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Abstract 
 

We consider a single buyer who wishes to outsource a fixed demand for a manufactured good or service 
at a fixed price to a set of potential suppliers. We examine the value of competition as a mechanism for 
the buyer to elicit service quality from the suppliers. We compare two approaches the buyer could use to 
orchestrate this competition: (1) a Supplier-Allocation (SA) approach, which allocates a proportion of 
demand to each supplier with the proportion allocated to a supplier increasing in the quality of service the 
supplier promises to offer, and (2) a Supplier-Selection (SS) approach, which allocates all demand to one 
supplier with the probability that a particular supplier is selected increasing in the quality of service to 
which the supplier commits. In both cases, suppliers incur a cost whenever they receive a positive portion 
of demand, with this cost increasing in the quality of service they offer and the demand they receive. The 
analysis reveals that (a) a buyer could indeed orchestrate a competition among potential suppliers to 
promote service quality, (b) under identical allocation functions, the existence of a demand-independent 
service cost gives a distinct advantage to SS type competitions, in terms of higher service quality for the 
buyer and higher expected profit for the supplier, (c) the relative advantage of SS versus SA depends on 
the magnitude of demand-independent versus demand-dependent service costs, (d) in the presence of a 
demand-independent service cost, a buyer should limit the number of competing suppliers under SA 
competition but impose no such limits under SS competition, and (e) a buyer can induce suppliers to 
provide higher service levels by selecting an appropriate allocation function. We illustrate the impact of 
these results through three example applications.     
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1  Introduction 

 Outsourcing has emerged as a major trend in many manufacturing and service industries. Within the 

manufacturing sector, this trend is particularly evident in electronics where contract manufacturing (CM) 

is now over a $100 billion industry (Roberts 2003). In chip manufacturing alone, the foundry business 

(manufacturing services offered by third party contract manufacturers) has grown from a few billion 

dollars 10 years ago to over $50 billion in 2002 (Normile 2003). CM currently accounts for 

approximately 20% of the chip manufacturing market and is projected to grow to 35% by 2007.  In the 

service sector, the outsourcing of businesses processes, such as customer contact centers, IT development, 

and back-office operations, has also accelerated. Forrester Research estimates outsourcing in the financial 

services industry alone will reach $36 billion by 2007 (Ross et al. 2003).   

 Although early outsourcing decisions were based on cost, they are increasingly being based on the 

quality of service promised by potential suppliers. In fact, the weak bargaining position of suppliers in 

many industries means that the buyer sets the price, with quality of service being a primary differentiator 

among suppliers. Large retailers, such as Wal-Mart, and manufacturers, such as Dell, have developed 

sophisticated methods for tracking and rewarding the quality of service of their suppliers, third party 

logistics providers, and other business process contractors. Electronics manufacturers such as Sun 

Microsystems are known to allocate demand among their suppliers based on a scorecard system that 

rewards those who offer higher service quality with a higher demand allocation (Farlow et al. 1996) 

(Cachon and Zhang 2005).  The software company PeopleSoft markets a supplier rating system tool that 

allows firms to monitor and rate the performance of suppliers using criteria that focus on supplier quality, 

on-time delivery, and order fulfillment accuracy (PeopleSoft 2004).  

 Quality of service, in these and other industries, is usually measured in terms of the availability of the 

demanded good or service at the time it is requested. For physical goods, typical measures of service 

quality, or service levels, include fill rate, expected order delay, the probability that order delay does not 

exceed a quoted lead-time, and the percentage of orders fulfilled accurately. For services, measures of 

service quality include expected customer waiting time, the probability that the customer receives service 

within a specified time window, and the probability that a customer does not leave (renege) before being 

served. Selecting suppliers who are able to consistently deliver on one or more of these service measures 

is particularly important when the buyer envisions a long term relationship with her suppliers.   

 In this paper, we consider a single buyer who wishes to outsource a fixed demand for a manufactured 

good or service at a fixed price to a set of N suppliers. We examine the value of competition as a 
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mechanism for the buyer to elicit good service quality from her suppliers. We consider two plausible 

schemes the buyer could use to set up a competition. In the first, the buyer allocates a proportion of 

demand to each supplier, with the proportion a supplier receives increasing in the service level she offers. 

In the second, the buyer selects a single supplier with the probability that a particular supplier is selected 

increasing in the service level the supplier offers. Suppliers under both schemes compete for expected 

market share, which in both cases increases in the offered service quality. We refer to the first scheme, as 

supplier allocation (SA) competition and the second as supplier selection (SS) competition. Note that SA 

competition leads to multi-sourcing while SS results in single sourcing.    

 The suppliers affect their service levels by exerting effort once they receive a positive portion of 

demand, with the cost of effort increasing in the service level offered and the demand allocated. Each 

supplier chooses a service level to maximize her own expected profit, subject to the behavior of other 

competing suppliers. In making this decision, the supplier effectively weighs the market share benefits of 

each service level against its associated cost. Our treatment of service level is general and encompasses 

any form that satisfies our service cost assumptions.    

 The possibility of inducing service quality through competition raises several important questions. For 

example, under what conditions does service competition result in an equilibrium? Which type of 

competition (SA versus SS) is most beneficial to the buyer? Does one form of competition lead to a more 

efficient use of total supply chain effort? Are competition schemes preferred by the buyer also more 

beneficial to the suppliers? How does the number of suppliers under each type of competition affect the 

buyer’s service quality and the suppliers’ expected profits? How should the buyer choose parameters for 

each type of competition to maximize the quality of service he receives? 

 In this paper, we address these and other related questions. We show, under reasonable assumptions 

regarding market share allocation and cost, that an equilibrium exists for both SA and SS competition. 

This equilibrium is unique when the suppliers are homogenous, operate under a proportional demand 

allocation scheme, and service cost is separable in its demand-dependent and demand-independent 

components. The demand-dependent component includes service costs that vary with both the service 

level promised and the actual demand the supplier receives.  The demand-independent component 

includes costs that depend on the service level promised, but are independent of the demand actually 

allocated. We show that in the absence of a demand-independent service cost, SA and SS competitions 

yield identical results.  However, when a demand-independent service cost exists, SS competition leads to 

higher service levels than those obtained under SA (assuming the same demand allocation function is 
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used for both competitions). In this case, the two types of competition also differ in the effect of the 

number of suppliers on service quality. In particular, service levels always increase in the number of 

suppliers under SS, but may initially increase and then decrease under SA (implying a finite optimal 

number of suppliers). In both types of competition, we show that expected service quality is sensitive to 

the allocation function the buyer uses to translate service level into expected market share.  We show that 

with a properly designed allocation function, the buyer can in some cases maximize service quality and 

extract all supplier profits.  

 We illustrate our results with three example applications. The first involves competition in a make-to-

order environment where service quality is measured by response time and suppliers affect their service 

offering by investing in capacity. The second looks at a make-to-stock environment where service level is 

measured by fill rate and determined by the supplier’s chosen base stock level. The third example 

considers a single period problem where competing suppliers decide on order quantities prior to demand 

realization and service level is determined by the ability of a supplier to fulfill allocated demand 

immediately. 

 The remainder of the paper is organized as follows. In section 2, we provide a brief review of related 

literature. In section 3, we describe our problem formulation and the two types of competition. In section 

4, we study the effect of allocation functions. In section 5, we describe a model for supplier selection 

under SS competition. In section 6, we discuss the example applications. In section 7, we summarize the 

main results and comment on possible extensions.  
 

2  Related Literature  

The competition described in this paper can be viewed as a form of a rent-seeking game (Tullock 

1980). In a rent-seeking game, there are N contestants who compete for a prize. The probability that a 

contestant wins the prize (the rent) increases with her expenditures and decreases in the expenditures of 

other contestants. In the rent seeking literature, the probability of winning is typically assumed to have the 

form 
1

N
i ii

e eγ γ
=∑ , where ei is the expenditure of contestant i, N > 1 is the number of contestants and γ ≥ 0 

is a parameter denoting the ease with which expenditures affect outcome. A focus of this literature has 

been documenting the inefficiency of rent-seeking games. Rent-seeking is viewed as wasteful since, 

depending on the value of N and γ, the total expenditures by the contestants can equal the value of the 

prize itself, a phenomenon called rent dissipation. Recent papers from the rent seeking literature include 

(Nti 1997), (Konrad and Schlesinger 1997), (Skaperdas 1996) and (Perez-Castrillo and Verdier 1992). A 
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review can be found in (Nitzan 1994). Related literature on other forms of contests include (Lazear and 

Rosen 1981), (Green and Stokey 1983), (Dixit 1987), and (Kalra and Shi 2001).   

There are important differences between the supplier competition we consider in this paper and rent-

seeking contests. In our models, we explicitly model two parties: a buyer and her suppliers, with the buyer 

orchestrating the contest. We introduce the notion of service quality, absent in rent-seeking contests, 

which is used by the buyer to measure the efficiency of the contest. Consequently, the buyer does not 

necessarily value the cumulative effort over all suppliers, since contests that yield higher levels of 

cumulative effort do not necessarily yield higher average service levels. Furthermore, in our models, 

expenditures by contestants occur only after a contestant has been declared a winner and is allocated a 

fraction of demand. We also allow for general definitions of effort cost and demand allocation.  

Our supplier competition is also related to competition among multiple firms for market share, where 

the share realized by one firm depends on its own effort (e.g., its advertising budget) as well as the effort 

of other competing firms. The market share captured by firm i is commonly modeled via a market 

attraction function of the form 
1

i i
N

i i i ii
a e a eγ γ

=∑ , where ai ≥ 0 represents the effectiveness of effort 

expended by firm i (alternatively, a measure of customer bias toward firm i) and γi > 0 the attraction 

elasticity of effort of firm i-- see for example (Moorthy 1993, section 5.1), (Cooper 1993, p. 262), 

(Monahan 1987), (Monahan and Sobel 1997), and the references therein. Bell et al. (1975) identify 

attributes that lead to market share functions having this form. Kotler (1984, p. 231) refers to such a 

market-share allocation as the “Fundamental Theorem of Market Share.” Demand allocations with a 

market-attraction form can also arise as the equilibrium of a Markovian consumer choice process 

(Mahajan and Van Ryzin 2001a).    

Wang and Gerchak (2001) use a market attraction function to model marketing effort in the form of 

inventory displayed on a retailer’s shelf space. They consider a setting with two competing retailers, γ = 1 

and no supplier bias (ai = 1 for i = 1, 2) but with total demand increasing concave in the cumulative effort 

of the competing retailers. Boyaci and Gallego (2002) also use a market attraction function to model 

competition between two supply chains, where effort is measured by fill rate. Bernstein and Fedegruen 

(2004) consider a more general form of competition involving both price and fill rate. They also consider 

a general allocation function, of which market attractions functions are special cases.  

The above papers are related to a growing literature in Operations Management on inventory 

competition among multiple firms. Each firm is typically modeled by a newsvendor that decides on an 

order quantity prior to observing demand. Two different approaches for allocating demand have been 
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considered (Cachon 2003). Under the first approach, total market demand D is allocated to firms 

proportionally to their order quantities, with retailer i receiving Di = qiD/(q1 +...+ qN), where qi is the 

quantity ordered by retailer i (i =1, …, N). In this case, the demands realized by the firms are perfectly 

correlated, with either each firm having excess demand (when D > q1+…+qN) or each firm experiencing 

shortages (when D < q1+…+ qN). Under the second approach, each retailer faces an independent demand 

Di and only excess demand from firm i can be reallocated among the other retailers according to some 

fixed reallocation rule.  

An important insight from this literature is that retailers tend to over-stock, choosing order quantities 

that are higher than those observed in the absence of competition. Examples of papers that study 

inventory competition include (Lippman and McCardle 1997), (Parlar 1988), (Karjalainen 1992), 

(Netessine and Rudi 2003), (Li and Ha 2003) and (Mahajan and Van Ryzin 2001a, 2001b). A review and 

discussion of this literature can be found in (Cachon 2003). Inventory competition can be viewed as a 

variation on a rent-seeking contest where, instead of a single winner, the prize (total demand) is shared 

among the contestants according to an allocation rule. There is also a growing literature on market share 

competition based on service quality, where service quality is a function of effort parameters other than 

inventory (e.g., delivery lead times). Recent examples include (Hall and Porteus 2000), (Gans 2002), (Ha 

et al. 2003), (Allon and Federgruen 2005), (Bernstein and Federgruen 2002), (Boyaci and Ray 2003) and 

the references therein.    

This literature does not consider settings where a buyer is orchestrating the competition and 

specifying the allocation function. Instead, the allocation emerges endogenously from the competition of 

independent firms. Consequently most of this literature is not concerned with identifying forms of 

competition that maximize supplier effort.  However, notable exceptions include recent papers by Elahi et 

al. (2003) and Cachon and Zhang (2005). Elahi et al. (2003) consider a system with a single buyer and 

multiple suppliers. The buyer allocates demand among the suppliers based on their fill rates. The 

suppliers are modeled as make-to-stock queues who affect their fill rates by increasing their inventory 

base-stock levels. This model is revisited in section 6.2 and shown to be a special case of the general 

model we describe in this paper.  Cachon and Zhang (2005) consider a problem with a single buyer and 

multiple suppliers, where the buyer uses suppliers’ delivery lead times to allocate demand. The suppliers 

are modeled as single server queueing systems who affect their lead time performance by exerting effort 

in the form of capacity. The objective of the buyer is to induce suppliers to invest sufficient capacity to 

meet a target average leadtime. The authors evaluate several allocation functions and show that not all 
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allocation functions induce the desired capacity investments. The model described in (Cachon and Zhang 

2005) extends previous models by Gilbert and Weng (1997) and Kalai et al. (1992).   

Much of the literature dealing with firms competing for market share does not consider forms of 

competition where a single firm is allocated the entire market, except as a result of extreme asymmetry 

among the firms (e.g., the existence of a firm with a zero cost of effort).  However, there is extensive 

literature dealing with supplier selection when there is a single buyer making the procurement decision. In 

most of this literature, the mechanism by which suppliers are selected is an auction where price is the 

selection criterion. The literature on procurement auctions is vast and spans both the fields of Operations 

Management and Economics. Reviews can be found in (Klemperer 1999), (McAfee and McMillan 1987), 

(Laffont and Tirole 1994), and (Elmaghraby 2000). Some of this literature involves auctions with multiple 

sourcing as in (Laffont and Tirole 1987), (Anton and Yao 1989), and (Seshadri 1995). 

Recently, there has been renewed interest in the Operations Management literature in supplier 

selection and the allocation of supply contracts via auction mechanisms. For example, Cachon and Zhang 

(2006) consider a buyer that selects one out of N potential suppliers with the objective of minimizing the 

sum of procurement, inventory, and backordering costs. A supplier is selected using a scoring-rule 

auction based on price and leadtime. This creates a price and capacity competition among the suppliers 

where in this case each supplier’s capacity cost is private information. The authors analyze the relative 

performance of a number of scoring-rules including total cost, lead-time only (with fixed price), and price 

only (with a fixed lead-time target).  Other examples of auction-based supplier selection include (Chen 

2004) and (Zemel and Seshadri 2003) who use supplier competition to determine both price and order 

quantity.  

Finally, there is an extensive literature dealing with inventory replenishment policies when there are 

multiple suppliers or multiple supply modes. In this literature the characteristics of the suppliers are 

exogenous and not affected by the amount of demand that each supplier receives. Examples include 

(Whittemore and Saunders 1977), (Moinzadeh and Nahmias 1988), (Ramasesh et al. 1991), (Anupindi 

and Akella 1993), (Rosenblat et al. 1998), (Swaminathan and Shanthikumar 1999), (Chen et al. 2001), 

and (Fong et al. 2001), and the references therein.   
 

3  Competition Formulation and Nash Equilibrium 

We consider a system with a single buyer that seeks to outsource the provisioning of a product with an 

expected demand quantity λ to N identical potential suppliers. The price of the product, p, is fixed and 
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identical across all suppliers. The supplier realizes a revenue r = p –c per unit sold where c is the unit 

production cost. Let si ≥ 0 denote the service level offered by supplier i and λi=αiλ the amount of demand 

allocated to supplier i, 0 ≤ αi ≤ 1 for all i = 1,…, N. Also, let f(si, λi) denote the cost supplier i incurs in 

providing service level si (si ≥ 0) if given demand allocation λi, with f(si, λi) non-decreasing in both si and 

λi. We choose to separate production costs from service level costs since we assume that unit production 

costs remain the same regardless of the service level offered. We assume that each supplier commits to 

fulfilling the amount of demand allocated while maintaining the service level promised.  

We focus on a particular class of plausible cost functions of the form:  

( , ) ( ) ( ),i i i i if s u s v sλ λ= +                                                          (1) 

where u(si) and v(si) are non-decreasing convex functions in si, with either u(si) or v(si) increasing in si and 

v(0) = 0, for i=1,..., N.  The first term, λiui(si), captures service related costs that increase linearly with the 

amount of demand allocated.  We refer to this as a demand-dependent cost since it varies with the demand 

allocated to the supplier.  The second term, vi(si) captures cost that increases only with the service level 

itself.  We refer to this as a demand-independent cost since it is not affected by the amount of demand 

allocated.  In our analysis, we will consider several special cases of this general cost function, including 

ones containing only a demand-independent or a demand-dependent cost component. In section 6, we 

show how this class of cost functions is sufficiently rich to model a varied set of applications. 

 We consider SA and SS competition as two plausible strategies the buyer might use to induce service-

based competition across the N potential suppliers. Under SA competition, the buyer announces a 

criterion for allocating demand among the suppliers with the understanding that a supplier i can increase 

her fraction of demand by increasing the service level she promises to offer the buyer. This does not 

prevent the buyer from taking into account factors other than service level in making the allocation 

decision. 

 Under SS competition, the buyer selects a single supplier to whom the entire demand is allocated.  The 

probability that a particular supplier is selected is increasing in the service level the supplier promises to 

offer. Of course, this does not exclude settings where the supplier with the highest service level is always 

selected. SS competition is different from SA competition in that a winner takes all under SS (the supplier 

commits a-priori to sole sourcing) while more than one supplier may be awarded a share of the demand 

under SA (the supplier does not preclude a-priori the possibility of multi-sourcing from all suppliers). 

Under SS, only the selected supplier incurs a cost while under SA all suppliers that promise a positive 

service level eventually do. The probabilistic selection implies that quality of service alone may not 
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guarantee that a supplier would be selected or that there is inherent randomness in the buyer’s decision-

making process. A supplier only increases her chances of being selected by offering a higher service 

level. An alternative interpretation of SA and SS competition, for which the analysis remains the same, is 

one where the allocation functions are estimated by the suppliers rather than explicitly announced by the 

buyer. In fact, in the case of SS, it is unlikely that the buyer would explicitly announce the selection 

probability function. Instead the buyer may announce a decision making process through which the 

probability function is inferred by the suppliers (see section 5 for further discussion). 

 We assume that, once promised, service levels offered by the suppliers are enforceable. In practice, this 

would occur if the cost or, more likely, the associated effort expended by each supplier after the buyer 

allocates demand, is observable. The buyer can then ascertain whether or not a supplier has exerted 

sufficient effort (expended sufficient cost) to meet the promised service level. For instance, the buyer may 

observe the amount of capacity invested by the supplier after the demand was allocated and determines 

whether or not it is sufficient to meet the expected leadtime that was initially promised by the supplier. Of 

course, there can also be settings where suppliers voluntarily deliver on promised service levels 

(regardless of observability of cost or effort), because they worry about their reputation or expect repeated 

interactions with the buyer in the future.  

 For SA competition, demand allocation is carried out via a demand allocation function vector ααααSA = 

( 1
SAα , 2

SAα , …, SA
Nα ) where ( , )SA

i i is sα −  specifies the fraction of demand allocated to supplier i given the 

supplier’s own service level si as well as the service levels s-i=(s1, ..., si-1, s i+1,..., sN) offered by her 

competitors with 0 ≤ ( , )SA
i i is sα −  ≤ 1. The function ( , )SA

i i is sα −  is nondecreasing concave in si  and equal 

to zero when si = 0,  for i = 1,…, N. By offering a certain service level, the supplier commits to exerting 

the necessary effort (and incurring the associated cost) to maintain this service level regardless of the 

demand it may eventually receive. However, since ( , )SA
i i is sα −  is nondecreasing concave in si, 

( , )SA
i i is sα −  > 0 if si > 0 and ( , )SA

i i is sα −  = 0 if and only if si = 0.   

 For SS competition, the demand allocation is carried out via a selection probability function vector ααααSS 

= ( 1
SSα , 2

SSα , …, SS
Nα ) where ( , )SS

i i is sα −  denotes the probability that supplier i is selected. The 

probability ( , )SS
i i is sα −  is nondecreasing concave in si and equal to zero when si = 0, for i = 1,…, N with 0 

≤ ( , )SS
i i is sα −  ≤ 1. Section 5 provides a discussion of how a probabilistic selection might arise and how 

selection probability functions might be specified.     

 Let C denote the type of competition chosen by the buyer, with C = SA or SS.  The expected quality of 

service received by the buyer under competition of type C is then 
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1
( ) ( , )

NC C
i i i ii

q s s sα −==∑s ,                                                        (2) 

where s = (s1, …, sN). The buyer chooses a structure for ααααC
 to induce high quality of service by rewarding 

better performing suppliers with either higher market share (under SA) or a higher probability of selection 

(under SS).  Given the buyer’s choice of C and ααααC, the suppliers respond by competing against each other 

for the buyer’s fixed demand. 

Each supplier competes by choosing a service level si that maximizes her own expected profit, subject 

to the behavior of other suppliers. Under SA competition, this implies supplier i will choose si to 

maximize  

( )( , ) ( , ) , ( , ) ( , ) [ ( )] ( ),SA SA SA SA
i i i i i i i i i i i i i i is s s s r f s s s s s r u s v sπ α λ α λ α λ− − − −= − = − −               (3) 

while under SS competition, supplier i will choose si to maximize  

( )( , ) ( , ) ( , ) ( , ) [ ( )] ( , ) ( ).SS SS SS SS
i i i i i i i i i i i i i i is s s s r f s s s r u s s s v sπ α λ λ α λ α− − − −= − = − −              (4) 

Note that in both cases, supplier i’s expected revenue and expected cost depend on her own service level si 

as well as the service level profile s-i of her competitors. We assume all parties have full access to 

information about each other’s costs. Also, in systems where some of the parameters are random 

variables, we assume all suppliers to be risk neutral and to be profit maximizers. Under both forms of 

competition, costs are incurred by a supplier only after demand allocations are announced by the buyer 

and only if the supplier receives a positive portion of demand.  In the SS case, only the winner will incur 

costs, with non-winners walking away with no cost (and no revenue).  The case where some cost may be 

incurred prior to demand allocation is discussed at the end of this section. 

It is difficult to show the existence and uniqueness of a Nash equilibrium without further specifying 

the allocation functions (we use the term allocation function in the rest of the paper to refer to both αSA 

and αSS, even though αSS is a selection rather than an allocation function). Therefore, in our analysis we 

focus on a particular class of allocation functions of the form: 
 

( )
( , ) ,

( ) ( )
C i
i i i

j ij i

g s
s s

g s g s
α −

≠

=
+∑

                                                     (5) 

where g(si) is a non-decreasing concave function of si with g(0)=0 for i =1,..., N and g is twice 

differentiable. In its simplest form, the function g(si) could represent the service level a supplier chooses 

to offer, i.e., g(si) = si. This leads to a service-proportional allocation function of the form 

1
( , ) / .

NC
i i i i ii

s s s sα − =
= ∑  A more general proportional allocation may take the form of a market attraction 

function 
1

( , )
NC

i i i i ii
s s s sγ γα − =

= ∑ , where 0 < γi ≤ 1.  We choose to focus on proportional allocation 

functions because of their simplicity, mathematical tractability, and their wide use in the literature. 
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Proportional allocation functions arise naturally in some cases through buyer decision processes (see 

section 5 for an example). Although we do not pursue it in this paper, we expect that many of our results 

would continue to hold for other allocation functions including non-concave functions (see (Cachon and 

Zhang 2003a) for examples of other allocation functions).  In section 4, we show how the analysis can be 

extended in some cases to proportional but non-concave allocation functions. 

 In the following theorem, we show that the supplier competition defined by either SA or SS admits a 

unique symmetric Nash equilibrium. The Appendix provides a proof for this, and all subsequent, results. 
 

Theorem 1: A Nash equilibrium for SA and SS competition exists and is unique with equilibrium service 

levels ,C C
is s=  where 0Cs >  for i = 1,…, N and C = SA, SS.  

 

Although we restrict our discussion in this paper to symmetric suppliers, it can be shown that a Nash 

equilibrium continues to exist for non-identical suppliers and for more general service cost and allocation 

functions -- see Elahi (2006) for details.   

To gain some insight into the differences in the equilibrium service levels obtained under SA and SS, 

it is useful to examine the suppliers’ profit functions (equations 3 and 4) more closely.  First note that in 

the absence of a demand-independent cost component, i.e., when v(si) = 0 for all si, SA and SS have the 

same profit structure. Consequently, if ( , ) ( , )SA SS
i i i i i is s s sα α− −= , both SA and SS lead suppliers to choose 

the same service levels and consequently lead to the same expected quality of service for the buyer. In 

contrast, when v(si) > 0, SA and SS behave quite differently. For SA, the fraction of demand allocated to 

each supplier decreases with N, which reduces the expected revenue each supplier receives. Although the 

demand-dependent cost also diminishes, the demand-independent cost is unaffected. Consequently, 

depending on the relative strength of u and v, the incentive for a supplier to offer a high service level 

could diminish with N.  In contrast, under SS, a selected supplier is awarded the entire demand and incurs 

the demand-independent cost only after the supplier is indeed selected. Although the expected revenue 

diminishes with N so does the expected cost. Hence, an increase in N could in fact intensify competition, 

forcing suppliers to increase their service levels.  

Theorems 2 and 3 confirm this intuition and offer further comparisons between SA and SS 

competitions.  
 

Theorem 2: The following holds for all suppliers i = 1,…, N: 

(1) If v(si) = 0, then SSSS
i

SASA
i ssss ===  and qSA = qSS;  
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(2) If v(si) > 0 for si > 0, then sSA < sSS  and qSA < qSS. 

Furthermore, if v(si) > 0, ( )i ig s sγ=  where 0 < γ ≤ 1 and both u and v are linear in si, then  

(3) 11
( , ) ( ) ( , ) ( )

N SA SA SA SA SA SS SS SS SS SS
i i ii

f s s Nf s f s s f s− −=
= > =∑  and 

(4) ,SA SA SS SS
i iπ π π π= < =  where C

iπ  refers to the equilibrium expected profit for C = SA, SS. 
 

Theorem 2 implies that, for a given allocation function, SA and SS are equivalent when there are no 

demand-independent service costs. However, if there are demand-independent costs, the service levels 

offered by the suppliers under SS are higher than those offered under SA. Consequently the average 

quality of service received by the buyer is also higher under SS. Interestingly, the cumulative cost 

incurred by all the suppliers under SA (which is indicative of the cumulative effort being exerted by the 

suppliers) can actually be higher than the cost incurred by the single selected supplier under SS. In other 

words, under SA competition, the buyer is able to get suppliers to invest a greater proportion of their 

revenues into effort, which explains the lower supplier profits under SA. Hence, somewhat paradoxically, 

although the suppliers cumulatively spend more on service under SA competition, both buyers and 

suppliers are worse off.   

Theorem 3 describes the impact of the number of participating suppliers (N) on service level, quality 

of service, and supplier profits.  
 

Theorem 3: The following holds for all suppliers i = 1,…, N: 

(1) For SS, SSs and qSS are increasing in N with SS SSs s→  and SS SSq q→  as N → ∞  where SSs  and 

SSq  are positive values,  

(2) For SA, we distinguish three cases:  

(a) if v(si) = 0 then SAs and qSA are increasing in N with SA SAs s→  and SA SAq q→  as N → ∞  where 

SAs  and SAq  are positive values, 

(b) if u(si) = 0 then SAs and qSA are decreasing in N with 0SAs →  and 0SAq →  as N → ∞ , 

(c) if u(si), v(si) > 0 for si > 0, 0SAs →  and 0SAq →  as N → ∞ . 

(3) Cπ  is decreasing in N with Cπ → 0 as N → ∞  for i=1,…, N and C = SA, SS. 
 
 

Theorem 3 shows that the effect of increased competition can be different under the SA and SS schemes 

and is sensitive to the form of the cost function. Under SS competition, larger N always leads to higher 

service levels. Here, the buyer favors having a large number of suppliers participate in the selection 

process. This also holds true for SA when there is no demand-independent service cost. However, when 
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service cost only contains a demand-independent component, SA yields the opposite effect with larger N 

always leading to lower service levels. When both types of costs exist with SA, the effect of N is 

generally not monotonic. An increase in N can lead to an initial increase in service levels, but further 

increases in N eventually lead to a decrease in service levels, with service levels approaching zero in the 

limit case.  

Supplier profits under both SA and SS decrease in N regardless of the cost function and vanish in the 

limiting case of perfect competition (i.e, N→∞). However subtle differences in supplier profits exist. 

While under SA, the actual profit of each supplier approaches zero as N becomes large, only expected 

supplier profit may under SS competition (expected supplier profit approaches zero since the probability 

of being selected approaches zero). The actual profit of a selected supplier (i.e., a supplier’s profit given 

that the supplier is selected) can be strictly positive. This means that the buyer may not be able, even 

under perfect competition, to extract all the post-selection profit from the selected supplier.    

So far in our analysis, we have assumed that all costs are incurred by the suppliers once the 

allocations are made. However, in some applications, some demand-independent costs could occur before 

the allocations are announced. For example, in order to qualify as potential suppliers, the buyer might 

require some initial investment from the suppliers in order for them to qualify for the competition. The 

timing of when these demand-independent costs occur does not impact the structure of the supplier profit 

function under SA, but it does change the supplier profit function under SS. For example, if supplier i 

incurs the entire demand-independent component v(si) before supplier selection takes place, expected 

profit for supplier i becomes ( , ) ( , ) [ ( )] ( ).SS SS
i i i i i i i is s s s r u s v sπ α λ− −= − −  This function is identical to the 

profit function under SA. Consequently, if the same allocation function is used for both SA and SS, both 

forms of competition are equivalent and yield the same expected service level. SS would retain some 

advantage over SA if suppliers incur only a portion of the demand-independent cost prior to supplier 

selection, with this advantage diminishing as the pre-selection portion increases. This insight also implies 

that the comparison results between SA and SS described in this paper could be recast as a comparison 

between two forms of SS competition, one with demand-independent costs incurred prior to supplier 

selection and one with demand-independent costs incurred post selection.  

 

4 The Effect of Allocation Functions 

In this section we explore how the form of the allocation function impacts the competition outcomes. In 

general, the Nash equilibrium service levels are sensitive to the functional form of the allocation function. 
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That is, different allocation functions can induce different service levels. This can be verified, for 

example, by observing that the Nash equilibrium service levels are solutions to the following sets of 

equations:  

( , ) ( , )
0

SA SA
i i i i i i

i i i

s s f s s
r

s s s

π α λ− −∂ ∂ ∂= − =
∂ ∂ ∂

, and                                         (6) 

[ ]( , ) ( , )
( , ) ( , )

SS SS
i i i i i iSS

i i i i i
i i i

s s f s s
r f s s s s

s s s

π α λ α− −
− −

∂ ∂ ∂= − −
∂ ∂ ∂

 = 0                        (7) 

for i = 1, …, N. The solutions appear to depend on Ci isα∂ ∂  (C = SA, SS), the rate at which market share 

increases with increases in si. Intuitively, we expect that if the rate C
i isα∂ ∂  decreases slowly (recall that 

C
iα  is concave) then the Nash equilibrium would occur at higher values of service than if C

i isα∂ ∂  

decreased abruptly. In other words, the Nash equilibrium service levels appear to depend on the second 

derivative of the allocation function, which can be viewed as a measure of the intensity of the 

competition. This is easily verified for proportional allocation functions of the form 

1
( , ) / .

N
C
i i i i ii

s s s sγ γα − =
= ∑ where 0 ≤ γ  ≤ 1. Here, 2 2C

i isα∂ ∂  is decreasing in γ, sSA and sSS are increasing in 

γ , with γ = 1 maximizing service for the buyer. 

In order to apply Theorem 1, we require that γ ≤ 1 so that the allocation function is concave. 

However, concavity is sufficient but not a necessary condition. This leads to the question as to what 

would happen if we allowed γ to be greater than 1. Would we still have an equilibrium and would it lead 

to an even higher service level for the buyer? If so, could the buyer choose a high enough γ to force 

suppliers to offer the maximum feasible service level and realize zero profits? In the following 

propositions we examine the special case of linear cost functions and show that a Nash equilibrium may 

exist for γ > 1 and that a buyer can indeed induce suppliers in some cases to provide the maximum 

feasible service level. 
 

Proposition 1: Under SS competition with 
1

( , ) / ,
N

SS
i i i ii

s s s sγ γα − =
= ∑  1( ) ,i iu s k s=  and 2( ) ,i iv s k s=  a 

unique Nash equilibrium exists for any γ > 0. The equilibrium service levels are increasing in γ while 

expected supplier profit is decreasing in γ with 1 2lim /( )SSs r k kγ λ λ→∞ = +  and lim 0SS
γ π→∞ = .   

 

Proposition 2: Under SA competition with 
1

( , ) / ,
N

SA
i i i ii

s s s sγ γα − =
= ∑  a symmetric Nash equilibrium exists 

for γ > 1 if one of the following conditions holds. 

(1) 1( )iu s k= , 2( ) ,i iv s k s=  and max /( 1);N Nγ γ≤ = −  the corresponding equilibrium service levels are 

increasing in γ, with 1 2( ) /SAs r k Nkλ= −  when γ = γmax, while the corresponding expected supplier 

profits are decreasing in γ with πSA = 0 when γ = γmax.  
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(2) 1( )i iu s k s= , and ( ) 0;iv s =  the corresponding equilibrium service levels are increasing in γ, with 

1lim /SAs r kγ →∞ =  and lim 0SA
γ π→∞ = .   

In the case of (1), the symmetric Nash equilibrium is the unique equilibrium if N=2. In the case of (2), the 

symmetric Nash equilibrium is always the unique equilibrium. 
 

These observations highlight the important role allocation functions play in determining the level of 

service suppliers provide. Using a service proportional allocation rule, a buyer may be able to extract all 

the profit from the suppliers and induce them to provide the maximum feasible service level. These 

results appear consistent with those in Cachon and Zhang (2005) who consider an application with 

competition similar to SA with 1( )iu s k=  and v(si) = k2si. It is interesting to note that for SA the 

maximum feasible service level under condition (1) is decreasing in N while for SS it is always 

independent of N. This means that for SA, the buyer can maximize her expected service levels by setting 

N = 2 and choosing 2,γ =  which leads to 1 2( ) / 2 .SAs r k kλ= −  For SS, the maximum feasible service 

level 1 2/( )SSs r k kλ λ= +  is achievable with any N by letting .γ → ∞  The latter is not surprising. When 

γ → ∞, SS becomes equivalent to an auction where the supplier with the highest service level is selected 

with probability 1.  

The above analysis raises the question as to whether it is possible, for every service level achievable 

with SS, to choose an allocation function that makes that service level achievable with SA. In other 

words, is it possible for the buyer to specify a service level and then choose allocation functions, with the 

one for SA possibly different from the one for SS, to obtain the specified service level from either type of 

competition? The answer is this is not always possible. For example, under demand-independent service 

costs, the maximum feasible service level under SS is always strictly greater than the one achieved under 

SA. Therefore, there may be a range of service levels (between the maximum feasible service level for 

SA and the maximum feasible service level for SS) achievable by SS but not by SA regardless of what 

allocation function is used for SA.  

 We end this section by discussing a useful reformulation that allows us in certain cases to extend 

results to more general service cost functions with the only requirement that the function is increasing in 

service level. For these cases, we show that it is always possible for the buyer to orchestrate a competition 

that produces a Nash equilibrium, maximizes service level, and results in zero expected supplier profits. 

Consider first SS competition. Recognizing that, as long as f(si, λ) is increasing in si, there is a one-to-one 

correspondence between the service level si and f(si, λ), suppliers can be viewed as competing on cost 

expenditures. We refer to supplier cost expenditures as effort and denote it by ei where ei ≡ f(si, λ). The 
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buyer could reformulate the competition, including the allocation function, in terms of this effort. This 

leads to expected supplier profit functions given by ( , ) ( , )( ),SS SS
i i i i i i ie e e e r eπ α λ− −= −  for i=1, …, N. If the 

buyer uses a proportional allocation function 
1

( , ) / ,
NSS

i i i i ii
e e e eγ γα − − == ∑  then the buyer could induce the 

suppliers to exert maximum feasible effort by letting .γ → ∞  This maximum feasible effort is given by 

SSe rλ=  and the corresponding maximum feasible service level SSs  is the unique solution to 

( , ) .f s rλ λ=   

 For SA, a similar reformulation is not always possible since there is not a one to one correspondence 

between service level and cost expenditures. Cost expenditures depend on both the service level and the 

amount of demand allocated. However, a reformulation is feasible for the following two important cases 

(see section 6 for example applications): (1) 1( , ( , ) ) ( , ) ( ),i i i i i i i i if s s s s s k v sα λ α λ− −= +  and (2) 

( , ( , ) ) ( , ) ( )i i i i i i i i if s s s s s u sα λ α λ− −=  where the only requirement on u and v is that they are increasing in 

si. For case (1), when v(si) is increasing in si, there is a one-to-one correspondence between the service 

level si and the demand-independent cost v(si), and so the buyer could reformulate the supplier 

competition in terms of these expenditures. Letting ei ≡ v(si), expected supplier profits can be rewritten as 

1( , ) ( , ) ( ) .SA SA
i i i i i i ie e e e r k eπ α λ− −= − −  If the buyer uses again an allocation function of the form 

1
/ ,

NSS
i i ii

e eγ γα
=

= ∑  he would maximize service quality by choosing γ = 2 and N = 2, which leads to the 

maximum feasible demand-independent cost expenditure eSA = λ(r – k1) and corresponding service level 

sSA given by the unique solution to 1( ) ( ) / 2.u s r kλ= −   A similar treatment can be carried out for case 2. 

The buyer would induce the suppliers to exert maximum feasible effort SAe rλ=  by letting γ → ∞, with 

the corresponding service level being the unique solution to ( ) .u s rλ=   

 Finally, we should note that staging a competition in terms of effort can lead to different equilibrium 

service levels than a competition based on service levels, depending on the cost and allocation functions. 

The main advantage of an effort-based competition is that simple allocation functions can be designed to 

induce suppliers to provide maximum service level. However, clearly the usefulness of the transformation 

depends on whether or not effort is observable (see section 6 for examples where this might be plausible).  

 

5 A Model for Supplier Selection 

 Choosing an allocation function and announcing it to the suppliers is straightforward under SA. An 

allocation function in this case is a verifiable formula for how demand is allocated once service levels are 

announced. For SS, specifying an allocation function (which corresponds to a selection probability) is less 

obvious. Typically, a selection probability is implied by the buyer’s past behavior in choosing suppliers. 
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The selection probability is often learned by the suppliers through repeated interactions between buyer 

and suppliers, rather than being explicitly announced by the buyer. In this section, we describe an 

example supplier selection process through which a probabilistic selection naturally arises.  We show how 

under some conditions the resulting selection probability fits our assumptions. 

 Consider a setting where suppliers announce their service levels and the buyer responds by assigning 

each supplier a score wi(si) = g(si) + εi where εi is a random variable denoting an error term with mean 0 

and standard deviation σ. The random variables εi are independent and identically distributed. The 

functional form of g(si) is announced by the buyer to the suppliers before they commit to si. However, the 

value of εi is revealed only after the suppliers announce their service levels. The buyer then chooses the 

supplier with the highest score wi(si).  The term εi reflects inherent and unbiased randomness in the 

selection process. For example, it could denote the outcome of an opinion poll of the buyer’s purchasing 

managers or the outcome of an audit of the suppliers after the service levels have been announced. 

Alternatively, it could result from a multiplicity of decision makers at the buyer’s firm (Ha 2004). The 

variance of εi reflects the amount of uncertainty associated with the selection process. When variance is 

low, the outcome of the selection procedure is primarily determined by the service level si. When variance 

is high, the outcome of the selection is mostly random and service level is not the main determinant of the 

selection decision.  

 The probability that supplier i is selected can now be stated as 
 

( , ) Pr[ ( ) ( ) ]SS
i i i i i j j

j i

s s g s g sα ε ε−
≠

= + ≥ +∏ ,                                          (8) 

or equivalently 
( , ) Pr[ ( ) ( )] [ ( ) ( )],SS

i i i j i i j i j
j i j i

s s g s g s F g s g sζα ε ε−
≠ ≠

= − ≤ − = −∏ ∏                        (9) 

where Fζ is the distribution of the difference .j iζ ε ε= −  Obtaining closed form expressions for ss
iα  is 

difficult in general. However, in the case where the 'siε  are Gumbel distributed random variables (i.e., 
( )

( )
x

i

eF x e
κ

µ
ε

− +

=  where µ > 0 is a scale parameter such that 2 2Var( ) /6,iε µ π=  and κ = 0.5772… is Euler’s 

constant), we have (see for example Chapter 7 of Talluri and Van Ryzin (2004)) 
( )

( )

1

( , ) .

i

i

g s

SS
i i i g s

N

i

e
s s

e

µ

µ

α −

=

=

∑
                                                         (10) 

As we can see, the selection probability has the form of a proportional allocation function. Furthermore, 

by choosing ( ) ln[ ( )],i ig s h sµ=  the buyer can reduce it to  
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1

( )
( , ) .

( )
iSS

i i i N

ii

h s
s s

h s
α −

=

=
∑

                               

Therefore, all the analysis and results of the previous sections apply.  

The above supplier selection process is one example of how a probabilistic selection might arise. In 

practice, it is not uncommon for some uncertainty to surround the supplier selection process whenever 

sole sourcing is involved, even when the declared primary selection criterion is service level. Sole 

sourcing poses greater risks to the buyer and the final selection typically involves deliberations whose 

outcome can be uncertain. Of course, it is possible to consider settings where decisions are based only on 

service level. This corresponds in our model to the case where εi→0.  
 

6  Example Applications 

In this section, we illustrate the general framework and results of the previous sections with three example 

applications. The first example views suppliers as make-to-order service providers who influence service 

through capacity investments. The second views suppliers as make-to-stock manufacturers having fixed 

utilization targets who influence service levels through inventory investments. The third example views 

suppliers as newsvendors who make a single-period decision about capacity which then determines 

service levels. The examples illustrate different types of service levels, different forms of effort, and 

different cost functions.  

 

6.1 Competition with Make-to-Order Suppliers 

Consider a system of N potential suppliers who operate in a make-to-order fashion, provisioning services 

in response to real-time requests. A buyer, in outsourcing her service requests to this supply pool, is 

interested in inducing high time-based service performance, using measures such as expected fulfillment 

time of requests or the probability of fulfilling requests within a quoted lead-time. Since time-based 

performance is driven primarily by the capacity of the suppliers, we assume that suppliers commit to 

investing in capacity sufficient to meet the service levels they promise to offer. Hence, the service level 

costs incurred by the supplier are capacity investment costs.  

 We assume that service requests from the buyer to the suppliers occur continuously over time 

according to a renewal process with rate λ. Each potential supplier i can be viewed as a service facility 

with service rate µi and i.i.d. service times with mean 1/µi for i=1, …, N. Under SA competition, demand 

is partitioned among the N potential suppliers with supplier i receiving a long run fraction -( ,  )SA
i i is sα  of 
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total demand. Hence, the demand rate that supplier i sees is -( ,  ) .SA
i i i is sλ α λ=  Since service requests 

arrive dynamically over time, SA
iα  in fact specifies the probability that an incoming service request is 

assigned to supplier i. Although a truly probabilistic allocation is unlikely in practice, it is useful in 

approximating the behavior of a central dispatcher that attempts to adhere to a specified allocation for 

each supplier. It is also useful in modeling settings where demand arises from a sufficiently large number 

of sources. The parameter -( ,  )SA
i i is sα  would then correspond to the fraction of demand sources (e.g., 

geographical locations) for type i that is always satisfied by supplier i.  

 Service level in a service system can be defined in a variety of ways. For the purpose of illustration, we 

consider the probability of fulfilling a service request within a quoted lead time. For ease of exposition 

and to allow for closed form expressions for service levels, we assume that demand occurs according to a 

Poisson Process and service times are exponentially distributed, This is consistent with assumptions in 

(Cachon and Zhang 2005), (Gilbert and Weng 1997) and (Kalai et al. 1992). Since the probabilistic 

splitting of a Poisson process is itself Poisson, the demand process each suppliers sees is also Poisson. 

Thus, each supplier behaves like an M/M/1 queue. Given these assumptions, the probability of meeting a 

quoted lead time τ is: 

( )Pr( ) 1 ,i i
iW e µ α λ ττ − −≤ = −                                                        (11) 

where Wi is a random variable denoting fulfillment time by supplier i given service rate µi.  

  Under SA competition, if a supplier offers service level Pr( ),i is W τ= ≤  then she commits to 

acquiring an amount of capacity (in the form of a service rate) equal to ( , ) ln[1/(1 )]/ .SA
i i i is s sα λ τ− + −  The 

fraction of demand -( ,  )SA
i i is sα  allocated to supplier i is increasing in si with -1

 ( ,  ) 1.
N SA

i i ii
s sα

=
≤∑  Under 

SS competition, supplier i commits to acquiring an amount of capacity equal to ln[1/(1 )] /isλ τ+ − if she 

wins the business, with the probability -( ,  )SS
i i is sα  that supplier i is selected as the sole service provider 

increasing in si and -1
 ( ,  ) 1.

N SS
i i ii

s sα
=

≤∑  Each supplier incurs a variable production cost c  per unit 

produced and an amortized capacity cost of k per unit of service rate (the treatment can be extended to a 

general increasing capacity cost function). Expected supplier profit can then be written as  

( , ) ( , ) [( ) ] ln[1/(1 )] / ,SA SA
i i i i i i is s s s p c k k sπ α λ τ− −= − − − −                                (12) 

and 

( , ) ( , ){ ( ) ln[1/(1 )] / }.SS SS
i i i i i i is s s s p c k k sπ α λ τ− −= − − − −                               (13) 

Letting u(si) = k and ( ) ln[1/(1 )]/i iv s k s τ= −  and noting that v(si) is increasing convex in si, we can see 

that the profit functions have the same form as (3) and (4). Therefore all the associated results of sections 

3 and 4 immediately apply. 
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 The example illustrates a case where the demand-dependent cost is linear in the allocated demand but 

independent of the service level. Hence, the service level is solely determined by the demand-independent 

cost. Since costs correspond to capacity investment levels, this means that the total capacity invested by a 

supplier is always equal to the amount of demand allocated (the minimum capacity needed to guarantee 

finite fulfillment time) plus a fixed amount that depends only on service level. Comparing the resulting 

capacity utilizations, we can see that under SA, supplier i has an average utilization  

( , ) ( , ) /( ( , ) ln[1/(1 )] / ) /( ln[1/(1 )]/ ( , ) )SA SA SA SA
i i i i i i i i i i i i i is s s s s s s s s sρ α λ α λ τ λ λ α τ− − − −= + − = + −  

while under SS  

( , ) /( ln[1/(1 )] / ).SS
i i i is s sρ λ λ τ− = + −  

It is not difficult to verify that ( , ) ( , ),SS SA
i i i i i is s s sρ ρ− −≥  This implies that under SS the supplier is able to 

maintain a higher utilization (i.e., invest in less capacity relative to the allocated demand) than SA while 

providing the same service level to the buyer. This is consistent with results about the benefit of pooling 

in queueing systems where it is known that less capacity is needed to meet a target service level in a 

system with a single server and a single queue than in a system with multiple servers and independent 

queues, see for example (Benjaafar et al. 2005).  

 As described in section 4, the buyer could reformulate the competition in terms of the demand-

independent costs or, equivalently, the extra capacity beyond the minimum required. The results of 

section 4 could then be used to show that if the buyer chooses a proportional allocation function 

1
/ ,

NC
i i ii

e eγ γα
=

= ∑  where ei = v(si), he would be able to maximize his expected service quality by choosing 

γ = 2 and N = 2 under SA and by letting γ → ∞  under SS. The corresponding maximum feasible service 

levels would be given by / 21SA r ks e λ τ−= −  and /1 .SS r ks e λ τ−= −    

 

6.2  Competition with Make-to-Stock Suppliers 

Consider a buyer who seeks to outsource the manufacturing of a physical good among a set of N potential 

suppliers. The problem is similar to the one described in the previous section, except that now suppliers 

are able to produce goods ahead of demand in a make-to-stock fashion. By holding finished goods 

inventory, each supplier is able to improve the quality of service (in terms of order fulfillment delay) she 

offers the buyer.  

 As in the previous example, we assume that the buyer faces demand that takes place continuously over 

time. We assume again that this demand forms a renewal process with rate λ and is allocated to suppliers 

according to either the SA or SS competition scheme.  Each supplier has a finite production rate µi. Each 
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supplier may hold a buffer of finished goods inventory. If so, we assume that this buffer is managed 

according to a base-stock policy with base-stock level bi. This means that a replenishment order is placed 

with the production system each time inventory drops below the base-stock level. This also means that 

each demand arrival triggers a replenishment order.  

We assume that a supplier scales her capacity proportionally to the demand she receives so that she 

always maintains a fixed target utilization level ρ = λi/µi. That is, supplier i sets her capacity to µi = αiλ/ρi 

This assumption, in addition to being plausible in many settings, allows us to focus on only one form of 

effort, inventory level. Various measures of service quality could be used. For illustration, we consider fill 

rate, the probability of fulfilling an order from on-hand inventory, which is a commonly used measure of 

service level in inventory management.  

 There are three types of cost incurred by a supplier: a unit variable production cost c, an amortized 

capacity cost k per unit of capacity per unit time, and a holding cost h per unit of finished goods inventory 

held per unit time. Expected supplier profit can be written as  

( , ) ( , ) [ / ] [ ( )],SA SA
i i i i i i i is s s s p c k hE I sπ α λ ρ− −= − − −                                      (14) 

and 

( , ) ( , ){ ( / ) [ ( )]}.SS SS
i i i i i i i i is s s s p c k h E I sπ α λ ρ− −= − − −                                  (15) 

where E[I i(si)] denotes expected inventory level for supplier i given a choice of service level si. If we 

assume the demand occurs according to a Poisson process and production times are i.i.d. and 

exponentially distributed, then given a base-stock level bi, the fill rate of supplier i is given by (see for 

example Buzacott and Shanthikumar 1993) 

Pr( 0) 1 .ib
iI ρ> = −                                                               (16) 

If supplier i commits to service level (fill rate) ,is  supplier i commits to choosing base-stock level 

( ) ln(1 ) / ln( ).i i ib s s ρ= −  If we treat base-stock levels as continuous, a common assumption in inventory 

theory (see (Zipkin 2000), (Benjaafar et al. 2004), and (Buzacott and Shanthikumar 1993)), then expected 

inventory can be obtained as (Buzacott and Shanthikumar 1993) 

( )[ ( )] ( ) (1 ),
1

i ib s
i i i iE I s b s

ρ ρ
ρ

= − −
−

 

or equivalently 
ln(1 )

[ ( )] ,
ln( ) 1

i
i i i

s
E I s s

ρ
ρ ρ
−= −

−
 

which is increasing convex in si. Expected supplier profits can be rewritten as: 

ln(1 )
( , ) ( , ) [ ] ,

ln( ) 1
SA SA i
i i i i i i i i

sk
s s s s p c h s

ρπ α λ
ρ ρ ρ− −

 −= − − − − − 
  and 
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ln(1 )
( , ) ( , ){ ( ) }.

ln( ) 1
SS SS i
i i i i i i i i

sk
s s s s p c h s

ρπ α λ
ρ ρ ρ− −

 −= − − − − − 
 

Letting u(si) = k/ρI and ( )( ) ln(1 ) / ln( ) /(1 )i i iv s h s sρ ρ ρ= − − −  and noting that v(si) is increasing convex 

in si, we can see that the profit functions have the same form as in the previous example of section 6.1. 

Hence, similar analysis and insights apply. In particular, since there is a one-to-one correspondence 

between service levels and the fixed inventory costs ( ),iv s  the buyer could reformulate the competition in 

terms of these cost expenditures. If the buyer then chooses a proportional allocation function 

1
/ ,

NC
i i ii

e eγ γα == ∑  where ei = v(si), he would be able to maximize her expected service quality by setting γ 

= 2 and N = 2 under SA and by letting γ → ∞  under SS. The corresponding maximum feasible service 

levels would be given by the unique solution to ( )ln(1 ) / ln( ) /(1 ) / 2i ih s s r kρ ρ ρ λ− − − =  under SA and 

by the unique solution to ( )ln(1 ) / ln( ) /(1 ) /i ih s s r kρ ρ ρ λ− − − =  under SS.   

 

6.3  Competition with Newsvendor Suppliers 

Now consider a setting with a single period. The demand of the buyer during this period is stochastic and 

described by a random variable D with distribution FD. The buyer wishes to outsource the fulfillment of 

this demand to one or more outside suppliers from a set of N potential suppliers. The selection of 

suppliers and allocation of demand among suppliers takes place prior to demand realization. Prior to 

demand realization suppliers also choose capacity levels (e.g., the quantity of the product to produce or 

purchase). Once demand is realized, these capacity levels determine how much of the demand is satisfied 

using existing capacity. The buyer is interested in inducing the suppliers to invest in as much capacity as 

possible so as to maximize the service level he receives from these suppliers, as measured by the 

probability that all demand allocated to a supplier is fulfilled immediately from available capacity.   

Prior to demand realization, the buyer shares information about the demand with the suppliers, 

specified in the form of the distribution FD. The buyer also announces the allocation function. The 

suppliers respond by specifying the service levels they each commit to offer. In turn, the buyer responds 

with a specification of the fraction of the demand that will be allocated to each supplier after demand is 

realized, consistent with the announced allocation function. Once the suppliers know the fraction of 

demand they will be allocated, they each proceed with acquiring the capacity necessary to provide the 

promised service level. When demand is realized, the actual allocations are carried out. Depending on the 

realized demand, a supplier may not be able to fulfill all of her allocated demand. This excess demand is 

backlogged and fulfilled once the supplier is able to acquire the additional capacity (e.g., produce 
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additional units). Depending on the realized demand, a supplier may also be left with excess capacity 

whose salvage price we assume is zero. Although all the demand that is allocated to a supplier is 

eventually satisfied, the buyer is interested in minimizing the delays that result from backlogging. 

Therefore, the buyer is interested in inducing the suppliers to invest in as much initial capacity as 

possible. In contrast, suppliers are interested in minimizing their risk and would prefer to invest as little 

initial capacity as possible. 

By committing to a service level si, supplier i commits to investing in capacity qi such that 

Pr( ( , ) )SA
i i i i is s D q sα − ≤ =  under SA and Pr( )i iD q s≤ =  under SS (in fact, qi could be substituted for 

service level in this case since there is a one to one correspondence between qi and si).  Let c denote the 

cost to a supplier of one unit of capacity and p the price paid by the supplier for each unit of allocated 

demand. Also let ( )isθ  be the unique solution to ( ) .D iF x s=  Expected supplier profit can then be written 

as 
 

( , ) [ ( , ) max( ( , ) ( ), ( , ) )]

                 ( , ) [ max( ( ), )],

SA SA SA SA
i i i i i i i i i i i i i

SA
i i i i

s s E p s s D c s s s s s D

s s E pD c s D

π α α θ α
α θ

− − − −

−

= −

= −
                    (17) 

and 

( , ) ( , ) [ max( ( ), )].SS SS
i i i i i is s s s E pD c s Dπ α θ− −= −                                          (18) 

Expressions 17 and 18 can be rewritten as 

( , ) ( , )[ ( ) ( )],C C
i i i i i i is s s s rE D u sπ α− −= −                                                 (19) 

where C= SA, SS, r = p – c, ( ) 0,iv s =  ( ) ([ ( ) ] )i iu s cE s Dθ += −  and u(si) is increasing in si.  

 The above illustrates an example where there is only a demand-dependent service cost that increases 

linearly in the allocated demand. We know from theorem 2 that SA and SS lead to identical service levels 

in this case. Since there is a one-to-one correspondence between u(si) and the service level si, here too it is 

possible for the buyer to reformulate the competition in terms of u(si). The buyer would then realize the 

maximum feasible service level under either SA or SS by choosing a proportional allocation function 

1
/

NC
i i ii

e eγ γα == ∑  where ei ≡ u(si) and letting γ → ∞ . The maximum service level would be given by the 

unique solution of ([ ( ) ] ) ( ) /C
iE s D rE D cθ +− =  for C = SA, SS. In addition to inducing the maximum 

feasible service levels, the advantage of this reformulation is that a unique equilibrium is always 

guaranteed regardless of the functional properties of u (e.g., concave, convex, or neither), as long as u is 

increasing in si.  

It may appear surprising that there is no pooling benefit associated here with SS the way there was in 

the previous two examples. This is because the amounts of demand allocated to the suppliers under SA 
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are now perfectly correlated due to the proportional allocation, with all the suppliers either allocated 

amounts in excess of their capacity or allocated amounts less than their capacity. Therefore, consistent 

with known results from inventory theory (see for example (Eppen 1979)), there is no benefit to pooling 

under these conditions.  This was not the case in the examples of sections 6.1 and 6.2 where the demand 

streams seen by the different suppliers under SA consist of independent Poisson processes.  

Finally we note that one might have expected the buyer to apply a backorder penalty to suppliers 

whenever shortages occur. However, such penalties are unnecessary here. Competition alone is sufficient 

to guarantee that suppliers provide good service and, with the appropriate allocation function, the 

maximum feasible service level.  

 

7 Conclusion 

In this paper we have studied the value of competition as a mechanism for the buyer to elicit service 

quality from a set of suppliers. We examined two approaches the buyer could use to orchestrate this 

competition. The first is a supplier-allocation (SA) approach in which a portion of demand is allocated to 

each supplier based on the supplier’s promised service level.  The second is a supplier-selection (SS) 

approach where a single supplier is selected with the probability of being selected depending on the 

supplier’s promised service level. The analysis reveals that (a) a buyer could indeed orchestrate a 

competition among potential suppliers to promote service quality, (b) under identical allocation functions, 

the existence of a demand-independent service cost gives a distinct advantage to SS type competitions, in 

terms of higher service quality for the buyer and higher expected profit for the supplier, (c) the relative 

advantage of SS versus SA depends on the magnitude of demand-independent versus demand-dependent 

service costs, (d) in the presence of a demand-independent service cost, a buyer should limit the number 

of competing suppliers under SA competition but impose no such limits under SS competition, and (e) a 

buyer can induce suppliers to provide higher service levels by selecting an appropriate allocation function 

and number of suppliers.  

Our results suggest that, given similar allocation functions, SS competition is preferable to SA from a 

quality of service perspective when there is a demand-independent cost incurred after demand is 

allocated. Under this condition, competition that leads to single sourcing is preferable to competition that 

leads to multi-sourcing, and if multi-sourcing is implemented then dual sourcing is optimal. However, 

these results do not take into account additional factors that may favor one form of sourcing versus the 

other. For example, in environments where there are few buyers (e.g., defense industries), a supplier that 
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does not receive an allocation could go out of business. In that case, the buyer needs to support multiple 

suppliers to ensure continued competition in the future. A decision on the part of the buyer to single, dual 

or multi-source should trade off service quality benefits with these other tangible and less tangible 

benefits. In fact, our results are most useful for separately documenting the impact of different parameters 

on the performance of each type of competition. Finally, our results show that the differences between SA 

and SS depend on the timing of when the demand-independent costs are incurred. In particular, if the 

independent costs are incurred prior to the demand allocation under SA and prior to supplier selection 

under SS, SA and SS are equivalent in terms of the expected service level they yield to the buyer.  

Our results comparing SA and SS can be recast as a comparison between two forms of SS 

competition, one with demand-independent costs incurred prior to demand allocation and one with 

demand-independent costs incurred post demand allocation. These results could be extended to examine 

settings where demand-independent costs are incurred in two stages: one portion occurring pre-allocation 

and the other post allocation. In practice, pre-allocation costs may be desirable since they could reduce the 

risk of a supplier reneging on the promised service levels. However, this risk-mitigation benefit needs to 

be balanced against the service level reduction it induces.    

There are several possible avenues for future research. Our analysis currently relies on the assumption 

of identical service cost functions among suppliers.  Dropping this assumption would allow us to consider 

situations where some suppliers are more cost efficient than others.  The degree of cost asymmetry could 

affect the behavior and performance of our two types of competition, as well as the type of allocation 

functions that maximize service quality. Allocation functions that intensify competition could lead under 

SA to a small number of suppliers capturing most of the demand. With asymmetry, it is also not clear if 

there would always be allocation functions that lead to zero supplier profits. In highly asymmetric 

settings, the most cost-effective supplier could capture most of the demand while expending only a 

fraction of her revenue on service cost.  

We have also assumed that the set of participating suppliers is exogenously determined. However, 

one could consider the joint decision of choosing M suppliers out of the pool of N and then allocating 

demand among these M winners. SA and SS are actually special cases of this more general problem, with 

SA implying M = N and SS implying M = 1. Under this generalized scheme, the buyer decides on both a 

selection function to determine the M winners and an allocation function to determine how demand is 

divided. This generalized form of the competition could capture benefits of both SA and SS. For example, 

by choosing a large value for N the buyer (with appropriate choice of selection and allocation functions) 
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may be able to intensify the competition and extract high service levels while still maintaining multiple 

suppliers, which might be desirable to management for reasons other than service quality. However, we 

suspect that the effect of M, the number of suppliers that are eventually selected, would remain the same. 

In particular, smaller M leads to higher service quality with the highest service quality realized when M = 

1.  

In certain settings, the buyer may not be interested in maximizing the average service quality received 

from his suppliers. Instead, the buyer may be interested in measures of service that depend in different 

ways on the effort profile of the various suppliers. For example, the buyer could be interested in 

cumulative expenditures by the suppliers (e.g., total capacity investments in the supply chain). 

Alternatively, the buyer could be interested in reducing the variance of service levels across different 

suppliers (e.g., minimizing maximum delay over all suppliers). We expect different service measures to 

favor different types of competition. For example, we know that SA induces a lower average service level 

but a higher total cost expenditures on service. Therefore when buyers care about cumulative 

expenditures, SA becomes superior and multi-sourcing more desirable.  

Finally, our analysis could be extended to settings where the buyer may choose to outsource only a 

fraction of her demand under SA or reserve the right not to select any suppliers under SS. This could be 

implemented by the buyer by choosing for example an allocation function of the form 

1
( , ) ( )

NC
i i i i ii

s s s sα κ− == +∑  where κ > 0 (see Elahi (2006) for further discussion). Under SA, the 

fraction 
1

( )
N

ii
sκ κ

=
+∑  corresponds to the fraction of demand that is not allocated to any supplier, while 

under SA the same fraction corresponds to the probability that no supplier is selected. The parameter κ 

could correspond to a known service level offered by an incumbent (current) supplier or to the service 

level realized if the buyer decides to produce in-house. We expect the threat of partial outsourcing to 

affect the outcome of the competition. In cases where the buyer can choose the parameter κ, we also 

suspect there may be values of this parameter that maximize the service levels received from the 

suppliers.  
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Appendix  

Proof of theorem 1 

We first note that the decision space for each supplier i=1, …, N is given by [0, ]us , where us  is the 

unique solution of ( ,0) 0ir f sλ − =  for the case of SA competition and ( , ) 0ir f sλ λ− =  for the case of 

SS competition.  The service level us  is finite since f  is increasing convex.  

 

SA competition 

It can be easily shown that the profit function of supplier i is concave with respect to si, i=1,…,N. 

Therefore, a Nash equilibrium can be obtained as the solution to the following system of N first order 

optimality condition equations:  

( )( , ) ( , ) ( ) ( )
( ) 0

SA SA
SAi i i i i i i i

i i
i i i i

s s s s u s v s
r u s

s s s s

π α λ α λ− −  ∂ ∂ ∂ ∂= − − + = ∂ ∂ ∂ ∂ 
  for i=1,.., N,          (A1) 

or equivalently 

( )
( )1

2
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( ) ( ) ( )
( ) ( ) ( ) ( ) 0

( )( )

N
i ii i

i i i iNN
iiii

g s g s g s
g s r u s u s v s

g sg s
λ λ=

==

 −
 ′ ′ ′− − + =
 
 

∑
∑∑

 for i=1,.., N.          (A2) 

Let sSA > 0 be the unique solution to the following equation: 

( )2

1 1
( ) ( ) ( ) ( ) 0.

( )

N
g s r u s u s v s

NN g s
λ λ−  ′ ′ ′− − + =  

                                       (A3) 

Also, let ( ) 2( ) ( 1) ( ) ( ) / ( )SAA s N g s r u s N g sλ′= − −  and ( ) ( ) / ( )SAB s u s N v sλ ′ ′= + . Therefore, A3 can be 

written as ( ) ( ) 0SA SAA s B s− = . This equation has a unique strictly positive solution since  

(a) 0lim ( ) ,SA
s A s→ = +∞  

(b) 0( ) 0SAA s = , where s0 is the solution to 0( );r u s= furthermore, ( ) 0SAA s =  does not admit any other 

solution, 

(c) the positive part of ( )SAA s  is decreasing in s, 

(d) (0) 0,SAB ≥  

(e) ( )SAB s  is non-decreasing in s, and 

(f) ( )SAB s >0 for s>0. 

It is easy to check that si= sSA, i=1,…, N is a solution to the system of equations A2. Hence, to complete 

the proof of the theorem, it only remains to show that there cannot be another solution to A2, which 

implies that si= sSA, for i=1, …, N, is the unique Nash equilibrium. 

 The following system of N+1 equations with unknowns si and G is equivalent to the system of 

equations A2: 

( )2

( ) ( )
( ) ( ) ( ) ( ) 0i i

i i i i

G g s g s
g s r u s u s v s

GG
λ λ−  ′ ′ ′− − + = 

 
,  for i = 1,…, N and               (A4) 



 31

1
( ) 0

N
ii

g s G
=

− =∑ .                                                                (A5) 

By virtue of lemma A1 below, each equation in A4 admits at most one positive solution in the decision 

space of each supplier. Therefore, si = sSA for i = 1,…, N and G =Ng(sSA) is the only solution for the system 

of equations A4-A5.  

Lemma A1: Let ( ) ( )2( , ) ( ( )) / ( ) ( ) ( ) / ( ) ( )SA
i i i i i i i is G G g s G g s r u s g s G u s v sφ λ λ  ′ ′ ′ = − − − +    where G > 

0 is a constant, ( ) ( ) /i i ig s g s s′ = ∂ ∂ , ( ) ( ) /i i iu s u s s′ = ∂ ∂ , and ( ) ( ) /i i iv s v s s′ = ∂ ∂ . Then equation 

( , ) 0SA
i is Gφ =  admits at most one strictly positive solution in the decision space of supplier i. 

Proof: Let ,1 ,2( , ) ( , ) ( , )SA
i i i i i is G s G s Gφ φ φ= − , where 

( )2
,1( , ) ( ( )) / ( ) ( )i i i i is G G g s G g s r u sφ λ  ′= − −    and  ( ),2( , ) ( ) / ( ) ( )i i i i is G g s G u s v sφ λ ′ ′ = +  .          

We know that  

(a) since u(si) is an increasing convex function there is at least one finite solution to equation 

,1( , ) 0i is Gφ = , let si,0 be the smallest solution to this equation, 

(b) ,1(0, ) 0,i Gφ >   

(c) ,1( , )i is Gφ  is decreasing in ,0[0, ],i is s∈  and 

(d) ,2( , )i is Gφ  is non-negative and increasing in si. 

Consequently, equation ( , ) 0SA
i is Gφ =  admits a unique positive solution in ,0[0, ]is  if (0, ) 0SA

i Gφ ≥ . 

Otherwise, it admits no solution. We also notice that the term ( )( )ir u s−  in ,1iφ  is always non-negative 

for ˆ[0, ]i is s∈ , where îs  is the unique solution to ( )( ) 0ir u s− = . Therefore, ,1 0iφ =  cannot admit more 

than one solution in this interval. As a result, ( , ) 0SA
i is Gφ =  cannot have more than one solution in ̂[0, ].is  

Since for ˆi is s>  the profit of supplier i is negative we can conclude that ˆ[0, ]is  contains the decision 

space of supplier i. This completes the proof of the lemma. 

 

SS competition 

It can be easily shown that the profit function of supplier i is concave with respect to si, i=1,…,N. 

Therefore, a Nash equilibrium can be obtained as the solution to the following system of N first order 

optimality condition equations:  

( )( , ) ( , ) ( ) ( )
( ) ( ) 0

SS SS
SSi i i i i i i i

i i i
i i i i

s s s s u s v s
r u s v s

s s s s

π α λ λ α λ− −  ∂ ∂ ∂ ∂= − − − + = ∂ ∂ ∂ ∂ 
 for i=1,.., N,     (A6) 

or equivalently 

( )
( ) ( )1

2

11

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) 0

( )( )

N
i ii i

i i i i iNN
iiii

g s g s g s
g s r u s v s u s v s

g sg s
λ λ λ λ=

==

−
′ ′ ′− − − + =∑

∑∑
 for i=1,.., N.     (A7) 

Let sSS > 0 be the unique solution to the following equation: 

( ) ( )2

1 1
( ) ( ) ( ) ( ) ( ) 0.

( )

N
g s r u s v s u s v s

NN g s
λ λ λ− ′ ′ ′− − − + =                           (A8) 
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Also, let ( ) 2( ) ( 1) ( ) ( ) ( ) / ( )SSA s N g s r u s v s N g sλ λ′= − − −  and ( )( ) ( ) ( ) /SSB s u s v s Nλ ′ ′= + . Therefore, 

A9 can be written as ( ) ( ) 0.SS SSA s B s− =  This equation has a unique strictly positive solution since  

(a) 0lim ( ) ,SS
s A s→ = +∞  

(b) 0( ) 0SSA s = , where s0 is the solution to 0 0( ) ( ) 0;r u s v sλ λ− − =  furthermore, ( ) 0SSA s =  does not 

admit any other solution, 

(c) the positive part of ( )SSA s  is decreasing in s, 

(d) (0) 0,SSB ≥    

(e) ( )SSB s  is non-decreasing in s, and 

(f) ( )SSB s >0 for s>0. 

It is easy to check that si = sSS for i = 1,…, N is a solution to the system of equations A7. Hence, to 

complete the proof of the theorem, we only need to show that there cannot be another solution to A7. 

The following system of N+1 equations with unknowns si and G is equivalent to the system of 

equations A8. 

( ) ( )2

( ) ( )
( ) ( ) ( ) ( ) ( ) 0i i

i i i i i

G g s g s
g s r u s v s u s v s

GG
λ λ λ− ′ ′ ′− − − + = ,  for i=1,…, N, and     (A9) 

1
( ) 0

N
ii

g s G= − =∑ .                                                              (A10) 

By virtue of lemma A2 below, each equation in A10 admits at most one positive solution in the decision 

space of each supplier. Therefore, si = sSS, i=1,…,N and G =Ng(sSS) is the only solution for the system of 

equations A9-A10.  

Lemma A2: Let 

( ) ( )( )2( , ) ( ( )) / ( ) ( ) ( ) ( ) / ( ) ( )SS
i i i i i i i i is G G g s G g s r u s v s g s G u s v sφ λ λ λ  ′ ′ ′ = − − − − +   , 

where G > 0 is a constant, ( ) ( ) /i i ig s g s s′ = ∂ ∂ , ( ) ( ) /i i iu s u s s′ = ∂ ∂ , and ( ) ( ) /i i iv s v s s′ = ∂ ∂ . Then equation 

( , ) 0SS
i is Gφ =  admits at most one strictly positive solution in the decision space of supplier i. 

Proof: Let ,1 ,2( , ) ( , ) ( , )SS
i i i i i is G s G s Gφ φ φ= − , where 

( )2
,1( , ) ( ( )) / ( ) ( ) ( )i i i i i is G G g s G g s r u s v sφ λ λ  ′= − − −    and 

( )( ),2( , ) ( ) / ( ) ( )i i i i is G g s G u s v sφ λ ′ ′ = +  . 

We know that  

(a) since u(si) and v(si) are an increasing convex functions there is at least one finite solution to equation 

,1( , ) 0;i is Gφ =  let si,0 be the smallest solution to this equation, 

(b) ,1(0, ) 0i Gφ > , 

(c) ,1( , )i is Gφ  is decreasing in ,0[0, ]i is s∈ , and 

(d) ,2( , )i is Gφ  is non-negative and increasing in si with ,2(0, ) 0i Gφ = . 

Consequently, equation ( , ) 0SS
i is Gφ =  admits a unique positive solution in ,0[0, ].is  Note also that the 

term ( )( ) ( )i ir u s v sλ λ− −  in ,1iφ  is always non-negative in the decision space of supplier i, [0, ]u
is  where 
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u
is  is defined in the proof of theorem 1. Therefore, ,1 0iφ =  cannot admit more than one solution in this 

interval. As a result, ( , ) 0i is Gφ =  cannot have more than one solution in [0, ]u
is .  

 

Proof of Theorem 2 
Result (1) 

The result is obvious since the profit functions of SA and SS competitions have the same form. 

 

Result (2) 

First recall that the Nash equilibria for SA and SS competitions are, respectively, the solutions to the 

following equations:  

SA:                                      ( )2

1 1
( ) ( ) ( ) '( )

( )

N
g s r u s u s v s

NN g s
λ λ−  ′ ′− = + 

 
 and                                    (A11) 

SS:                                       ( )1
( ) ( ) ( ) ( ) ( ),

( )

N
g s r u s v s u s v s

Ng s
λ λ− ′ ′ ′ − − = +                                       (A12) 

which can also be rewritten as 
 

SA:                            ( ) [ ]( ) ( )
( ) ( ) ( ) ( )

( ) 1 ( )

g s N g s
r u s N v s u s v s

g s N g s
λ λ′ ′ ′− − = +

′ ′−
, and                             (A13) 

SS:                                      ( ) ( )( )
( ) ( ) ( ) ( ) .

1 ( )

N g s
r u s v s u s v s

N g s
λ λ ′ ′− − = +

′−
                                       (A14) 

In order to show that the solution to equation A13, sSA, is always less than the solution to equation A14, 

sSS, we state and prove the following set of claims.  

Claim 1: For the functions g, u, and v, ( ) ( )g s g s s′ ≥ , ( ) ( )u s u s s′ ≤ , and ( ) ( )v s v s s′ ≤ . 

To verify claim 1, let ( ) ( ) ( )g s g s g s sθ ′= − , then (0) 0gθ =  and  
 

2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 0.

( ) ( )
gd s g s g s g s g s g s g s

ds g s g s

θ ′ ′ ′′ ′′− −= − = ≥
′ ′

 

Therefore, ( ) ( ) ( ) 0g s g s g s sθ ′= − ≥ . Next, let ( ) ( ) ( ) ,u s u s u s sθ ′= −  then (0) 0uθ =  and  
 

2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 0.

( ) ( )
ud s u s u s u s u s u s u s

ds u s u s

θ ′ ′ ′′ ′′− −= − = ≤
′ ′

 

Therefore, ( ) ( ) ( ) 0u s u s u s sθ ′= − ≤ . Similarly, we can show that ( ) ( ) ( ) 0v s v s v s sθ ′= − ≤ . 

Claim 2: Let ( ) ( )1( ) ( ) ( ) / ( ) ( )s r u s N g s g s v sη λ ′ ′= − −  and ( )2( ) ( ) ( )s r u s v sη λ= − − . For any s > 0 we 

have 2 1( ) ( )s sη η> . 

Claim 2 follows by noting that, by virtue of Claim 1, we have 

( )2 1( ) ( ) ( ) / ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0.s s N g s g s v s v s Nsv s v s Nv s v sη η ′ ′ ′− = − ≥ − ≥ − >  

Claim 3: Let ( )( )3( ) /( 1) ( ) / ( ) ( ) ( )s N N g s g s u s v sη λ′ ′ ′= − + , s1 be the unique solution of 3 2( ) ( )s sη η= , 

and s2 be the unique solution of 3 1( ) ( ),s sη η=  then s2 < s1.   
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Claim 3 can be shown by arguing that, since 3( )sη  is increasing in s and 2 1( ) ( ),s sη η>  we have s2 < s1. 

Recognizing that s1 = sSS  and s2 = sSA proves the result. Figure A1 offers a graphical illustration of the this 

argument. 

 

 

Figure A1 – A graphical representation of the functions η1, η2, and η3 

 

Results (3) and (4) 

Substituting g(s)= asγ and u(s)=k1s, and v(s)=k2s in the supplier expected profit functions, we can rewrite 

equations A13 and A14 as follows: 

SA:                                                
( )1

1 2

) 1
,

1

r k s N s
k k

N N N

λ
λ

γ
−  = + −  

 

SS:                                               ( ) ( )1 2 1 2 ,
1

N s
r k s k s k k

N
λ λ

γ
− − = +

−
 

from which we obtain  

[ ]1 2 1

( 1)

( 1)
SA r N

s
N k Nk k N

λ γ
λ λ γ

−=
+ + −

 and 
( )( )1 2

( 1)
.

( 1)
SS r N

s
k k N N

λ γ
λ γ

−=
+ − +

 

It is easy to verify that .SA SSNs s>  Furthermore, we have 

1 2( , ) /SA SA SA SA
if s k s N k sλ λ= +  and 1 2( , ) .SS SS SS SSf s k s k sλ λ= +  

Hence,  

( ) ( )

[ ]( )( )

1 2 1 2

2

1 2 1

( , ) ( , )

( 1)
                                ( 1) 0.

( 1) ( 1)

SA SA SS SS SA SS
iNf s f s k Nk s k k s

N N k
r N

N k Nk k N N N

λ λ λ λ

γλ γ
λ λ γ γ

− = + − +

 −
 = − >
 + + − − + 

 

Rewriting the profit functions as 

( )1 1 2

( 1)

( 1) /( )
SA r N r

N N N N k k Nk

λ γλπ
γ λ λ

−= −
+ − +

 and ( )
( 1)

,
( 1)

SS r N r

N N N N

λ γλπ
γ

−= −
+ −

 

we can also easily see that .SA SSπ π<  

 

s2   s1 

η1 
η2 η3 

s 
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Proof of Theorem 3 

Result (1) 

The Nash equilibrium service level is the solution to the following equation: 
 

( )1
( ) ( ) ( ) ( ) ( ).

( )

N
g s r u s v s u s v s

Ng s
λ λ λ− ′ ′ ′− − = +                                    (A15) 

Since, the right hand side is independent of N and increasing in s and the left hand side is increasing in N, 

the Nash equilibrium service levelMSs  is also increasing in N.  Furthermore, since  

( ) ( )1 ( )
lim ( ) ( ) ( ) ( ) ( )

( ) ( )N

N g s
g s r u s v s r u s v s

Ng s g s
λ λ λ λ→∞

′ − ′ − − = − − 
 

, 

the Nash equilibrium service level approaches ,MSs  the unique solution to 

( )( ) ( ) ( ) / ( ) ( ) ( )g s r u s v s g s u s v sλ λ λ′ ′ ′− − = + . 

Since the solution is symmetric we have SS SSq s= . 

 

Result (2) 

When v(si)=0, the proof is similar to that of the result (1), and SA SAs q=  is the solution to the following 

equation: 

( )( ) ( ) / ( ) ( ).g s r u s g s u sλ λ λ′ ′− =  

When ui(si)=0, the Nash equilibrium service level solves the following equation: 

2

1 ( )
( ).

( )

N g s
r v s

g sN
λ′− ′=  

The right hand side is independent of N and increasing in s, while the left hand side is decreasing in N. 

Consequently, the equilibrium point sSA is decreasing in N. Finally, since 1/SA
i Nα =  and v(0) = 0, 

lim 0SA
N iπ→∞ = . For part (c), when both u(si) and v(si) are positive for si>0, the profit function is given 

by 

( , ) ( , ) ( ( )) ( ).SA SA
i i i i i i i is s s s r u s v sπ α λ− −= − −  

Since SA
iα  approaches zero as N goes to infinity, the only service level which leads to a non-negative 

profit is sSA=  0. In this case, the Nash equilibrium is the solution to 

( )2

1 ( )
( ) ( ) ( ).

( )

N g s
r u s u s v s

g s NN

λλ′− ′ ′− = +  

Noting that both sides of the above equation are decreasing in N, the right hand side is increasing in s, and 

the left hand side is decreasing in s, the solution to this equation is not necessarily increasing or 

decreasing in N. However, since the solution approaches zero as N goes to infinity it should be decreasing 

for large values of N. 

 

Result (3) 

Result (3) follows immediately from results (1) and (2). 
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Proof of Proposition 1 

We can rewrite the profit function as follows: 

1 2( , ) ( )SS i
i i i i i

s
s s r k s k s

γ

π λ λ− = − −
Σ

 where 
1

.
N

jj
s γ

=Σ =∑  

The derivative of the profit function of supplier i with respect to her service level is: 

( )1
1 2 1 22

( , )
( ) .

SS
i i i i i

i i i
i

s s s s
s r k s k s k k

s

γ γ
γπ γ λ λ λ−−∂ Σ −= − − − +

∂ ΣΣ
 

The Nash equilibrium is therefore the solution to the following set of equations. 

( )1 2 1 2( ) ( ) , for 1,..., .i i i is r k s k s k k s i Nγ γ λ λ λΣ − − − = Σ + =  

Using an approach similar to the one used in the proof of theorem 2, one can show that there is a unique 

symmetric solution to this set of equations which is the Nash equilibrium. Since the Nash equilibrium is 

symmetric it is also the solution to the following equation: 

( )1 2

( 1)
.

( ) ( 1)
SS N r

s
k k N N

γλ
λ γ

−=
+ + −

 

To see if this solution is increasing in γ, note that its derivative with respect to γ is positive: 

1 2

( 1)
0.

( 1)

SSs N r N

k k N N

λ
γ λ γ

∂ −= >
∂ + + −

 

It is easy to verify that 1 2lim /( )SSs r k kγ λ λ→∞ = + . Expected supplier profit is given by 

( )/ ( 1) ,SS r N Nπ λ γ= + −  which is decreasing in γ and approaches zero as γ → ∞ . 

 

Proof of Proposition 2 

Result (1) 

The expected supplier profit functions can be written as  

1 2( , ) ( )SA i
i i i i

s
s s r k k s

γ

π λ− = − −
Σ

 where 
1

N
jj

s γ
=Σ =∑  for i=1, …, N, 

which leads to 

1
1 22

( , )
( ) .

SA
i i i i

i
i

s s s
s r k k

s

γ
γπ γ λ−−∂ Σ −

= − −
∂ Σ

 

The Nash equilibrium could be the solution to the following set of equations: 

1 2
1 2( ) ( ) , for 1,..., .i is s r k k i Nγ γγ λ−Σ − − = Σ =                                     (A16) 

Since all N equations have the same form, there exists a symmetric solution 1 ... Ns s s= = =  that solves 

A16. To show that s is indeed a Nash equilibrium service level, we need to show that the profit function 

of supplier i has a unique maximum at si=s when all other suppliers choose s. Given that all other 

suppliers choose service level s, the expected profit function of supplier i is given by: 

1 2( , ) ( ) .
( 1)

SA i
i i i i

i

s
s s r k k s

N s s

γ

γ γπ λ− = − −
− +

 

This leads to 
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( )
1

1 22

( , ) ( 1)
( ) 0,

( 1)

SA
i i i

i
i

i

s s N s
s r k k

s N s s

γ
γ

γ γ

π γ λ−−∂ −= − − =
∂ − +

 

or equivalently 

( )
1

1 22

( 1)
( ) .

( 1)
i

i

N s
s r k k

N s s

γ
γ

γ γ
γ λ−− − =

− +
                                         (A17) 

It is easy to see that A17 could admit more than one solution. To show that the expected supplier profit 

function cannot have more than one maximum, we check the behavior of the second derivative of the 

profit function with respect to si: 

( )
22

12 3

( 1)( 1) ( 1)( , )
( 1) ( ).

( 1)

SA
i ii i i

i i

s N s ss s
N s r k

s N s s

γ γ γ
γ

γ γ

γ γπ γλ
−

−
 − − − +∂  = − −

∂ − +
                  (A18) 

If a function with continuous first and second derivative has more than one local maximum, then the sign 

of the second derivative of the function must change more than once. Since the second derivative of the 

profit function of supplier i is positive for ( 1)( 1) /( 1)is N sγ γγ γ< − − +  and remains negative for 

( 1)( 1) /( 1),is N sγ γγ γ> − − +  this profit function cannot have more than one maximum. We know when 

si=s the first order optimality condition is satisfied. A condition for the profit function to admit its 

maximum at si = s is for the second derivative to be negative at si = s. This condition is satisfied if 

γ < N/(N−2). Hence, the solution to equation A16 is a Nash equilibrium if γ < N/(N−2) and the resulting 

Nash equilibrium service levels and profit function are given by 

1
2

2

( 1) ( )SA N r k
s

N k

γλ− −=          and       
( ) 1

2

( 1) ( )SA N N r k

N

γ λ
π

− − −
= . 

To ensure a non-negative profit we need the condition γ < γmax=N/(N−1), which is more restrictive than 

γ < N/(N−2).  

 It is straightforward to verify that the equilibrium service level is increasing in γ  and the equilibrium 

expected profit is decreasing in γ. For γ = γmax we have 1 2( ) /SAs r k Nkλ= −  and 0.SAπ =  Furthermore, 

when of N=2, equation A16 simplifies to 
2

2 1 2
1

1 2

( )
, for 1,2.

( )i

k s s
s i

r s s

γ γ

γγλ −
+= =  

It is easy to check that the solution to the above system of equations is unique. 

 

Result (2) 
The proof is similar to that of Proposition A1 with k2=0.    
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