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Abstract

We investigate how a competition can be designedaximize expected profit for a buyer who wishes to
allocate demand among a diverse set of supplieenwis profit is dependent on the supplier’s servic
levels. The candidate suppliers are heterogenevoti®ir capacities and cost structures, and confpete
shares of the buyer's demand based on their prdmssevice levels. To characterize the optimal
competition, we first identify a family of allocati functions that arservice maximizingmeaning they
can intensify the competition to a point where esgpplier provides its maximum feasible serviceslev
and the outcome of the competition is a predefisetdof demand shares. We show that using a service
maximizing allocation function is a necessary ctinodi for solving the buyer’'s problem. We then
characterize the optimal demand allocation set athen they are endogenous, the optimal procurement
prices. When both demand allocation and procuremeéces can be chosen by the buyer, we find that th
competition also maximizes supply chain profit. rdugh a set of numerical examples, we show that the
benefit of using this optimal competition desigmgluding its specified demand allocation functiom a
suggested procurement prices, can be significant.
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1. Introduction

While some outsourcing and procurement decisioms stitl driven primarily by price, the service
capability of suppliers is becoming an increasirigiportant factor for many manufacturing and sexvic
firms. A recent industry survey reveals that th@strimportant factor in outsourcing decisions iscgiss
efficiency and quality, with cost reduction rankbid (Mazars Annual Outsourcing Survey 2010). learg
retailers, such as Wal-Mart, and manufacturerdy) siscDell, place a premium on the service leveds th
suppliers provide and use sophisticated suppligngasystems for tracking and rewarding supplier
performance. Service quality features prominermtlyhe supplier rating systems used by other firsis a
well. For example, Pratt & Whitney, a major mantfiger of aircraft engines, industrial gas turbiaes
space propulsion systems, considers only qualttpgd60%) and delivery rating (40%) measures $n it
supplier performance ind&xSaturn Electronics, a global supplier to origirguipment manufacturers
(OEMSs), also uses a rating system that weighs raa-tilelivery (20%) and quality compliance (30%)
more significantly than cost (15%)

This increased focus on service level is drivenpamt, by the availability in many industries of
multiple qualified suppliers. The relatively weakrfaining position of these suppliers, particulavhen
the buying firm is large, allows the buying firm set the price, with service level becoming a prima
factor in differentiating between suppliers. Comcabout service level is also driven by the opengi
policies adopted by many firms, which emphasizedemand production and on-time delivery. Such
policies make firms particularly vulnerable to paumpplier performance because of the limited safety
stocks and safety lead-times these firms maintaith quality of service from the suppliers directly
affecting their revenue. High supplier service leige of course, critical to firms that have chogen
compete on the basis of customer service, or #raegtract a price premium for higher service.dms
cases, the suppliers deal directly with the buying's customers, such as in call centers. In theesses,
the service level the suppliers provide directlgetfs the service levels end customers receive.

Service level is typically measured in terms of @kailability of the demanded good or service at th
time it is requested. For physical goods, typit@asures of service quality include fill rate, etpd
order delay, the probability that order delay does exceed a quoted lead-time, and the percentage o

orders fulfilled within specification. For servigeservice level measures include expected customer

! http://www.rocketdynetech.com/supplierinfo/docurséspi.pdf
2 http://www.saturnee.com/uploads/supplier_ratingera.pdf

2



waiting time, the probability that the customeraiges service within the specified time window, dinel
probability that a customer does not renege bdfeneg served.

While the importance of having suppliers providghhservice levels is clear, it is less clear how
firms should go about inducing their suppliers tweist in service quality, particularly when supgdie
vary in their capacity levels and cost structutesettings where the buyer also has the poweettthe
procurement price, it is not clear how these priglesuld be set to entice high service levels withou
compromising profit. Similarly, when the buyer hhe flexibility to allocate demand among more than
one supplier, it is not clear how such allocatiboidd be carried out to induce maximum serviceityual
and how these allocations are affected by the peocent prices. One approach is to simply selexgeth
suppliers that promise to offer the highest senlel and accept the lowest price. However, when
suppliers vary in their capabilities, and theseatéjties are common knowledge among all partiesret
may not be enough incentive for the more capahppl@rs to maintain their maximum feasible service
levels. Another alternative is to negotiate areimive contract with a subset of the suppliers whéar
example, suppliers are financially rewarded (peedlj for providing service levels higher (lowerarha
negotiated service level. However, the outcomeumhsnegotiation can be unpredictable or prone to
renegotiations.

In this paper, we explore a third alternative wheefem (the buyer) stages a competition among a se
of potential suppliers and allocates a fractiordefnand to two or more suppliers based on the servic
level each promises to provide. The fraction of dedhallocated to each supplier is calculated uaing
scoring function, which we call th&location function The buyer chooses this allocation function and
announces it to the suppliers. The suppliers redpynquoting a service level, to which they promtise
commit should they be allocated any fraction of lliger's demand. In determining a service level to
guote, each supplier maximizes his own profit, Whic a function of the fraction of demand he reesiv
and the cost of service level he provides. The bsiy@venue is affected by the service levels her
suppliers provide, since it affects the qualitysefvice the buyer provides for her customers rrefThe
buyer’s objective is to design the allocation fumet(and set the procurement prices if she hapdieer
to do so0) so as to maximize her expected profit.

To design an optimal competition mechanism thatiltesn maximum profit for the buyer, we
provide a general framework for characterizing mpgti allocation functions. We introduce the notidn o

service-maximizingallocation and show that this property providemecessary condition for the



optimality of a solution to buyer’s problem. A giee-maximizing allocation function is one that irgs
suppliers to provide the maximum feasible serveeel for the amount of demand allocated. We then
identify a family of proportional allocation funotis that are service-maximizing. We characteriee th
optimal competition design under conditions ofékpgenous and (2) endogenous procurement prices. In
the second case, the buyer chooses both the &lodahction and procurement prices. In settingergh

it is desirable to fix the proportion of demand leaapplier receives, we also show that it is pdsdib
design the allocation function to induce theserddgproportions as an outcome of the competition.

The supplier competition described here is simiathe SA competitiomiscussed in Benjaafar et al.
(2007). However, that paper is not concerned wtegnining optimal allocation functions. Insteduk t
focus is on studying the behavior of suppliers @h®engaged in a supplier competition orchestiayesl
single buyer under a specific service-proporticaildcation, exogenously determined. The analysis i
limited to identical suppliers with identical costed revenue structures and with no constraints on
capacity. Also in their case, procurement priceseaogenously determined and the buyer measures the
performance of the procurement mechanism throufgfemand-weighted) average service level. In this
paper, we evaluate the performance of designed anéxhs through a more direct measure: buyer’s
profit. We also consider a more general supplycstine, with suppliers who are heterogeneous irr thei
costs and capacity levels.

In addition to Benjaafar et al. (2007), the othapgr most related to our competition setting is
Cachon and Zhang (2007). They consider a spedfitext where suppliers are modeled as single server
gueues and compete in terms of investment in semdtes. Higher service rates translate into higher
service levels in the form of lower queueing delBysthe buyer. Similar to Benjaafar et al. (20QRgy
treat the case of homogeneous suppliers with ickntevenue and cost structures. They compare
different demand allocations and show thdinaar allocation function leads suppliers to invest hie t
maximum feasible service rates for the fractionrdemand they are allocated. However, because they
consider only symmetric allocations (suppliers {hravide the same service rates are allocatedaime s
amount of demand), the proposed allocation doesiewssarily maximize overall quality-of-services A
with Benjaafar et al. they do not consider capdaitjts, and procurement price selection.

A general review of the literature on service-basepplier selection and procurement is included in
Benjaafar et al. (2007). For the sake of brevitg, will not reproduce it here. For more recent pasee

Jin and Ryan (2009), Xiaoyuan Lu et al (2009), Zhdu and Ren (2010). However, we should note that



much of the existing literature has focused on s@®involving competition among identical suppliers
or competition involving specific allocation funatis, typically proportional allocation functionsewr
results exist for settings with heterogeneous serpbr suppliers with capacity constraints. We raoe
aware of any results on the joint optimization efréhnd allocation and procurement prices.

There is also related literature in economics am-seeking contests. In a rent-seeking contestethe
are N contestants who compete for a prize. The proltghliat a contestant wins the prize (the rent)
increases with his expenditures and decreaseseirexpenditures of other contestants. A review of
important results from this literature can be foumdueller (2003, Ch. 15), Congleton et al. (2QG8)d
Konrad (2009). A focus of this literature is on downting the so-called inefficiency of rent-seeking
contests. Rent-seeking is viewed as wasteful simed¢otal expenditures by the contestants can eheal
value of the prize itself, a phenomenon calledt dissipation However, in systems with non-identical
contestants, it has been shown that there mayeabimplete rent dissipation; see for example Hilman
and Reily (1989), Paul and Wilhite (1990), Nti (899and Dixit (1987). That is, heterogeneity in the
contestants’ characteristics can diminish the sitgrof the competition. In our research, we shbat by
carefully designing an allocation function (the ieglent of a selection probability in the rent segk
context), one may induce the contestants to eRertrtaximum feasible effort even when they have non-
identical characteristics.

The rest of the paper is organized as follows. i@ecR describes our problem setting and
formulation. Section 3 focuses on the optimal fafrcompetition when the procurement prices are set
exogenously. Section 4 discusses the structureeobptimal solution. Section 5 extends these resoit
cases where the buyer also has the power to sgtrdicerement prices. Section 6 presents a series of
numerical examples, highlighting the benefits & thptimal competition mechanism. Section 7 offers

concluding remarks.

2. Model Formulation and Structure of the Buyer’'s Roblem

Our supply chain consists of a buyer éhgotential suppliers who differ in their productiand service
capabilities. The buyer wishes to allocate healtdemand/, across these suppliers in a manner that
maximizes profit We assume the buyer’s revenue depends directth@service level offered by the

suppliers. The buyer sets a demand allocation seh@®., a scoring rule) through which suppliers

3 Demand can be interpreted as either a single tyamvering one sales period or a demand-rate taiaied over multiple
periods.
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compete for higher demand shares based on thesdeviel they choose to offer. We first assume the
procurement pricep, is constant across suppliers, and so not a factthre buyer’s allocation decision.
We will relax this assumption in section 5.

The competition proceeds as follows. First, thedougnnounces a criterion for allocating demand
across suppliers with the property that the fractidb demand a supplier receives is increasing & th
service level he offers. More specifically, the bugarries out the allocation through a demandation
function vectora = (a,, ..., ay ) wherea; is a functiona, (s, s;) specifying the fraction of demand
allocated to supplieri given the supplier's announced service legeland the service levels
s;=(s.-»$84, 81, ) Offered by his competitors with € g (3,5,) < 1. We assume the function
a (s,s;) is non-decreasing i® and equal to zero when=0, fori =1, ...,N.

In determining the optimal demand allocation, tluydsr must evaluate and compare the suppliers’
capabilitied. Each supplieis uniquely characterized by its capacity level, unit operating costg , and
service-related costsf, (s ,a, (s, s;)),i=1,...,N. We assume that the supplier set is large entaugh
cover demand, i.e.Zcq > /. We also assume that supplier service related cost is a function of the
proportion of demand allocated to the supplier &l &s the supplier’'s service level. We focus on a
particular class of plausible service cost functiofthe form

fi(s.a(s.8))= Kag (s s)+ 3 (1)
where k, is a positive constant and(s) is a continuous, increasing and convex functiors,irwith
v (0)=0, fori=1,...,N. We assume that(s) is twice differentiable. This function generalizeevice
cost functions used in prior research (e.g., Béajeat al. 2007, Cachon and Zhang 2007) by accognti
for supplier heterogeneity. The first teriAa, (s, s;), is thedemand-dependerservice cost, which
varies linearly with the demand allocated to thppdier. The second termy(s), captures supplier-
specific costs that increase only with the senlmeel itself. Thisdemand-independerdost is not

affected by the amount of demand allocateixamples of service related costs that fit theslel include

* The setting we consider is one where there isififiirmation regarding the cost structure of thppdiers. This would be the
case when the primary cost drivers of the suppéieesn the public domain (e.g., settings wheréscase determined by regional
factors such as labor costs; taxes and regulationst of materials and energy; type of productieohhology used; and
transportation costs). The assumption of full infation builds on assumptions made previously irliteeture and serves as an
upper bound on performance for the buyer and thpplguchain. It also provides insight into the desigf procurement
mechanisms if the buyer is to leverage knowledgeost and capacity differences among the suppfidrta assess the benefit
derived from this knowledge.

® A more general form of(s,a (s, § ))can be defined in which the demand-dependent s@dso a function of the service level.
That is, f.(s.,a(s,5))=q(;s s); 3+, ¢ B in which u(s) is a continuous, non-decreasing, and convex fonabf 5. Our
main results also hold for this more general fofrthe cost function.
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investments in capacity, inventory, transportatiand/or continuous improvement efforts. We wiill
elaborate on one specific example in section @aasof our numerical study.

Each supplieii responds to the announced allocation functegnby choosing a service level that
maximizes his expected profitz (s, s,), subject to the behavior of other suppliers. Inasiog their
service levels, suppliers trade off the potent&kenue benefit of a higher service level agairestcibst of
providing this service.

The supplier’s profit under this competition sejtcan now be stated as

m(5,8)=a, (8, §)A( P = R+ \ 9. (2)
Note that profit depends on a supplier's own serlvels as well as the service level profiée of his
competitors. In keeping with previous studies, wsume service levels are enforceable, all suppdiers
risk neutral, and costs are incurred only if th@pdier receives a positive portion of demand (i.e.,
Aa,(s,s;)>0). We also assume that the reservation profite@Buppliers are zero.

The buyer’s profit is determined by the revenuesngzd from her customers minus the procurement
prices paid to her suppliers to cover their proiduncand service costs. We assume the buyer istljire
rewarded (penalized) for high (low) service qualityough the revenue she receives from her own
customers. More specifically, we characterize bioger's reward (penalty) as the sum of increasing
concave functions of the service levels providedebgh supplierh(s), i=1:--,N, weighted by the
proportion of demand receiving that service. Thanefthe buyer’s revenue can be written as

r(s,a(9)=ped+>La(94h(s), (3)
wherep; is the buyer’s unit selling price. Because theenmie function is concave in all elements of
s=(s,...S ), it has the appealing property of decreasing nstuo service. This revenue structure
captures situations where the buyer’'s customersrebghe service level provided by the supplierdevh
the buyer either collects a premium for high sexoc is penalized for poor service. Applicationseveh
the suppliers’ service level is observable by eanst@mers include outsourcing after-sales servicals,
centers, roadside assistance, or drop shipping wieesupplier directly ships to the end custdmer

The buyer’s profit function can then be written as

rPsa(9)=r(sa(9-2 @ (3p)=r( @(B-pa. @)

We can now state the buyer’s problem under thispatition setting as

® For example, when make-to-order suppliers direstip to the buyer's customers and service levahéasured by the
probability of meeting a quoted lead time, we hdg) =—g1- §), wherea is the penalty paid for each unit delivered later
than the quoted lead time.



max  7° 6w 6))=r (o 6))-pA, (5)

(‘71(5),- Ay (S))D:F N

subject to:
s =argmax (&, x.s; A [p~- ¢= kI v(%), FL...N (6)
7(5,8)=a (s $ [ pic §- ¢ 320, FL.., D 7
a(91<w, i =1..N (8)

where sV ={(a1(x),...,aN (x))} is the set of alN-dimensional vectors of functions wit:R" [0,1] and
Zi'ilai (x) =1. Note that the optimization is carried out ovenalttors of functions in7 . The first set

of constraints (6) reflects the suppliers’ subgambgere each supplier chooses a service level to
maximize his own profit for a given set of serviesels chosen by his competitors. Each supplier's
decision in this subgame is affected not only by ¢ompetitors’ decisions, but also by the form of
allocation function set by the buyer. Constrainj @uarantees non-negative profits for suppliers.
Constraints (8) define capacity limits on the adltien function values. Since in this problem weksee
optimal forms of functions rather than optimal \edu we cannot solve the problem through regular

optimization approaches. Instead, we use an irtduguroach as outlined in the next section.

3. Optimal Service-Based Competition

To solve the buyer’'s problem, we use a two-steggs®. In the first step, we show how the buyer can
design an allocation function that induces the Bappto invest in their maximum feasible serviegdls
for a given vector of demand allocatiohs (d,, .., dv), whered denotes the fraction of demand assigned
to supplieri, 0< g <1 and ZiNzldi =1. This implies the demand allocated to supglier4 =A4g. In the
second step, we show how the buyer can choose af slietmand allocation values that maximize her

expected profit subject to the dynamics of the oetitipn.

Stepl: Finding a Service-Maximizing Allocation Function

Our goal in this step is to characterize an aliooafunction that maximizes the buyer’s profit fogiven
demand allocation vectd In other words, we seek an allocation functionclwimaximizes the buyer’s
profit while achieving a set of predefined demahdrses across suppliers at the competition equiliri
(i.e., a(s,.s,)=9, where(s', §,) is the equilibrium service level vector). Throughour analysis, we
assume the given target demand shares are feasiplging that Zﬁﬁi =landJdA<q fori=1..N.

We begin by defining a specific type of allocatfonction, which we refer to aservice-maximizing.

When3d is fixed, the buyer’s profit increases in eachpigp's service level and so the buyer’s problem

8



reduces to finding an allocation function which ugds the maximum feasible service levels. In other
words, we are looking for an allocation functiomttiintensifies the competition to a point whereheac
supplier chooses a service level that zeroes suexpected profit (i.e., leaves him with his reaéon
profit level). Letg™*(5,) denote this maximum service level associated wjthi = 1, ..., N. At this
service level, each supplier applies all the reeemained from his associated allocation (i.e.,
J,A(p-g¢ - k)) to cover his demand independent service g¢t*(q)). We are now ready to define the

service-maximizing property.

Definition 1: An allocation functiong; (s, s; ) is service-maximizing, with respectgoif it induces
a Nash equilibrium service level vectos =(s,...,§,) for which §=¢%(d) and

a(s,$)=4,i=1...N

This property is important because if an allocationction is shown to be service-maximizing, this
ensures that it maximizes the buyer’s profit wldge given. It is a sufficient condition for optifitg in
this special case.

In our search for a service maximizing allocatiamdtion, we focus on proportional allocation
functions, since they are commonly used in theditee. In particular, we consider the followinghgeal
characterization that allows for heterogeneity ssrsuppliers:

gi(s)
> Lai(s) ©

fori =1, ...,N, where g,(5) is a non-decreasing function §fwith g, (0)=0. Unlike prior literature,

a(s,s)=

which focuses almost exclusively on symmetric fiore (e.g., Benjaafar et al. 2007, Cachon and Zhang
2007, Allon and Federgruen 2005, and the referetimaein), we allow the parameters of the allocatio
function to differ by supplier. Symmetric functioase a subset of this family, with the restrictibiat
g(s)=9os) fori=1,...,N.

We know from prior research that a proportionabedtion function does not guarantee a unique
Nash equilibrium solution. For example, Benjaafarak (2007) show that a symmetric proportional
allocation function in a system with identical slipgs does not guarantee uniqueness of the Nash

equilibrium wheng(s) is not concave (see also Cachon and Zhang (200)dimilar result). It follows

" Symmetric functions imply that if two or more slipps choose the same service level, they willisecthe same proportion of
demand. This type of allocation function is knownbe service-maximizing in some special cases veu@pliersare identical
(Benjaafar et al. 2007, Cachon and Zhang 2007).d¥ew a symmetric function cannot be service-mazimgi when suppliers
are heterogeneous.
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that in our more general case of asymmetric aliogdtnctions and heterogeneous suppliers, a unique
Nash equilibrium will not be possible for all forrag g;(s), i=1, ...,N

The following theorem defines a specific form fgr(s) that guarantees both a service-maximizing
allocation and a Nash equilibrium. To simplify naga, we introduce the functiod (s) which denotes
the fraction of suppliei’'s revenue that is used to cover his demand-indigrgnservice costs, i.e.,

6(s)=v(s)/qA( p- c— K. This fraction is increasing ig , with §(§™)=1.

Theorem 1. The proportional allocation function defined (@) is service-maximizing for a givénwhen
a(s)=36(9)""¥,0< g <1,i=1, ...,,N. Furthermore, if this allocation function is usidthe buyer’s
problem for a give®, then the following properties hold.
(@) A Nash equilibrium exists, with the suppliers’ seevievels and profits given by = §"(5,1)
and 7(s)=0fori=1, ...,N.
(b) Allocation levels at this equilibrium are given by(s ) =4 for i=1..N.
(c) This Nash equilibrium is unique if providing a stly positive service levdi.e., § >0 for

i=1,...N) is a participation condition.

The specific form ofg, (5) presented in theorem 1 provides each supplier théhproper incentive
to choose a service Ievéi which results in9|(§)=1. This allows the buyer to extract all the channel
profit, leaving the suppliers to only cover thewst. The implications of theorem 1 are rather
remarkable. By simply manipulating the parametdrthe allocation function, the buyer can orchestrat
the competition so that each supplier, regardiédsisocost structure, has the incentive to spehdisl
revenue to provide the maximum feasible servicelldn addition, the allocation functio®; (§)resu|ts

in the predefined demand shajeat the Nash equilibrium.

Step2: Characterizing the Optimal Competition Mechanism

We now turn to the more general problem wh®ig no longer a given set of demand shares, boérat
decision variable for the buyer. Since, for a giwesttor §, the buyer's profit is increasing in all
s;, 1 =1,...N ,itis always optimal for the buyer to use a servigaimizing allocation function. Using a
service maximizing allocation function, the buy@mcthen induce equilibrium service levels™(J)

which zero-out the suppliers’ profit. That is,

8 Unlike previous research involving symmetric aldga functions, it is worth noticing that theoremdbes not require
convexity of the cost functions. Ensuring trgit(3) is finite, and thus a finite Nash equilibrium esisonly requires that
sup,., v, (x) IS strictly greater thag, - ¢ - k)4 . This is a reasonable assumption since otherthisesupplier's service cost
would never exceed his potential revenue and thpl&r would increase his service level unlimitedly

10



(@) =34 p-¢- £(£°9).9)/49 |=0.
Therefore, when the buyer is using a service maigiallocation function to induce the targetedafet

demand share® we can rewrite the buyer’s profit function as

7®(s™(8),8) = (ps — P)A +AY L S h( §(8)). (10)
This reduces the buyer’s problem to an optimizagimblem with a single vector of decision variabkes

defined in the following result.

Theorem 2: The buyer’s problem under the competition mechari5ai8) can be solved by using a
service maximizing allocation function along with eptimal demand allocation vectér=(d ,....4; )

where§ is a solution to the following problem
ma? €™ 6)3)= (s~ PA+AY AN $™ @), (12)
subjecttodA<q, i=1,..N, Whereﬁmx(ﬁ):(s_m’YcY_l),...,sqm(d\,)) .

While the theorem does not provide a closed forhatiem for &, it guarantees the existence of a finite

solution which can be computed numerically usirsgaadard multivariable optimization algorithm.

4. Structure of the Optimal Solution

To provide more insight into the structure of tidimal set of demand allocations,, we first introduce
an efficiency measure that can help the buyer atalthe relative desirability of each supplier.t ge
denote the supplier’s efficiency level, definedtlas maximum profit per unit demand that the supplie
can generate for the buyer when supglier given his highest feasible demand allocatidnis highest
feasible demand allocation, given ly=min(w/A,1), depends on the supplier's capacity and the total
demand available. The efficiency of supplié then
e=(p- P+ H{ 5@). (12)

Without loss of generality, for the remainder of thaper we rename the suppliers in descending ofder
their efficiencies such thag > > ... > .

Since this efficiency measure helps order the segpby their maximum possible unit contribution
to the buyer’s profit, a natural heuristic for det@ing the optimal set of target demand shadeswould
be to allocate as much demand as possible to tseeffient supplier, then allocate as much relingin

demand as possible to the next most efficient sepphnd so on until all demand is allocated. Aes th
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following result outlines, this solution approashoptimal when the buyer’s profit function is corwand

the suppliers are homogeneous in cost and/or dgpacels.

Theorem 3. If the buyer’s profit functior{10) is convex ind and the suppliers cost structures and/or
capacity levels are identical, then the optimalafelemand shares that solves probi&nsubject tq(6)-

(8)is

7] fori=1..N-1
FA={A-Y " fori=N Ci=1N (13)
0 fori >N

where N is the smallest integer such thak ¥ i“‘;lw, :

Since suppliers have limited capacities, the ogtisgédution in theorem 3 is to allocate demandNo
suppliers. More specifically, the buyer should gssfull capacity to the firstN -1 most efficient
suppliers and then assign any remaining demartettit" most efficient suppliet.

When suppliers have identical cost structures,vlny in their capacity levels, the larger suppliers
have an advantage in that they can generate megaue to cover their demand independent servide cos
i.e., vi(s)=\s), i=L...N. In this case, it is easy to show that orderingptieps by decreasing
efficiency levels is equivalent to ordering them digscending capacities. The largest suppliers beill
chosen first and given as much demand as they ¢epacity to fill. On the other hand, when suppglier
have identical capacity levelsyEa) but their cost structures vary, the efficiencgaring will be in
descending order &§"™(%), i=1...N.

To illustrate, consider the following stylized exalm using simple functions foy (s) and h(s),
i=1...N. In particular, suppose we have nine supplierciviviary in the parameters of their demand
dependent costk , and demand independent cog(s) = bs, with k [0{2,10,18} and b J{40, 70,100}
for a total of nine combinations as outlined in [Eab(a). Also, supposb($)=(/7§, ,t=10,c=0,ps =
100, and total demand is set/A£60. It is easy to verify that the buyer’s profit fition is convex with

respect td for this example, so the conditions of theorem [8lho

o For the special case when the capacity of the effistent supplier is more than the buyer’s entiemand, the optimization
problem (11) requires allocating the entire demémdhe most efficient supplier. Since our competitischeme requires
allocating demand to more than one supplier, theebgan allocate almost the entire demand to thst refficient supplier
except for a small fraction which should be allechto the second efficient supplier. This solutiam be arbitrary close to the
optimal solution.
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Tables 1(b) and 1(c) outline the results of twoesasith different capacity configurations. In chse
all suppliers have identical capacities @f= 10 units, so the efficiency measure reflectsedéfices in
costs only. Allocating demand in decreasing orofeefficiency leads to optimal demand allocation
assignments of 10 units for the first six suppliéss D, B, G, E, H) and 0 units for the rest of the
suppliers (C, F, 1). In case Il we increase theacép of suppliers F, G, H, and |, which increatesir
efficiency rating and results in a new orderingoasrsuppliers. Now the first two most efficient gligrs
(G and A) receive full allocation (30 and 10 unigsid the third supplier (H) receives partial altoma
(20 units), while no demand is allocated to the oéshe suppliers. In both cases, the efficien@asure
makes it easy to determine the optimal demandatilmt assignment when comparing across a variety of

attributes (i.e., cost structures and capacities).

(@) (b) (©)

Casel Case Il
Casel Case Il Reordered Reordered

[} 5] («5]
B 3 3 B £ L £
Zlk| bla| & |a| € 2l g| P Zlo| g| n°
A 2 40 |10 | 101 | 10 | 101 A | 10 |45 | 1,012 G |30 | 5.4 | 3,097
B [10| 40 [10| 96 | 10 | 96 D | 10 | 2.6 | 960 A |10 | 45| 1,012
C 18| 40 |10 | 87 | 10 | 87 B | 10 | 25| 958 H |20 | 2.0 | 1,946
D |2 70 {10 | 96 |10 | 96 G |10 |1.8| 934 D| 0 |0.0 0
E |10 70 |10 | 92 | 10 | 92 E |10 | 1.4 | 920 B 0 | 0.0 0
F |18 | 70 |10 | 85 | 30 | 89 H | 10 | 1.0 | 900 E 0 | 0.0 0
G 2 (100 (10| 93 | 30 | 103 C 0 | 0.0 0 F 0 | 0.0 0
H |10 (100|210 | 90 |30 | 97 F 0 | 0.0 0 | 0 | 0.0 0
| 18 100|110 ( 84 | 30| 88 | 0 | 0.0 0 CcC| 0|00 0

Total Profit = 5,684 Total Profit= 6,056

Table 1- Use of efficiency measures: two examples

While the solution approach outlined in theorens guite intuitive, it does not guarantee an optimal
solution when the suppliers are heterogeneous th their cost structure and capacities or when the
buyer’s profit function is non-convex. For exameippose we have two identical suppliers with the

same cost and revenue functions as the previousgealn particular,v(s) =70s and h(q):lof,
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P =100 and «y = w, =59.5. As mentioned earlier, it is easy to verify thae buyer’s profit function is
convex with respect to the demand allocations. rleidifa) illustrates this result. As we can seeréisealt

of theorem 3 holds and the maximum profit is atdinf either supplier receives full allocation (
A6, =w =59.5 and A5, =1 -w, =0.05, or vice versa). However, if we use a more concawenue
function such as(s)=10/s- 4/ ¢, the buyer’s profit function is no longer convexdahe allocation
scheme of theorem 3 no longer provides an optitatation assignment. Figure 1(b) illustrates the
associated profit function. Here, a partial allamaiof 15, =54.6<«, and A9, =0.09> A -y provides a
higher profit for the buyer.

Mathematically, when the objective function of aptimization problem is convex with respect to
the decision variables, the maximum point happenthe boundaries of a convex domain. That is, each
supplier either receives full allocation or no alition, except for the supplier which receivesléfi@ver
demand to satisi‘yZiNzlJi =1. When the objective function is not convex, itnist possible to derive
general analytical solutions. However, as our exanshows, the maximum may occur in an interior

point, which means a more efficient supplier mayeree an allocation lower than his full capacity.

(a) (b)

]
o
o

]

A
a o
1

6.5 -

o
~
Il
o
~
Il

Buyer's Profit (1000)
(o]
w

6.3
6.2 - 6.2 -
6.1 - 6.1 -
6.0 \ \ . \ . . 6.0 . . \ \ . .
0O 10 20 30 40 50 60 0O 10 20 30 40 50 60
o/ 3/

Figure 1 — Impact of revenue function on the optimal altara
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5. Joint Optimization of Demand Allocation and Proairement
Prices

We have so far assumed that procurement priceseaiexogenously. In this section, we consider #se ¢
where the buyer has the power to choose pricesnaltyi and to differentiate these prices across
suppliers. In other words, we assume the buyerth@sbility to jointly choose the price and alldoat
vectors. This may arise in settings where the bigyexr dominant player in the supply chain or when
suppliers are captive to the demand from a singjeb This more general case allows us also to eeam
how procurement prices affect buyer profits andetktent to which differentiated pricing matters.

Let p = (p ..., pn) denote the vector of procurement prices chosethbeybuyer, wherg; is the
procurement price from supplier The joint pricing and demand allocation probltrwed by the buyer

can then be stated as

o 60 E)P)=T 6u )3, € G)p) (14)
tpl,i.-,p:ER“*
subject to:
§ =arg max (ai ®.si A Ip—e= kI v( )9) , FL.,N (15)
7(s,8)=a (s )M b |- 320, 1., D (16)

a(A<qw,i=1..N. (17)

For a given vector of procurement pricgs, and demand allocation®, the buyer's profit is
increasing in each of the service levglsi=1,...,N. Consequently, it is optimal again for the buyer to
use a service-maximizing allocation function. L&t (g, p) denote the maximum feasible service level
supplieri can provide given demand allocatigrand pricep. Then, we have

(5. ) =9 p- £~ 1(,$@. ,p.9) 128 |=0, (18)
or equivalently
p=g+{(§(d, ).d)/Ad, 19]

fori =1, ...,N. Hence, when the buyer uses a service maximizingation function to achieve demand

allocation vecto®, the buyer’s profit function can be rewritten as

ﬂB(&p) =Az|'115||:h($nax(a|—! p)) _|: p+ If( iénax(él |p)’¢—):| /A5j| (20)
As we can see, the buyer’s profit in (20) dependp @nly throughs™(4, p). Thus, we can set the
value of §™{(4, p) to a value that maximizes the buyer’s profit @ogivend) by choosing an appropriate

value for p,. We denote by (q) the value ofg™(4g, p) which maximizes the buyer’s profit. That is,
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argmax[h &) G+ { &g )GA] ifd>0

. (21)
0, otherwise.

o]
Theorem 4 characterizes the optimal competitionhaeism.

Theorem 4. The buyer’'s problen{14)-(17) can be solved by using a service maximizing aliona
function along with optimal price vectop =(p,,...f), and demand allocation vecto8, =(d,...4, ),

whered’is the solution to the following problem
mex? §)=A3,,d[h(a @) -6+ @ €)9)g)], (22)

subject toy_ i"=15i =land dA<q, i=1,.,N The optimal vectors of service levels and pri@stben

be obtained as
S=g(d) and g =6+ f($,8)/AJ, i=1...N

The competition mechanism, as specified by the alsmlution in theorem 4, has the added feature
that it is efficient in the sense that it yielde tmaximum possible profit for the entire supplyinhaln

other words, it maximizes the sum of the buyer subliers profits.

Corollary 1. The solution to the buyer's problefh4)-(17) as specified in Theorem 4, maximizes total

profit for the supply chain and extracts all thefir for the buyer.

This result follows from the fact that the optintioa problem in (22) does not depend on procurement
prices and that the service levets(q), are the service levels which maximize buyer'sfipfoom each
supplier for the allocated demaidd, The buyer’s optimization problem is thus the saasethat of a
centralized decision maker who makes demand aitowaidecisions with the objective of maximizing
total supply chain profit. The price offered to lkeaupplier is then set equal to the cost per Urdemand
allocated to the supplier. An important implicatiof corollary 1 is that there is no procurement
mechanism that can perform better for the buyemn tha one specified in theorem 4. The profit realiz
under this mechanism represents an upper boundtbaemlchieved under any other mechanism. The
actual structure of the optimal demand allocati®nwhen the buyer can set both the procurementsrice
and allocation mechanism is similar to that showdction 4, where procurement prices were fixed. |
particular, theorem 3 is still applicable but wathpplier efficiency now defined as

e =R +Hg@)~(¢+ fg(@).a)/1a).
Since the procurement prices are now endogenoasnesers, we cannot define the supplier efficiencies

in terms of them, as we did in (12) when procurenpgites were exogenous. In the new definition of

16



supplier efficiency, procurement prices are replabg their values from equation (19). Therefore th
efficiency of each supplier is now characterizeteims of the service level which maximizes thedrisy

profit, as indicated in (21).

6. Numerical Results

In this section, we explore the value of using optimal competition mechanism relative to two
competition mechanisms that do not allow for ddfetiated treatment of suppliers, either in terms of
demand allocation or pricing. The first mechanisnhie widely studied proportional service allocatio
function, where the fraction of demand a supplieceives, a,(5,s;), iS set in proportion to the
supplier’s relative service levél

a(s,s)=s12 5 (23)
The second mechanism follows our optimal mechamisocture except that the procurement prices are
constrained to be equal for all suppliers. In ptherds, the buyer chooses a common procuremecs, pri

which is the solution to the following optimizatignoblem:

N

maxz® €7 6)8)= (s - PA+ AL AN § @) (24)

subject to the constraints stated in Theorem 2.

The numerical results we present are for a spegglication which is an extension of an example
originally introduced in Benjaafar et al. (2007)his extension allows suppliers to now be heteregas
in cost and capacity. Although our numerical resate specific to this example application, theegain

insights apply more broadly to other applicatidmet fit our model assumptions.

Example description: Consider a system with one buyer aMduppliers. Demand is in the form of
orders that occur continuously over time according Poisson process with rateOrders are forwarded
to each supplier based on the fraction of demaadstipplier is allocated, such that if supplieeceives
fraction g, then the rate of orders it receivesdd,. Suppliers process orders one at a time, with
processing time at suppliebeing exponential with ragg. Each supplier’s service level is defined by his
probability of meeting a given lead-time targeti.e., s =Pr(W <7) whereW, is a random variable

representing lead-time for supplier Suppliers have the ability to increase theirviser levels by

9 The proportional allocation can be used in amsgttiith capacitated suppliers by modifying the digopprofit
function such that an allocation beyond a supmiegpacity leads to no additional revenue for sigplier.
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investing in processing capacity (processing ra&san amortized cost &f per unit of capacity. In
addition, supplieri incurs production cost; for each item produced. The above implies that the
suppliers’ service cost functions are given by

fi(5.9)=kAq +v(s)= Ki¢ — KIn[L/A-;9]/7, #1.. N
where §=Pr\W<r)=1- €47 see Benjaafar et al. (2007) for further detailfie Touyer's revenue
function is given by the following relatively gem¢quadratic concave form:
r(s,ﬁ) = pBA - zi’\ildi/lt(l_ S )2 !

wheret is a positive constant.

Profit Service Level
s (in thousands) . (()probab|l|ty of meeting a target waiting time)
110 - —¥— Buyer/Channel: % X % ¥ X —¥—Sup. 1: Opt.
105 E Opt. Allocation r ——0o—0o—0o—o Allocation
0.9 -
Z —=—Channel: Prop. Allocation
95 | Allocation = o o
0.8 E% —e—Sup. 1: Prop.
90 - ' Allocation
—e—Buyer: Prop.
85 A Allocation —8~— Sup. 2: Prop.
Allocation
80 T T T T T 1 0-7 T T T T T 1
10 12 14 16 1.8 20 2.2 10 1.2 14 16 18 20 22
c,/c c,/c
Allocated Demand Procurement Price
80% - 1,800 -
% % ¥ ¥ X Allocation Allocation
60% - 1,400 -
—&—Sup. 2: Opt. —— Sup. 2: Opt.
50% @ s q g S—] Allocation 1,200 & © ' a—) Allocation
X x* * X X
40% - —e—Sup. 1:. Prop. 1,000 - —6—Sup. 1:. Prop.
Allocation Allocation
r——"0—0—0—¢
30% - 800 -
—8—Sup. 2: Prop. —=—Sup. 2: Prop.
20% Allocation 600 Allocation
(] T T T T T 1 T T T T T 1
10 12 14 16 18 2.0 22 10 12 14 16 18 20 2.
c,/c c/c

Figure 2 — Impact of optimal allocation function
N=2;, 1=60;, 7=1 p,= 2980; t= 2980;k = k,= 600w, =w,= 40g= 4
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Figure 2 compares the performance of our optimahpeiition mechanism against the service
proportional allocation mechanism, defined by (28},a system with two suppliers. Note that prise i
endogenous and differentiated under both mechanisWiie see that the benefit of using an optimal
allocation can be substantial and increases wittdifierence in the production costs of the suppli€he
optimal allocation leads to both substantially leigkervice levels and channel profits. Notice thader
the service proportional allocation, suppliers di provide the maximum feasible service level, and
therefore some of the channel profit stays withghepliers. This explains the gap between buysfitpro
and channel profit. Surprisingly, even though smrievels are substantially lower under the service
proportional allocation, the buyer pays higher ggidhan under the optimal allocation (without these
higher prices, service levels would be even lowdgtice also that service levels and demand ailoest
are unaffected by differences in supplier costseurttie optimal allocation. This is because demand
allocations (and corresponding service levels)oatg determined by the relative ranking of the sastd

not their specific values.

Service Level
(probability of meeting a target waiting time)

Buyer's Profit
(in thousands)

s | —6—c =750
——c =770
0.2 -
55 ‘ , ‘ 0.0 T T 1
1,350 1,400 1,450 1,500 1,350 1,400 1,450 1,500

Procurement pricep(;= p ,) Procurement pricep(;= p ,)

Figure 3 — Impact of procurement price on buyer’s profitl @ervice level
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Figure 3 illustrates the impact of procurement ggicnder the optimal allocation when prices are
exogenously set and common among the suppliersiricer the assumptions of Sectidh 4

As we can see, profit is quite sensitive to priwéh profit initially increasing in price and then
decreasing. Service level is increasing in priag, & a diminishing rate. These results highligie t
importance of choosing prices optimally even ifiticannot be differentiated.

Figures 4 and 5 compare the performance of thenapttompetition mechanism described in Section
5, where prices can be differentiated, with the getition defined by (24) where the buyer is corsed
to set a common procurement price. As we candiffefentiated pricing can have a significant impac
on buyer profit, with the difference in profit irasing in the differences in cost and capacitidate that
with differentiated pricing, the prices paid to theppliers can vary substantially, with this diéece
affected by both production costs and capacitiess blso interesting to observe how asymmetry in
capacity affects buyer's profit with differentiatedrsus common pricing. In particular, higher céyac
asymmetry is beneficial to the buyer when prices loa differentiated (e.g., when the low cost sugpli
has more capacity than the high cost supplierbthyer benefits by shifting more demand to the lostc
supplier and paying that supplier a lower price)céntrast, higher capacity asymmetry is harmfithto
buyer when prices cannot be differentiated (e.perwthe low cost supplier has more capacity than th
high cost supplier, the buyer shifts more demarttiédow cost supplier but now must pay a higherepr

to make up for the lower demand allocated to tiye kibst supplier).

7. Concluding Remarks

In this paper, we showed how to design an optimgdpker competition when suppliers are
heterogeneous in their cost structures and caphmigls and the buyer’'s revenue is dependent on the
service levels provided by the selected suppliacsthe amount of demand allocated to these supplier
We showed how a demand allocation function can é&sigded to induce suppliers to provide the
maximum feasible service level regardless of theellof heterogeneity in the cost structures and
capacities of the suppliers. In settings whers itdsirable to set the demand allocation in a peetined
way, we showed that it is possible to design thecation function to induce this desired allocatasan
outcome of the competition. In settings where thgeb can choose both demand allocation and

procurement prices, we showed how the buyar maximize total profit for the supply chaihile

M Figure 3 uses the same parameter values as thedeérufigure 2.
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Buyer's Profit
(in thousands)
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7 50 -
7, .
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5/ - - Supplier 2 30 -
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% % ¥ ¥ XK
1,050 T T T T T 1 0 T T T T T 1
10 12 14 16 18 20 22 10 12 14 16 18 20 2.2
Clg Gl

Figure 4 — Single versus differentiated procurement pricapact of cost heterogeneity
W =w,=40; c, =450,
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Figure 5— Single versus differentiated procurement prigapact of capacity heterogeneity
(c,=¢c,=400; w,+w,= 60)
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continuing to extract all the profit for hersdfinally, we showed that the advantage of using @imal
demand allocation and optimal procurement pricelmaoonsiderable when suppliers are heterogeneous.

There are several possible avenues for future resed/e know from the results of this study that th
ability to differentiate competition terms is ccil when the suppliers are heterogeneous. Howéyer,
differentiation of the form implied by our optimsblutions is not always feasible due in some cdses
to regulations or supplier resistance. A possiliiernative in such cases might be to divide thmpbers
into groups and offer the same competition termthiwvia group (e.g., suppliers located in the same
region or country). A group-based strategy raisew guestions for how the buyer should design the
optimal competition, how the performance of eadieste is affected by varying levels of grouping, and
how degrees of similarity or dissimilarity in casid capacity between groups (and between members of
each group) affect buyer and suppliers’ profit.

Our analysis currently assumes that the buyer'sme® increases with service quality while the
demand rate is fixed. If demand were also an asing) function of service, the suppliers’ incentige
invest in service would change since an increaselivice could increase the supplier’s allocatiomvell
as the overall demand level available to all s@wpli It would be interesting to study how this
relationship between customer demand and serviclyding the possibility of free riding by suppber

might change the form of the optimal competitiosige.
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Appendix

Proof of Theorem 1

We first prove partd) of the theorem. Let us write the profit functiookthe suppliers in terms of
yi = 6(s)=44(s)"". Thatis,
R Y1) =g AT - ArgTy (A1)

where G :zl'll Y. andr, =p, -G -k . The constraint that all suppliers provide positservice levels is
equivalent toy, >0,i=1, ...,N. Since y, >0, a Nash equilibrium point must satisfy the firstder
optimality condition. That is, in order to proverpg) of the theorem, we need to show that the follgwin
system of K+1) equations with unknowny;, i=1,....N andG has a unique solution that maximizes

(Al).

0 Y4) G Yy jrgd(1-g)y 0 =0, i=1.N, and G=Y" y., (A2)

ay, G?
or, equivalently,
Yi1-Y)-49(1-8)G?=0, i=1..N, and (A3)
3o Y =1, (A4)
whereY, = y/ G. We can rewrite the first order optimality conalits as
D(Y)=g4@-4)G™, i=1 .,N, Y| Y, =1, (A5)

where D(Y)=Y1(1-Y). We can see thaD(0)=D(1)=0, D(Y)>0 for 0<Y, <1, and D(Y)<O0 for
Y >1. Also, D(Y) has a maximum a8 /(1+J) which is equal tod? /(1+J)*? . Hence, for any
G<Gmax:(1/(1—5,)(1+5,)1+5' )1/1_6', equation (A5) has two solution8<Y,;<Y,<1l. We want to

argue thatY, ; corresponds to a local minimum for supplisrprofit function, (A1). We observe that the
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sign of the derivative of the profit function ofpmlieri, equation (A3), changes from negative to positive
when we increas®, from values smaller thal; to values bigger thal, ;. We also observe that, for
fixed decisions of the other supplierg, = W(Y+Z;¢i y) is increasing iny,. Therefore, when we
increasey;, the sign of equation (A3) changes from negat@dsitive aty; :(Yi’l/(l— Y,l))Zm Yy
which in turn means tha¥,; corresponds to a local minimum of supplisrprofit function. ThusY, ;
cannot be a feasible solution. Similarly, we cawovstthat ¥, corresponds to a local maximum of
supplieri's profit function. ThereforeY, ,, i=1...,N is the unique solution to the system of equations
(AS5) which corresponds to the valuesyfthat maximize the profit functions of the supgiefigure Al
graphically illustrates the above argument.

Lemma Al below shows th&™* >1 for any0< ¢ <1. For G =1, the only solution for equations in
(A5) that maximizes profit function (A1) i¥ , =q. It is easy to see thaX ,is decreasing iI1G (see
figure Al). Therefore, foic <1, we haveY, , >q or equivalentlyz i'\ilYi,Z >1, which is not a feasible
solution. Also, forg >1, we haveYiyz <6T or equivalentlyz i“ilYm <1, which is not a feasible solution
as well. ThereforeY, =4 and G =1 (or equivalentlyyi* =q) is the unique solution of the system of
equations (A3)-(A4) which maximizes each profitdtian in (A1), given all suppliers provide a pos#i

service level.

D(Y)

J’a-9)6*

Figure A1 — The solution to first order optimalitgndition (A5)

We now prove parta) and ) of the theorem. We showed tha;* =q satisfies the first order
optimality condition (A2). If we release the pogdtiservice level constraintyi* =4, i=1..N is still a
Nash equilibrium since any suppliecannot increase his profit by choosi[s(gZO while other suppliers
choose Y =4, i#]. We can easily verify thaty =g results in § =$%(34), 77(s)=0, and
a(s)=4.
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1/(1-x
) ( )>1.

Lemma 3:For anyo < x <1, we have(l/(l— X)(1+ x)
Proof of Lemma 3: It is enough to prove thaZ(X) =(1—- X1+ X** <1 for any 0 < x < 1. We can see
that Z(0)=1 and Z(1) = 0. Therefore, it is enough to show thafx) is decreasing in the intervéd, 1)

. The derivative of Z(X) can be written as

et

where X(X) =(1- X)(In(1+ X)+ZI) . Noticing thatX(0)=1, X(1)=0, and
X ~(In@@+x)+1) $12X 0,
dx 1+ X

we can conclude thaX(X) is decreasing and less than 1(hy1). Hence,Z(X) is decreasing and less

than 1in(0,1). This completes the proof of the lemma.

Proof of Theorem 2

Considering the discussion under step 2 in se®iothe proof is straightforward. The existence of a
solution is guaranteed by the fact that a functioth bounded values always has a maximum on a

compact domain.

Proof of Theorem 3

Here, we present the proof for the case when thpligns have identical cost structures. The prootlie
case of identical suppliers’ capacities is omitigate it follows the same type of reasoning.
Wheng 21, itis easy to show that the optimal allocation is

Q fori=1

o= . ,i=1..N,
0 fori>1

For the case oky <A, since the suppliers have identical cost strustutiee difference in suppliers’
efficiencies is solely due to difference in theapacities. Therefore, when we rename suppliersrdicgp
to their descending order of their efficienciesfant, it is according to their descending ordethair

capacities. Hence we ha® > J, > ...> J,, . Then we can rewrite (13) as

3 fori=1,..N-1
_ N-1g% L .
g =41->..3 fori=N ,i=1..N (A6)
0 for i >N
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Let ¢(J)=3A[h(a(g)) —c- K - {a(qd)) . Hence we haveir®(8) = 77°(5(3),8) = Zi“ilz//(di). Notice
that le(S) is convex ind if and only if ¢/(§) is convex ind. Here, we propose a procedure through
which we can buildd =(J,,...dy ) from any feasible initial set of = (dy,--,9y ). We then show that
we always haveﬁB(ﬁ*)ZﬁB(S), which proofs the proposition. At each round afthrocedure, we
modify only two elements of allocation vector uniié achieves .
Step 1:m=0; i=1, j=N;
Step2:d"=4 for t=1..N
Step 3:A=min(d",4 -3™)
Step 4:a™=g"+n; g™ =4M-A; gT=q " for t#i,]

Note: By virtue of Lemma 2 below, we havdd™") =778 "), whered ™=(4"....0,".
Step 5:if d™'=g then i=i+1
Step 6:if 9" =0 then j=j-1;
Step 7:if i<j then m=m+l and return to stef®

else § =d™ for t=1..,N, end of procedul

In any round of this procedure we remove all oit pathe allocation from a low capacity suppliedan
add the same amount of allocation to a higher dgpsgpplier. By virtue of Lemma 2, this realloaati
results in higher centralized profit. We repeas thiocedure until we cannot reallocate demand faom
lower capacity supplier to a higher capacity sumplit is not difficult to see that at the end bfst
procedure we have the allocation stated in (13)c&Sfi°(8 ) = 77°(8) for anyd, we can conclude that

is the optimal allocation. This concludes the psifian.

Lemma 2:If d 23 theni(d) +¢(3) S¢(d +L) +Y(3 —L) whereA=min(3*,g —J").

Proof of Lemma 2.

From the definition ofA we have:
g +A=min(d, +d,3) andd, ~A=max(05, - @ -4 ))
Sinced 29, 24, 20 we haved +A=3, andJ, ~A=4.

To prove this lemma we consider the following tvasgible cases:

1) q— 2 51 A N

v

0 —A 5] k) 3 +A
N =(5+D8)-g =0 —(4 -B)=A
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In this case leth =0, -4, d,=9,; &;,=q; d,=q9+A.

@ 4<4 X R

v

53-8 6 5, arb
N =(5+8)-8=4-(3 D)
In this case leth =0, -4, d,=g; d;=9; d,=g+A.

Sincey(.) is a convex function, we havg'(d,) <¢/'(d,) <¢'(d;) <¢'(d,) wherey'(x) =ay(x)/0x.
Again from the convexity of/(.) we can conclude that

l//(dZ)A_*l//(dl) S‘//(dz) Sl//'(d3) < w(d4)A_*l//(da)

Therefore,

W(dy) —y(d)sw(d)-¢(d) = w(d)+y(d)<sy(d)+y(d) (A11)
It is easy to verify that, for both cases (1) a2 the inequality in (A11) is equivalent to

Y(3)+y(0)<¢(q +D)+Y(g -b)

This concludes the proof of the lemma.

Proof of Theorem 4

Considering the discussion before theorem 4, thefps straightforward.
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