattern appears messy, what is 
clear is that which topics are dominant varies from week to week, although new 
students were starting the course in each of these weeks, and few students 
survived until the end, which resulted in week 1 relevant topics remaining 
prominent throughout.  The meaning behind the color coding came out by 
examining the thread titles for threads that exhibited a high proportion of each 
associated topic.  This association enabled the instructors to make meaning out of 
the graphs.  In addition to lists of prominent thread titles, exemplar messages 
exhibiting some concrete ideas represented by each topic were also presented to 
the instructors.   



 
Figure 1: This line graph displays trends in discussion topics over time from the day the course was 
launched (day 0) until midway through week 7. 

 
One prominent topic early in the course and then again late in the course 

was Topic 6, which was discussion focused on one particular video that the 
students found particularly inspiring and thought provoking.  Topic 4, which 
remained consistently prominent throughout the course, was focused on 
discussion of nontraditional students (i.e., students other than K-12 instructors) 
problem solving together about how to apply the material of the course to their 
lives.  Prominent threads in this topic included stories from a variety of types of 
nontraditional students applying the principles, one thread about getting shy 
people to talk, and another one about managing corporate meetings effectively.  
Topic 5, where participants talked about their experiences applying the principles, 
had a spike in the middle of week 2 and then diminished.  These threads focused 
on a variety of types of instructors and their stories.  Other threads focused on 
adopting a growth mindset and emotional intelligence, topics introduced in Week 
2 of the course.  

We observed the usual pattern of a significant spike in activity during the 
initial week of the course.  However, upon closer inspection, one lesson learned 
through application of simple data mining techniques as the course was in 
progress was that the pattern of rate of dropout associated with the week when a 
student began active participation in the course appears quite different.  In 
particular, students who began their active participation in the first week showed a 
pattern of lower attrition over time than their counterparts in later cohorts.  In 
order to make this assessment, we used a survival analysis.  Survival analyses are 
known to provide less biased estimates than simpler techniques (e.g., standard 



least squares linear regression) that do not take into account the potentially 
truncated nature of time-to-event data. In a survival model, a prediction about the 
likelihood of a failure occurring (in this case, ceasing to actively participate) is 
made at each time point based on the presence of some set of predictors. The 
estimated weights on the predictors are referred to as hazard ratios. The hazard 
ratio of a predictor indicates how the relative likelihood of the failure (e.g., 
dropout) occurring increases or decreases with an increase or decrease in the 
associated predictor. 

In order to distinguish the attrition rate from week to week of student 
groups that started their participation on different weeks, we constructed 7 binary 
variables we refer to as cohort variables.  For each data-point for each student, the 
cohort variable referring to the week of the student’s initial active participation 
was set to true for each of the student’s data points while the other cohort 
variables were set to false for that student.  The inclusion of these variables made 
it possible within the survival analysis to assess the association between rate of 
attrition and week of first active participation.  Only the variable that indicated 
that a student began their active participation in the first week of the course made 
a significant prediction.  Its hazard ratio was .65, which means that students who 
began their active participation in the first week of the course were 35% less 
likely to drop out on each subsequent time point than the population average.  
Based on demographic information gleaned from the surveys of those who 
completed them, this pattern did not appear to be explained by any significant 
difference in the type of student who joined late versus early.  Some comments 
from the post-course survey indicated however, that students who arrived late 
struggled to find their place in the large amount of communication that had been 
contributed before their arrival.  This suggests some potential importance to the 
design and management of the threaded discussion for keeping students engaged.  
Consistent with this, participation in the discussion forums appeared to be an 
indication of commitment to the course.  Of those students who completed the 
course, 50% of them participated in the discussion forums at least once, whereas 
only 1% of non-completers did.  The design space for more conducive threaded 
discussions integrated with the needed support is still wide open.  Exploring this 
space is an important direction for continued research in this area. 
 
FUTURE DIRECTIONS 
The specific goal of our research is to develop technology capable of supporting 
effective participation in conversation to achieve a positive impact on human 
learning, growth, and well-being.  Our conviction is that in order for the 
technology to achieve maximum impact, it must first be capable of processing, 
generating, and engaging in conversation. Second, its behavior should be 
designed with a deep understanding of the mechanics of what makes conversation 



work in different settings as well as an understanding of what properties of 
conversation add to or detract from its positive impact on important outcomes of 
conversation. Finally, its design should be based on knowledge of what external 
stimuli manipulate these properties of conversation and in what ways.  

In our prior work we followed this research program to develop 
technology for effective support of online small group collaborative learning.  A 
decade of such research has produced both substantial empirical results as well as 
publicly available tools and technologies to share with other researchers.  For 
MOOC providers that already offer small group synchronous interaction as an 
affordance for course participation, the work we have already done may already 
contribute to their foundation.  In this chapter we begin to follow the same 
research program, but target discussion for learning in a more typical xMOOC 
context where the primary mode of social interaction is asynchronous threaded 
discussions.  A case study from one specific MOOC discussed above offers 
insights into the limitations of learning through discussion in current xMOOCs, as 
well as the challenges in instructor ability to overcome those limitations without 
support.   

We identify two main areas for potential impact of new technology.  The 
first need is to engage more of the MOOC participants in discussion.  Research 
from the collaborative learning community (e.g., Hmelo-Silver et al., 2013) as 
well as the classroom discourse community (Resnick et al., in press) offer 
convincing evidence for the value of discussion for learning.  Correlational results 
suggest that active participation in MOOC discussion forums is associated with 
lower attrition.  However, the great majority of MOOC participants never post 
even once to the discussion forum.  Research on vicarious learning offers 
demonstrations that students may learn by watching other students engaging 
meaningfully in interaction for learning (Chi et al., 2008), and one might 
conjecture that students who did not actively engage in the discussions 
nevertheless were able to benefit from them.  However, responses to a post-course 
survey question related to why the student did not participate or did not 
participate more in the discussion forums suggest that students who did not 
participate did not find value in the threaded discussions for a variety of reasons 
that would challenge this conjecture.  Frequent student responses identified a lack 
of time to engage or difficulty finding opportunities that were of interest in the 
overwhelming numbers of available threads.  This suggests that participation in 
the forums could be increased through a computer-generated personalized 
recommendation that would draw attention to opportunities for engagement that 
might be of interest to each individual student.  

Another issue uncovered in the case study is that some students who did 
participate in the forums were dissatisfied with the response they received.   On 
the positive side, in this course where the instructors were unusually dedicated 



and involved, their interventions to direct students to focus more deeply on the 
course material and to engage more substantively with one another were met with 
universal positive response wherever they were mentioned in the post course 
survey, and led to positive effects locally within the conversations where they 
were involved.  This suggests that some form of facilitation in a MOOC context 
may have value.  However, we see that human effort can go only so far.  And if 
we are successful in eliciting more participation, the problem will be exacerbated.  
The personalized recommendation paradigm mentioned above might be useful for 
this problem as well.  In particular, in this case a recommendation that draws 
attention to one type of opportunity may also serve to draw attention away from 
other experiences.  Thus, a form of social recommendation could be used as a 
major organizing force for interaction, creating spaces where the contribution 
participants are prepared to make is directed to recipients who will appreciate it. 

While recommendation technology has been used widely in online 
instruction (Manouselis et al., 2013), work on social recommendation has been 
sparse.  In our work we have already begun to lay the foundation for social 
recommendation in MOOCs to address the issues raised above (Yang et al., 
2014b).  We invite the larger MOOC research community to join in this endeavor, 
as we believe more and better participation will improve learning for MOOC 
students. 
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