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Cellulosic Biofuels: Expert Views on Prospects for
Advancement

Erin Baker, Jeffrey M. Keisler
University of Massachusetts, Amherst

University of Massachusetts, Boston

Abstract

In this paper we structure, obtain and analyze results of an expert elicitation
on the relationship between U. S. government Research & Development fund-
ing and the likelihood of achieving advances in cellulosic biofuel technologies.
While there was disagreement among the experts on each of the technologies, the
patterns of disagreement suggest several distinct strategies. Selective Thermal
Processing appears to be the most promising path, with the main question be-
ing how much funding is required to achieve success. Thus, a staged investment
in this path looks promising. With respect to gasification, there remains fun-
damental disagreement over whether success is possible even at higher funding
levels. Thus, basic research into the viability of the path makes sense. The Hy-
drolysis path induced the widest range of responses from the experts, indicating
there may be value in collecting more information on this technology.

Keywords:

1. Introduction

There has been a great deal of excitement about biofuels recently. The
USDOE has funded 3 centers at $125 million each;' BP funded a center at $500
million;? and it was recently announced that USDOE will spend an additional
$786.5 million in research and demonstration projects.®> Newspapers are full
of conflicting accounts of the benefits and hazards of biofuels. In particular,
corn-based ethanol has proven to be quite controversial.* Thus, the focus of
each of the centers above is on cellulosic biofuels (biofuels made from grassy
feedstocks, including switchgrass and trees). Additionally, these centers are

ISee http://www.energy.gov/news/5172.htm

2http://berkeley.edu/news/media/releases/2007/02/01 _ebi.shtml

Shttp://appsl.eere.energy.gov/news/news_detail.cfm /news_id=12490

4See for example Searchinger et al [1], and many of the letters in response in Volumes
320-322 of Science. See [2] for an overview of environmental impacts of biofuels.
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mainly focused on a biological path to biofuels — some combination of hydrolysis
and fermentation to produce ethanol.

In this paper we consider the role of U.S. government Research and Devel-
opment (R&D) funding in achieving advances in cellulosic biofuel technology.
We have structured and performed expert elicitations to estimate the relation-
ship between government funding and the likelihood of achieving particular
technological targets. We consider a range of technological paths, including
hydrolysis/fermentation, but also aqueous phase processing, selective thermal
processing, and gasification. These technologies are discussed in more detail in
the next section. We focus on technological breakthroughs that will, if achieved,
lead to large, discontinuous reductions in the cost of producing biofuels from cel-
lulosic feedstock. This is in contrast to the incremental cost reductions related
to learning by doing [3].

In the next section we discuss the advantages and challenges of expert elic-
itations as a method for supporting R&D funding decisions; and preview the
rest of the paper.

2. Expert Elicitations

Past data on technological advance contains little information about future
technological breakthroughs. In fact, a technological breakthrough, by its na-
ture, is unique; and therefore we cannot use past data and relative frequencies
to construct a probability distribution over success for future breakthroughs.
Yet, current decisions depend on understanding the likelihood of such break-
throughs. For example, a National Academy studied concluded that sound gov-
ernment technology R&D policy should consider the likelihood of success and
the impacts of success, along with the total cost of a program, when making
decisions [4]. When past data is unavailable or of little use on its own, the alter-
native is to rely on subjective probability judgements [5].> Expert Elicitations
are a formal method for gathering these expert judgements.

Decision analytic methods including expert elicitations [7] have been applied
productively to R&D in numerous industries (automotive, pharmaceutical, elec-
tronics, etc. See for example [8][9][10]), to issues relating to societal decisions
[11][12][13], as well as to energy planning and policy analysis ([14], see [15]).
Notably, a National Research Council study recommends that the U.S. Depart-
ment of Energy use panel-based probabilistic assessment of R&D programs in
making funding decisions [4].

This paper is part of the first step in a larger project intended to inform cli-
mate change energy technology R&D portfolios. As part of this project we have
performed expert elicitations on solar photovoltaics [16], carbon capture and
storage [17], nuclear fission [18], batteries for vehicles [19], and electricity from
biomass. The second step of the project is to determine the impact of technical
change, if it is successful, on the cost of reducing greenhouse gas emissions. The

5t is sometime possible to combine such judgments with historical data [6].



third step is to combine the elicited probabilities and the impacts on abatement
costs in an R&D portfolio model to get insights about the optimal level of R&D
spending and the composition of the portfolio.

The expert elicitations provide a starting point for the analysis. We can
use our initial sets of elicitations in combination with an R&D portfolio model
to calculate the value of more information. We will likely find that there is a
high value of information on some of the technologies, but a low value on some
of the other technologies. Specifically, information has high value if (1) it has
substantial probability of changing the optimal choice and (2) in cases where
this change occurs it has a large effect on the overall value.

It is hard to judge a priori which information will have the most value. In
light of this, and because there are many interesting energy technologies in the
climate change arena, our initial sets of experts are somewhat small, in this case
a range of 4-7 experts on the individual technologies. This allows us to pilot
our elicitation methods, to get thorough qualitative information through our
interviews, and provides baseline data for prioritizing future elicitations. More-
over, prior work has shown that the incremental value of adding another expert
decreases significantly after 3-4 experts, primarily due to natural correlations
among experts [20]. Thus, the results presented in this paper should be taken
as a starting point for future work — and future conversations — on the potential
for biofuels technology

The biofuels technology area provided special challenges as we structured
our elicitations. A key contribution of this paper is to lay out a methodology
for structuring elicitations when a field consists of a portfolio of overlapping
technologies. Specifically, as discussed in detail in the next section, we divided
the process of turning biomass into liquid fuel into two parts, primary conversion
of biomass into intermediate products and end processes to produce a set of
end products. This innovation allows us to analyze a portfolio of discrete R&D
efforts that result in improvements to an overall production system in a way that
is amenable both to obtaining expert judgments and calculating the impact on
the system of successful work in each area.

In the next section we provide a brief overview of the technologies that
we considered; and introduce our structure, combining technologies into paths
leading to endproducts. In Section 4 we present the methods we used to perform
the elicitations. We discuss the selection of experts; and describe the specific
endpoints that were defined in order to elicit probabilities. We provide an
example of a cost analysis to give a sense of how the technological endpoints
relate to cost at the pump. The cost analysis is an example, however, not
a prediction of future costs, because the cost of the biomass feedstock is a key
driver of the overall cost of biofuel. The cost of the biomass feedstock depends on
a number of economic variables and thus is not a purely technological variable.
In Section 5 we present the results of the elicitation, including the full range
of probabilities elicited and many of the qualitative comments provided by the
experts, as well as a discussion of possible biases. This is the core of the paper.
In Section 6 we do some initial analysis, showing the effects of combining the
expert opinions. We conclude with some implications in Section 7.



3. The Technologies

The processes we consider take raw biomass and convert it into liquid fuel.
There are two general steps in converting biomass to commercial fuel. The
first step is breaking down biomass from complex and intertwined molecules to
an intermediate product consisting of simpler and more separable substances.
The second step is to process that intermediate product into a commercial end
product with uniform and desirable properties.

Starting with a generic input of cellulosic biomass, such as wood chips,
switchgrass, etc. there are several approaches to break down biomass, each
of which forms a different intermediate product. For our elicitations, we con-
sidered three end-products (gasoline, diesel, and ethanol) and seven distinct
technology categories: three related to the first step of primary biomass conver-
sion; and four related to the second step of conversion of intermediate products
to liquid biofuels. To limit the scope of the project, we did not explicitly cover
pre-treatment technologies.

The Selective Thermal Processing (STP) paths involve either pyrolysis or lig-
uefaction followed by refinery methods, and result in a mix of products including
both gasoline and diesel. The hydrolysis paths involve hydrolysis to create a
sugar solution, and then either Aqueous-Phase processing to produce diesel or
fermentation to produce ethanol. The third main direction is gasification, which
can produce either diesel or ethanol. Here we describe each technology in more
detail.

In pyrolysis, biomass is heated so that thermal decomposition reactions
occur, releasing vapors. Some of these vapors can be condensed into a liquid
product we will call bio-oil. Liquefaction is the thermal decomposition of solid
biomass in a solvent which is usually water. Liquefaction also produces a similar
liquid product, which we will call bio-crude to differentiate it from the bio-oil
produced by pyrolysis. Hydrolysis refers to the decomposition of biomass in
a water environment with acid or enzymes added to accelerate the process,
breaking down complex polymers into simple sugars in solution. Gasification
combines oxygen (during partial combustion) and steam (to resulting gases)
with carbon compounds, converting biomass to Syngas (CO + H2). Syngas
can be burned directly, have hydrogen gas extracted, or turned into liquid fuels
as considered here. Refining of bio-oil and bio-crude is much like fossil oil
refining. Fermentation refers to processes for converting sugars to alcohol,
using bacteria in a suitable environment. Aqueous phase processing (A-P)
converts sugars to hydrocarbons. Aqueous phase refers to the water-containing
portion of biomass intermediate product. Stable enzymes and catalysts are
used to convert simple sugars still in solution into oxygenated hydrocarbons
which serve as building blocks for liquid hydrocarbon fuels. Syngas to diesel
conversion is based on the Fischer-Tropsch process which uses catalysts to
build up hydrocarbon molecules of various lengths from the simple components
starting with syngas. Syngas to ethanol conversion occurs through either
syngas fermentation or catalytic methods. Syngas fermentation is a specialized
type of fermentation using selected techniques and microbes to convert syngas to



ethanol. Catalytic methods engineer a series of reactions with chemical catalysts
to get the same result.

Multiple Paths to Multiple Endproducts. Figure 1 illustrates the feasible paths
from biomass feedstock to end product that result from these technologies.

The seven technology categories discussed above are represented as squares,
with Selective Thermal Processing having two sub-categories, pyrolysis and lig-
uefaction. The intermediate and end products are represented as ovals. Each
numbered arrow represents a process endpoint that we explicitly assessed. Fi-
nally, there are six distinct paths from primary conversion to endproduct, as
follows:

e STP1: pyrolysis followed by bio-oil refining, arrows 1 and 5. Note this
results in a combination of gasoline and diesel;

e STP2: liquefaction followed by bio-crude refining, arrows 2 and 6. Again,
this results in a combination of gasoline and diesel;

e Hydrolysisl: Hydrolysis followed by traditional A-P, arrows 3 and 7, re-
sulting in diesel;

e Hydrolysis2: Hydrolysis followed by fermentation, or possibly non-traditional
A-P, arrows 3 and 8, to produce ethanol;

e Gasl: gasification followed by syngas conversion, arrows 4 and 9, to pro-
duce ethanol;

o Gas2: gasification followed by syngas conversion, arrows 4 and 10, to
produce diesel.

4. Methodology

In this section we describe how we structured assessments and conducted
surveys to obtain subjective probability judgments from multiple experts.

4.1. Selection of Experts

We identified a total of seven experts (six individuals and one two-person
team), six listed in Table 1 in alphabetical order, and one who preferred not
to be listed, from a mix of universities and national labs. Each of our experts
has demonstrated expertise in biofuel technologies. The group reflects a range
of technical specialties and perspectives; and there are multiple experts capable
of providing meaningful assessments of each of the technologies (although not
every expert had expertise in all areas).

Ideally, we might have used a larger group that represented a wider range of
organizations and an international perspective. However, as mentioned above,
this elicitation is part of a larger project, assessing a number of technologies
relevant to climate change. Given the large number of technologies that can



potentially combat climate change, and the quickly changing nature of these
“hot” technologies, a relatively quick and less expensive assessment is appro-
priate in order to arrive at general insights and inform the setting of priorities
for future research in this direction. Here we discuss three issues around our
set of experts. First, the number of experts was relatively small. The mean
probabilities from small samples are sensitive to the exact set of experts used.
Prior work, however, has shown that the incremental value of adding another
expert decreases significantly after 3-4 experts [20]. Second, since our interest
is on U.S. government spending, we focused on U.S. experts. While our experts
did consider potential gains that might be made overseas, with or without U.S.
funding, the focus of this study is in the U.S, and therefore we cannot claim to
have an international perspective on the future of biofuels. Third, the experts
here represent the academic and laboratory research communities, but not in-
dustry. Thus, these experts may be less prepared to estimate the difficulty of
actually delivering bio-fuels at the endpoint prices. However, we are primarily
interested in scientific breakthroughs that lay the basis for industrial develop-
ment. Scientific breakthroughs tend to come from research-focused institutions;
incremental improvements tend to come from industry.

4.2. Technological Endpoints

In order to assess probabilities, we need endpoints defined well enough that
experts could, after the fact, agree on whether or not they have been achieved
[21]]22][23]. They must make sense to the experts and be useful for policy an-
alysts. There are a number of different approaches to defining endpoints in an
elicitation such as this. Because of the number of (possibly interrelated) tech-
nologies and performance dimensions under consideration, our approach was
to develop one well-defined target endpoint for each technology. This is suffi-
cient to yield probabilities for the ultimate achievement of end product targets
with a given set of funding trajectories. It produces a coarse approximation
of the efficient frontier and captures the impact on economic value of the in-
teractions between research directions. A more exhaustive approach would be,
for each technology, to assess full joint probability distributions over multiple
performance dimensions. We believe such an approach may be desirable for
finer decisions at a late stage of the funding process once general priorities are
clear; however, this would require a very intensive elicitation process that is not
justified at this stage of policy analysis.

In Table 2 we present the endpoints that the experts assessed. We defined
these endpoints iteratively over a number of individual conversations with a
subset of the experts described in Table 1, plus three additional experts from
PNNL (who did not participate in the full survey due to scheduling constraints).
We chose endpoints that were perceived as challenging by at least a subset of
the experts; but were not thought to be impossible by a majority of the experts.
Please note that the information in Table 2 should not be interpreted as data
in terms of representing characteristics of current technologies. Rather, the
endpoints represent a description of a possible future technology. The idea is to
then determine the likelihood of actually achieving these endpoints.



While many of the technologies had numerous interesting characteristics,
the two characteristics that we focused on for all technologies were capital &
processing costs and efficiency. The assessed costs did not include the cost of
feedstock. The costs were specified as potential costs that would be realized
given widespread production. Note that all costs reported in this paper are in
2007 dollars. The costs and efficiencies were defined in different ways for the
different technologies, according to the preferences of the experts. For example,
the experts were most comfortable assessing the efficiency of thermochemical
methods in terms of percent efficiency, but for fermentation, in terms of liters
of ethanol per ton of biomass. Thus, in Table 2 we present the endpoints as the
experts assessed them, and provide conversions into international units when
needed. In Section 4.2.1 below we discuss how these varied parameters can be
converted to common metrics.

In addition to these basic characteristics, the experts defined other key char-
acteristics they believe are crucial for the success of the technology. One im-
portant characteristic was the minimum capacity for the technology. On the
one hand, the biological and thermochemical processes tend to have increasing
returns to scale. On the other hand, transporting unprocessed feedstock is very
expensive, thus this leads to strong incentives for reducing the scale [24]. The
third column in Table 2 reports the endpoint for the minimum scale at which
the given costs should be viable. Note that without significant technical change
research suggests that the efficient size of a plant will be between 5000 - 10,000
tons/day [24], thus the STP path reflects a significant reduction in scale. An-
other set of characteristics that were common to many of the technologies were
purity standards. Columns five and six of Table 2 reports on these requirements.
Each endpoint corresponds to a numbered arrow in Figure 1 above. Some of
the costs are in terms of a gallon of gasoline equivalent, abbreviated as gge.
We have presented the endpoints as defined; we present the metric equivalent
in parentheses when the original endpoint was defined in British units. Note
that the costs for the end-product processes are inclusive; that is, the total
capital and processing cost for diesel is $1.5 per gallon; this includes the cost
of producing the sugar solution, bio-oil, or syngas. The efficiency of hydrolysis
was only specified for the hemicellulose portion. The experts made their own
judgement about the other parts of the feedstock, and incorporated that into
their assessment of the total cost of the resulting fuel. We assessed two efficien-
cies for aqueous-phase processing. Some experts thought that 70% efficiency
was possible, while most thought that was unrealistic. Thus, our results below
are for 40% efficiency. For syngas to diesel, efficiency was specified as 55% of
the energy in the syngas. For our cost estimates we have made the simplifying
assumption that overall efficiency is 55%.

4.2.1. Cost Analysis

In this section we present the results of an example cost analysis (detailed in
the supporting materials), in order to compare the different technological paths
most directly. The experts were not given this cost analysis when they initially
provided probabilities. They were only provided with the endpoints in Table



2. After the elicitation we did circulate the cost analysis, so that experts could
confirm this was consistent with their reasoning. The analysis is provided here
so that readers can get a sense of how the endpoints add up to a final product.

There are two key parts to the cost analysis. The first is the capital and
processing costs. We have specified these in our surveys in terms of a per-gallon
cost for the specified end product. In this section we will translate each of these
to a cost per gallon of gasoline equivalent. The second part is the feedstock cost.
Each technology is associated with an efficiency. This, along with the underlying
cost, of the feedstock determines the feedstock portion of the cost. We assume
that the feedstock is switchgrass and the cost is $70/ton ($63.52/tonne) [25].6
Note that the actual cost of feedstock will vary, and will be at least partially
dependent on the success of biofuels technologies and on the strength of climate
change policies. Thus, the costs we present here should not be compared against
non-biofuel costs, or against other biofuel estimates using a different assumption
about feedstock cost. These estimates are useful for comparing our technologies
against each other. Table 3 shows the resulting costs per gge C' (and equivalent
costs per L), and highlights the values of efficiency F, production cost per gallon
of endproduct P, and conversion factor v for each of the paths. The cost per
gge is found by using the following equation:

f
C= T + Pv (1)
where f is the cost per gge of the feedstock.” Figure 2 shows how sensitive the
calculated costs are to assumptions about the cost of the biomass feedstock.

These calculated costs, derived from the endpoints in Table 2, are all in the
same neighborhood, and are consistent with the conclusion in [26] that ”2nd
generation biofuels costs will not be ”significantly below today’s production
cost level of the 1st generation biofuels.”

Additionally, our numbers are very close to DOE targets. For example, DOE
reports a target cost of ethanol from corn stover as $0.82/gallon of ethanol and
efficiency of 90 gal/ton [27]. Using our assumptions, this is a gge of $2.43, a
bit more optimistic than our endpoint of $2.79. The key difference between the
values is in the cost of fermentation. Their target for gasification was again
$0.82/gal of ethanol and efficiency of 70 gal/ton [27], giving a total gge of $2.77,
a bit less optimistic than ours. The key difference in this case is our very
optimistic endpoint for efficiency.

4.8. Construction of survey

With the help of the experts and advisors as mentioned above, we created
a survey. The survey was divided into the 7 technologies and 10 endpoints dis-
cussed above. For each technology, we clearly defined the endpoints and stated

6This is a central number assuming a yield of 4 tons per acre.
cy $/ton

f = 15,900,000 btu/ion * 115000 btu/gge where ¢y = 70 for our baseline case.



any assumptions. We then defined two or three funding trajectories. From
our early interviews, some experts had suggested that there may be important
spillovers between some of the technologies, so our funding trajectories reflect
this. (However, the results of the elicitations suggest that the spillovers are not
so important). The funding trajectories were set at the beginning and kept for
consistency. The funding trajectories are shown in Table 4. Experts were asked
to give us probabilities of success conditional on these U.S. government funding
trajectories. For endpoints 5 - 10, the experts also conditioned on success in
the corresponding primary stage endpoint. For example, in assessing endpoint
5, the experts were told to assume that a bio-oil corresponding to endpoint 1
existed.

4.4. Implementation of Survey

Each expert reviewed a simple primer on subjective probability assessments
and filled out the survey. Some surveys were completed face to face, some on the
telephone, and some were filled out off-line and discussed afterward. We then
reviewed their responses with them and asked follow-up questions aimed at re-
ducing the impacts of biases and heuristics [28] e.g., querying about whether
they had considered disconfirming evidence for their view — especially where
other experts held different views; asking backcasting type questions; and re-
minding the experts about overconfidence and prospect theory type biases for
probabilities close to 0% and 100%. Finally, we sent out a summary of all ex-
perts’ responses, both numerical and verbal, to be reviewed by all the experts,
and allowed the experts to amend their answers once more.

5. Elicitation Results

5.1. Detailed Results

In this section we provide the detailed results of the elicitations in Tables 5 -
9. We provide a summary of the responses and rationales we received from the
experts below each table. Not every expert answered every question. In partic-
ular, the experts most associated with the hydrolysis path felt less comfortable
answering questions about the thermochemical methods.

Consider the Hydrolysis columns in Table 5. Regarding the low funding
trajectory Expert 1 said “The very significant $450 million federal investment
in the GTL Bioenergy Centers is distributed over five years. Given that the
focus of this work is very basic science, it is unlikely that the defined endpoint
will be reached in the five years of current program funding. The addition of
$20 million/yr for combined basic and applied research provides relatively little
toward the considerable engineering R&D are required to meet the enormous
challenge of depolymerizing cellulose to sugars.” This general view was shared
by most of the experts, with the exception of expert 6. This expert felt that
the endpoint as defined, only specifying the hemi-cellulosic portion, was rela-
tively easy to achieve without any additional funding. Regarding the impact of
high funding, again expert 1 provides a clear analysis: “Developing systems of



enzymes to depolymerize biomass is a challenge far greater than anything tack-
led by the biotechnology research community in the past. As described by the
GTL Bioenergy Roadmap released two years ago by the U.S. DOE, substantive
progress will require a deep understanding of enzyme kinetics and microbial
metabolic pathways. It is hard to rush basic research — it could take 20 years
to unravel enzymatic hydrolysis sufficiently to produce inexpensive fermenta-
tion substrate.” Expert 2, on the other hand, felt that the timeframe was not
the crucial factor — he saw no need for high funding over a very long period —
but rather stressed that the importance of an infusion of funding is to attract
more high quality researchers. Experts 3 and 7 both comment that they are
concerned about achieving a cost of 5 cents per pound.

Considering tables 5 and 6, we see that the experts were generally more
optimistic about pyrolysis than liquefaction, and generally had very high prob-
abilities of success. Most commented that the pyrolysis endpoint is very close
to what is being seen today, with two exceptions: stability of the bio-oil, and
the low processing cost. All experts agreed that the high funding trajectory had
a very good chance of success, with the caveat that this assumed the research
effort was highly coordinated and efficient.

The experts noted that the low funding trajectory for liquefaction is similar
to the funding level for the past 10 years, in which little progress has been
seen. Expert 6 notes that achieving the energy density will require taking out
oxygen and de-watering in a cost effective way; and that this will be a particular
challenge at the small scale of 200 tons per day.

Regarding gasification, the experts disagreed about the stringency of the
target, with Expert 1 arguing that the endpoint as defined can be achieved if
we allow for a very large scale. The real challenge, he argues, is to achieve a
similar endpoint at a smaller scale. He gives a low probability since he feels
the work to achieve the endpoint is more on the development side and requires
much larger funding. The other experts noted that a great deal of money has
been spent on this technology for many years and progress has been very slow;
therefore a small amount of money into basic research seems unlikely to result
in a breakthrough. Most agreed that the high funding trajectory, in supporting
development as well as basic research, was promising. Expert 7 believes that
there is a real likelihood of spillovers from pyrolysis research, arguing that there
is opportunity for thermal processing at pyrolysis temperatures to add to the
success of the effort for tar removal during gasification, as much of the processing
and analytical equipment is the same; the catalytic route to tar removal may
easily be assisted by the trend toward catalytic pyrolysis research.

Regarding A-P (in Table 7), Experts 6 and 7 agree that the low funding level
is too little to allow several independent researchers to develop the infrastructure
required to allow significant probability of success. Expert 1 argues that “Basic
research is likely to yield significant advances in the understanding how sugars
can be catalytically upgraded to fuels and commodity chemicals,” but that the
low funding level is not likely to lead to “commercially viable transportation
fuel.” Expert 2 discusses the need to find a long-life catalyst at a reasonable
cost.
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The table shows the most common result for fermentation is a relatively high
chance of success at the low funding level, and little improvement with increased
funding. The main rationale is that the large, currently funded centers are likely
to achieve this endpoint on their own. Even experts 4 and 7, who see some
improvement with higher funding, feel this improvement is modest.

Regarding bio-oil refining (see Table 8), Expert 1 suggests that “The very
limited data available suggests that this is a very promising approach to bio-
fuels,” however, the limited data also implies it is quite uncertain. Expert 7
comments that this is a very low amount of funding for refinery-scale research;
and is concerned that the stated cost goal is quite low. All experts agree that
success is likely at the high funding levels. The experts note that the bio-crude
technology is similar to bio-oil, with a key difference being that while it is more
expensive to make bio-crude from liquefaction, it is less expensive to turn it into
end products.

Experts 1 and 5 commented that the syngas-to-endproduct processes (in
Table 9) are essentially industrial processes that already exist — the low level
of funding is unlikely to make much difference. One key remaining hurdle is to
either demonstrate that contaminants can be removed at levels that will prevent
poisoning of syngas catalysts; or to develop new catalysts that are resistant to
contaminants. Experts 4 and 7 see the key challenge in achieving efficiency of
55%.

5.1.1. Qualitative summary of detailed results

In the data above, we see many cases of a significant jump in probabilities
with an increase in funding. However, the rationales for these increases seem to
be divided into two categories. The first category includes technologies in which
the experts see the challenge as primarily a scientific breakthrough. In this case,
the argument for higher funding is to increase the scope of the research, mainly
through an increased number of researchers, perhaps by extending the research
period. This implies a vision of R&D as a search: there are many possible
avenues, the more we search sooner, the higher the likelihood of finding the
right one. The technologies in this category are hydrolysis and STP in primary
conversion and A-P and STP in end-product processing.

The second category includes technologies in which experts see the main
challenge being amenable to engineering or development (the D in R&D). For
these technologies, the experts seem less optimistic about achieving a scientific
breakthrough, but imply that great strides may be reached through a concerted
effort in development. Development is by its nature a high-resource activity;
and is made more so when the technologies themselves are at large scale. The
technologies in this category are primarily those on the gasification path, but
some experts indicated that refining and A-P have some similar challenges.

Finally, we see that experts pay attention to how much past funding a tech-
nology has received (or is receiving). In the case of fermentation, five out of
seven experts imply that the current level of funding is sufficient, additional
funding is unlikely to show much effect. This affected gasification as well, as
experts noted the amount of research that has already gone into this technology,
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and therefore doubted that incremental funding would have any impact at all.
This seems to have influenced the elicited probabilities for liquefaction as well,
with experts noting that recent efforts have not resulted in breakthroughs. On
the other hand, pyrolysis seemed to get the benefit of the doubt from experts,
since it has received so little funding in the past.

5.2. Combined Results for each Path

In this section we combine the results for each individual technology to show
the overall impact of funding on the probability of success of the three key paths
— Hydrolysis, STP, and Gas.

Figure 3 shows the results for the hydrolysis paths (hydrolysis combined with
A-P processing and/or fermentation). We see a wide variation in the combined
probabilities, ranging between 0% and 70% at low funding, and 40% and 88%
at high funding. Most experts are consistently on either the optimistic or the
pessimistic side. The exception is Expert 2, who believes that the hydrolysis
problem is ... “solvable, the issue is that we need more people with more ideas.”
Hence, this expert believes that a large amount of funding will greatly increase
the probability of success. There was also disagreement among the experts as
to the importance of government funding to industry (as opposed to academia
for more basic science) to achieve the stated goals. Expert 1 identified this as a
problem of basic research, and Expert 2 specifically said that this problem won’t
be helped by industry. On the other hand, experts 3, 4, and 6 all specifically
mentioned that funding for industry was key.

Finally, three of the experts (2, 3, & 6) in this elicitation are strongly associ-
ated with the hydrolysis paths; for the most part they did not answer questions
on the other paths. These three experts assigned higher probabilities to the
prospects for success given high-funding levels than did the experts with more
general backgrounds. Looking at the specific rationales given, we find that the
various experts basically agreed about the current state of the art and about
the relative ease of achieving the lower targets from there. Both sets of ex-
perts also said that the path to the high target was unclear. But while the
hydrolysis researchers commented that there were numerous potential solutions
from which, with adequate funding, some path to success would likely emerge,
the other experts felt that the lack of a clear path meant that the problem
could be “recalcitrant”. Exchanges between the experts about these points did
not significantly change their judgments. We discuss the interpretation of this
phenomenon in more detail in Subsection 5.3.

Figures 4 shows the results for the STP paths, including either pyrolysis
or liquefaction in the first stage, and refinery techniques for the second stage.
Again, we see a great deal of disagreement, but this time only at lower invest-
ment levels. Once the investment level gets to about $1.3 billion, the prob-
abilities converge, and the experts seem to agree that this technology has a
good chance of succeeding. In fact, the disagreement in this case seems to be
primarily about how much investment is required to give the path a chance
of success of around 80%. The most optimistic expert hits this probability at
$200 million, the medium-optimistic expert at $800 million, and the other two
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at about $1.3 billion. This might suggest taking a staged approach to this
technology, starting with a commitment to invest $200 million over 10 years in
all four sub-technologies that make up these paths. If success looks imminent,
then this phase of investment can conclude; if it becomes apparent that success
is quite possible, but more ideas and/or funding for demonstration plants are
needed, the funding to refinery methods and/or thermal processing methods
can be increased (depending on which path has shown more promise).

Figure 5 shows the results for the gasification paths. We have combined
the answers of experts 5 & 6, since one answered questions about gasification
but not conversion to fuel, and the other answered only about conversion to
fuel. For gasification, we see wide disagreement at high funding levels, with the
probability of success ranging from 10% to 90%. The most pessimistic expert,
however, believes that the probability of success would raise to about 40% if the
funding were increased by about $1 billion. All experts show increasing returns
to scale after a large investment in gasification.

5.8. Discussion of Possible Biases

In any expert elicitation, we will be faced with the possibility of conscious
and unconscious biases. Performing a formal elicitation with checks helps min-
imize such biases, but no process can eliminate the possibility altogether. A
particular concern in this elicitation is the division between those experts who
are associated with the hydrolysis path and the other experts. The experts asso-
ciated with the hydrolysis path gave it a higher probability of success on average
than did the others. There is an argument for giving the judgments of experts
closest to the problem the highest weight [29], if they have unique knowledge
to contribute. Countering this, there are several potential biases that can come
into play: self-selection (people who believe in an area of research will focus
their work in that area); optimism about the likely results of one’s own efforts
[30]; and the availability heuristic where being able to think of examples (e.g.,
solutions to the problem) leads experts to believe that they are more likely [31].
However, outside experts may underestimate the probability that one of the
many solutions could lead to success due to the catch all bias [32][33] in which
people underestimate the total probability of events that are listed as “some-
thing other than the listed possibilities”; or the disjunctive bias in which people
underestimate the total probability of an entire series of disjunctive events, e.g.,
in this case, that one of the many possible solutions will work [34]. Finally,
it is possible that some of the experts are exhibiting motivational bias [23], in
which the expert provides probabilities designed to influence a decision. While
we cannot rule this out, our interactions with the experts, including reviewing
each individual’s answers with them in conjunction with all the answers, lead
us to believe that this was not a factor. For clarity, we have presented each
expert’s probabilities separately, and analyzed both the overall mean and the
mean of only the hydrolysis experts. For our simple analysis in Section 6 below,
evaluating the expected benefit per R&D dollar, this difference had no effect on
our conclusions. More in-depth analysis may find different results however.
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Hultman and Toomey [35] discuss overconfidence, and ask the question are
“surprises really that surprising?” They argue that experts have a tendency to
be too confident in technologies that have received a great deal of attention.
They focus, however, on experts estimating future costs and timelines. Our
approach avoids this bias to some extent, in asking explicitly for probabilities
for pre-defined cost goals. Additionally, they point out when over-confidence
is a problem and when it is not. In particular, if experts are over-confident
about bio-fuels across the board, this would have very little effect on a port-
folio problem. Our results relate to two of their warnings. First, despite the
very high probabilities of success we see on the STP path, it would be wise to
keep other technological directions on the table. Second, given that the hydrol-
ysis/fermentation path has been given by far the most attention, both in the
press and from funding agencies, we should be especially wary of an optimism
bias in this technology.

Tichy [36] analyzed previous elicitations and found that experts tend to
underestimate the difficulties of diffusion, and therefore were consistently over-
optimistic, particularly for incremental improvements and organizational inno-
vation. We avoid this bias in our project since we are only assessing the techno-
logical breakthrough, and not the likelihood of diffusion through the economy.
While diffusion is required to gain benefits, diffusion is related to a number
of factors beyond technical feasibility, including the success of competing and
complementary technologies, and policy variables related to climate change and
energy security. Thus, our assessments are only for technological breakthroughs,
not for diffusion.

6. Analysis

6.1. Combining Fxpert Opinions

For modeling purposes, we can compute returns to R&D for the technologies
assuming various combinations of the elicited probabilities. Most simple is to
calculate an overall probability of success for each technology path for each
expert, based on that expert’s expressed probabilities regarding each technology,
as shown in Figures 3 and 77 above. This can be used for sensitivity analysis,
but gives quite wide ranges. In this section we will focus on the simple average
of all experts for illustrative purposes. Given the wide range of expert responses,
however, it is best to interpret these averages cautiously [37]. Alternatively, we
could get different results from the same data, e.g., by averaging probabilities
at the path level rather than the technology level, or giving different weights to
different experts [29]. The simple average has the desirable properties of being
responsive to all judgments but not prone to large swings based on a single
opinion [38].

We have calculated the average probability of success as a function of gov-
ernment R&D for each of the three paths. In Figure 6 we graph the “efficient
frontiers” or convex envelopes of these averages. This shows which combina-
tions of projects are most efficient, in the sense of gaining the most probability
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of success per funding dollar spent. If we use the average of all experts, the STP
path looks most promising, ranging from a 30% chance of success at $200 mil-
lion, to a 75% chance of success at a high funding level of $2.5 billion. However,
if we break the Hydrolysis elicitations into two groups we see a different pat-
tern. We have divided the experts into those who are associated with hydrolysis
(called “hydrolysis experts” here), and those who are associated with the other
methods (called “hydrolysis, other”). When we look at the hydrolysis experts’
evaluation of the hydrolysis pathway, it resembles the other experts’ valuation
of the STP pathway.

6.2. An efficient portfolio

In this section we consider a portfolio funded in order of expected gain per
funding dollar invested. Although such heuristics are useful and common in
industry, they do not always yield the optimal portfolio. Noting this fact, and
the preliminary nature of our results, the curves shown here should be considered
as illustrative.

In order to calculate the expected gain, we need an assumption about what
the cost of cellulosic biofuels would be with no R&D. We use $3.80/gge for our
baseline, “failure” cost. This is based on an estimate in the IEA’s report on 1st
to 2nd generation biofuels [39]. It is also approximately equal to the cost of a
gallon of gasoline assuming a $1000/tonC carbon tax.® ?

For each combination of projects on each path in Table 3, we calculate the
probability of success and the Net Present Value (NPV) of the R&D funding
trajectory using a discount rate of 5%.'° We then calculate the expected gain
per funding dollar:%. For each technology category, we lined projects up
in order of expected gain per dollar of funding, and eliminated any that were not
efficient. Finally, we combined all three categories, and again eliminated those
projects that were not efficient. This resulted in one potential funding order for
biofuels R&D, illustrated in Figure 6. This funding order did not change even
if we used only the hydrolysis experts’ probabilities for the hydrolysis path.

All but two of the projects in this portfolio are part of the STP path. This is
because these projects have high probabilities of success and low-cost endpoints.
The only non-STP points on the efficient frontier is a low investment in A-P
processing combined with medium investments in hydrolysis and fermentation;

8This assumes a cost of gasoline of 90 cents/gal wholesale

(http://www.oregon.gov/ENERGY /RENEW /Biomass/Cost.shtml); and 19 lbs of CO2 per
gallon.

9The choice of “failure” cost does not have a significant impact in this case. We considered
a failure cost of $5/gge, and came up with essentially the same portfolio. A much lower
failure cost, of say $2.80/gge would eliminate any interest in the higher cost paths such as
fermentation and liquefaction.

10The specific choice of discount rate has very little effect on the relative expected gain
per funding dollar. A low discount rate is appropriate for government funding. NOAA, for
example, suggests 3% [40]
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and finally a high investment in all three of these technologies as the final point
on the curve. None of the gasification projects are on the efficient frontier.

Figure 7 shows the expected cost of biofuels as a function of R&D spending.
We have highlighted key investments. The first, most efficient investment is into
the bio-oils part of the STP path — pyrolysis combined with bio-oils refining.
This is followed by an investment into the bio-crude path, and then investment
into the hydrolysis path, including hydrolysis, aqueous phase processing and
fermentation. All the other investments are on the STP path, with the bio-
oils path more efficient than the bio-crude path. The final point includes high
investments in both the STP paths and in the hydrolysis path.

Figure 8 shows the results in a way that highlights the probabilistic nature,
showing how the probabilities of success are related to US R&D spending. We
have broken it into two categories. The highest line shows the probability of
any success, that is, the probability that the cost/gge will be $2.80 or less; the
lowest line shows the probability that the most ambitious target will be met
with a cost of $2.27.

7. Discussion

One way to address climate change, fossil resource depletion, and other en-
vironmental problems in the transportation sector is through the development
of cost-effective cellulosic bio-fuels. In this paper we have presented the results
of an expert elicitation on the potential to reduce the cost of cellulosic biofuels
through government funded R&D.

We found a wide variety of opinions among the seven experts. The different
technological paths, however, had different patterns of disagreement. On the
selective thermal processing path we saw that the experts differed primarily on
the amount of funding that would be needed to achieve a high probability of
success. All experts agreed that the probability of success is at least 80% if the
funding is high enough. This implies that a strategy of staged investment in this
path makes the most sense; particularly since the path is divided into a number
of technology programs that can realistically be invested in one at a time.

On the hydrolysis path, the difference of opinion was more severe. Two
experts were relatively optimistic, but saw little impact of funding — that is,
they believe the endpoints are likely to be achieved with or without significant
government funding. One expert had the direct opposite opinion, that the prob-
lem is certainly solvable, but will require significant government funding. The
remaining experts follow a smoothly increasing path, with the probability of
success increasing with government funding. However, on average, this group
only gives the technology about a 40% chance of success. This suggests an
approach to first wait and see what the results of the current funding are; if
this proves promising, but requires more investment, then invest in hydroly-
sis; again if this is promising but the final product is not forthcoming, invest
in a combination of Aqueous-Phase processing and fermentation. Moreover,
the large difference of opinion in this case suggests that it may be valuable to
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perform more in-depth elicitations on this topic, aimed at clearly defining any
technological disagreements, and testing for and correcting specific biases.

The gasification path had yet a different pattern. Here, we see agreement
that at low funding levels the chance of success is very low, and that there are
increasing returns to scale with larger investments. However, there appears to
be a fundamental disagreement over how viable the technological endpoints as
defined are. This suggests starting with investment in knowledge-gathering and
risk-reduction rather than in the development of the technology itself. That is,
the best way forward would be to run experiments needed to ascertain whether
these endpoints are feasible. Only if the community feels the likelihood of success
is great enough would we then proceed with the large investments needed to
achieve success. The comments provided by the experts suggested that this
technology was the least likely to experience a technological breakthrough, but
that it may benefit from concerted development efforts.

When we averaged the experts, we found that the STP path generally had
the highest expected benefits per funding dollar because the bio-oils path had
the most favorable endpoint and the highest probabilities of success. But a
moderate investment in the hydrolysis path (consisting of $20M, $10M, and
$3M per year in hydrolysis, fermentation, and aqueous-phase processing) was
also very efficient. It should be noted, however, that large disagreements among
experts may indicate it is optimal to gather more information before proceeding
to any large investments.

This elicitation was part of a larger project, covering seven technological
categories over a two-year period. Thus, each individual elicitation was rela-
tively quick and inexpensive. Given the large number of potential technologies
to combat climate change, and the speed of technological change in these hot ar-
eas, quick and inexpensive elicitations have value in pointing to general trends,
providing estimates of the value of information, and underlining questions that
would need to be addressed in more detailed elicitations. We have reported the
results of the elicitations, but we have (as we believe is appropriate) interpreted
them with some caution. A more extensive study could engage a larger and
more diverse group of experts, and survey additional technological endpoints.

This work is intended to inform the debate on research directions by provid-
ing a snap shot of what experts in the field see as possibilities right now, and
outlining trends that may be interesting for making funding decisions. We stress
that the disagreements between experts can be as informative as the agreements;
and therefore the simple average over experts, while one useful metric of analysis,
are not be the only finding of this paper. In fact, the disagreements have shown
the way to several research steps that could be aimed at gathering information
in order to improve the value created by future research expenditures.

Cellulosic biofuel technology is probably needed for bio-fuels to succeed in
the long run. A back-of-the-envelope calculation, assuming a goal of using
biofuels for 20% of transportation liquid fuels in 2020, indicates that a savings
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of $1/gge in the cost of biofuels would translate to a savings of $20 billion /year.!!
The actual value to society will depend on a number of factors, including the
impact of landuse, the severity of climate change, and the costs of competing
technologies, particularly electric vehicles.

Understanding exactly which paths and projects should be pursued, at what
levels and in which order, would require a comprehensive portfolio analysis. In
this initial step, we divided biofuels efforts in terms of processes, intermediate
products and end-products, and defined funding assumptions and target end-
points. These facilitated expert elicitations that translate into economic cases
for the members of this inter-related family of technology investments.
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Technology Cost* Capacity Efficiency** Other

1 Pyrolysis 50 ¢/gge 200 tons/day Energy density of acidity (ph) >

(13.2 ¢/L) (181 tonnes) 50% 19MJ/ Kg 2.5; moisture
2 Liquefaction 55 ¢/gge Energy density of contest 20%;

(14.5¢/L) 34 MJ/Kg stability
3 Hydrolysis 5¢/lb. of

sugar 90%

(11¢/Kg) (hemicellulose)

4 Gasification 25 ¢/kg of gas| 3000 tons/day contains less than 1ppm
(2722 tonnes) each of'tars, sulfur,
chlorine, alkali.; 5%
nitrogen; 1% methane

5 Refine bio-oil $1/gge 200 tons/day

(80.26/L) (181 tonnes) 40%

$1.5/gge
6 Refine bio-crude (80.40/L) 40%

$1.5/ diesel
7 A-P Processing gal (30.40/L) 40%, 70%
$1.0/ ethanol
8 Fermentation gal ($0.26/L) 320 Liters/ton
$1/ gal diesel 55% (syngas
9 Syngas to Diesel (80.40/L) energy)
$1/ gal

ethanol

10 Syngas to Ethanol (80.26/L) 50%

Table 2: Technological endpoints as defined for the elicitation.
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Path fuel E P v C (per gge) C (per L)
STP1 (pyrolysis) gasoline 40% 1 1 2.27 0.6
STP2 (liquefaction) gasoline 40% 1.5 1 2.77 0.73
Hydrolysis1 (A-P) diesel 40% 1.5 0.88 2.6 0.69
Gasl ethanol 50% 1 1.52 2.53 0.67
Gas?2 diesel 55% 1.5 0.88 2.25 0.59
Hydrolysis2 ethanol | 320L/ton 1 1.52 2.79 0.74

Table 3: Estimated cost for the different technological paths. E is efficiency; P is processing

cost; v is conversion factor to gge.
Technology Low Funding | Medium Funding High Funding
1 Pyrolysi 2.5M 10
yroyss $ years $67.5M 10 years
2 Liquefaction $2.5M
10 years $67.5M 10 years
3 Hydrolysis $0 beyond
current $20M 7 years $270M 10 years
4 Gasification $5M 10years | $175M 10yrs  |$175M 10 years + High

pyrolisis and
Liquefaction

5 Refine bio-oil

$10M 10 years

$100M 10 years

6 Refine bio-crude

$10M 10 years

$100M 10 years

7 A-P Processing $3M 10 years $40M 10 years
High for A-P High A-P + $10M
8 Fermentation only $10M 10 years 10 years

9 Syngas to Diesel

$2M 10 years

$4M 10 years

10 Syngas to Ethanol

$2M 10 years

$4M 10 years

Table 4: Funding trajectories
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Liquefaction Pyrolysis

Funding Trajectory Low High Low High
Ex 1 5% 50% 75% 100%
Ex 2
Ex 3
Ex 4 75% 75% 100% 100%
Ex 5 47% 60% 80% 90%
Ex 6 20% 40% 25% 70%
Ex 7 35% 80% 35% 93%

Average 36% 61% 63% 91%

Table 5: Elicitation results for first stage hydrolysis and pyrolysis technologies

Hydrolysis Gasification

Funding Trajectory No Low High Low Medium High
Ex. 1 25% 66% 8% 100% 100%
Ex. 2 0% 25% 90%
Ex. 3 0% 18% 50%
Ex 4 5% 80% 5% 50% 50%
Ex. 5 30% 40% 50%
Ex. 6 0% 70% 80% 20% 40%
Ex. 7 0% 25% 45% 15% 75% 95%

Average 6% 30% 66% 12% 66% 82%

Table 6: Elicitation results for first stage liquefaction and gasification technologies
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Aqueous Phase

Fermentation

Funding Trajectory Low High Low Medium High
Ex. 1 15% 50% 66% 50% 66%
Ex. 2 1% 50% 95% 95% 95%
Ex. 3 8% 45% 100% 100% 100%
Ex. 4 5% 50% 5% 25% 25%
Ex. 5 60% 5% 2% 72% 72%
Ex. 6 95% 90% 90% 90%
Ex. 7 30% 5% 20% 40% 60%
Average 31% 58% 64% 67% 73%

Table 7: Elicitation results for the second stage of hydrolysis paths

Refine bio-oil Refine bio-crude
Funding Trajectory Low High Low High
Ex. 1 50% 90% 50% 90%
Ex. 2
Ex. 3
Ex. 4 5% 90% 5% 90%
Ex. 5 85% 93% 87% 95%
Ex. 6
Ex. 7 20% 60% 40% 95%
Average 40% 83% 46% 93%

Table 8: Elicitation results for the second stage of STP paths
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Syngas to Diesel

Syngas to Ethanol

Funding Trajectory Low High Low High
Ex. 1 90% 90% 20% 30%
Ex. 2

Ex. 3

Ex. 4 5% 10% 5% 13%
Ex. 5 85% 86% 85% 86%
Ex. 6

Ex. 7 20% 40% 40% 60%
Average 57% 38% 47%

Table 9: Elicitation Results for the second stage of gasification paths
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