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A Survey of Schema Matching Research 
 
Abstract 
 
Schema matching is the process of developing semantic matches between two or more 

schemas. The purpose of schema matching is generally either to merge two or more 

databases, or to enable queries on multiple, heterogeneous databases to be formulated on 

a single schema (Doan and Halevy 2005). This paper develops a taxonomy of schema 

matching approaches, classifying them as being based on a combination schema 

matching technique and the type of data used by those techniques. Schema matching 

techniques are categorized as being based on rules, learning, or ontology, and the type of 

data used is categorized as being based on schema elements or instance data. This 

taxonomy is an extension to previous work, and significant current research efforts are 

categorized using this taxonomy. Several of these research efforts are profiled and their 

categorization in the taxonomy is explored. The current research is used to identify the 

directions in which future research is headed. 

 
Introduction 
 
Schema matching is the process of identifying semantic mappings, or correspondences, 

between two or more schemas. Schema matching is a first step and critical part of schema 

integration (Doan and Halevy 2005, Rahm 2001). Schema integration is defined as the 

integration of local schemas into an enterprise-wide schema (Batini 1986). The resulting 

schema can then be in the form of a view, or schema, of an integrated database.  

 

Schema integration, in turn, is a step towards data integration (Noy 2005). The need for 

data integration has been spurred by the recent explosion in data storage and networking 



capabilities (Halevy 2005), and data integration has multiple important application areas. 

Those application areas include, but are not limited to: 

 

Database integration – the need for database integration occurs in response to 

mergers and acquisitions, as part of integrating two or more systems, and as 

legacy systems are retired and new systems introduced. Schema matching and 

integration are necessary steps to integrate two or more databases in each of these 

cases. 

Enterprise information integration – the amount of data available to an enterprise 

from both internal and external, including online, sources has grown dramatically 

(Doan and Halevy 2005). But much of this data is heterogeneous, having been 

developed in different contexts and with different semantics, often even for 

similar applications. Schema matching is a key to enabling data from these 

heterogeneous sources to be merged. 

E-business – the traditional purpose of data integration for e-business is to share 

data. There are various applications – a representative example is that of catalog 

integration wherein product information needs to be combined. XML is a widely 

used standard to accomplish this, including as used for web services. But even 

with XML and service-oriented architectures, semantics are often not fully 

specified. In the case of product catalogs, for example, XML elements from 

different schemas with the same name – price - might be in dollars in one schema 

but in Euros in the other. Further, the price in one schema might be a wholesale 

price, the other a retail price, or each schema may use different units of measure, 



and so on. Schema matching approaches need to be able to recognize such 

semantic differences in order to properly match such schema elements.    

Semantic Web – reliable data integration is part of realizing the vision of a 

semantic web. This is especially true for the ‘deep web’, that part of the web 

which can only be accessed through web forms. Many databases are accessible 

only through filling in and submitting a form on the web. There are many such 

examples - a listing of cars for sale at a dealership, courses offered at a university, 

and so on. These web forms can be conceptualized as specific views accessing 

underlying web databases, and are relevant to schema matching because 

information required by a form on the web can be considered as a form of schema 

for the database (Halevy 2005). These underlying databases need to be integrated 

when data from different sites needs to be combined - for example to combine 

advertisements for the same items from different sites. This type of information 

cannot generally be accessed by web search engines precisely because of this 

difficult, and so is unlikely to be available. If the information on the ‘deep web’ 

were to be available through search engines, it has been estimated it would 

increase the total amount of information available on the web by one or two 

orders of magnitude (Halevy 2005).   

 

This literature review focuses on research conducted on the first step of data integration, 

that of schema matching, which has been described as being at the heart of the data 

integration process (Rahm 2001) and is often used to develop mediated schema between 



two or more data sources.  A complete data integration solution starts with schema 

matching, and needs to consider integration architecture and query processing in addition.   

 

Manual schema matching is a time-consuming and labor intensive task. In one example, 

the time required to manually integrate the 27,000 elements from 40 databases was 

estimated to be more than 12 person years (Li 2000). At present, schema matching is 

typically performed manually (Rahm 2001) or in the best case, semi-automatically, with 

some of the algorithms described here suggesting potential matches and humans often 

making the final judgment. 

 

None of the schema matching methods reviewed in this paper have yet reached the stage 

of being completely automatic, and human intervention is still required. In fact, some 

researchers (for example, Yan, 2001, Ram 2004, Aumueller 2005, and Halevy 2005) do 

not foresee fully automatic schema matching as a possibility, and orient their research 

towards assisting human-performed schema matching. Schema matching has been 

identified as a problem that is “AI complete”, meaning that it is as difficult to replicate as 

human intelligence (Bernstein 2004). 

 

The remainder of this paper first describes the schema matching problem in more detail, 

develops a classification for schema matching research to date, profiles some of that 

research, and finally identifies directions in which research on schema matching is 

headed. 

 



 

Schema Matching 

 

In its simplest form, schema matching consists of identifying two elements from two 

different schemas as semantically equivalent, or matched. In Figure 1 below, for 

example, most methods would have little difficulty determining Zip from schema A and 

ZipCode from schema B as matches. This is an example of a match that could have been 

determined by examining just the element names. It is also an example of a direct match, 

sometimes also termed a match of 1:1 cardinality, meaning that a single element from 

one schema is matched to a single element in another schema. 

 
schema A: 

 
First Last Address Zip Phone 
Carol Frenditte 1102 Washington St, Dover, MA 02051 6174431685 
Allen LeBlanc 42 Union St, Medfield, MA 02053 5089291094 
Thomas Gutierrez 74 Chestnut St, Franklin, MA 02041 5088864218 

    

 
schema B: 

 
Name Address City State ZipCode 
William J Lyttle III 441 Elm St, Easton MA 02356 
Mr. Robert Sheridan 65 Georgetown Dr Framingham MA 01701 
Nancy Langford 891 Dudley St Providence RI 02919 

 

Figure 1: Simple schema matching based on element name 
 
Much research has been directed at developing direct matches. But what of the other 

schema elements? In the example above, the address may require an indirect match, 

sometimes termed a match of cardinality 1:n, to match Address in schema A with 

Address, City, and State in schema B. Also, the first and last name elements from schema 

A would need to be concatenated to match the name element in schema B. Even so, one 

schema might have additional information not in the other, such as schema B which 



includes prefix and suffix as part of the name element. In this case, only a partial match 

would be possible between the two schemas. This can also be seen with the element 

Phone in schema A, which has no corresponding match in schema B. 

 

Moreover, some matches may complex matches, also termed matches of m:n cardinality, 

where multiple elements in one schema must be matched to multiple elements in the 

other. In the example above, if schema B represented name as prefix, first, middle initial, 

last, and suffix, then such a match would be required. 

 

Considering matches of m:n cardinality increases the complexity of schema matching 

exponentially. Further, because data may need to be transformed in addition to only being 

matched through schema elements, the complexity of schema matching in general can be 

considered to be unbounded (Doan 2005). Consider the example in Figure 2 in which 

each schema has 

 
schema C: 

Item Qty Price Taxes 
1405 5 $110.00 $6.00 
1982 3 $45.00 $2.25 
2023 1 $18.00 $.90 

 
schema D: 

Item Quantity Price Total 
A110C 2 $11.00 $22.00 
AV99x 4 $9.00 $36.00 
AL129 5 $18.00 $18.00 

  
Figure 2: An example of complex schema matching 
 
an element named Price, yet they are not semantically equivalent. In order to match these 

two schemas, a matcher would have to not only discover this semantic difference, but 

evaluate Price and also Price + Taxes in schema C as matches for Total in schema D. 

This example also shows how instance data adds information to the schema matching 



process, and how approaches based only on examining the schema itself may not be 

adequate. 

 

This example also illustrates how data types might be used to improve the accuracy of 

matches. In this case, both Qty and Quantity have the same data type (integer), and this 

piece of schema information might be to augment other information in ascertaining 

matches. 

 

The examples above are considered to be element-based schema matching, in that they 

determine matches without knowledge of the database structure. However, in many cases 

a consideration of database structure should improve schema matching.  

 
schema E: 

Badge Name DeptID HomePhone 
41723 Katherine Baker 172 5082307682 
56784 Mark Bharati 189 6179641242 
66010 Edward Waters 189 9788917692 

 
DeptID DeptName 
172 Purchasing 
189 Marketing 

 
schema F: 

EmployeeID Name Department 
13572 Kevin Li Accounting 
20473 Julie McCormack HR 
33717 Fran Liebowitz HR 

  
EmployeeID PhoneType PhoneNumber 
13572 Home 4015629982 
13572 Cell 4018849010 
13572 Emergency 4012399497 
20473 Home 5083431884 
20473 Cell 5087898386 
33717 Home 6172847702 

 

Figure 3: An example of schema matching using structure 
 
The example in Figure 3 shows how the appropriate elements to match may need to be 

determined through an examination of each schema’s structure. The department names to 



be matched would need to come from the department entity in schema E and the 

employee entity in schema F. Consideration of the database structure would help enable 

the match of DeptName rather than DeptID from schema E since DeptName is 

presumably the same data type as Department in schema F, whereas DeptID would not 

be.  

 

Matching the phone numbers between the two schemas shows how knowledge of the 

database structure is  required. The phone number in schema E is in the table 

corresponding to employee, but there is a separate table for phone numbers in schema F 

that is linked to the employee table. Matching the schemas requires knowledge of this 

correspondence. In addition, the HomePhone element from schema E needs to be 

matched only to specific rows of PhoneNumber in schema F, also showing the 

importance of considering database structure in the schema matching process. 

 

These examples provide some illustrations of problems encountered when attempting to 

match schemas. Ram and Park (Ram 2004) considered these problems to be conflicts 

between schemas, and separated them into schema or data level conflicts. Schema level 

conflicts include cases where schemas are created with different names for similar 

entities or attributes, or where different structures (generalization, aggregation) are used 

to represent similar concepts. Data level conflicts include cases where different data types 

or units of measure are used to represent similar data items.  

 



The difficulty of schema matching is partially due to the fact that schemas are designed 

by many different people. Confronted with identical problems, two individuals may 

create very different schemas (Halevy 2005).  In addition, even when standardized 

schemas are introduced, the improvement in schema matching has been limited (Halevy 

2003). Furthermore, meta-data for schema – such as element name or data type – does 

not in general allow for a complete representation of semantics. Even seemingly 

descriptive element names may not capture the nuances needed for matching – such as 

the case above might be if the home phone being used was a cell phone, which would not 

be in the meta-data for either schema.  Once a schema has been designed, some extent of 

semantic meaning is lost, and this adds potential difficulty to subsequent matching 

efforts. 

 

As a result, approaches to schema matching have used many different sources of input to 

obtain information necessary to perform matching. Matching approaches have been 

developed that consider structure, data types, constraints, default and allowed values, and 

primary and secondary keys in addition to element names and instance data. In general, 

those approaches making use of the most information have had the best results (Doan 

2005). The next section describes surveys from past works, and develops a new 

categorization of schema matching approaches by the type of data they use, and how they 

use it. 

 

 

Schema Matching Survey and Categorization 



 

Several notable literature reviews of schema matching are in existence, as schema 

matching and integration has been the subject of research efforts for more than 20 years. 

One of the first was by Batini, Lenzerini, and Navathe (Batini 1986), which contrasted 12 

methodologies used for schema matching and integration. Of note is that none of the 12 

used the data itself, or instance data, to generate matches; they were each based on 

analyzing schema structures only. Nor did any of these 12 use either machine learning or 

ontological techniques. 

 

Rahm and Bernstein developed a taxonomy of schema matching approaches (Rahm 

2001), classifying schema matching approaches into those based on analyzing the 

schema, those analyzing instance data, and those combining the two. The schema 

analysis schemes were further subdivided by what was analyzed, structure or elements. 

Element-level approaches were further subdivided by specific technique, being either 

linguistic-based (such as using element names or description similarity) or constraint-

based (such as using data type similarity). Structure-level approaches were all based on 

constraints (such as those using data type similarity). 

 

The instance-based approaches surveyed by Rahm and Bernstein all used element-level 

approaches, being either linguistic-based (such as those using word frequencies) or 

constraint-based (such as those using value patterns and ranges).  

 



Rahm and Bernstein profiled seven prototype schema matchers. All seven employed 

multiple matching techniques, such as combining element name matching and structure 

matching, and so each utilized several approaches from their taxonomy. One of the seven 

prototypes was termed a composite matcher, using primarily schema-based matching 

techniques with machine learning. This prototype used machine learning to adjust 

weights given to the underlying matching techniques. Rahm and Bernstein also described 

the potential of storing results of matches for re-use, but noted that the application would 

not be universal because of application domain. For example, a match of salary and 

income might be appropriate in a human resource system but not in a related application 

such as a tax system. 

 

A literature review by Shvaiko and Euzenat (Shvaiko 2005) extended this classification 

scheme by incorporating granularity and specific inputs used by matching techniques. 

The levels of granularity were adopted from those developed by Rahm and Bernstein 

(Rahm 2001), and inputs were considered to be terminological, structural, or semantic. 

The categories of matching techniques were strings, language, linguistics, constraints, 

alignment reuse, formal ontology, graphs, taxonomy, structure repositories, and models; 

techniques based on instance data were not considered. The survey compared eight 

schema matching systems; Shvaiko and Euzenat found that most used techniques from 

several of the categories which they had developed.  

 

A more recent literature review by Doan and Halevy (Doan 2005) classified ongoing 

research on schema matching into rule-based and learning-based solutions. For example, 



a rules-based solution might include a rule that the first and last name elements from one 

schema should be concatenated to form the name element in a second schema. The 

discovery of such rules is typically based on the examination of schema information such 

as element names, data types, structure, or possibly instance data. Rule-based solutions 

were described Doan and Halevy as relatively inexpensive, since no training step is 

required as with learning-based solutions. 

 

Learning-based solutions typically use methods such as neural networks or Naïve 

Bayesian classification to improve the effectiveness of matches. These solutions typically 

utilize both schema information and instance data to determine matches, increasing the 

information available with which to generate matches. However, one potential drawback 

of learning-based solutions is that not only do they require a training data set consisting 

of correct matches, but they may need a large training data set to find what might be 

equivalent to simply stated rules, if they find those rules at all. Doan and Halevy 

advocated for combination rule-based and learning-based solutions as the most effective. 

This type of solution is similar to the composite matching system described in the survey 

by Rahm and Bernstein ( Rahm 2001). 

 

In keeping with the survey by Doan and Halevy, the taxonomy proposed in this literature 

review retains the categories of rules and learning-based approaches. However, there has 

been research that considers schema matching as a form of ontology alignment and uses 

ontological factors as part of the schema matching process. Especially in recent years, 

some of the research on ontology mapping has been applied specifically to the schema 



matching problem. The use of either domain-specific or general ontologies to facilitate 

schema matches is considered here as outside of either rules-based or learning-based 

approaches, and so for this reason, a third category of ontology-based approaches has 

been added to the classifications by Doan and Halevy.  

 

The taxonomy proposed here also considers, as has previous work such as that by Rahm 

and Bernstein (Rahm 2001), the classification of schema matching solutions as being 

either based on the use of schema information, instance data information, or a 

combination of both. An addition to previous work is that this survey considers two 

dimensions of schema matching for classification. This survey combines the dimensions 

of which type of data was used as input (schema or instance) with that of which type of 

algorithm was used. The intention was to be able to classify research approaches by the 

techniques and information used.  

 

An extension to previous work is that the taxonomy proposed here classifies schema 

matching approaches by two dimensions. Approaches are classified as being rules-based, 

learning-based, or ontology-based, and by using schema information, instance data, or a 

combination of both.  

 

This classification scheme, or taxonomy, and examples of research that can be considered 

in these classifications, is shown as Table 1. This is followed by a more detailed 

description of several research efforts from this classification. 

 
 



 Analyzes schema Analyzes instances Analyzes schema and 
instances – 
hybrid/composite 

Rules-based MGS/DCM (He 2004) 
XML DTD fragment 
matching (Rahm 2004) 
COMA++ (Aumueller 
2005) 
Cupid (Madhavan 2001) 
Element clustering 
(Smiljanic 2006) 
QMatch (Claypool 2005) 
Similarity Flooding 
(Melnik 2002) 

Clio (Yan 2001) 
Un-interpreted structure 
matching (Kang 2003) 
Instance-based 
identification (Chua 
2003) 
Matching using 
duplicates (Bilke 2005) 

iMAP (Dhamankar 
2004) 
Clio (Haas 2005) 

Learning-based Adaptive clustering (Cohen 
2002) 
Automatch (Berlin 2002) 

SMDD (Li 2005) 
SEMINT (Li 2000) 

LSD (Doan 2003) 
Corpus-based 
(Madhavan 2005) 

Ontology-based SCROL (Ram 2004)  Direct and indirect 
matches (Xu 2003) 
Data frames (Embley 
2004) 
Ontology-driven 
matches (Sung 2006) 
 

Table 1: Schema matching research taxonomy and recent research examples 
 
 

The following profiles several matching systems from the above taxonomy, describing 

their basic functionality and how they fit into the taxonomy: 

 

iMAP (Dhamankar 2004) is a composite schema matching system using both schema and 

instance data in order to match a source schema to a target schema. Matches are 

developed for each element of a target schema, and these matches can be complex 

matches, involving transformations of data elements from the source database and 

multiple elements in that transformation. At the core of iMAP are several searchers, each 

which examines source data for possible matches with target data. There are iMAP 



searchers for various types of data: text, numeric, categorical, and date. The data types of 

each element are determined by iMAP by examining instance data, rather than by 

examining the data dictionary. An example of a search is a text searcher which examines 

target schema elements as concatenations of source data elements, and uses a beam 

search (Russell 2003) to find the best matches. Another example is a numeric searcher, 

which looks for matches through arithmetic combinations, and can include more 

expressive functions if they are explicitly stated before hand (such as total = quantity * 

price + tax, etc.)  A categorical searcher uses the Kullback-Leibler measure to determine 

the distance between source and target categorical elements. 

 

The searchers also include a schema mismatch searcher. The mismatch searcher finds 

matches where two elements in the source schema may have been represented differently 

in the target schema. For example, a target schema may have an element describing 

houses for sale, and the descriptions might often include the word ‘fireplace’, whereas a 

source schema might have a separate element for fireplace which is a boolean field. The 

schema mismatch searcher is designed to uncover this type of situation as a potential 

match.  

 

iMAP then uses a similarity estimator to combine matches generated by the searchers for 

each element in the target schema in order to arrive at a score for each potential match. 

The last step is a match selector, which examines the matches from the similarity 

estimator and potentially discards them if they violate constraints. An example of such a 

constraint is one which states that an ‘Employee home phone’ element in the target 



schema can be matched to at most one element in the source schema, or more 

interestingly, that two elements should not be considered as part of the same match – for 

example, an element representing price and another representing year might be 

constrained from ever being part of the same match, even though might be numeric with 

some overlapping values. To some extent, these constraints could incorporate domain-

specific knowledge. 

   

iMAP is intended to be used to suggest matches to a user, with confirmed matches 

handed to a system such as Clio (Haas 2005) for generating mappings. A unique feature 

of iMAP is that it provides explanations to the user about the matches it develops. 

Because it retains the results of the searchers, similarity estimator, and match selector, a 

user can determine what caused a match to be made, why a particular match ranked 

higher than another match, or why a specific match was not made. A system based on 

iMAP was created and tested on some schema matching exercises where the overall 

accuracy was rated at 43-92%. Even though the schemas being matched were small (2-4 

tables with 30-40 elements each), the approaches used by iMAP have promise. 

 

LSD (Doan 2003), for Learning Source Description, is a multi-strategy approach to 

schema matching that combined rules and machine learning-based techniques. LSD 

works with XML data for which there is an associated DTD, and starts with a mediated 

schema to which several schema and data instances have already been mapped. It is these 

initial mappings to a mediated schema that form the training base for LSD. Several 

learners are applied to this training base, specifically a name learner, content learner, 



Naïve Bayes learner, county-name learner (because of the real-estate domain to which 

LSD was applied), and an XML learner. Each of these learners was presented with 

schemas for which there were known matches to the mediated schema. For example, the 

names learner used a nearest-neighbor approach to determine the best matches for each 

tag in a learning schema to the mediated schema. The content and Naïve Bayes learners 

analyzed instance data, while the XML learner analyzed both tags and instance data. 

 

Given a schema to be matched, LSD’s matching phase consisted of applying the learners, 

each of which would generate a confidence score between every element in the source 

schema with every element in the mediated schema. The highest score was selected from 

each learner. The name learner generates a score for each DTD tag in the schema to be 

matched, and the content learner generates a score for the instance data associated with 

each DTD tag. In the case of the content learner, the scores from the naïve Bayes 

classifications are averaged for all data instances to produce an overall score from the 

content learner.   

 

The contributions of LSD include the XML learner, which considers both tag (structure) 

data and instance data in combination. This was developed because experience with other 

learners showed that both structure and instance data improved accuracy. Another 

contribution of LSD is the creation of a meta-learner which combines the results of 

individual learners, and is capable of adjusting the weight given to each learner as it is 

shown more ‘correct’ matches. A limitation of LSD, however, is that it can be used to 

find only 1:1 matches; finding more complex matches is essential to any practical 



matching effort. The learners and meta-learner would appear to require substantive 

changes to accommodate matches of these more complex matches. 

 

Corpus-based schema matching (Madhavan 2005) uses the outputs from multiple learners 

as does LSD. Many of the learners are similar, including a name learner which examines 

fragments and n-grams of element names, a text learner which examines annotations, and 

an instance learner built on a text classifier. As with LSD, each learner outputs a 

confidence level for a pair of potential element matches, and a meta-learner combines the 

results from the individual learners using a sigmoid function to arrive at an overall 

confidence level of similarity (ranging between 0 and 1). 

 

However, unlike LSD, the learners are applied to find similarities between each element 

in a schema to be matched and each schema element residing in the corpus. Corpus-based 

schema matching first transforms a schema to be matched by estimating similarities to 

elements in the corpus. These similarities are of cardinality 1:1, and so more complex 

matches are not considered.   

 

The schemas in the corpus are also used for their domain constraints and conceptual 

representations. For example, the corpus schemas may be used to determine that 50% of 

the tables representing inventory have a foreign key linking to warehouse location, or that 

90% these tables have columns representing quantity. Further, the tables might also be 

used to determine that the customer table never has a product column, for instance. In 



order to establish these statistics, a clustering of schema elements is created prior to 

schema matching. This clustering is performed on both tables and individual columns. 

 

These domain constraint and column statistics are applied to the similarities outputted 

from the meta-learner. The matching process therefore consists of calculating similarities 

between each schema element in the source and target schemas, and also with the corpus 

schemas, to which the domain constraint and column statistics are applied in the form of 

a cost function. This cost function enables each element in the source schema to be paired 

with the least cost element (or no element) in the target schema. This method was 

evaluated on schemas from several domains, including some XML schemas for purchase 

orders and customers from xml.org. Corpus-based matching was found to be an 

improvement over other techniques, especially when matches are more difficult due to 

insufficient direct evidence in target or source schemas. 

 

The main contribution of corpus-based schema matching is in the use of previous known 

matches to guide the schema matching process.  Specific weights used by the cost can be 

modified, or learned, as more schemas are added to the corpus and more correct matches 

are known. This can be considered a form of replicating how a human schema matcher 

would build experience and reference past matches. The set of known schema matches 

can be increased with more known matches, and so corpus-based schema matching is 

considered to be learning-based. As the set of known schema matches can be viewed as a 

separate body of domain knowledge, and because of this, corpus-based schema matching 

is taken to be ontology-based in this taxonomy.  



 

Bilke and Naumann (Bilke 2005) developed a method to match schemas based on 

instance data, and would be classified in this taxonomy as a rules-based approach. 

Specifically, this approach develops matches by identifying duplicates. Duplicates are 

developed based on tuples, rather than by examining and matching characteristics of 

instance data in single columns, as do many other approaches which use instance data. 

There are other methods which identify duplicates based on tuples, but these are typically 

for other purposes. Many of these de-duplication methods, such as merge-purge, assume 

that schemas have already been matched and are oriented towards a specific domain. For 

example, merge-purge is oriented toward de-duplicating names and addresses for direct 

mailings.  

 

Finding duplicate tuples was accomplished by a term-frequency inverse document 

frequency (TF/IDF) weight scheme, in which each token value in each tuple was 

weighted, and then a similarity measure calculated between each pair of tuples.  The top 

K tuple matches in similarity were retained and a similarity matrix between each pair of 

columns in the two schemas to be matched was then constructed. This method considered 

only direct matches (those of 1:1 cardinality), and complex matches were not considered. 

 

The Bilke and Naumann approach assumes that there are not just schemas but data 

instances to be matched, which may not always be the case – for example, when a 

mediated schema is used as a target schema, as may be the case for a data warehouse. A 

weakness of this approach is that schema elements that have similar data but differing 



semantic meanings (such as bill-to and ship-to addresses) may be mistakenly identified as 

matches. Another weakness is that schema elements with data expressed in different units 

(kilograms vs. metric tons, for example) will not likely be matched. The contribution of 

this approach is in the method for measuring the duplication between tuples and columns 

in two schemas, and in the ability to match schemas when column names may be opaque. 

 

SCROL (Ram 2004) applies ontology in order to detect and resolve conflicts between 

two or more schema and a federated schema. The ontology which is applied is not 

specific to a domain, and consists of concepts that are related as either peers or disjoints, 

or as parent-child relationships through generalization or aggregation. In this ontology, a 

child concept can have only one parent concept.  

 

SCROL uses this ontology to relate schemas and to detect conflicts between them. 

Conflicts are in the form of mismatches between data or schema elements. An example of 

a data conflict would be one in which the same concept, such as square area, would be 

measured in acres in one schema, and square miles in another. A particular strength of 

SCROL appears to be in its ability to recognize matches between differently named 

elements that are semantically similar but require conversions in order to implement the 

match.  

 

An example of a schema conflict would occur when two attributes are stored in a single 

table in one schema, but two tables in a second schema.  SCROL takes as input a set of 



pre-determined schema matches as well as individual schemas, a federated schema, and 

other schema information, in order to detect and reconcile conflicts.  

 

Xu and Embley (Xu 2003) devised a method for matching XML schemas capable of 

detecting complex matches, or matches with cardinality m:n, where multiple elements 

may need to be matched between the source and target schemas. Their approach applies a 

domain-specific ontology to both schema and instance data. In order to do so, four basic 

matching techniques are used and then combined. Those four matching techniques are 

based on terminological relationships, data-value characteristics, domain-specific 

matches, and structural similarities.  

 

Terminological relationships, based on schema element names, are identified through the 

use of WordNet (Miller 1995), a freely available lexical database. WordNet is used to 

train a set of decision rules through a decision tree, and applied to find a confidence level 

ranging between 0 and 1 for each pair of schema elements. Data-value characteristics are 

evaluated through the use of a decision tree, although based on string lengths and 

alphanumeric characteristics. A confidence level for each pair of schema elements is 

created based on data-value characteristics. The confidence levels arrived at from 

terminological relationships and data-value characteristics may be quite different. For 

example, elements from two different schemas in the real-estate domain may have the 

exact same name – location – but be used for an address in one schema, and a description 

of sites in another. This would produce a high confidence level from the terminological 

matcher yet a low confidence level from the data-value matcher. 



The domain-specific matcher applies a specific ontology (termed an ontology snippet in 

other work by Xu and Embley), which describes relationships between concepts. The 

ontology also includes a set of regular expressions describing the expected data values for 

each concept (termed data frames in other work by Xu and Embley). These regular 

expressions are used to evaluate instance data, and matched to concepts in the ontology. 

From this, a determination can be made if elements from one schema are matches to a 

concept which is related through the ontology to a concept which has matches in the 

other schema. This enables complex matches involving composition, decomposition, 

union, and selection to be detected. The domain-specific matcher also creates a 

confidence level between each pair of schema elements. The structures of each schema 

are also evaluated to generate a fourth confidence level. 

 

The four confidence levels from the individual matching techniques are weighted and 

combined to an overall confidence level. These confidence levels are then considered in 

combination with two additional measures, a vicinity level and an importance level. The 

vicinity levels attempt to measure the similarity of each schema element in the source and 

target schemas to their vicinity elements, and the importance levels attempt to measure 

context similarity by comparing instance and element nodes for source and target 

schemas. Finally, potential matches with confidence, vicinity, and importance levels 

above a specific threshold are outputted as schema matches, possibly for human review. 

 

A particular strength of this approach is the ability to detect matches between schema 

elements represented as names and values. For instance, it is capable of matching a 



schema where the concept of waterfront location is represented as a boolean element in 

one real estate schema, and as part of comments in the instances of a text field in another.  

 

When tested on several sample schema matching exercises, Xu and Embley found it to 

detect over 90% of the correct matches (defined as recall), and that over 90% of the 

matches it detected were correct (defined as precision). 

 

Directions and Open Issues 

 

Combining approaches  

 

A common thread through the research profiled above and acknowledged by researchers 

is that there is no single technique or method that can effectively match schemas, and that 

most often a combination of techniques produces superior results. Examples of this are 

found in iMap’s searchers, LSD’s learners, and Xu and Embley’s method, each of which 

use multiple techniques. 

 

As the need for data integration has grown, the need to implement a variety of schema 

matching methods has also increased. As a consequence, there has been an emphasis on 

evaluating schema matching methods. To this end, several systems have been created to 

act as implementation shells for schema matching approaches. These systems have been 

typically designed to handle the tasks surrounding the actual schema matching, which 

include inputting, transforming, and possibly preparing source, target, and/or mediated 



schemas, passing these schemas to a matching algorithm, and interpreting the results, 

often as schema mappings. 

 

One such system supporting multiple matching methods is COMA++ (Aumeuller 2005). 

This system supports a variety of languages for inputting schemas, including SQL, XSD, 

and OWL, and outputs schema mappings. The architecture of COMA++ includes a 

schema pool, match customizer, and mapping pool. It is the match customizer which can 

implement different matching methods. An execution engine is used to combine the 

results from multiple matchers, and the results are presented to the user through a 

graphical user interface.  

 

As with many other matching algorithms, COMA++ supports approaches which can 

generate direct, or 1:1, matches, and develops a similarity measure between each pair of 

elements in a target and source schema. There are currently more than 15 matchers in 

COMA++, using both schema and instance information to develop matches. A 

contribution of COMA++, in addition to specific matching techniques, is in its ability to 

act as a repository for past schemas and matches, and to add additional matching 

techniques modularly. 

 

Clio (Haas 2005) is a system capable of generating mappings between either XML or 

relational schemas, and of producing XQuery, XSLT, or SQL queries based on those 

mappings. Clio transforms queries through those mappings to access query fragments 

from source databases, and is capable of combining those fragments accurately through 



de-duplication and a process termed ‘deep-union’. The architecture of Clio includes a 

user interface with which a user can direct the schema matching process, choosing to 

create matches manually or to select from those automatically generated. A particular 

contribution of Clio is that it can be used to incorporate many different schema matching 

algorithms, and evaluate each of those on real world problems starting with input 

schemas and ending with actual query execution. 

 

Standardization and Benchmarking 

 

Some research profiled here included an evaluation of a schema matching method on 

sample data. The test schemas were not consistent with each other, and varied widely in 

the number of tables, elements, complexity, and application domain. There were also no 

uniformly consistent metrics reported, with the possible exception of recall, precision, 

and an F-measure which were often reported. Recall is typically defined as the percentage 

of correct (as determined by a human matcher, sometimes used as the ‘gold standard’ 

(Madhavan 2005)) matches found, precision as the percentage of total matches found that 

are correct, and the F-measure as the harmonic mean of the two. The F-measure has been 

used because neither the recall nor precision measures are fully meaningful when used 

independently. The recall measure can be inflated when a matching algorithm detects a 

large number of schema matches (up to a cross product of two schemas for direct 1:1 

matchers), since more correct matches would be identified. The precision measure can be 

inflated if only a small number of matches are reported based on the matcher using high 

confidence levels.  



 

Research by Do, Melnik, and Rahm (Do, 2002) used the recall, precision, and F-measure 

to compare six matching systems. They noted that evaluations of matching systems 

should include more than these measures. Specifically, a matching system needs to be 

evaluated on the degree to which the input needs to be prepared or transformed before it 

is used, the degree to which the output can be readily used (for example, if it produces 

matches or complete mappings), and how much effort is required for the system to be 

used. In some cases, the effort required to fully train a learning based system might 

outweigh the effort for a knowledgeable user to manually ascertain the matches. Do, 

Melnik, and Rahm underscore the growing importance of being able to compare and 

benchmark alternative approaches to schema matching. 

 

THALIA (Test Harness for the Assessment of Legacy Information Integration) is a 

publicly available set of scenarios derived from university course catalogs for 

benchmarking data integration approaches (it is currently available at 

http://www.cise.ufl.edu/project/thalia.html). THALIA has been used to benchmark 

SMWRA (Topsakal 2005), which is a matching system that takes advantage of report 

headers and other report information in addition to schema information in order to find 

matches.  

 

The Ontology Alignment Evaluation Initiative of the Knowledge Web Consortium in 

Europe has recently proposed a set of benchmarking methods to evaluate ontology 

alignments, including those of schema matching (Euzenat 2005 and Castro 2005). At 



least one recently developed matching system, COMA++ (Aumeller 2005), has been 

evaluated by using the scenarios proposed for evaluation by these guidelines 

(http://co4.inrialpes.fr/align/Contest) by this group. 

 

Scalability 

 

Three factors are influencing the need for scalable schema matching solutions. The first 

factor is the trend towards schema matching solutions that use multiple techniques, from 

the recognition that there simply is no one single dominant technique. The second is the 

recognition that complex matches, those requiring data transformation and possibly 

matching multiple elements, are often required in real-world scenarios. Both of these 

factors push towards compute-intensive schema matching; for example, the iMAP 

matching system (Dhamankar 2004) can require execution times in excess of five 

minutes to generate matches for one pair of schemas. The third factor influencing the 

need for scalability is the growing demand for schema matching as a step towards data 

integration. 

 

Research has been directed at scalable schema matching methods. He and Chang (He 

2004) proposed two statistically-based approaches which take multiple schemas as input. 

The first approach assumes an underlying hidden model as the source for the schemas to 

be matched, and attempts to generate that hidden model in order to match schemas to it. 

The second approach uses correlation mining to attempt to identify co-occurrence of 

attributes, and indirect matches of cardinality 1:n. The focal point of this research is to 



find techniques which can greatly reduce the amount of time needed to perform matching 

between many related schemas. 

 

For large XML schemas, Rahm, Do, and Massmann (Rahm 2004) proposed a method to 

partition the schemas to be matched and to match fragments of each. The partitioning is 

done for similar types in each schema, basing the development of schema fragments on a 

comparison of schema structures. Identifying schema fragments enables more productive 

searches for matches between fragments, reducing execution times. This approach was 

implemented in a version of COMA (Aumeller 2005). 

 

Automated Matching 

 

While many researchers take a general-purpose fully automatic schema matching solution 

as infeasible, there is a recognized need for the automation of as much schema matching 

as possible, and for completely automated schema matching to handle specific cases. 

There have been attempts to more completely automate schema matching, particularly for 

XML data. QMatch (Claypool 2005) uses XML schema information on elements and 

structure in order to quantify the similarity between elements in two schemas.  SMWRA 

(Topsakal 2005) augments XML schema information with report text, especially headers 

from a specific application, and was tested on data available on the Web.  

 

There does not appear as yet to be a schema matching system capable of using both XML 

schema information and instance data to improve matching. In some cases, an XML 



document has a complete set of instance data contained within it. In others, data is 

presented in an XML document but only through a web form and for a small number of 

data instances at one time. The vision of automated schema matching for XML schemas 

on the Web might come closer to being realized if a schema matching system could query 

a web database through repeated post backs in order to ascertain specific instance data.  

  

The general view seems to be that some while data integration activities, such as 

integrating legacy databases, may always need human involvement, there are applications 

such as e-commerce and intelligent agents on the Web for which automatic schema 

matching must be developed. The access and utilization of instance data to match XML 

schemas on the Web would be helpful to this end. 

 

 

Summary 

 

Schema matching has been an area of active research for over 20 years. The increase in 

the volume of available data, heterogeneous databases, and dramatic proliferation of 

structured and unstructured data on the Web, have each increased the importance of 

developing effective schema matching solutions.  

 

There has been considerable success in developing schema matching methods, with some 

research profiled here reporting the ability to correctly match 70-90% of the elements in a 

target and source schema. The most successful methods use the most available 



information, including structure data, element data, instance data, and past schema 

matches. These methods can be divided into those which are rules-based, which typically 

use heuristics to develop similarity measures between target and source schema elements 

and then select matches from those measures, learning-based, which employ learning 

techniques such as neural networks to improve rules-based matching with known correct 

matches, and ontology-based, which often use domain specific information to augment 

the matching process. There have been successes reported within each of these 

categories. 

 

However, several considerable challenges remain. The most successful schema matching 

has been accomplished on schemas from a very specific domain, or from applications 

which are not fully representative of large-scale, real world schemas. As a result, there is 

an increasing emphasis on standardizing and benchmarking schema matching methods 

and improving the capability of matching larger and dynamic schemas. Considerable 

research is still needed if more fully automated schema matching is to become a reality. 
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