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Abstract 
Difficulties identifying causally relevant genetic variants underlying patterns of human 

variation have been given competing interpretations.  The debate is illuminated in this 

article by drawing attention to the issue of underlying heterogeneity—the possibility that 

genetic and environmental factors or entities underlying a trait are heterogeneous—as 

well as four other fundamental gaps in the methods and interpretation of classical 

quantitative genetics: "Genetic" and "environmental" fractions of variation in traits are 

distinct from measurable genetic and environmental factors underlying the traits’ 

development; Standard formulas for partitioning variation in human traits are unreliable; 

Methods for translation from fractions of variation to measurable factors are limited; and 

Variation within groups is different from variation between averages for separate 

groups.  Given these five gaps in the estimation and interpretation of components of 

variance, high heritability values for traits are not a reliable basis for choosing which 

traits to investigate by molecular techniques; this helps explain why identification of 

causally relevant genetic variants has not produced the results and insights hoped for. 
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Genome-Wide Association studies have identified variants at large numbers of 

genetic loci that confer statistically significant changes in traits, including increases in 

risk for diseases such as diabetes, heart disease, and cancers in defined populations 

(Khoury et al. 2007).  A consensus has emerged that most medically significant traits 

are associated with many genes of quite small effect (McCarthy et al. 2008).  The 

detection and identification of variants is further complicated by genetic heterogeneity in 

its various forms (e.g., mutations in a gene may occur at a variety of points in the gene, 

the clinical expression of such mutations can vary significantly, and different genetic 

variants may be expressed as the same clinical entity).  The implications to be drawn 

from difficulties identifying causally relevant genetic variants have been the subject of 

active debate (Couzin-Frankel 2010).  In particular, can variants associated with a 

significant but very small effect still lead researchers to biologically revealing pathways?  

Or, is it the case that, taking genetic heterogeneity into account, future advances will 

come from finding rare alleles having a strong effect (McClellan and King 2010)? 

The debate is illuminated in this article by returning to the classical quantitative 

genetic partitioning of variation in a given trait in some defined population.  The 

conventional wisdom is that "[r]esearch into the genetics of complex traits has moved 

from the estimation of genetic variance in populations [i.e., classical quantitative 

genetics] to the detection and identification [made possible by new tools of molecular 

biology] of variants that are associated with or directly cause variation” (Visscher et al. 

2007).  This move, however, rests on taking high values of a classical measure, 

heritability, to indicate a strong genetic contribution for a trait, such as incidence of heart 

disease, which makes the trait “a potentially worthwhile candidate for molecular 

research” that might identify the specific genetic factors involved (Nuffield Council on 

Bioethics 2002, chapter 11).  In light of this continuing—and foundational—role for 

classical quantitative genetics, five fundamental gaps in the field’s methods and 

interpretations (Taylor 2010) are discussed.  Each gap is presented in a capsule 

summary that is then elaborated.  Researchers and commentators concerned with the 

difficulties identifying causally relevant variants, or with nature-nurture issues more 

generally, as well as teachers of the next generation of researchers would benefit from 

acknowledging and consistently sustaining appropriate responses to all of these gaps. 



 3 

Underlying heterogeneity 
When a trait is observed to be similar within a group of individual and different among 

groups, there may be similar conjunctions of genetic and environmental factors (or, in 

epidemiology, risk or protective factors) involved in producing the trait, but this need not 

be the case.  That is the first gap.  The appropriate response is to allow for the 

possibility of heterogeneity of factors underlying any given trait.   

Consider claims that some human trait, say, IQ test score at age 18, show high 

heritability (Neisser et al. 1996).  These claims can be derived from analysis of data 

from relatives.  For example, the similarity of pairs of monozygotic twins (which share all 

their genes) can be compared with the similarity of pairs of dizygotic twins (which do not 

share all their genes).  The more that the former quantity exceeds the latter, the higher 

is the trait’s heritability (assuming for purposes of discussion that monozygotic twins are 

not treated more similarly than are dizygotic twins).  Researchers and commentators 

often describe such comparisons as showing how much a trait is “heritable” or “genetic.”  

However, no genes or measurable genetic factors (a generic term used in this article to 

denote entities such as alleles, tandem repeats, chromosomal inversions, etc.) are 

examined in deriving heritability estimates (or estimates of other fractions of trait 

variation in classical quantitative genetics).  Nor, as some prominent geneticists have 

noted (e.g., Rutter 2002, 4), does the method of analysis suggest where to look for 

them.  Moreover, even if the similarity among twins or a set of close relatives is 

associated with similarity of (yet-to-be-identified) genetic factors, the factors may not be 

the same from one set of relatives to the next, or from one environment to the next.  In 

other words, the underlying factors may be heterogeneous.  It could be that pairs of 

alleles, say, AAbbcbDDee, subject to a sequence of environmental factors, say, FghiJ, 

during the development of the organism are associated, all other things being equal, 

with the same outcomes as alleles aabbCCDDEE subject to a sequence of 

environmental factors FgHiJ (Fig. 1).  The gap between homogeneous and 

heterogeneous genetic and environmental factors influencing the development of a trait 

has yet to be recognized as a significant methodological concern by quantitative 

geneticists or by critical commentators on heritability research (e.g., Downes 2004 and 

references therein).   
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Figure 1.  Factors underlying a trait may be heterogeneous even when identical or 

monozygotic twins (MZT) are more similar than fraternal or dizygotic twins (DZT).  The 

greater similarity is indicated by the smaller size of the curly brackets.  The underlying 

factors for two MZ pairs are indicated by upper and lower case letters for pairs of alleles 

(A-E) and environmental factors to which they are subject (F-J). 

 

Of course, it is not the case that underlying factors are always heterogeneous.  

Some traits are largely determined by the genes at a single locus more or less 

independently of the individuals’ upbringing—so called high-penetrance major genes 

(e.g., presence of extra digits or polydactyly).  The detection of such traits can, however, 

be made through examination of family trees; quantitative genetics and heritability 

estimation need not be involved.  If such traits are put aside, there are no obvious 

grounds to rule out the possibility of heterogeneity in the measurable genetic and 

environmental factors that underlie patterns in quantitative and other complex traits, 

such as crop yield, height, human IQ test scores, susceptibility to heart disease, 
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personality type, and so on.  Moreover, because underlying heterogeneity 

encompasses both environmental and genetic factors, researchers face an even greater 

challenge than indicated when genomics researchers have responded to difficulties in 

identifying causally relevant factors by emphasizing genetic heterogeneity (McClellan 

and King 2010).  

The appropriate response to the first gap is to acknowledge the possibility of 

underlying heterogeneity and it implications for quantitative genetics (Taylor 2010).  

Doing so could, for example, lead researchers to seek to identify the specific genetic 

and environmental factors without reference to the trait’s heritability or the other 

fractions of the total variance.  It could prepare them to expect fruitless molecular 

investigations on route to finding the special high heritability traits for which the 

underlying factors are not heterogeneous.  It could lead them to restrict attention to 

variation within a set of relatives.  This last path makes sense because, even if the 

underlying factors are not known, high heritability still means that if one twin develops a 

trait (e.g., type 1 diabetes) the other twin is more likely to as well. The second twin might 

be advised to take measures to reduce the health impact if and when the disease 

started to appear for that twin. However, notice that this path assumes that the timing of 

getting the condition differs from the first twin to the second; the factors influencing the 

timing could also be heterogeneous.  Further implications of the gap between assuming 

heterogeneity versus homogeneity of underlying factors will be discussed after 

presentation of the other four gaps. 

 

Statistical patterns in traits are distinct from measurable factors 
The second gap lies between, on one hand, quantitative genetics that deals with the 

statistical analysis of measurements on a trait for a sample of related and unrelated 

individuals in a range of situations and, on the other hand, the investigation of 

measurable genetic and environmental factors influencing the processes through which 

the trait develops in different individuals.  These inquiries are conceptually distinct.  This 

gap needs to be highlighted, not downplayed or obscured.  

Conceptual clarity and terminological adjustments can help highlight this gap.  As 

a starting point, the potential for confusion in the varying uses of the term “genetic" 
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diminishes if genetic is reserved as an adjective in reference to factors that are 

transmitted from parents to offspring and whose presence can, in principle, be 

observed.  In a similar spirit, “environmental” can be taken to refer only to measurable 

factors, which can range widely, say, from average daily intake of calories to degree of 

maltreatment that a person experienced as a child.  Potential for confusion associated 

with the commonly used nouns “genotype” and “environment" can also be reduced.  

These terms obscure the second gap by suggesting, without warrant, that the quantities 

estimated through analysis of data about observed traits have a relationship with 

measurable genetic and environmental factors influencing the development of the trait.  

Suitable substitutes are provided by the agricultural terms variety and location.  A 

variety can be thought of simply as a group of individuals whose relatedness by 

genealogy can be characterized, such as offspring of a given pair of parents, or a group 

of individuals whose mix of genetic factors can be replicated, as in an open pollinated 

plant variety.   A location is the situation or place in which the variety is raised, such as 

a family of humans or a plot at an agricultural research station.  The use of the terms 

variety and location does not assume that researchers can specify the genetic or 

environmental factors that influence the trait in the various variety-location 

combinations. 

Clarity about the second gap allows sound interpretation of the classical 

quantitative genetic analysis of variation among related and unrelated individuals for a 

given trait, which centers on partitioning the variation into fractions according to simple 

additive models (i.e., in statistical terms, undertaking an Analysis of Variance).  In these 

models the value of the trait for a given individual is a sum of separate elements, 

including ones associated with the individual’s variety and location as well as variety-

location combinations or interaction and noise or unsystematic influences (e.g., 

measurement error).  (“Element” will be used here in place of the technical term “effect,” 

whose causal connotations are unwarranted and can confuse the discussion.)  The 

overall variation in the trait becomes a sum of the variances of the elements in the 

additive model.  Figure 2 depicts the partitioning of variation for an agricultural 

evaluation trial, where it is possible to raise or grow a set of animal or plant varieties in 

each of a set of locations and to raise replicates for each variety-location combination.  
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(As will become evident, it is often helpful to consider agricultural studies and to contrast 

what can be known through those studies with what can be known through analyses of 

data from humans.) 

 
Figure 2.  Partitioning of variation in the ideal agricultural evaluation trial where each of 

a set of varieties is raised in each of a set of locations, and there are two or more 

replicates in each variety-location combination.  The bars next to the varieties and 



 8 

locations and the diagonal bars for each variety-location combination indicate the 

average value of the trait for, respectively, each variety, each location, and each variety-

location combination (after allowing for the variety and location averages).  These are 

the elements referred to in the text.  The variation between replicates within variety-

location combinations is indicated by the size of the curly brackets.  The brackets are 

given a non-systematic shading to denote that the variation between replicates is not 

correlated from one variety-location combination to another.  Note the contrast between 

the agricultural evaluation trial and Figure 1, in which the replicates of any variety—twin 

pairs—are raised in only one location—household—per variety. 

 

Heritability is often described as the fraction of variation in a trait associated with 

“genetic differences” or “genetic variance,” but the original quantitative genetic concept 

does not concern variation among the genes possessed by the individuals.   The 

descriptions in quotes are loose expressions for the variance of the variety elements, 

where each variety’s element is related to the average or mean of the trait for the variety 

across all locations and replicates minus the overall mean.  Similarly, the 

“environmental” variance, sometimes labeled “shared environmental” variance, is the 

variance of the location elements, not variation in environmental factors experienced by 

the individuals. 

The variance of the “variety-location interaction” elements is distinct from the use 

of the term “gene-environment interaction” for situations in which "gene" denotes a 

value of a measured genetic factor, the "environment" denotes a value of a measured 

environmental factor, and an interaction means that the quantitative relation between 

the trait and one of the factors varies according to the measured value of the other 

factor (e.g., Moffitt et al. 2005).  For the partitioning of trait variance, in contrast, a high 

degree of variety-location interaction means that the responses of the observed 

varieties across the range of the observed locations do not parallel one another.  That 

is, one variety may be highest for the trait in one location, but another variety may be 

highest in another location-or, at least, the difference between any two varieties may 

change location to location.  Variety-location interaction also means that a location that 

is best for one variety will not be best for all.  For agricultural breeders, a high degree of 
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interaction means that recommendations to farmers have to be made for a delimited set 

of locations or, for animals, for defined conditions of husbandry.  

The residual variance is what remains after the preceding systematic variation for 

the trait has been taken into account; all that remains is the unsystematic variation 

between replicates within variety-location combinations.  In analyses of human 

variation, this fraction is often labeled “non-shared environmental” variance and 

interpreted in terms of non-shared environmental factors (Plomin 1999; see critical 

review by Turkheimer 2000).  Residual variance, however, is equally well non-shared 

“genetic” (variety) and interaction variance.  In any case, to interpret the unsystematic 

variation in terms of differences in the underlying factors is to forget this second gap, 

namely, statistical patterns in traits are distinct from measurable factors. 

 

Unreliable partitioning of human variation 
The third gap lies between the values generated by the methods commonly used in 

analysis of human studies and the actual fractions of the overall variance corresponding 

to heritability, the “environmental” fractions, and so on.  The standard methods do not 

reliably estimate the actual values.  The methods need to be repaired and shorn of 

unsupported or unnecessary assumptions. 

To understand how it could be the case that abundant and sophisticated 

published research that partitions data for human variation has resulted in unreliable 

estimates and interpretations, three points are key. 

1.  Similarity of relatives.  When it is not possible to observe every variety raised 

in every location (i.e., cases like that in Figure 1, not the situation depicted in Figure 2), 

quantitative genetics analyzes variation in ways that take into account the genealogical 

relatedness of the individuals whose traits are observed.  The standard methods 

assume that, all other things being equal, similarity in traits for relatives is proportional 

to the fraction shared by the relatives of all the genes that vary in the population (e.g., 

fraternal or dizygotic twins share half of the variable genes that identical or monozygotic 

twins share fully).  However, plausible models of the contributions of multiple genes to a 

trait can be shown to result in, all other things being equal, ratios of dizygotic similarity 

to monozygotic similarity that are not .5 and that vary considerably around their average 
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(Taylor 2007).  An example is given in the Appendix, but this point does not depend on 

the validity of any particular hypothetical model of multiple genes contributing to the 

trait.  The assumption is unreliable because in quantitative genetics, the name of the 

field notwithstanding, the relevant correlations need to be based on observed traits and, 

as such, cannot be directly given by the proportion of shared genes involved in the 

development of those traits.  For the same reason, heuristic values of the similarity of 

relatives of other degrees, which are ubiquitous, are also unreliable.  (Identifying the 

exact fraction of genes shared by relatives [e.g., Visscher 2006] does not address this 

issue.)  The methods can be adjusted to allow empirical estimation of parameters to 

take degree of relatedness into account provided the appropriate classes of data are 

available (Taylor 2012, Appendix 1).  In this regard, data about unrelated individuals or 

varieties raised in the same location are especially valuable. 

2.  Interaction variance.  The standard methods almost always omit reference to 

a variety-location-interaction variance fraction (Jacquard 1983).  This means that 

fraction is subsumed in the among-variety-means variance fraction, that is, in the 

heritability estimate.  Empirical estimation of the variety-location-interaction variance 

fraction is possible if the appropriate classes of data are available (e.g., data about 

monozygotic twins raised in separate locations in which there is no correlation from one 

twin’s location to the other).  Although the concerns that agricultural breeders have 

about high interaction variance (mentioned under the second gap) are not relevant for 

human research, the size of the interaction variance remains important to anyone 

wanting to claim that the “shared environmental” (location) fraction is of small 

importance or smaller importance than had been believed.  To support such a claim 

requires showing not only that the location variance is a small fraction of the total 

variation, but the variety-location-interaction variance is as well.  

3.  Non-essential genetic models.  Partitioning of trait variation into components 

rests traditionally on models of theoretical, idealized genes with simple Mendelian 

inheritance and direct contributions to the trait (Falconer and Mackay 1996; Lynch and 

Walsh 1998).  Given that the data are about traits, it must also be possible to partition 

trait variation without referring to theoretical, idealized genes while making use of 

defined degrees of relatedness among kinds of individuals or varieties (Taylor 2012).  
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The virtues of such gene-free analysis include: making it difficult to forget the second 

gap or to omit variety-location interaction fraction; highlighting the classes of data 

needed for empirical estimation of parameters to take degree of relatedness into 

account; and providing a means to assess the implications of the three points raised 

under this third gap. 

On the implications of the three points, suppose, as in the agricultural evaluation 

trial (Figure 2), there is as much data on a trait as could be needed.  The correct 

fractions of the variation can be estimated making it is possible to examine how well the 

standard formulas (e.g., Rijsdijk and Sham 2002) recover those values.  Taylor (2012) 

shows that: the residual fraction is recovered correctly; the so-called heritability 

estimates subsume the interaction fraction and are inflated or deflated according to 

whether the relatedness parameter is lower or higher than under the standard 

assumption; and the shared environmental fraction is correspondingly deflated or 

inflated.  In short, as illustrated numerically in the Appendix (Figures 4 and 5), the 

standard formulas are unreliable estimates of the fractions of the variation in the trait.  

 

Translation from fractions of variation to measurable factors 
The fourth gap lies between fractions of variation and hypotheses about the underlying 

measurable genetic and environmental factors, or between the methods available and 

the methods needed for translation from variance fractions to hypotheses. This gap 

needs to be reckoned with.  If it cannot be bridged, the third gap becomes moot and 

methods of analysis of variation among relatives need to find a basis quite different from 

that of classical quantitative genetics. 

In conventional interpretations, a high heritability value indicates a strong genetic 

contribution to the trait.  The finding that the variance of location elements (“shared 

environmental” variance) is a small fraction of the variation in human traits relative to the 

residual (“non-shared environmental”) variance—a finding called into question by the 

third gap—is typically interpreted as the shared environment (e.g., socioeconomic 

status of the family) being less important (strictly: being associated with less variation in 

the trait) than social or environmental influences that vary for siblings within a family. 
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Such interpretations either overlook the second gap (in which fractions of 

variation in a trait are seen as distinct from measurable factors underlying the trait’s 

development) or presume the existence of some method to expose the measurable 

genetic and environmental factors.  The method might not be explicit, but an obvious 

initial step would be to assume that the variety elements in the additive models used for 

partitioning (see Figure 2) are related to the level of some genetic factor (or composite 

of genetic factors) that remain to be exposed.  Similarly, it could be assumed that the 

location elements are related to the level of some composite of environmental factors, 

and that the residuals are related to some factors not captured by either of these 

relations.  These assumptions are, however, questionable.  In principle, twin studies 

could be conducted even if the varieties were drawn from different species, in which 

case one would not expect such a genetic-factor gradient to exist.  Even if all varieties 

are from the same species, the genetic factors that influence the trait need not be the 

same for all varieties.  Indeed, recalling the first gap, the combinations of underlying 

genetic and environmental factors may be heterogeneous.  Notice, also, that the 

calculation of the variety elements involves averaging over a particular set of locations, 

which means that the variety elements, and thus the variance of these elements, are not 

properties of the varieties alone.  (Similarly for location elements and their variance.) 

Agricultural trials can allow generation of hypotheses about the genetic and 

environmental factors.  By describing one way this happens, the difficulty in human 

research of bridging the fourth gap is accentuated.  Whenever a number of varieties of 

animals or plants are raised or grown in multiple replicates over many locations, 

techniques of cluster analysis can eb used to group varieties by similarity in responses 

across all locations (Byth et al. 1976).  Varieties in any resulting group tend to be above 

average for a location in the same locations and below average in the same locations.  

The wider the range of locations in the measurements on which the grouping is based, 

the more likely it is that the ups and downs shared by varieties in a group are produced 

by the same conjunctions of underlying genetic and environmental factors.  This feature 

gives researchers some license to discount the possibility of underlying heterogeneity 

within a group, allowing them to hypothesize about the group averages—about what 

factors in the locations elicited basically the same response from varieties in a particular 
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variety group, a response that distinguishes the group from others.  (It should be noted 

that data analysis is never self-sufficient; knowledge from other sources is always 

needed to help researchers generate their hypotheses about genetic and environmental 

factors.)  However, clustering becomes infeasible when analyzing measurements from 

studies of human twins because such studies have only two replicates (twins) in one or 

at most two locations (families).  In short, in agricultural research there is a path to 

bridge the fourth gap between fractions of variation and hypotheses about the 

underlying measurable genetic and environmental factors.  However, the path is not one 

that research on human variation can follow.   

If the fourth gap is considered together with the second and third, then it is not at 

all clear, contra the so-called laws of behavioral genetics captured by Turkheimer 

(2000), that heritability is substantial for all human behavioral traits, the influence of 

being raised in the same family (location) is smaller than the effect of genes, and a 

substantial portion of the variation in complex human behavioral traits is not accounted 

for by the effects of genes or families.  Contra Plomin (1999 C26), it is not clear whether 

there is a trend for heritability to increase over people's lifetimes and, even if there were 

such a trend, this is not evidence that "genetic" differences come to eclipse 

"environmental" differences (see interaction variance under the third gap). 

Fortunately, it is now possible to undertake research to identify the specific, 

measurable genetic and environmental factors without reference to the trait’s heritability 

or the other fractions of the total variance (e.g., Moffitt et al. 2005, Davey Smith and 

Ebrahim 2007, Khoury et al. 2007). Yet, as indicated in the introduction, difficulties have 

become apparent in identifying causally relevant genetic variants for humans.  

 

Differences within groups and among averages for separate groups 
The fifth gap lies between within-group variation and between-group differences (i.e., 

variation among the means of the groups).  The two kinds of variation have no logical or 

methodological relationship.  This gap is widely acknowledged, but then sometimes 

hedged in the contentious debates about differences among the averages for racial and 

other groups when writers propose that high heritability confers plausibility on 

hypothesizing a role for genetic factors in explaining those differences (e.g., Jensen in 
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Miele 2002, 111ff).  The within-group/between-group gap is, however, firm and its deep 

implications need to be kept always in mind. 

If the fourth gap is not bridged, partitioning of variation among traits and 

heritability estimates provide little or no guidance in hypothesizing about measurable 

factors underlying observations of traits within one group of varieties.  It follows logically 

that such analysis can provide little or no guidance about measurable factors associated 

with differences between the means of two groups. 

Even if the fourth gap were bridged, hypothesizing about the difference between 

the average or mean values for varieties replicated within, but not across, locations is 

subject to the limitations of any nested analysis of variation.  A textbook example 

following Lindman (1992) illustrates these limitations.   Consider high school students’ 

test scores in algebra viewed in relation to their teacher and school.  A significant 

difference among the mean scores for the schools might, at first sight, be interpreted in 

terms of differences among the schools’ facilities or organization.  However, in practice, 

the students within a school could be randomly assigned to a teacher in their usual 

school, but neither the students or the teachers would have been assigned randomly 

across schools.  The influences of the teachers in the different schools and the capacity 

of the students are also, therefore, involved in the differences among the schools’ mean 

scores.  The observed differences between schools could be due to some characteristic 

of the school as a whole, or to the fact that some schools have better teachers or their 

students are more avid learners, or to combinations of factors, such as students 

responding worse to teachers whose class-preparation time has been reduced because 

their school’s administrators insist more on detailed documentation of student 

performance, and so on.  In short, analysis of variation cannot help researchers 

hypothesize about the difference in the mean scores from one school to the next 

because the teachers are replicated in their students' test scores only within schools, 

not across schools.  To translate this into the concerns here, nested analysis of 

variation cannot help researchers hypothesize about the difference in the mean scores 

from one location to the next when each variety is replicated only within some location.  

Researchers might just as well conduct a separate analysis for each subset of varieties 

and location.  In the context of racial differences for human traits, this would mean a 
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separate analysis for each combination of group of individuals and experience of 

membership in different racial groups.  (Note that to respect that nested analysis has 

this methodological limitation is not to make the claim that disjunct kinds of causes must 

be operating in the different racial groups.)    

 

Implications for past and future analysis of human variation 
The five fundamental gaps in quantitative genetics pose challenges to the common 

interpretations or key results of classical quantitative genetic analyses of variation, 

especially analyses of human variation.  Recognition of the gaps might lead 

researchers, as well as historians and philosophers of science who have commented 

extensively on nature-nurture science (Downes 2004), to revisit studies that have 

interpreted heritability and “genetic variance” as a quantity that measures the 

contribution of the genetic factors in influencing variation in outcomes of the process 

through which the trait develops.  Such a review might well, given the five gaps, find that 

key results and interpretations from many decades of human quantitative genetics are 

not justified or, at best, are unreliable. 

Considering the gaps together and highlighting the possible heterogeneity of 

measurable genetic and environmental factors that underlie patterns for traits, further 

implications for understanding the analysis of human variation follow. 

1. The use of ambiguous terms, such as “variation associated with genetic 

differences," obscures the gap between fractions of variation in a trait and measurable 

factors underlying the trait’s development, thus making it harder to visualize the 

possibility of heterogeneity in the underlying measurable factors (first gap). 

2.  The translation from patterns in variation to hypotheses about measurable 

factors is possible in agricultural trials when, through clustering (as discussed under the 

fourth gap), groups can be defined within which underlying heterogeneity is minimized. 

This cannot be done in defining human groups. 

3.  Consider what happens if researchers put aside the search for measurable 

factors and, as is common in agricultural and laboratory breeding, focus on deriving 

reliable estimates of heritability as a fraction of the variation for the trait.  If the actual 

advance under selective breeding is less than predicted, one source of the discrepancy 
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could be the underlying heterogeneity of genetic factors and their re-assortment through 

mating.  However, whether this is the case matters little for breeders, because they can 

compensate for discrepancies: They discard the undesired offspring, breed the desired 

ones, and continue.  This kind of selective breeding and compensating for 

discrepancies is not, of course, an acceptable option for humans. 

4.  If measurable factors underlying variation are identified for one group 

(presumably, for humans, by some means other than classical quantitative genetics), 

the possibility of underlying heterogeneity tempers any impulse to hypothesize that the 

same factors apply within other groups as well as to the difference between their 

means. 

 
Figure 3. Values of a hypothetical trait for a population, showing one underlying genetic 

factor and one environmental factor (ef and gf) connected to the values for a sample of 

individuals. The crossing of the connector lines indicates schematically the first gap, i.e., 

the underlying factors are heterogeneous for this trait.  The separation of the distribution 
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of the trait at the top and the plot of factors at the bottom reflects the second gap; the 

difficulty of inferring the factors from the distribution of the trait reflects the fourth gap. 

 

This last observation makes this account of gaps in classical quantitative 

genetics relevant to other realms of biomedical and social science.  Consider, as a 

pertinent illustration, the phenomenon of the large mean differences on IQ test scores 

between generations, which still lacks a satisfactory explanation. Dickens and Flynn 

(2001) propose “reciprocal causation” models, which involve two key features: a 

matching of environments to differences that may initially be small (e.g., children who 

show an earlier interest in reading will be more likely to be given books and receive 

encouragement for their reading and book-learning); and a social multiplier through 

which society’s average level for the attribute in question influences the environment of 

the individual (e.g., if people grow up and are educated with others who, on average, 

have higher IQ test scores, this will stimulate their own development).  Such models 

open up further challenges.  Once it is recognized that the potency of social multipliers 

depends on the capacities of different groups to capitalize on historical changes in 

society, there is no reason to assume that the multipliers apply uniformly across 

individuals despite their differences in age, gender, geographical location, culture, and 

so on, or even that the multipliers move different individuals in the same direction but at 

different speeds.  To adapt a basketball analogy that Dickens and Flynn employ, the 

onset of TV coverage of basketball acted as a social multiplier by eliciting greater 

participation in basketball but, at the same time, it elicited more couch-potato 

spectatorship.   Now, once researchers envisage developmental pathways whose 

heterogeneous components differ among individuals at any given point of time, they 

have opened up the challenge of developing methods to collect and analyze the data so 

as to discriminate among many possible models of those pathways.  The same 

challenge applies to explaining persisting gaps between mean IQ or achievement test 

scores for racially or ethically defined groups in the United States (Rampey et al. 2009). 

As noted in the introduction, research on complex human traits now applies tools 

such as Genome-Wide Association that are more powerful than the formulas of 

classical quantitative genetics.  However, because heritability estimates for human traits 
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are unreliable, a high heritability value is not a reliable guide for choosing which traits to 

explore at the molecular genetic level.  Even when estimates are reliable in agricultural 

or laboratory breeding, it is always possible that the genetic and environmental factors 

underlying patterns in quantitative and other complex traits are heterogeneous.  The 

possibility of underlying heterogeneity puts an exclamation point on the consensus that 

most medically significant traits are associated with many genes of quite small effect 

(McCarthy et al. 2008).  It diminishes the utility for medical research and potential 

treatment not only of the results of quantitative genetics but also of Genome-Wide 

Association studies.  The five fundamental gaps and appropriate responses to them 

should be understood by all researchers who want to build on "the estimation of genetic 

variance in populations [and move] to the detection and identification of variants that are 

associated with or directly cause variation” (Visscher et al. 2007) as well as teachers of 

the next generation of researchers.  
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Appendix: Numerical illustrations of conceptual points from the 
article 

1.  Ratios of DZ similarity to MZ similarity under an illustrative model. 

Consider a model in which the trait occurs when the combined “dosage” from 10 

loci exceeds a threshold of 5, where each pair of alleles contributes a full, zero, or half 

dose according to whether the alleles are, respectively, both the same for one variant, 

same for the other, or one of each. Dominance is zero for the subset of the full results in 

the table below; location (environment) and noise (error) are not included in the model. 

The frequency of the first variant for a given locus is randomly chosen from the range in 

the first two columns. The third column gives the intraclass correlation for DZ twins. 

Given that the intraclass correlation for MZ twins is 1, the third column also gives the 

ratio of DZ similarity to MZ similarity. The average of these values is .60.  

 

Frequency of first kind 
of allele chosen from 
range: 

Intraclass 
correlation 
for DZ 
twins  Lower limit Upper limit 

0.00 0.50 -0.01 
0.49 0.51 0.78 
0.38 0.63 0.61 
0.25 0.75 0.53 
0.13 0.88 0.73 
0.00 1.00 0.60 
0.75 0.75 0.81 
0.69 0.81 0.56 
0.63 0.88 0.53 
0.56 0.94 0.41 
0.50 1.00 1.00 
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Figure 4.  Contrast between the actual values and the values estimated using the 

conventional quantitative genetic formulas for a range of combinations of broad-sense 

heritability and the location-variance fraction (so-called shared environmental effect) 

(values drawn from Taylor 2012, Table 4). 
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Figure 5.  Ratio of the value estimated using the conventional quantitative genetic 

formula for broad-sense heritability and the sum of the actual values for heritability and 

interaction fraction of the variance plotted against the empirically estimated parameter 

for relatedness for dizygotic twins, a parameter that is conventionally assumed to be 0.5 

(values drawn from Taylor 2012, Table 4). 


