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Abstract: We present models for competition among multiple suppliers for demand from a single 
manufacturer. The suppliers produce to stock a single product and are allocated demand by the 
manufacturer based on the amount the amount of inventory they hold. We prove the existence of a 
Nash equilibrium for a broad class of market allocation schemes. For the special case of identical 
suppliers under either a stock-proportional or fill rate-proportional allocation, we show the uniqueness 
of the Nash equilibrium. Analysis of the Nash equilibrium for this case reveals that (a) the 
manufacturer benefits from competition (in the form of higher fill rates), (b) the manufacturer benefits 
more from a stock-proportional allocation than a fill rate-proportional allocation, and (c) the 
manufacturer benefits the most when the number of suppliers is two.   

 
1 Introduction 
 
In many industries, original equipment manufacturers (OEM) are turning to outsourcing as an 
alternative to in-house manufacturing. This trend is particularly evident in the electronics industry 
where the contract manufacturing sector is now a $180 billion industry and expected to represent over 
50% of all electronics manufacturing by 2005 (Kador, 2001). One of the decisions that an OEM has to 
make is how much of their manufacturing they should outsource and to whom they should outsource 
it. In the electronics industry, there are numerous contract manufacturers with nearly similar 
capabilities. The issue for an OEM is then whether to outsource to a single supplier or to allocate 
demand among multiple ones. There is an increasing consensus that multiple sourcing is beneficial to 
the OEM’s by creating redundancy in their supplier lines and encouraging price and service among 
their suppliers. However, with multiple sourcing, the OEM’s must determine how demand should be 
allocated among the multiple suppliers.  
 
In this paper, we explore inventory-based competition as a mechanism for the manufacturer to allocate 
demand among a set of potential suppliers. In particular, the manufacturer rewards suppliers that hold 
more inventory (provide a higher service level) with a higher market share. We assume that the 
suppliers adjust their capacity proportionally to the amount of market share they are allocated. The 
suppliers earn revenue per unit supplied to the manufacturer and incur holding and backordering costs. 
Demand at the manufacturer occurs one unit at a time. The probability that a particular supplier is 
allocated the order is determined by their market share allocation. The suppliers manage their 
inventory using a base-stock policy, with these base-stock levels defining the competitive strategy of 
each supplier.   



In this paper, we prove the existence of a Nash equilibrium for a broad class of market allocation 
schemes. For the special case of identical suppliers under either a stock-proportional or fill rate-
proportional allocatin, we show the uniqueness of the Nash equilibrium. Analysis of the Nash 
equilibrium for this case reveals that (a) the manufacturer benefits from competition (in the form of 
higher fill rates), (b) the manufacturer benefits more from a stock-proportional allocation than a fill 
rate-proportional allocation, and (c) the manufacturer benefits the most when the number of suppliers 
is two.   
 
Our work is related to the growing body of research on inventory-based competition. Examples 
include Parlar (1988), Karjalainen (1992), Lippman and McCardel (1997), Mahajan and Van Ryzin 
(2001), and Wang and Gerchack (2001). For a recent review and additional references see (Cachon 
2003).  
 
2 Model Description 
 
There are N suppliers who produce a single product in a make-to-stock fashion using a base-stock 
policy. The suppliers compete for a fixed market share from a single manufacturer. Market share is 
allocated so as to reward suppliers that hold more inventory (market share is non-decreasing in the 
supplier’s base-stock level). The suppliers are free to choose their stocking levels and incur inventory 
holding and backordering costs. In response to a market share allocation, the suppliers increase their 
capacity proportionally to maintain a fixed target utilization ρi, where 0 = ρi = ρo < 1 and ρo is 
exogenously set by the manufacturer. Each supplier i incur a holding cost hi per unit of inventory per 
unit time and a backorder cost bi per unit backordered per unit time, a production ci per unit produced, 
and a capacity cost ki per unit of capacity (measured in terms of the associated production rate). The 
supplier’s revenue has a fixed component and a variable component. The fixed component, gi, is 
guaranteed revenue for agreeing to be a supplier. The variable component, pi, is earned per actual unit 
supplied. Demand at the manufacturer occurs according to a Poisson process with rate λ. The fraction 
of demand allocated to supplier i is denoted by αi, where 0 = αi = 1 and 1 2 ..., 1Nα α α+ + = . The 
parameter αi can be viewed as the probability that incoming demand is allocated to supplier i. 
Although a truly probabilistic allocation is unlikely in practice, it is useful in approximating the 
behavior of a central dispatcher that attempts to adhere to a specified market share for each supplier. It 
is also useful in modeling settings where demand arises from a sufficiently large number of sources. 
The variable αi corresponds in that case to the fraction of demand sources (e.g., geographical 
locations) that are always satisfied from supplier i. Production times at each supplier are exponentially 
distributed with rate µi = αiλ/ρi. Finished goods at the suppliers are managed according to a base-stock 
policy with base stock level si (si = 0) at supplier i. This means that the arrival of demand at supplier i 
always triggers a replenishment order with the supplier’s production system. Hence, the production 
system at each supplier behaves like an M/M/1 queue.  
 
 
3 The Supplier’s Problem 
For a given market allocation αi and a base level si, the expected profit πi at each supplier i is given by 

( , ) ( ) ( ) ( )i i i i i i i i i i i i is p c g k h E I b E Bπ α α λ µ= − + − − − ;    i=1,…, N,                              (1) 
where E(Ii) and E(Bi) denote respectively expected inventory level and expected backorder level at 
supplier i. Under our assumptions, E(Ii) and E(Bi) are given by (see for example (Buzacott and 
Shanthikumar, 1993)  
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from which we can rewrite expected profit as 
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where ( ) / .i i i i ir p c k ρ= − −  Clearly, gi should satisfy the condition /(1 )i i i ig b ρ ρ≥ −  so that πi = 0 for 
all values of si.  
 
For a fixed market allocation αi, the supplier’s problem can be stated as 
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where (1 ) / ln( )i i i iβ ρ ρ ρ= − − . The superscript n is used as mnemonic for no competition. 
Substituting n

is  in the profit function, we obtain 
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for i= 1, 2, …, N.  
 
The value of n

is  can be usefully approximated by  
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the solution to the difference equation ( , 1) ( , ) 0.i i i i i is sπ α π α+ − =  It can be shown that | n
i is s− % | < 1 

and / 1n
i is s →% as 1iρ → , hence asymptotically exact. If the approximation n

i is s≈ %  is used, we obtain 
the simpler expression 

( , )n
i i i i i i i is r h s gπ α α λ≈ − +% .                                                         (8) 

 
 
4 The Market Allocation 
There are a variety of ways in which the manufacturer may allocate market share among the 
competing suppliers to reward those that hold more inventory. We use the notation αi(s), where s = (s1, 
s2, …, sN) to emphasize the dependence of αi on the vector s. We show that a Nash-equilibrium exists 
under relatively mild assumptions about the allocation scheme. Specifically, we require that the 
market share αi(s) of supplier i is increasing continuous and concave in si, and 
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An example scheme that satisfies this assumption is one in which market share is allocated 
proportionally to stocking levels. That is, 

( ) i
i

i jj i

s
s s

α
≠

=
+ ∑

s .                                                               (9) 

This allocation scheme has the advantage of being based on easily observable quantities and, 
therefore, easy to implement and to enforce. It also arises naturally in other settings where, for 
example, demand is stimulated by inventory – see Wang and Gerchack (2001). This scheme is not 
however informative of the capabilities of the suppliers and, in particular, their abilities to guarantee a 



certain level of service. An alternative to the stock-proportional scheme is therefore one proportional 
to service levels, measured for example, by fill rates. In this case,  
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Fill rate is the fraction of customer demand that is immediately met from stock. In our setting, by 
virtue of the PASTA property, Prob( 0) 1 is

i i if I ρ= > = − . It is not difficult to see that under this 
scheme αi is both continuous, increasing and concave in si. This allocation scheme is in line with 
commonly used contracts between suppliers and manufacturers. It also captures more of the 
characteristics of the suppliers since it involves both stocking levels and capacity. See Boyaci and 
Gallego (2002) for related discussion. An important question for the manufacturer is which of the two 
schemes is more advantageous (for example, which of the two induces a higher fill rate for the 
manufacturer?).  
 
 
5 The Nash Equilibrium 
The competition for market share among the suppliers defines a strategic game, where the players are 
the N suppliers, the pure strategy space is the set of admissible base-stock levels si for each player i, 
and the payoff function is the profit function πi(s) for player i for each profile s = (s1, s2, …, sN) of 
strategies. Each player’s objective is to maximize their own profit function, given that each player has 
full knowledge of the structure of the game. A Nash equilibrium for the competition among the 
suppliers is any point (s1, s2,…, sN) such that none of the suppliers can increase their profit by 
unilaterally changing their stocking levels. Therefore, to find an equilibrium point, it suffices to solve 
N supplier problems (equation 2) simultaneously. To show the existence of a pure-strategy Nash 
equilibrium, it is sufficient to show that (a) the strategy space for each player forms a nonempty 
compact convex set and (b) the profit functions πi for each supplier i is continuous in s and concave in 
si (see theorem 1.2 of (Fudenberg and Tirole 1991)). 
 
Theorem 1: There exists a pure strategy Nash equilibrium for the game defined by the suppliers’ 
competition. 
 
Proof: The profit function πi is continuous in s since αi (s) is continuous in s. Note that  
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Hence, iπ  is concave. To show that the strategy space is continuous, convex and compact, we show 

that the values of stocking levels from which each supplier chooses are restricted to the range [0, u
is ], 

where u
is  < 8 . To see this, we note that the profit of supplier i when they hold no inventory is given by 
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strategy profile of the other suppliers. To show that the strategy space is bounded above by u
is , it is 

sufficient to show that if si > u
is , then 0( , ) ( )i i i i i is s s rπ α λ− −≤ .  If we choose u
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Showing uniqueness of the equilibrium point without additional assumptions about the allocation 
scheme is difficult. However, we can show that given a strategy profile s-i by the other suppliers, 
supplier i has a unique optimum stocking level *

is .   



Proposition 1: For fixed s-i, there exists a unique optimum stocking level, *
is , that maximizes the profit 
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The proof is omitted for brevity and can be found in (Benjaafar et al. 2003). An important corollary of 
this result, and of the fact *( )i isθ > 0, is that * n

i is s>  when * 0is > , and * 0n
i is s= =  otherwise.   

Corollary 1: Competition leads to higher base stock levels at each supplier and consequently to 
higher fill rates.    

If we restrict ourselves to either the stock- or fill rate-proportional allocation schemes described in 
section 2 and if we limit ourselves to identical suppliers (i.e., hi = h, bi = b, ri = r, and ρi = ρ  for i =1, 
2, …, N) suppliers, then we can show that the Nash equilibrium is unique. The result is stated in the 
following theorem and the proof can be found in (Benjaafar et al. 2003).   

Theorem 2: In a system with N identical suppliers, under either a stock- or fill rate proportional 
allocation scheme In a system with N identical suppliers, there exists a unique Nash equilibrium, 
characterized by base-stock level * *

is s= at each supplier that satisfies the following equation  
*
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5 Stock-Proportional versus Fill Rate-Proportional Market Allocation 
 
In a system with identical suppliers, we show that an allocation proportional to base-stock levels leads 
to higher fill rates than an allocation proportional to fill rates.   
 
Theorem 3: Let fs and ff denote the Nash equilibrium fill rate under the stock proportional and fill-
rate proportional allocation schemes respectively, in a system with N identical suppliers, then fs  = ff.    
 
Proof: The Nash equilibrium solution under the stock-proportional and fill rate-proportional 
allocations satisfy respectively the following equations: 
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Using the fact that for x<1, we have ln[1/(1 )] /(1 )x x x− < − , it is not difficult to show that s ff f> .  
 

An intuitive explanation for this result is that a stock-proportional allocation is more sensitive to 
changes in stocking levels than one proportional to fill-rates (the rate of increase of αi(si, s-i) in si for 
fixed s-i is higher under a stock-proportional allocation). For manufacturers, this means that there is 
value in constructing the terms of the competition to reward higher stocking levels than higher fill 
rates.   

 



6 The effect of Number of Suppliers 

 
For N identical suppliers (N = 2) and a stock-proportional market share allocation, the equilibrium 
base-stock level solves the following equation  
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where in this case * *
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= , from which we can see that as N increases *s decreases. In the 

limit case, we have  
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Note that this limit equilibrium base stock is the base stock level obtained in section 3 for the case of 
no competition.  A similar result can be obtained for the fill-rate proportional allocation.  
 
Theorem 4: In a system with N identical suppliers, the equilibrium stocking level *s  (and therefore 
the equilibrium fill rate) are decreasing in N. As N → ∞ , * ns s→ , the optimal stocking level without 
competition.  
 
Noting that when N = 1, * ns s= , the number of suppliers that maximizes the fill rate is 2.  This means 
that for manufacturers, the optimal number of suppliers is 2 (a duopoly). 

 

6. Conclusion 

In this paper, we present models for competition among multiple suppliers for market share from a 
single manufacturer. The suppliers produce to stock a single product and are allocated demand by the 
manufacturer based on the amount the amount of inventory they hold. We prove the existence of a 
Nash equilibrium for a broad class of market allocation schemes. For the special case of identical 
suppliers and either stock-proportional or fill rate-proportional allocations, we show the uniqueness of 
the Nash equilibrium. Analysis of the Nash equilibrium for these cases reveals that (a) the 
manufacturer benefits from competition (in the form of higher fill rates), (b) the manufacturer benefits 
more from a stock-proportional allocation than a fill rate-proportional allocation, and (c) the 
manufacturer benefits the most when the number of suppliers is two.   
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