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The value of refining buy-up alternatives for portfolio decision analysis. 

 

 

1. Introduction 

Portfolio project selection and in particular portfolio decision analysis (DA) approaches at their 

most basic rely on a simple economic notion – rank investments in order of value gained per 

dollar spent and fund them in this order until the budget is spent. But the quality of the 

recommendations generated by such an approach is only as good as the quality of the 

assumptions about projects that are used. In this paper we consider how much effort is worth 

expending to improve definition of alternatives at the project level.  

Much of the time-consuming work in project portfolio management consists of efforts to 

obtain and improve these inputs in a variety of ways. Because analyst and managerial time and 

attention are limited resources, it is desirable to understand when different efforts are valuable, 

and to focus accordingly.  For example, Keisler (2004) explored portfolio characteristics that 

determine the benefit of efforts to refine estimates of project value. But analysts do more than 

tighten value estimates. One of the main activities in standard portfolio DA (e.g., Allen, 2000) is 

defining project level alternatives. We shall explore some different strategies for this and what 

conditions make them valuable.  

A standard approach to creating a richer set of alternatives (and one that lends itself very 

naturally to hierarchical portfolio management) is to have project managers present several 

different project alternatives based on different budgets, e.g., current budgeted level, blue-sky 

proposal (or buy-up), barebones (or buy-down) proposal, maybe some other target amount, with 

zero funding being a standard alternative (see Sharpe and Keelin, 1998).  Clearly, portfolio 

analysis is applied in situations with a variety of characteristics, e.g., portfolios of projects vs. 



 

 

portfolios of business units  (Allen, 2000). Different levels of refinement can be used at these 

different levels (Anderson and Jogelkar, 2004), for example stage-gate type portfolio 

management methods (Cooper et al, 2001) may include more funding level alternatives for 

investments at higher levels of the hierarchy. Presumably, such additional efforts yield economic 

benefit.  

 

1.1 Conceptual example 

Consider the simple situation depicted in figure 1. In this portfolio, there are only two 

projects, 1 and 2. The portfolio manager has C available to fund projects. The manager of project 

1 has requested funding of C and promises to deliver value V1, and the manager of project 2 has 

promised to deliver value V2. If this was all that was specified, the portfolio manager would fund 

project 1 rather than project 2, because V1 > V2.  If instead the full value trajectories (i.e., graphs 

charting value versus investment, also called buy-up curves) for each project were specified, the 

portfolio manager would allocate the available funding to both projects so that each would have 

the same marginal return per dollar invested, at funding levels C1’ and C2’. This changes the 

frontier of the portfolio from the lower curve to the upper curve in figure 2, and the value added 

by including the full range of funding alternatives is V1’+V2’–V1.  



 

 

Figure 1: A two project example  

 

 

 

 

 

 

 

 

 

Figure 2: Value trajectories when partial funding of projects is / is not allowed.  
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This paper is essentially about this nature of portfolio buy-up curves, how they depend on 

the individual buy-up curves and the method by which they are integrated, and how important it 

is to correctly characterize the curves and make decisions based on them. In section 2, we define 

a model that formalizes this notion of what goes on in a portfolio including characteristics of 

projects in the portfolio and the way information about these projects may be transformed by 

various analytic strategies. In section 3, we consider some real data to derive assumptions for 

simulating portfolios with which to compare the analytic strategies. We describe simulation 

results for a base case and a number of variations in section 4, to see what tends to make the 

different strategies more or less effective. We conclude with a discussion of implications of these 

findings for decision analytic and project portfolio management practice. 

 

2. Model 

2.1 Form 

We start with a set of independent candidate projects within a portfolio vying for funding from a 

total budget B.  For project i, there is a value function that relates the funds expended on the 

project (Ci) to the value of the project, call it Vi(Ci), up to some maximum cost (investment) 

level, Ci
max

, i.e., the requested level of funding level. In practice, Vi could be expected net 

present value (ENPV) or expected single or multiple attribute utility. We shall denote the cost of 

the portfolio C =  ΣCi and the value of the portfolio as V = ΣVi(Ci). 

We assume that the Vi, which represent the way that dollars of input are converted into 

use value, follow a common form for multi-attribute utility functions:  

Vi(Ci) = ri[1–EXP(–kiCi/Ci
max

)]/[1–EXP(–ki)]. 



 

 

At Ci = Ci
max

, the quantity within the brackets is equal to one, i.e., 100% of the potential 

value achieved, and at Ci = 0, the quantity within the brackets is 0. The parameter ri, therefore, 

represents the value achieved per dollar for at the maximum investment level. The parameter ki 

represents the level of curvature, where the higher the value of ki, the more returns to scale are 

decreasing. Some portfolio applications (e.g., public policy) literally do use utility functions, 

while for others this function is a flexible proxy for a range of possible value trajectories.  

 

2.2 Strategies 

In practice, projects generally only receive funding levels corresponding to some 

proposal that they have submitted, that is, something up to our Ci
max

.  The portfolio manager 

must still determine what proposed funding levels should be developed for each project prior to 

the resource allocation decision. We consider several analytic strategies (S) for making this 

decision, and we denote the value of the portfolio under strategy S as V(S). We shall first 

consider three hypothetical strategies.  

S1) Random funding: In this strategy, we randomly pick projects to fund at Ci
max

 until the budget 

is exhausted. This strategy is not one that we would consciously pursue. It serves as a practical 

lower bound so that we can compare how much value is added by the other strategies.  

S2) Discrete funding: With this in-or-out strategy there is no additional definition of alternatives 

prior to project selection. We consider only the binary choice between including projects in the 

funded portfolio by funding them at their maximum cost or rejecting them by not funding them 

at all. Formally, the decision maker solves Max V{Ci} s.t. C ≤  B, Ci = 0 or Ci = Ci
max

.  

S3) Continuous funding levels: This is an ideal where for each project the value for the entire 

funding range has been computed and therefore the decision maker can choose to fund at any 



 

 

level between 0 and Ci
max

, i.e., the decision maker solves Max V{Ci} s.t. C ≤  B, Ci ≥  0 and Ci ≤  

Ci
max

.  

Note, if the Vi are smooth, and d
2
Vi/dCi

2
 < 0 for all i, a single optimal solution will exist 

and all projects that are funded at a level between 0 and Ci
max

 will have the same derivative of 

value with respect to cost at their chosen funding level.   

We consider the additional variations:  

S4) Step-levels for each project: The general case of a set of equally spaced increments in 

funding for a project in between the extreme cases of S2 and S3, i.e., Max V{Ci} s.t. C ≤  B, Ci = 

Ci
max

 n/k, where n is an integer between 0 and k, for some k > 1. If k = 2, this would mean 

including the option of a 50% funding level, etc.  In the base case, k = 4 and so the alternative 

funding levels for project i are 0%, 25%, 50%, 75% and 100% of Ci
max

. 

S5) Haircuts: With this strategy, we treat all projects alike and cut each project down by the same 

proportion until the total cost is equal to the budget, i.e., Ci = Ci
max

 B/(ΣiCi
max

). 

S6) Layered haircuts: Each project is funded in such a way that the marginal value of each 

project would be equal and the total budget would be spent, assuming that the curvature 

parameter (as defined below) for each project is equal to the mean curvature. 

We can think of each strategy as facilitating the use of different information about the value 

trajectories, as in table 1. Assuming the portfolio manager sets the optimal funding levels for 

each project based on the information available at the time of decision, the increase portfolio 

expected value due to each strategy is analogous to the decision analytic expected value of the 

information brought to bear by that strategy. To compare the prospective benefit of these 

different strategies, we simulate portfolios of candidate projects with varying individual buy-up 

curves, and calculate the various V(S).  



 

 

 

Table 1. Analysis reveals information, so value of analysis is analogous to value of 

information about parameter values.  

Information level about 

parameters for strategy 

Productivity Curvature 

(S1) Random  None (but portfolio wide 

average assumed > 0) 

None (assume = 0) 

(S2) Traditional  Project specific 

 

None (assume = 0) 

(S3) Optimal  Project specific 

 

Project specific 

(S4) Steps   Project specific Project specific (partial) 

assume piecewise linear  

(S5) Haircut  None (but portfolio wide 

average assumed > 0) 

Portfolio-wide average  

(S6) Layered haircut  Project specific 

 

Portfolio-wide average 

  

3. Determining assumptions  

 

3.1 Descriptive data about portfolios 

In order to calibrate the simulation model, I obtained two sets of data. The first is a family of 

capital investments and expenditures related to remediation of geographically distributed nuclear 

waste handling sites. These results are from a study led by Ronald G. Whitfield of the Argonne 

National Laboratory (Baldwin et al, 1994) , in conjunction with the development of a decision 

support system. A portfolio of 33 candidate projects was identified, and for each project detailed 

estimates of impact across many performance criteria were developed (by the proposers) and 

vetted (by a peer review process), for one or more of the following funding levels: Core, 

Intermediate, Operations, and Long-Range. A multi-attribute value function was assessed and the 

results were used to identify optimal portfolios for various assumptions regarding funding levels, 

value functions, etc.  



 

 

Out of the 33 projects, there were 32 projects with at least two different funding levels 

having different values. For 17 projects three funding levels with different values were specified 

and for three projects four distinct funding levels were specified.   

I fitted exponents (ki) for the value function for each project. There was an implied 

exponent for each of the interior points. The quantity within the brackets can range from 0% to 

100%. In some cases, the low cost alternative was clearly to have zero funding.  In the other 

cases, the lowest funding level was treated as a baseline, that is, Ci for each alternative was 

calculated as an increment to the baseline.  There were 17 three-level curves each containing one 

midpoint, and there were three four-level curves each containing two midpoints, i.e., the second 

and third highest funding levels. The project level cost and value data and the derived parameters 

are shown in table 2.  

There were two outlier points in the set of exponents thus derived, with values of 

approximately –8 and 16, while the rest of the values fell between approximately –3 and 9. The 

projects corresponding to the two outliers did not have meaningful curves to represent the benefit 

of increased funding, but essentially had step functions instead. Of the remaining points, six of 

the exponents were below zero, indicating increasing returns to scale, and this number is large 

enough that it would not be reasonable to assume that buy-up curves always show diminishing 

marginal returns. The mean value of the exponents is 2.35. If we exclude the outliers, the 

distribution has mean 2.1 and standard deviation 3.2. 

 



 

 

Table 2. Data from one of the portfolios used to estimate simulation parameters 

PROJECT

Core 

investment

First 

step

investment

Second

step

investment

Third

step

investment

Core 

value

First 

step 

value

Second

step

value

Third

step

value

Maximum 

investments' 

bang for the 

buck

First 

midpoint 

implied

exponent

Second 

midpoint 

implied

exponent

1 0 3016 5408 32 33.2 34.3 0.425295858 -0.2903912

2 0 8265 10080 28.8 47.4 49.4 2.043650794 1.3341932

3 5304 6635 11066 30.5 40.1 40.3 1.700798334 16.84797

4 0 2600 34.3 34.5 0.076923077

5 0 1144 33.7 34 0.262237762

6 808 5580 6662 0 22.8 34.2 5.842159207 -1.7374891

7 788 1786 5170 5645 27 44.5 89.4 100 15.02985382 0.4044793 -0.9598412

8 140 625 1624 28.9 30.8 33.4 3.032345013 0.8381046

9 572 3614 5726 11290 27.5 30.3 31.5 33.1 0.522485538 1.9913243 1.9981897

10 248 291 34.4 34.5 2.325581395

11 0 2585 5171 34.1 34.2 34.6 0.096693096 -2.7716965

12 0 493 33.8 34.2 0.811359026

13 832 1424 33.9 34 0.168918919

14 1436 1748 33.7 33.9 0.641025641

15 0 4264 6396 33.8 34.1 34.2 0.062539087 0.7934905

16 4425 5621 7701 33.8 34.3 34.3 0.152625153 -21.150831

17 328 361 32.6 33.7 33.33333333

18 0 118 501 33.9 34.1 34.2 0.598802395 4.5780823

19 265 529 34.1 34.2 0.378787879

20 0 416 832 33.6 34.2 34.5 1.081730769 1.3862936

21 208 2430 5046 30.3 31.5 33.4 0.640760645 -0.5902268

22 10400 15823 19764 29952 29.6 31.1 31.5 32 0.122749591 3.3266821 2.8665923

23 0 16245 23712 22.9 29.5 35.6 0.535593792 -1.462334

24 28600 28600 28600 20.5 36.1 43.4 NA

25 0 1088 5451 30.7 32.3 33.1 0.440286186 5.4618009

26 0 2188 34.1 34.2 0.045703839

27 156 15200 35770 21.2 21.3 29.4 0.230246532 -7.5579047

28 3224 4673 6545 60.2 60.2 60.4 0.060222824

29 33488 53470 21.5 50.2 1.436292663

30 6240 6240 10033 27.9 32.1 33.4 1.450039547

31 0 357 357 28 32.4 32.5 12.60504202

32 459 1045 4056 37.1 37.8 38 0.250208507 9.2302573

33 10400 16640 19282 27.4 36.5 37.3 1.114613826 2.8753521  

The data set is too small to productively use goodness-of-fit tests. As a rough 

approximation from visual inspection, the data appear consistent with a uniform distribution 

ranging from –3 and 7 (that is, within a range of ± 5 of the mean). The distribution on costs and 

productivity index (the ratio of expected net present value to remaining cost, which is sometimes 

called bang for the buck) can be estimated by calculating the increment from the baseline to the 

maximum for each of the 32 projects and using these as data points. The values of log(Ci
max

), 

where costs are in thousands of dollars, follow a distribution that appears approximately normal, 

with mean 7.5 and standard deviation 1.75. The values of log[Vi(Ci
max

)]/ Ci
max

, that is the 

logarithm of the productivity index (in dimensionless units of utility) follow a distribution that is 

approximately normal with mean –0.3, and standard deviation 1.65.     



 

 

A second data set consisting of 28 usable projects was provided by Strategic Decisions 

Group, and these data are largely consistent with the Argonne data. This dataset is a by-product 

of an R&D portfolio analysis for a company in the pharmaceutical industry.  The ENPVs for 

project-level alternatives were not uniformly increasing in cost, so the dominated alternatives 

were excluded from this study. The number of funding alternatives per project was not 

constrained, and the number of non-dominated alternatives (funding levels) varied between 2 and 

7, averaging just under 4 per project. A total of 41 points were available to estimate curvature, 

and I fitted exponents to them. For 17 points, the implied exponent was below zero. If one outlier 

data point is excluded (with an implied exponent of approximately 32), the mean value of the 

exponents is 0.8 and the standard deviation is 3.08, consistent with a uniform distribution 

between –4 and 6.  Across all projects, the values of log[Vi(Ci
max

)]/ Ci
max

 at the maximum 

funding levels follow a distribution which is approximately normal with mean 3.0 and standard 

deviation 1.2. The cost figures here only include direct R&D costs, and the actual productivity if 

full costs were available would likely be somewhat lower. The distribution of log(Ci
max

), where 

Ci is in millions of dollars, is approximately normal with mean 3.3 and standard deviation 2 – a 

rather wide variation.  

3.2 Simulation parameter values 

To simulate the generic portfolio, we generate n projects with parameters drawn from known 

distributions. For each project i, a set of random parameter values are generated for maximum 

cost (Ci
max

), curvature (ki), and productivity index at maximum cost (ri). We define the base-case 

value function as before: Vi(Ci) = ri[1–EXP(–kiCi/Ci
max

)]/[1–EXP(–ki)]. The Ci
max

, ri, and ki are 

each independent and identically distributed and follow distributions as follows:   



 

 

 Ci
max

 follow a lognormal distribution with mean 3 and standard deviation 2; because the 

value function uses only (Ci/Ci
max

), results should be scaleable with respect to the mean 

of the distribution – so any findings would be independent of the actual mean value 

chosen here.  

 We assume that ri follow a lognormal distribution with mean 2 and variance 2, similar to 

previous findings on ranges of estimated values described in Keisler (forthcoming), 

which were based on a limited amount of data. Results on the relative values of portfolios 

under different strategies are independent of the mean, because it is a scaling factor that 

applies to all projects equally. Thus, for present purposes only the variance matters.  

 Most critical to this analysis, ki follow a uniform distribution with minimum –3.5 and 

maximum 6.5. To give an idea of what these values mean, ki = 4 implies a trajectory in 

which 50% of the cost leads to 85% of the value, while ki = 8 approximates the 80-20 

rule where 20% of the cost leads to 80% of the value.   

To illustrate what this means for curvature of buy-up curves, figure 3 shows a set of buy-

up curves (normalized for budget level) for one simulated portfolio. Figure 4 shows how 

this would appear in a typical portfolio, where curves are scaled by size of project, i.e., 

not normalized (here, including the highest budget projects would distort the scale of the 

graph, so they are censored). 

Figure 3. Base case simulation – distribution of normalized buy-up curves 
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Figure 4. Representative Buy-up curves from base case (excluding highest cost curves).  

 

 

 

 

 

 

 

 

Finally, we set the number of projects in a portfolio, n, at 50, which is slightly larger than 

the portfolios described above, and somewhere in the middle of the wide range of portfolio sizes 

seen in practice. We set the available budget, B, at 2000, so that the budget represents 

approximately 50% of the total requested funds for a typical iteration (the expected value of C 

for n = 50 is 50[exp(5)] = 7420, and the theoretical 50
th

 percentile of the distribution of C for the 

simulated portfolios is closer to 4000).   

Where an allocation would lead to a small amount of leftover funds, we assume that the 

remaining funds in the budget are allocated to the next marginal project.  This simplifies some 

comparisons and avoids knapsack type problems where funds could be allocated differently 

0

10

20

30

40

50

60

0 10 20 30 40 50 60



 

 

merely in order to exhaust the budget rather than see it go unused. In these cases, the value of the 

last project funded is calculated using linear interpolation so that the fraction of its value 

delivered is equal to the fraction of its cost covered. This underestimates the value of that last 

project  but the difference is very small.  

 

3.3 Key statistics for measuring the portfolio strategies in the simulation 

We know a priori that V(S3) ≥  V(S4) ≥  V(S2) ≥  V(S1), because the choices in S4 are a 

subset of those in S3, etc. The question of interest is how much greater the values on the left are 

than those on the right, and we answer it using the following statistics. First we consider V(S2) – 

V(S1), which is the increase in value from a randomly portfolio in which projects are funded at 

random to a well-prioritized portfolio with no refinements of alternatives at the project level 

(projects are either in at 100% funding or out with 0 funding); we call this the value of 

prioritization. Next we consider V(S3) – V(S2), which is the increase from a well-prioritized 

portfolio when there are no refinements to a well-prioritized portfolio when there are continuous 

funding alternatives at the project level; we call this the value of refinement. We combine these 

to get the value of complete analysis, V(S3) – V(S1), which is the increase in value from a 

randomly funded portfolio to one where each project is funded at the optimal level. Strategy S1 

is a straw man and S3 is a gold standard. Thus, V(S3) –V(S1) is the maximum possible 

improvement from this type of decision analytic intervention.  

Also of interest are various ratios using the basic statistics:  

The percentage of the maximum possible improvement achieved by merely prioritizing 

existing projects, [V(S2) –V(S1)]/[V(S3) –V(S1)].  



 

 

The percentage of maximum possible improvement achieved by taking the additional 

step of enumerating a continuous range alternatives for each project, [V(S3)–V(S2)] / [V(S3)–

V(S1)]. 

The ratio of the value added by the continuous enumeration step to the value added by the 

prioritization step, [V(S3)–V(S2)]/[V(S2)–V(S1)] 

We distinguish between the ratio of the average values and the average value of the 

ratios, the latter of which do not depend directly on the overall portfolio value and are thus more 

consistent across the set of simulations than are the portfolio values themselves. We shall 

compute similar statistics for the remaining strategies (S4-S6).  

For a base case and then variations we simulate 250 portfolios of which 143 yield 

suitable data. Note, because the budget is not assumed to be correlated with the portfolio’s cost 

characteristics, there will be iterations where either the single most productive project requests 

more funding than the total budget, or all projects together request less funding than the total 

budget for at least one of the situations considered. We shall exclude those iterations, and use the 

remaining iterations to calculate statistics for each strategy and scenario of interest. In order to 

better estimate the comparative performance of the different strategies, we shall use the same 

raw simulation data for each strategy and each scenario, e.g., if project 1 in portfolio 1 had a 

curvature exponent set at the 10
th

 percentile of the distribution from which it was drawn when 

considering S1 in the base case, it will also have cost at the 10
th

 percentile when considering S2 

in the case where curvatures have a narrower range.  

 

4. Simulation Results 

4.1 Base case (Magnitude of results) 



 

 

For the initial example, we simulate a number of portfolios and find that on average, portfolios 

funded under the traditional discrete funding strategy (S2) have an average a total value in 

thousands of dollars of 93.9 ± 10.0. With refinement, the total value increases to 111.8 ± 13.6. 

The randomly funded portfolio is worth only 38.9 ± 6.8. The value added by prioritization is 55.6 

± 8.8, and the value of complete analysis is 72.9 ± 11.8. The value of refinement is 17.9 ± 6.6. 

The ranges given are approximate 95% confidence intervals for each statistic, calculated as +/- 

2s/√(143-1), where s is the sample standard deviation. When the contributions of prioritization 

and refinement are expressed as percentages of either portfolio value or total value-added, the 

ranges are narrower because the numerator and denominator vary together, as shown in table 3. 

The tight ranges on these percentages and their general agreement with the portfolio value 

statistics indicate that our qualitative interpretations based on the latter will be robust.   

 



 

 

Table 3. Detailed results for base case 

Strategy Name

Average 

Portfolio

Value

Standard

Error

Value 

added

Standard 

Error

Percent of 

value of 

analysis

Standard 

Error

1 Random 38929 3410 NA NA NA NA

2 Discrete 93877 4958 54947 4414 78.7% 1.8%

3 Continuous 111801 6818 72872 5916 100% NA

4 Step 110674 6670 71744 5791 98.4% 0.2%

5 Haircut 65824 5002 26894 4150 18.4% 4.3%

6 Layered haircut 96713 6827 57783 5942 66.9% 2.7%

Refinement NA NA 17925 3320 21.3% 1.8%  

 For the same simulation, V(S4), in this case using 4 discrete non-zero funding level 

alternatives per project, was nearly as high (110.7 ± 13.3) as V(S3). 

  The order of magnitude of the numbers here is worth noting. Under reasonable starting 

assumptions, the value added by prioritization alone is over half the value of the prioritized 

portfolio, consistent with Keisler’s earlier results. The value added by refinement of alternatives 

is about half of the value added by refinement of estimates in that study, so there really is 

something to the argument that portfolio DA adds value in more ways than one. We also find 

that the strategy with discrete steps (S4) performs nearly as well as the continuous funding level 

strategy (S3), and it ought to be much easier to implement (consistent with what practitioners 

describe).  

Finally, haircut strategies (S5) are generally frowned upon by theoreticians, but are often 

used by managers and administrators at various levels of companies (Bower, 1970). We find that 

they are not anywhere near optimal – we would expect them to do rather poorly when many 

projects have increasing returns to scale – but even so they provide a significant improvement 

(26.9, or 69%) over random funding. The layered haircut strategy (S6) is even better, performing 

about as well as S2. 



 

 

4.2 Sensitivity Analysis 

Some of the observations above are rather robust, others depend significantly on the 

nature of the portfolio, as we shall see. Much of the discussion in this section refers to table 4, 

which contains the summary results for the base case and several variations.  

 

Table 4. Results for all variations 

V(Si) for scenario

Base

case

Budget  

= 1000

Narrow 

exponents

Normal

exponents

Positive 

exponents

Strategy distribution on k parameter U(-3.5, 6.5) U(-3.5, 6.5) U(-1.7.5, 3.25) N(1.5, 2,88) U(0,10)

1 Random 38929 19171 38929 38929 38929

2 Discrete 93877 65249 93877 93877 93877

3 Continuous 111801 82796 103125 110746 130444

4 Step 110674 80232 102207 109691 127794

5 Haircut 65824 39548 53759 65657 105836

6 Layered Haircut 96713 69791 88240 96740 127473

Strategy Relative increase over V(S1)

1 Random 0% 0% 0% 0% 0%

2 Discrete 141% 240% 141% 141% 141%

3 Continuous 187% 332% 165% 184% 235%

4 Step 184% 319% 163% 182% 228%

5 Haircut 69% 106% 38% 69% 172%

6 Layered Haircut 148% 264% 127% 149% 227%

Strategy Percent of maximum increase

1 Random 0% 0% 0% 0% 0%

2 Discrete 75.4% 72.4% 85.6% 76.5% 60.0%

3 Continuous 100.0% 100.0% 100.0% 100.0% 100.0%

4 Step 98.5% 96.0% 98.6% 98.5% 97.1%

5 Haircut 36.9% 32.0% 23.1% 37.2% 73.1%

6 Layered Haircut 79.3% 79.6% 76.8% 80.5% 96.8%  

Sensitivity to budget level:  First, we vary the budget in order to generate the set of buy-up curves 

for each of the strategies shown in figure 5.   

 Focusing in particular on the base case results when the budget is halved to $1000, we 

find at least two interesting differences. We note in particular that the relative value of 

prioritization is higher at this lower budget level, accounting for 27.6% of the average value 

added by analysis, as opposed to 22.0% when the budget is doubled to $4000. Intuitively, more 

projects are likely to be funded at or near 100% when the budget is higher, so the discrete 

strategy (S2) gives up less then.   



 

 

The relative contribution of analysis, V(S3) / V(S1), decreases as the budget increases, 

because less of the “low hanging fruit” is available. That is, S3 gets less for the second dollar 

than for the first, while S1 gets the same value for each dollar allocated. The step strategy 

degrades slightly relative to the continuous strategy at low budget levels, for similar reasons, but 

not enough for the fact to be of much interest.  

 

Figure 5. Comparison of strategies for base case parameters and varying budget. 
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Sensitivity to maximum cost: If the maximum cost is increased and the budget is increased 

proportionally, then all results are the same except that the units are large. All ratios are the 

same. If the maximum cost is increased but the budget is not, the effect is the same as lowering 

the budget (and rescaling units).  



 

 

Sensitivity to full-cost productivity index: If we start with a given portfolio and multiply the ri by 

a constant, we simply change all values proportionately, that is, the value of prioritization and 

refinement both increase (or both decrease) compared to the value of the random portfolio and so 

more analysis would be justified in general. Because there would be no change in actual resource 

allocations compared to the original case, however, the value added from prioritization or 

refinement remain unchanged as a percentage of portfolio value.  More interesting are the next 

parameters. 

 

Sensitivity to mean of curvature: In the base case, on average 35% of projects will have negative 

exponents and so are funded at either 0% or 100%. The more such projects there are, the less 

value there is to refinement. Similarly, haircut strategies are especially inappropriate for projects 

with negative exponents. We compare the base case with one in which the curvature is uniform 

between 0 and 10.   

Here, the value of prioritization is unchanged (because the value for each project at its 

maximum funding level is unchanged), while the value of refinement increases to over 36.6 – 

67% of the value of prioritization – because there is much more value to be captured at the lower 

end of the cost range for projects that would be rejected under the binary strategy. By the same 

token, if the exponent is decreased (not shown), more projects will be funded at 0% or 100% 

because if one project has a higher productivity index than another at the full cost level, it will 

likely have a productivity index for much more of the funding range.  

The step strategy remains close in value to the full refinement strategy. The haircut 

strategy adds more value here in absolute terms and relative to the first 3 strategies, also because 

more of the value arises from the lower end of the cost ranges for each project.  In fact, the 



 

 

haircut strategy adds somewhat more value than does prioritization (66.9 vs. 54.9). Given that 

haircut strategies are much more politically palatable – there are no winners or losers, and 

everyone sees it as somewhat fair (if not efficient), this may be an attractive option for the 

portfolio manager. That conflict may not be worth the trouble unless the more refined set of 

alternatives can be obtained.  

The layered haircut approach combines the general usefulness of the haircut approach 

(under decreasing returns) with a sort of prioritization, and here approaches the optimal solution, 

achieving 96.7% of the total possible value of prioritization and refinement combined. As this 

approach does not require the additional work of generating refined alternatives, and every 

project gets some funding, its implementation  might be both politically palatable and low-cost, 

and it could be hard to justify using a full-scale portfolio DA with explicit alternatives defined 

and evaluated for each project.  

 

Sensitivity to variation in curvature:  If we modify the base case by halving the range on ki, so 

that this parameter is U(–1.75, 3.25), which slightly decreases the average value of ki to 0.75, we 

would expect the portfolio to be simpler to manage because there is less variation between 

projects. Here, because the average is closer to 0, buy-up curves are closer to linear and the value 

of refinement drops in absolute terms and relative to the value of prioritization. Even if the 

average did not change, the benefit of refinement is largest at high values of ki, and by narrowing 

the range, the benefit of refinement is reduced more for those projects than it is increased on 

other projects. Layered haircuts would also tend to perform better when the range of ki is 

smaller, because the assumption about identical curvature across projects is then more realistic. 

 



 

 

Sensitivity to assumption of uniformly distributed curvature parameter: If we assume that ki are 

normally distributed with the same mean (1.5) as in the base case, and the same standard 

deviation (10/√12, for a uniform distribution with range of 10 from minimum to maximum), the 

relative values from different strategies are simiilar to the base case.  

 

Sensitivity to number of funding levels:  Using four non-zero funding levels seems to capture 

most of the value, so there is not much need to look at more levels. That leaves only the question 

of whether fewer steps might be sufficient for times when that would be substantially simpler to 

implement (requiring specification of a proposal for only one or two additional funding levels 

between zero and the maximum for each project).  

Figure 6. How many alternatives per project? 

 

-

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

1 2 3 4 5 6 7 8 9 10

Number of alternatives per project

V
a
lu

e
 o

f 
re

fi
n

e
m

e
n

t

 

When we rerun the base case, allowing for only one intermediate funding level, we find 

that V(S4) is slightly reduced  – averaging around 9% less than when the full curve is used, 

compared to only 1.6% degradation when three intermediate values are used and 3.4% when two 



 

 

intermediate values are used. Put another way, the first mid-range alternative adds 63% of the 

potential value of refinement, with a second midpoint 86% of the potential value is achieved, the 

third midpoint raises that to 94%, and including  the rest of the continuum of alternatives adds 

only the last 6% of the value of refinement, as in figure 6.  

One could argue that if managers are already preparing one intermediate funding level 

case, it would be cost-effective to prepare at least two of them and gain an additional 5% in 

value-added.   

 

Sensitivity to percentage of maximum funding each project initially requests: Our base case 

assumed that projects would receive between 0% and 100% of the initially requested funds. It 

could be argued that one of the benefits of portfolio DA is that project managers are actually 

encouraged to create the “step-up” alternatives at funding levels beyond what they would have 

initially requested, rather than merely alternatives ranging from zero funding to their originally 

desired amount. This certainly does happen (e.g., Sharpe & Keelin, 1998, Matheson & 

Matheson, 1998). Such instances were not labeled in the data described above, so it is not clear 

how prevalent this is. If we assume this is always the case, the benefit would indeed be 

substantial. The value of the portfolio using a binary rule is 61.6. This is unrealistically low, 

however, because this implies in the base case that most projects are funded. When the budget is 

1000, the portfolio value is 44.1, far better than the random strategy (19.2), worse than the 

original binary strategy (65.2), better than the haircut strategy (39.5), and far worse than the 

optimal portfolio (82.8).    

Obviously, it cannot always be the case that larger initial requests for each project make 

the entire portfolio more valuable in the face of a fixed budget. Rather, for those projects in 



 

 

particular for which there are reasonable new step-up options to be created, we might expect the 

value added by considering that alternative to be of the same order of magnitude as the value 

added by considering the entire range from zero to the original request. That is a large enough 

benefit that it seems sensible to at least ask project managers to think about whether they have a 

useful way to use additional funds.  

 

Sensitivity to functional form:  The choice of functional form for Vi(.) is important. Specifically, 

the form used precludes S-shaped value versus cost curves that might be found with new 

innovative products, as well as curves involving a fixed cost before any value is achieved and 

curves that provide substantial value for even any non-zero amount of funding (e.g., ongoing 

projects that require only maintenance funding to avoid being killed). Such projects often do 

appear in portfolios, but there is not much to be learned by including them in the model and they 

would complicate it. Comparing ongoing projects alongside new ones gives the illusion that the 

ongoing projects are more productive and thus merit funding, when a better characterization of 

them is that their funding decisions were already made. Projects with S-shaped curves, 

increasing returns, or large fixed costs should be funded at either 0 or at a level above the point at 

which the second derivative of the value versus cost curve turns negative (or at their maximum 

possible funding level), except under extraordinary circumstances, so in considering a portfolio 

consisting entirely of projects with concave buy-up curves, we are not ignoring any likely 

funding decisions. We observe, without modeling, that any of these conditions would have the 

practical effect as having a low exponent – pushing more projects to either 100% or 0% funding 

with fewer in between.  

 



 

 

5. Summary 

5.1 Findings 

We have found that the refinement process can be a significant source of value in portfolio DA, 

it is comparable in particular to the value of improved estimates of project benefits. Refinement 

of alternatives has proportionally greater value when budgets are tighter, which implies that 

portfolio DA ought to focus more on this step during times when a company is facing financial 

difficulties, e.g., during a recession.  Refinement is also of value when investments have notably 

decreasing returns to scale (curvature). Perhaps this would also be more common in times of 

recession (when funding levels are already relatively low) or in mature industries.   

Haircut strategies have some value as does simple prioritization, but haircut strategies 

leave value on the table when more nuanced alternatives are available. Under the right 

circumstances, the layered haircut strategy (which is not common practice, unlike standard 

haircuts) might be a very useful innovation. When buy-up curves are going to be used, the 

number of steps needed to adequately approximate the full buy-up curve for each alternative 

matches well to portfolio DA practice, two to four non-zero funding levels generally being 

sufficient. Although the model results could support use of just two non-zero funding levels, the 

presence in practice of buy-up curves with positive second derivatives would make it informative 

and sometimes useful to add another point This is consistent with the best practice of asking for 

“blue-sky” proposals whose budgets exceed current plans.  

 

5.2 Future research 

This paper considered basic questions about when a decision analyst should refine project level 

alternatives, or more broadly, when an R&D organization  should consider multiple intermediate 



 

 

funding levels for each project . A limiting factor in this work is the lack of real data from 

companies that use such techniques, but as more data are collected we may consider more 

detailed questions about analytic strategy. For example, we might consider different functional 

forms such as Cobb-Douglass functions, or forms such as that described in Ragsdale (2004, p. 

377) where a project’s expected value is based entirely on probability of success given number 

of engineers. We might consider different assumptions on the distributions of the input 

parameters. We might consider more refined strategies, e.g., a triage strategy in which projects 

with low enough curvature are considered as binary projects, while projects with higher 

curvature receive more definition throughout the funding range.  

 

5.3 Last words 

The extent to which alternatives are refined is one of the aspects of portfolio DA over which 

analysts may have control. Refining alternatives requires development of plans for using each 

level of funding and then estimating the resulting values. This step could significantly increase 

the cost of analysis – which in the worst case could be roughly linear in the number of 

alternatives considered – and thus should be undertaken only to the extent that it is valuable. In 

designing a process to make portfolio decisions, portfolio managers and analysts should first aim 

to understand the general characteristics of the portfolio. Armed with that understanding, they 

should focus analytic efforts where they are most likely to add value, at both the narrow level of 

choosing how to refine alternatives, and at the higher level of allocating effort across more 

diverse modeling tasks.   
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